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Abstract

Morrey’s conjecture deals with two properties of functions which are known as
quasi-convexity and rank-one convexity. It is well established that every func-
tion satisfying the quasi-convexity property also satisfies rank-one convexity.
Morrey (1952) conjectured that the reversed implication will not always hold.
In 1992, Sverak found a counterexample to prove that the Morrey’s conjecture
is true in three dimensional case. The planar case remains, however, open and
interesting because of its connections to complex analysis, harmonic analysis,
geometric function theory, probability, martingales, differential inclusions and
planar non-linear elasticity. Checking analytically these notions is a very dif-
ficult task as the quasi-convexity criterion is of non-local type, especially for
vector-valued functions. That’s why we perform some numerical analysis based
on gradient descent algorithms using Dacorogna and Marcellini’s [12] example
function f. (&) = ||€||* — v|€||*deté where € is a 2 x 2 matrix. Our numerical
results indicate that Morrey’s conjecture holds true.

Keywords:  Morrey’s Conjecture; Quasi-convexity; Gradient Descent; Non-
convex Optimization; Iwaniec Conjecture
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1 Introduction

In the 1950’s, Charles Morrey worked to find what is the correct notion of
convexity in the context of calculus of variations. To address this, he considered
the problem of minimizing the functional

1(9) = /Q F(V6(x))dx (11)

where 2 C R" is a bounded open set, ¢ : @ C R” — R™ is a map, V¢ € R"*™
(the set of n xm matrices), and f : R"*™ — R is a continuous function, together
with prescribed Dirichlet conditions on the boundary 0f). This is equivalent to
proving that the functional I in Eq.(1.1) is weakly lower semi-continuous in
some Sobolev space WP, This problem is a difficult one and has not yet
received a fully satisfactory answer. It was first formulated by Bliss in 1937 in
his seminar on the calculus of variations and has received considerable attention,

in particular by Albert [1], Reid [35]. In addition, MacShane [22], Hestenes and
MacShane [17], Terpstra [410], Van Hove [41], Serre [37] and Marcellini [23] for
the quadratic case and in a more general context by Morrey [27], [28] (see [4],

[5], [6], [11] for more details on the quadratic cases). C. Morrey wanted to
define the conditions of convexity on the function f (not including growth or
smoothness conditions) that guaranteed that the problem Eq.(1.1) is very well
posed variational problem.

Morrey proved that the functional I in Eq.(1.1) is weakly lower semi-continuous
(ellipticity condition) if and only if the function f is quasi-convex. However,
due to its non-local character [21], quasi-convexity of a function is rather
difficult to check. This has motivated Morrey to look for local conditions on
f that warranted the weakly lower semi-continuity of the integral. It is well
known that if the function f is convex then it is also poly-convex [1] which plays
a key role in non-linear elasticity. The notion of poly-convexity was introduced
in the context of non-linear elasticity theory by Sir John Ball in a pioneering
paper [4]. A self contained study giving necessary and sufficient conditions for
poly-convexity in arbitrary special dimension was given by Alexander Mielke

[25]-

More generally, it was established that if a function f defined on R™*™ is
poly-convex, then f is quasi-convex, which also implies that the function f is
rank-one convex, a local convexity property. The converse implications do not
always hold true; for instance, rank-one convexity does not imply poly-convexity

for dimension n > 2 [12], a sufficient condition for quasi-convexity requiring
that the function can be written as a function its minors; references about the
latter statement can also be found in [20], [29] and [32], and the references

therein. Also, rank-one convexity does not imply quasi-convexity for n > 2
[13]. A recent remarkable counterexample, in favor of rank-one convexity does
not imply quasi-convexity in general, was introduced by Vladimir Sverdk [38]
and is valid for m > 3. Whether this latter implication holds for n = 2 is still
an open question: the conjecture that rank-one convexity and quasi-convexity
are not equivalent is also called Morrey’s conjecture, see Morrey [27]. If Mor-
rey’s conjecture holds true, many mathematical and/or mechanical modeling



methods for material behaviors would have a much more robust theoretical
foundations; indeed, for composite materials for instance, the question of
whether composites can be constructed with sequential laminates, see [20],
would have been resolved as the existence of non quasi-convex but rank-one
convex functions is linked to this question. Also, due to their good mathemati-
cal structure in terms of variational principles as explained in Gutierrez and
Villavicencio [16], quasi-convex functions are used in modeling phase transition
in solids as demonstrated in [9], shape optimization (see for instance Pedre-
gal [33]) , and in fracture mechanics of materials, see Francfort and Marigo [14].

For some classes of functions on R?*2, however, several works have established
that the two convexity properties are equivalent, see for instance the works
by [29], [36], [37], [40]. In this spirit, Martin et al. [24] have shown in the
context of non-linear elasticity that any energy function W : GLT(2) — R
which is isotropic and objective (i.e. bi-SO(2)-invariant) as well as isochoric is
rank-one convex if and only if the energy density W is poly-convex and doing
so gives a negative response to Morrey’s conjecture as poly-convexity implies
quasi-convexity. In addition, for quadratic types of functions, the equivalence
between rank-one and quasi-convexity can be established using Plancherel’s
formula. The resolution of this equivalence could have big impacts in the
theory of conformal mappings for two-component maps case. In particular,
if the equivalence between rank-one convexity and quasi-convexity for two
component-mappings turns out to be true, then the norm of the corresponding
Beurling-Ahlfors transform equals p* — 1, see for instance [19]. It is interesting
to point out that Morrey’s conjecture also has some connections with the
Iwaniec conjecture [18], the solution of which could impact the resolution of
the Morrey’s conjecture problem as we shall later explain in Section 2. Indeed,
if the equivalence rank-one convexity and quasi-convexity is true, this would
imply that the Iwaniec conjecture is true. By Mathematical contraposition, if
the Iwaniec conjecture does not hold true, then rank-one convexity would not
imply quasi-convexity. Thus, Morrey’s conjecture would have been true.

Numerous attempts have been made to construct examples of functions that
are rank-one convex, but not quasi-convex [2], [11], [13]. The complexity of the
involved calculations has not yet permitted a complete analytical study of such
examples, see for instance [10], [13], [15]. Even, the counterexample provided
in Vladmir Sverdk [358] seems to be a purely three dimension case as many
attempts to translate it into a two dimensional setting failed, see [7], [32], [34]
for references. We could not find other counterexamples in the literature. In
a recent note, Pedregal [31] provides some evidence in favor of the Morrey’s
conjecture for two-component maps in dimension two by giving an explicit
family of maps parameterized by 7 and proving that for small values of 7 these
maps can not be achieved by lamination. As well stated in [30], this will be
equivalent to the assertion that there are some rank-one functions that are not
quasi-convex, and thereby confirming the validation of Morrey’s conjecture.
Even though this approach might yield potential counterexample candidates,
Pedregal [31] recognized himself that the procedure tends to be more involved
than in the situation examined by Sverak. This is a good reason, as a first step,
to use numerical analysis to study the problem of whether or not the Morrey’s
conjecture is valid. One of such works was performed some years ago by



Dacorogna et al. [13] on the example of Dacorogna and Marcellini [12] energy
density function; the numerical results of these investigations indicated that Da-
corogna and Marcellini example which is rank-one convex, is also quasi-convex.

The problem considered in [13] is as follows: for ¢ € R?*2 and ¢ € W5 (Q; R?),
Dacorogna et al. let

F(€) = lIEll* = ~II€lP dete, (1.2)
and

T,(6.6) = /Q s (€ + V6() — £(€))da. (1.3)

They choose 2 = (0,1) x (0, 1) and found that the quasi-convexity of f, is then
equivalent to

inf inf {J,(& 9)} =0. (1.4)

EER2X2 e W *(Q;R2)
A few remarks are at hand here:

1. First, note that because of the homogeneity of f., the infimum in Eq.(1.3)
is either 0 or —oc.

4
2. Next, it follows, if v > 7 then f, is not rank-one convex and therefore
in Eq.(1.3) the infimum is —oc.

Dacorogna et al. [13] described a numerical approximation to this problem
by defining a positive integer N and h = 1/N, and a partition € into Q;; =
(th, (i+1)h) % (jh,(j +1)h),0 <i,5 < N — 1. Each of these €;; is subdivided
into two triangles. They denoted 74 this triangulation of Q and the triangles
by K and they let Pi, Ps,..., Pyy, M = (N — 1)2, be the internal nodes. Next,
they set

Vi, = {u € C°(Q) : u is affine on each K € 75, and u = 0 on 9Q},
W, = Vi, x Vi, € Wt (Q; R?).

By fixing ¢ € R%2%2 Dacorogna et al. [13] minimize J, over W), using a gradient
descent method, obtained by defining w!,l = 1,2,...,L, d' = V.J,(v'),
g'(a) = J,(w' + ad'), and updating w' using the explicit gradient update
wt! = w! +@d', where @ is obtained by solving ‘% = 0, using only one step
in Newton’s method with starting point o = 0.

The numerical approach used in [13] to solve the above problem is based on
a steepest descent algorithm with a crude approximation on the derivation
of the gradient of the functional to be minimized. Gremaud [15] used a
different numerical approach for the same problem. Unlike in [13], the corre-
sponding minimizing problem was solved using an annealing-like algorithm.
Gremaud’s results [15] showed that the example functions considered in [12] are
quasi-convex if and only if they are rank-one convex, contradicting Morrey’s
conjecture, but confirming Iwaniec conjecture.

Other numerical computation strategies to assess Dacorogna and Marcellini
[12] examples functions with respect to its abilities to provide insights onto



the validation/invalidation of Morrey’s conjecture exist. Recent works by the
authors from Duke University [10] improved upon the numerical simulations of
Dacorogna in an attempt to define a function that is rank-one convex, but not
quasi-convex. Duke University’s simulations improved on the computational
speed and the numerical optimization techniques since the publication of
Dacorogna’s works. We want to report here also that there has been several
numerical attempts to address Morrey’s conjecture problem outside of the
context of the example proposed by [12]; among these, let us mention the work
of Gutierrez and Villenvicencio [16] where the authors derived an optimization
algorithm based on (i) some necessary condition for the quasi-convexity
of fourth-degree polynomials that distinguishes between quasi-convex and
rank-one convex functions in the three dimensional case, (ii) a characterization
of rank-one convex fourth-degree polynomials in terms of infinitely many
constraints.

The objective of this report is to go somewhat beyond the pioneering works of
Dacorogna et al. [13]. We do this by improving on the numerical algorithm
these authors used in the gradient descent strategy they proposed. Namely, we
calculate the exact expression of the gradient of the functional involved in the
optimization problem at hand here and used their approximated values. We
solved the minimization problem numerically by using the approximated values
of the of the trial functions ¢ at each of the nodes of the mesh we used to model
the domain 2. Note here that these values are obtained from an initial trial
function ¢ that we choose as oscillating functions since in Dacorogna et al’s
numerical computations, these types of functions seem to be promising. Once
the updated values of the trial functions at the nodes are obtained, we used
them to check the Jensen’s inequality which associated to the quasi-convexity
property of the function f,. The initial trial functions to enter the steepest
descent iterative algorithm are chosen together with some fixed value of the
matrix £. By randomizing the entries of £, we successfully used for each of the
iteration a new matrix £. The results indicate that for an appropriate choice of
in the function f, and £ in Dacorogna [13], f, is rank-one convex, but the Jensen
inequality defining the quasi-convexity is violated, and thereby, for these values
of v and &, f, is rank-one convex, but is not quasi-convex, thus confirming that,
at least from the numerical stand point, the Morrey’s conjecture holds true.
The report is organized as follows:

e In Section 2, we present the importance of Morrey’s conjecture from the
point of views of calculus of variations, harmonic analysis and some con-
nections of Morrey’s conjecture with that of Iwaniec, and finally, from the
differential inclusion perspective.

e Next, in Section 3, we describe the problem to be solved numerically.
Note that a brief overview of this description was presented above in this
introduction.

o The following Sections 4.2 and 4.3 present Gremaud’s [15] and Duke Uni-
versity’s [10] approaches and results to solve the problem under consider-
ation and which we presented in Section 3.

e In Section 5, we demonstrate the numerical implementation methods we
used as well as the results we obtained.



e Furthermore, in Section 5.3, we present an improvement of Duke Univer-
sity’s approach [10] by refining the oscillating functions involved in check-
ing Jensen inequality and defining a gradient descent algorithm using the
trial functions Duke University has proposed. Our results improved on
the ones from Duke University [10].

e Finally, Section 6 discusses the results we obtained from all the numerical
simulations.
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2 Importance of Morrey’s conjecture

2.1 Calculus of Variations

Let © C R? be a bounded of C! boundary. We fix r € (1,00), and endow
WLr(Q,R?) with the weak topology.
(i) Let F : R?*2 — R be such that there exists and Cp, C; > 0 such that

1
~Cot g llEl" < FEO < Qulligl" +1) - ¥Ee R>*2.

Define
I(u):/ﬂF(Du)dm.

The necessary and sufficient condition for I to be weakly lower semi-continuous
is that F' is quasi-convex. These statements mean that the sub-level sets on [
are weakly compact if and only if F' is quasi-convex. In other words, I to admit
a minimizer on every weakly compact set X C W7 (2, R?) if and only if F is
quasi-convex. Such a result can be extended to functions F' = F(x,u,-), where
x € Q, u € R? to encompass functional appearing in non-linear elasticity theory.
Therefore, understanding quasiconvexity is central in applying the calculus of
variations to non-linear elasticity theory.

2.2 Harmonic analysis

We denote the Fourier transform operator by F and the complex conjugate of
z € by z. We consider the singular kernel m : C\ {0} — C defined by m(z) = z/z
and the operators D, and Dz defined on the set of smooth functions on the
complex plane by

D.u= %(&cu — iayu)7 D:u = %((%u + i@u).

The Beurling-Ahlfors operator B : LP(C) — L?(C) if defined for u : C — C by

When p =2 ||B||2 = 1 since T can be obtained by the formula

ﬁ(Bu)(z) = (mFu)(2).

In harmonic analysis, this operator plays an important role since it satisfies the

property
B(Dzu) = D,u

when u is a smooth function on the complex plane. An outstanding open prob-
lem of the past decades is the computation of the LP norm of B for 1 < p < oc.

11



We identify C x C with R?*? via the map C x C — R2*2 given by
Re(z) + Re(w) Im(z) — Im(w)

T(z,w) = Vz,w € C.
Im(z) + Im(w) Re(w) — Re(z)

We can convert any function U : C x C — R to a function U# : R?*2 — R
through the identity

U# (T(z,w)) = =U(z,w) Vz,w € C.

In particular, one checks that the function

Ulz,w) = p(1 - %)’H(m\ - 1)\z|) (2l + w])»~,  VzweC.

is such that for all z,w, h,k € C such that |k| < |h|, t = U(z + th,w + tk) is
concave on the real line. The relation

U(z +th,w+tk) = —U* (T(z,w) +th' @ k'), VK, € R?,
where
h= (h’lk’l - h’2k’2> + z‘(hgkg + k’lh’2>7 k= (h’lk’l + h’2k’2> + z‘(k;hg - h’lk’2>
allows to conclude that U# is rank-one convex since |h| = |k|.

An open question in harmonic analysis is to know if

/ U(Dew Dan)dA <0, Yue C5(C) (2.1)
C

Since U7 is rank-one convex, if Morrey’s conjecture was false, we would conclude
that U7 is quasi-convex. In particular, we would have

0o—vto< [ vtwe -~ [

spt¢ spt¢

U(Dg f,D. f) dA. (2.2)

where ¢ = (Ref,Imf). One can show that U# quasiconvex, implies Iwaniec
conjecture which asserts that

|IB|lz» = max {p7p} -1
p—1

In case U# is not quasi-convex, we would have resolved Morrey’s conjecture.
If Twaniec conjecture is false then Morrey’s conjecture is true. It is believed
by experts [39] that U# is quasi-convex and so, Iwaniec conjecture would be
true. Therefore, a negative or positive answer to Iwaniec conjecture is of first
importance. We plan to investigate the connections between the Morrey and
Iwaniec conjectures in a near future work.

12



3 Definitions and Preliminaries

In order to describe our methodologies and results we need the following defi-
nitions.

1. f is said to be quasi-convex if

[ #6+ Vo) = f(¢) meas 2 (3.1)
Q

for every ¢ € R?%2 and for every ¢ € Wé’oo(Q;Rz) (the set of Lipschitz
functions vanishing on 052).

2. f is said to be rank-one convex if
FOE+ (L =N)m) S AF(E)+ (1 =N f(n) (3.2)

for very G0, 11,61 € B with der(e — ) = 0. ¢ = [ 2]
R**2, then deté = &11822 — £12601).

3. f is said to be poly-convex if there exists ¢ : R — R convex such that

f(&) = ¢(&, detf) (3.3)
for every ¢ € R?*2,
Some observations can be made here:

1. Tt can be proved (see [11] for example) that if Eq.(3.1) holds for one domain
Q, it holds for any domain.

2. In the second definition we can see that if f is C?, then the rank-one
convexity of f is equivalent to the classical Legendre-Hadamard condition

S ()
Z Z W)\i)\jﬂaﬂﬁ >0 (3.4)

for every £ € R?*2 and every A, u € R2.

In general, one has the following diagram:

?
f convex g f poly-convex f} f quasi-convex <::> f rank-one convex

)

I is weakly lower

semi-continuous(w.l.s.c.)

Morrey’s Conjecture. It was conjectured by Morrey [27], that in fact f rank-
one convex =% [ quasi-convex.

It is the aim of this report to study the rank-one convexity of some functions
f and their quasi-convexity and marginally their poly-convexity. The study of

13



the connection between rank-one convexity and poly-convexity was done by Da-
corogna and Marcellini [12] and Voss et al.[412], but we have not yet explored
such features because our main objective is to illustrate the validity of Mor-
rey’s conjecture. Our main example function is the example in Dacorogna and
Marcellini [12]

£4(&) = Ngl* (1gN* = v dete). (3.5)

Because of the above observation, and in view of the above diagram, f is a poten-
tial candidate for answering the Morrey’s conjecture. Other candidate functions
exist, see for instance [12] in the context of the description of the mapping used
in the kinematics involved in developing constitutive relations governing the
mechanical behavior of solids or fluids. However, analytical computations seem
to be a very hard method for deciding whether or not the function f is quasi-
convex. This is due to the non-local nature of the quasi-convexity criterion.

14



4 Previous Efforts on the Morrey’s Conjecture
Based on Dacorogna and Marcellini’s Exam-
ple Function

4.1 Dacorogna and Marcellini’s Example Function

In 1990, Dacorogna et al.[13] investigated the example function he introduced
with Marcellini[12] in 1988. The function is of the form
£4(&) = lIg* (1gN1* — v dete) (4.1)

where £ € R?*2, and the norm is the usual Euclidean norm.

v plays a key role here and Dacorogna et al.[l3] successfully proved that
for 2 <~y < 7 f is rank-one convex but not poly-convex. Recall the general

implication diagram:

f+ poly-convex = f, quasi-convex = f, rank-one convex (4.2)

4
Dacorogna et al.[13] then deduced that such function f,(§) with 2 < v < 7
was a good candidate to explore Morrey’s conjecture that

f~ rank-one convex =~ f, quasi-convex

Dacorogna et al.[13] defined a function J as follows:

16.6) = [ 11,6+ @) = £,(€)da (43)
then stated that the quasiconvexity of f is equivalent to

inf inf J~ (&, =0 4.4
£€R2%2 ¢€W01'4(Q;]R2){ ’Y(g ¢)} ( )

Realizing the difficulty in determining a global property like quasiconvexity,
Dacorogna et al.[13] therefore transformed this problem into a optimization
problem and performed steepest descent algorithm to minimize J, with different
choices of £ and ¢. Dacorogna et al.[13] concluded that their numerical results
shown below tended to indicate that function f is quasi-convex if and only if f
is rank-one convex, leaving Morrey’s conjecture unanswered:

4
1. With random &£ and ¢, the closest v to % that made J,(¢) approaches
0is 2.31.

2. With ¢ =
2.31.

4
\[} , the closest v to —= that made J,(¢) approaches 0 is

1
0 V3

0
3
3. With ¢ = 00 the closest v to 4 that made J,(¢) approaches 0 is

3.25.
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4.2 Gremaud’s Simulated Annealing Method and Results

In 1993, another mathematician named Gremaud[15] studied the same function
f. Similar to Dacorogna et al.[13], Gremaud also treated this problem as a
numerical optimization problem. He used simulated annealing method which is
described below. His method incorportaed some stochastic analysis techniques
which were known to have the benefit of not getting stuck at local minimums|[15]:

4
1: Choose v > —
vz /3
2: Initialize ¢°, k =0
3: Calculate g(0) = VJ(¢°)

c

4: Let v(t) = ——— with¢ >0
et v(t) gt 2) with ¢
ky_ k—1 k
5 Let g% = VJ(6*) + 8551, where gt = (WD TIT ) ¥I0T)
6: Let tF = Z?;Ol 7%, where 7% is experimentally determined
7. Let w* = w(t*T1) — w(t*) is a randomly generated vector in R? such that
w* € [-1,1]2

8 Ml = oF — rhgh 1\ /20 (th) "

9: if J(¢*™!) < 0 (non quasi-convexity) then
10: Set v <=y —dv, ¢° = ¢t k=0

11: Go to step 3

12: else

13: Set k<= k+1

14: Go to step 3 (Until reach max iterations)
15: end if

We present his results below in Figure 1. Note that these v values are almost
1
— of what we saw in Dacorogna’s results before. This is because the function f

Gremaud used was in the form of
F(&) = [IEIl* =2 [I€]1*  dete. (4.5)

4
As we can see from Figure 1, when the value of 2y gets closer to —, the time

it takes for J to become negative goes to infinity. Gramaud speculated that his
results were a sign of

lim { inf inf  {J. (€, } —0 46

Jim {ne, mt(60) (4.6)

which, according to Dacorogna et al. [13], is equivalent to the quasiconvexity
of f. Gremaud [15] concluded that this observation suggested function f is

quasi-convex if and only if it is rank-one convex.

4.3 Duke University’s Improvement of Dacorogna’s Ap-
proach

Recently, a group of researchers from the Duke University [10] attempted to
solve Morrey’s Conjecture using the function f Dacorogna and Marcellini [12]
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fig:GremaudResult

600
400 H
200 }
v =1.1571
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v =1.1373 v =1.1572
200 ¢
v =1.1574
400 }
v =1.1575

Figure 1: Gremaud: Evolution of J for various values of

introduced. Rather than doing numerical optimization on J, () like Dacorogna
and Gremaud, they turned their attention to . They began by expanding and
rearranging J, (&), then solving for ~:

Jo €+ Vol* —Ig][*d
£+ Vo||2det(€ + V) — ||€]|2detedQ

= sup {
PEW, > (Q,R) fQH

NN

Then with the two different & values advised by Dacorogna, they got:

1) For € = [8 3], the new constraint for :

- Jalvell
Jo IV o[2det(V )

They tried different constructions of the two-component function ¢ and min-
imized the ratio in the above inequality. Their choices of ¢ are all seperable
functions, and one example is in the form of

6= {g(x)h(y)} (4.9)

(4.8)

where

g(x) =ap + Z a;sin(iz) + Z bjcos(jzx), (4.10)

i=1 j=1

and functions h,u, and v are all of similar separable forms.

Due to the improvements in computational speed and optimization tech-
niques, also due to their smart choice of the function ¢, they were able to
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improve upon the numerical results of Dacorogna. With some reasonable n,
the researchers were able to derive v = 3.19, surpassing Dacorogna’s result

v = 3.25. However, all their results were still not close enough to —.

V3

1
\93}, they replaced £ in the definition of quasi-convexity

2) For ¢ = 0
by Aa+ (1 — \)S and got:

/Q Fa+ (1= N)B + V() = Af(a) + (1 - N f(8) + O(e)
< fQa+(1-=Xp3)

(4.11)

where the last line holds from the quasi-convexity of f. As e — 0, f will also
become rank-one convex. From this idea, the criterion for non quasi-convexity
is equivalent to finding an € > 0 and § € R?*2 such that

SF(E+8)+ 51,6~ 6) = £,(6) + 0(/0) <0 (412

Clearly, this can be achieved by choosing ¢ and € close enough to 0, and different
1

0 and € values were found with some fixed v. With £ = [O

0
\/3}’ the closest

~ Dacorogna obtained in his research was 2.31, which can be written as — +

V3

4
O(1072). The researchers instead set v as — + O(10™%), and found that with

V3
10-3

e=10"%and § = [ 0 8] , the inequality in 2.11 holds which means f is not

quasi-convex, improving on Dacorogna’s result and getting closer to

4
7
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5 UCLA’s Methodologies

5.1 Steepest Descent Algorithm
5.1.1 Calculation of Gradient of the Functional

In this research, we will restrict our attention to the function introduced by
Dacorogna and Marcellini [12], i.e.,

£1(&) = Ngl* (1gN* — v dete). (5.1)

Our purpose of this algorithm is to find some suitable ¢, &, and + so we can
construct a counterexample which is rank-one convex but not quasi-convex.
Chances will be higher if we can generate and cover different permutations of
¢, €, and . To do the task, we perform a steepest descent algorithm described
below on the function ¢.

Recall that ¢ ¢ VVO1 4(Q;R?), which is a set of Lipshitz functions that
vanish on 0f), we write

_ | #1(z1,22)
. {@(xl,xz)} (5:2)
It is also worth marking out notations that
_ € &2
$= [521 522] ’ (5:3)
1,6) = [ 1€+ Voyda, (5.4)
Q

The steepest descent algorithm we use is in the form:
PFT = oF — 76T, (p") (5.5)
where 7, the step size, is determined in each iteration.

What’s left to do is solving for &.J,(¢*). We notice the difficulty and
complexity in finding this gradient of the functional J, directly, so we proceed
from writing out the gateaux derivative of J, first.

The gateaux differential dJ(¢;¢) of J, at ¢ € € in the direction of
) € R? can be approached by

To(6+ev) = / FL(€+ V6 4+ V) — (6 + Vo)da
(5.6)

3%
/Z 5 (6 VO gy e +0(e) + ()

3,j=1

Subtracting J,(¢) from both sides, the above expression, as we send € to 0,
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yields dJ(¢; )

Jy (¢ + w) — J4(9)
dJ(¢; ) = lim =
O ¢ 7o) Pigy
- Z/ 9, Vo, (57)
__ le/ 5 ag (€+ Vo)t da

which, by the definition of gateaux derivative, is also

dJ(d;¢) = / 8J5( (z)d. (5.8)

From Eq.(5.7) and Eq.(5.8), it follows easily that

Z axj I Ew £ (E+ V). (5.9)

Using the result in Eq.(5.9), our algorithm can now be expressed as

2
0
! = Z_ B a&] (& + V"), (5.10)

Since ¢ € R2, we perform gradient descent separately on each of the components
I =T o s 6+ V)
= OF + 7(52 58 4 (§ + VOF) + 5258 [, (€ + Vor))
G5 =0+ T pn i a6+ Vo)

= 08 + T(5% 5 f4(E+ VoF) + 5252 [, (£ + Vor))

(5.11)

There are four unknown partial derivatives in Eq.(5.11). We will show the
complete steps for the first gradient. Since all four calculations are largely
identical, we will only present the results of the other three.

0
Let V;¢; denote —¢;, then
6Ij

£V = &1+ Vigr &2+ Vagy

= 5.12
§21 +Viga &2+ Vago (5.12)

As £ 4+ V¢ is a regular 2 x 2 matrix, it is clear that its determinant is
det(§+ Vo) =(&11 + Vid1) (22 + Vada) (5.13)

— (&12 4+ Vao1)(&21 + Vio2)
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and

Let’

its norm is

€+ Vo|? =(&11 + Vig1)? + (€12 + Vaor)?
+ (€21 + V12)? + (€a2 + Vaga)

s start by computing

0 0

Ox1 €11

2§+ V).

To this end, we first consider the inner partial derivative

0
9&n

which we calculate to be

0
Z/SH

5.4 (E+V9)

9 s e ve) = —Hf LVt — 2y e + VoI det(e + Vo)),

Z/SH

To make things cleaner, we calculate one term at a time,

9 i
s+ Vol =

9 2)2
e e+ ol

_ ) 0 :
= 206 + VoI 5 (e + VoI

where

9 2
5=l + Vol)

From Eq.(5.18) and Eq.(5.19),

=2(&11 + Vida).

%”5 +Vol* =26 + Vol*(2(61 + V1id1))
=4(&1+ Vio)||E+ v¢||2.

Now by the chain rule, we have

0
—— (7 I€+ Vo|? det(¢ + Vo)) =

9é11

where

and

o0

27
+90€+ V| 9 det(§ 4+ Vo)

Alle + V¢||2£det<f V) =7
11

21

g e+ Vol det(& + Vo))

(II£ + Vo) det(¢ + V)

O (€ + VoIR)det(E + Vo) = 2 (€11 + Vady) det(€ + V)

(22 + Vaoa) [I€+ Vo>,

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)



Combining the two equations Eq.(5.22) and Eq.(5.23), we can obtain

9 2 _
%(7 1€+ Vol© det(§+ Vo)) =2 v (§11 + Vigr) det(§ + Vo) (5.24)

+7 (€22 + Vago) [I€+ V>
Now using the results from Eq.(5.20) and Eq.(5.24), we have

0
g, (€ V0) =4+ Vion)lE+ VoI — (27 (61 + Vad) (5.25)

det(€ + V) +7 (Ea2 + Vass) |I€ + V| ?).

The remaining task is to find the partial derivative of Eq.(5.25) with respect to
Xy

g0 0

0 2
aa&ih@+v@—aaueu+vmoM+VdH

-45107@u+vwwm@+vm) (5.26)
1
+ —ai (7 (€22 + V262) €+ Vo?))

1

We separate the work as before. First, we have

0 0
gy (46 + Vid1)[l€ + Vol?) =4<a—xl<su + Vi¢1)) € + Vo?

5 (5.27)
+4(6n + V1¢1)(87||§ +Vol?)
T
where the first term
0
4@gﬁ&r+vmﬁmf+vwﬁ=4VH¢N€+VMP (5.28)
and we leave the second term unexpanded for now.
For the second term in Eq.(5.26), we obtain
0
872 ¥ (11 + Vigr)det(§ + Vo)
T
0
=27y (87581(511 + Vi¢1))det(§ + V)
(5.29)

27 (€1 + Vi) (g det(€ + V)
=2y Vi1 det(f + V(b)

L2 (en mm»(%det(g V)
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Similarly, for the third term in Eq.(5.26), we derive

0
67:1(7 (€22 + Vag2) €+ Vo[*))

0
v (871(522 +Vad2)) € + Vol

+ (522 +V2¢2)(£”§+v¢”2) (5.30)
1
=y Vo162 |+ V|

oy (a t wm)(a%ng L velP)

Combining Eq.(5.27), Eq.(5.28), Eq.(5.29), and Eq.(5.30), we conclude that

0 0

Pas e €+ 0

0
=4 V1161[€ + Vo |* +4(€n + V1¢1)671||§ + Vo

(5.31)

=279 Vg1 det(§+ Vo) =2 v (&1 + V1¢1))(8im1

0
— v Vaids |+ V|* — v (€22 + V2¢2)(8761H5 + Vo)

det(& + Vo))

We present the results of the other three gradients as well:

0 0
D 5 5e HET V)

4 Vo€ 1 VoI + A(Eaz + Vadr) o€ + VoI
O 5 (5.32)
— 2 Vapidet(E+ Vo) —2 v (§12 + V2¢1))7def(f + Vo)

— ¥ Viada||€ + Vo||* =7 (€1 + wsl) et Vol

o 0
2) 2, 962, [+ Vo)

4 Vbl + VoI + 4(Ems + Vida) € + V|
Oy 5 (5.33)
— 27y Vipadet(E + Vo) —2 v (€21 + V1¢2))7d6t(§ + Vo)

— v Vadi |+ V|* — v (&2 + V2¢1)8T:1”5 + Vol
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9 9
Oz 8522

0
=4 Varall& + V| + 4(22 + V2¢2)57x2||§ + Vo|?

3) &+ V)

5 (5.34)
—2 7y Varpodet(§ + Vo) —2 v (&2 + V2¢2))3732d6f(§ + Vo)

1y Vi llE + VoI 7 (En + Vagn) g e + VoI

1)

For the sake of readability, we keep some partial derivatives unexpanded in
the above results. For these common terms that appear in all the gradients
above, we can write separate functions to calculate them in Matlab to avoid
redundancy. We show their expansions below.

Sll€+ VOl = 2((Eus + V161)Vrn + (€12 + Vo) Varon
+ (21 + Vig2)Viida + (§22 + V2¢2) Vaid2)
S i€+ V6l = 2((611 + 9161 Viao1 + (612 + V1) Vanor
+ (§21 4+ V192)Viag2 + (§22 + V2d2) Vazdo)

%det(f +V¢) = Vi1 (§22 + Vaga) + Vard2(§11 + Vign)
= Vi1d2(§12 + Vad1) — Var1 (&1 + Vi)

idet(ﬁ + V@) = Vi1 (§22 + Vaga) + Vazda(§11 + Vidn)

81‘2
— Vi202(12 + Vad1) — Voo o1 (€21 + Vig2)

(5.35)

5.1.2 Determination of Step Sizes

Our next goal is to find a step size 7 > 0 in each iteration to guarantee descent.
By the definition of the steepest descent,

7 = argmin J, (¢* — adJ, (¢")). (5.36)
Let’s define a new function ¢ () such that

Y(a) = J, (" — ad, (4")). (5.37)

Then finding 7 in Eq.(5.36) is equivalent to finding « such that

%y;(a) =0 (5.38)

Expanding ¢ (a), we get

i [ Fe+ Ve~ asr (@) —o (5.39)
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We continue in this fashion, obtaining

)~ [ (Dh(e+ T a0, (64, 5L V(6" — aba (o) ) a2
? (5.40)
which finally gives us
W) [ 61,6 = ab1, (64065, (0)as (5.41)
« Q
()

We denote “do by g(«), and the problem becomes finding the critical point
«

of g(a) However, solving for g(a) = 0 directly would be complicated and time
consuming, so we take advantage of the secant method which is in the form of

a” — an—l

g(am) = glan=1)’
with initial guesses o’ and a! selected as two random numbers that are close
to 0.

a" =" —g(a") (5.42)

5.1.3 Numerical Implementations

We now turn to our numerical method with a hope in finding a set of appropriate
7, &, and funcional ¢ that proves Morrey’s Conjecture, i.e., J,(¢) — f1(§) < 0.

First we introduce our numerical approximations. Let n be a positive number

1
and h = —. We partition Q into (n + 1) number of identical squares Q;; =
n

[th, (i + 1)h] x [jh,(j + 1)h], 0 < 4,5 <n —1 as shown in Figure 2 below.

To generate those mesh nodes and record their coordinates, we take advantage
of a built-in MATLAB function meshgrid which creates a (n + 1)? x 2 vector
containing all the coordinates of the nodes that is in the form

Xo Yo 0 0

Xo YW 0 h

Xo Y, 0 nh

X, Yo |=1|h 0 (5.43)
X1 © h h

X, Y, nh (n—1)h

| Xn Y, | | nh nh |

We build this mesh in order to approximate gradients using the Finite Difference
method, then we can sum up all the values on each nodes to approximate the
surface integral in J,. We will first demonstrate how we use MATLAB and the
Finite Difference method to obtain derivatives on each node. With the initial
assumption that function ¢(z,y) is a continuous function with all necessary
derivatives exist in €2, we write

bit1,; = o(x + h,y)

5.44
bij+1 = d(x,y+h) (>4
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Thus, by the Forward Finite Difference Approximation, for an arbitrary Lips-
chitz function f with two variables x and y

Of(z,y) _ (+hy) fz,y)

Vof(z,y) = 3f((91;y) f(z, y+h) fz,y)

It is critical to test the precision of our approximation method. Choose a ran-
dom function, we can manually solve for and calculate its partial derivatives.
These real derivative values are then compared to our approximations. Using
the criterion of maximum errors and mean square errors, we demonstrate the
accuracy of our method. We choose ¢ as

oz, y) = [sin(w(w +2y)) cos(m(3z + y))] (5.46)

The construction of the Finite Difference method itself tells us that the smaller
the h is, the more accurate the approximations should be. We observe that,
for h = 10~*, our approximated partial derivatives are pretty close to the real
values.

Max Error MSE

Vipr 0.00049348 1.2176 - 10~7
Vigs 0.0044413 9.8627-10°C
Va1 0.0019739 1.9482 - 106
Vags 0.00049348 1.2176 - 10~7

As for the second derivatives, we can still utilize the Finite Difference method.
However, there are two cases.

1. For V11 f(z,y) and Voo f (z,y), we apply the second-order central method.

agf(x’y) f(sc—l—h,y)—2f(m,y)+f(a?—h,y)

Valf(@y) = oror h2
P f(xy)  flmy+h)—2f(x,y)+ f(z,y—h) (5.47)
V22f($,y) a 0yoy B h2

2. For Viaf(x,y) and Vo f(z,y), it is obvious that, by the Clairaut’s theo-
rem,

Viaf(z,y) = Var f(z,y) (5.48)

Then based on what we already have for the first order derivatives, we apply
the forward method again.

2 —

Up to this point, we have everything needed to calculate the updating factor
for our steepest descent, which is

2
o
Z o, 735 £ (€ +Veh). (5.50)
=1 i
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5.2 Numerical Results

In this part, we present our numerical results. In what follows, we introduce a
new notation for the expression we are interested in:

4,64 = [ (£ (€+90) - £, (@) da 6:51)
and because {2 was defined to be (0,1) x (0, 1), the equation Eq.(5.51) becomes

dy(¢") = J5(6") = f(6). (5.52)

We separate our results into two cases with respect the value of v: it stays
constant or it changes value after each iteration. Also, to avoid mesh effects
that make our integral extraordinarily large, we decide to use a mesh size of
h = 0.1 throughout this part.

5.2.1 Simulations with v fixed

In the first part, we choose

¢*(x,y) = [sin(z(z — Dy(y — 1)),sin(z(z - Dy(y —1))*] (5.53)
with a randomly generated 2 x 2 matrix as our &.

0.682296 0.920074

&= 0.335120 0.736268 (5-54)

4
We start with v = 7 and run 200 iterations without changing it. We then

decrease the value of v and run another 200 iterations. We repeat this process
until v reaches 2. The outcomes are shown below:

28



0.558

0.556

0.554

0.552

0.55

0.548

0.546

0.544

0.542

N A A o AT A AN A VN Ve Ve Y AN A

——— Gamma = 2.3094

r ——— Gamma = 2.2344
Gamma =2.1594

—— Gamma = 2.0844

—— Gamma = 2.0094

B T T i i i

Figure 3: d,(¢*) with different ~
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5.2.2 Simulations with Various ~

4
Then we consider the case where v changes. Similarly, we start with v = ﬁ
and reduce its value until 2. However, this time it is reduced after each iteration.

5.2.2.1 Results with ¢ = [1,0;0,/3]
1. For

¢ (z,y) = [sin(z(z — Dy(y — 1)), sin(z(z — y(y — 1))?],

we get

Steepest Descent on JN(¢")
0.6 T I : '

0.55

05

0457

04r

d_(¢)

0.35¢

0.25 y

0.2 y

0.15 ' ' '
0 50 100 150 200

lterations

Figure 4: Steepest descent on ¢; with fixed & = [1,0;0, /3]
and changing v
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2. For
P (x,y) = [(x(z — )y(y — 1)),0],

we get

Steepest Descent on JN(¢")
0.6 T T : I

0.55

0.5

0.45

0.4

d_(¢)

0.35

0.3

0.25

0.2

0.15 : : '
0 50 100 150 200

lterations

Figure 5: Steepest descent on ¢y with fixed & = [1,0;0, /3]
and changing ~
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3. For

1 1
d)g(m, y) = Py sin(27x), by sin(27ry)} ,

we get

d (")

Steepest Descent on J (¢
45 : : T

401 1

0 50 100 150 200
lterations

Figure 6: Steepest descent on ¢3 with fixed & = [1,0;0, /3]
and changing
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4. For 1 1 3
0 _ [t . e L) }
#e.) = |15 sinra), 15 5in(5 )]

we get

Steepest Descent on JN(q’)")
0.45 . ' —

0.4

035+

0.3

0.25

(9

d

02

0.15¢

0.05

0 50 100 150 200
lterations

Figure 7: Steepest descent on ¢, with fixed & = [1,0;0, /3]
and changing
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5.2.2.2 Results with ¢ = [0,0;0,0]

[sin(z(z — Dy(y — 1)), sin(z(z — Dy(y — 1))*],

200

1. For
@) (x,y) =
we get
3 Steepest Descent on J (¢")
=10 ¥
3.5 .
3 H 4
25( 1
N
= 2 1
T
1.5 1
1 L 4
0-5 1 1
50 100 150
lterations

Figure 8: Steepest descent on ¢, with fixed £ = [0,0;0,0]
and changing ~
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P (x,y) = [(x(z — )y(y — 1)),0],

200

2. For
we get
" Steepest Descent on J (¢%)
=10 5
3.5 T
3 H .
25( 1
<
= 2 .
o
1.5 1
1 L 4
0-5 1 1
50 100 150
lterations

Figure 9: Steepest descent on ¢o with fixed £ = [0, 0;0, 0]

and changing ~
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3. For 1 1
gbg(m, y) = |=—sin(27z), — sin(2ﬂ'y)} ,
2 2

we get

Steepest Descent on JN(q’)")
20 . ' —

16 1

14 1

d (¢
3

0 50 100 150 200
lterations

Figure 10: Steepest descent on ¢3 with fixed £ = [0, 0;0, 0]
and changing
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4. For 1 1 3
0 _ [t . e L) }
#e.) = |15 sinra), 15 5in(5 )]

we get

5 Steepest Descent on JN(q’)k)
16 =x10 . . d T

14 1

10 y

d (¢

0 50 100 150 200
lterations

Figure 11: Steepest descent on ¢4 with fixed £ = [0,0;0, 0]
and changing
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5.2.2.3 Results with ¢ =[0,—1;1,0]
1. For

¢(z,y) = [sin(z(z — Dy(y — 1)), sin(z(z — L)y(y — 1))?] ,

we get

Steepest Descent on JN(¢")
1.4 : . —

1.2 1

0.8 1

.06 1

d_ (¢

0.4 _

0.2 1

_0-2 1 1 1
0 50 100 150 200

lterations

Figure 12: Steepest descent on ¢, with fixed £ = [0, —1;1, 0]
and changing ~
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2. For
P (x,y) = [(x(z — )y(y — 1)),0],

we get

Steepest Descent on JN(¢")
1.4 : . —

1.2 .

0.8 1

.06 _

d_(¢)

0.4 _

0.2 .

_0-2 1 1 1
0 50 100 150 200

lterations

Figure 13: Steepest descent on ¢o with fixed £ = [0, —1;1,0]
and changing ~
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3. For 1 1
#3(z,y) = | — sin(27z), — sin(27ry)} ,
27 27

we get

Steepest Descent on JN(q’)")
30 . ' —

257 ]

207, ]

d (¢
>

10 1

0 50 100 150 200
lterations

Figure 14: Steepest descent on ¢3 with fixed £ = [0, —1;1, 0]
and changing
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4.

d_(¢"

-~

For

0o y) — [ sinime), L (3T
94(:9) = | 755 Sin(m). 755 810 (5 )]
we get
Steepest Descent on JN(q’)")
0.02 T T : I
0

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

50 100 150 200

lterations

Figure 15: Steepest descent on ¢4 with fixed £ = [0,—1;1, 0]

and changing
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5.2.2.4 Results with ¢ =[1,0;0,v/2.8]
1. For

¢(z,y) = [sin(z(z — Dy(y — 1)), sin(z(z — )y(y — 1))?] ,

we get

Steepest Descent on JN(¢")
0.5 . ' —

0451 .

0.4 1

035+ .

d (6"
o
[#%]

0.25 1

0.2 ‘1 _

0.15 \/ 1

0-1 1 1 1
0 50 100 150 200

lterations

Figure 16: Steepest descent on ¢, with fixed £ = [1,0;0, v/2.8]
and changing ~y
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2. For
P (x,y) = [(x(z — )y(y — 1)),0],

we get

Steepest Descent on JN(¢")
0.5 T T : I

0.45

0.4

0.35

0.2

0.15

0-1 1 1 1
0 50 100 150 200

lterations

Figure 17: Steepest descent on ¢o with fixed £ = [1,0;0,/2.8]
and changing ~
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3. For

1 1
¢ (z,y) = | — sin(27z), — sin(27ry)} ,
27 27

we get

Steepest Descent on J (¢
45 : : T

10

0 50 100 150 200
lterations

Figure 18: Steepest descent on ¢3 with fixed & = [1,0;0, v/2.8]
and changing
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4. For

0 7t Ao
#°(2,y) = | 15 sin(r2), 155 sin(Sv)]
we get
Steepest Descent on JN(q’)")
0.35 T T : I

0.3

0.25

0.2

0.15

d (")

0.1

0.05

_0-05 1 1 1
0 50 100 150 200

lterations

Figure 19: Steepest descent on ¢4 with fixed & = [1,0;0, v/2.8]
and changing
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5.2.2.5 Results with ¢ randomly generated at the beginning of the
steepest descent iterations

& is a 2 x 2 matrix of uniformly distributed random numbers between 0 and 1.

1. For
@} (z,y) = [sin(z(z — Dy(y — 1)), sin(z(z — Dy(y — 1))?]
and
€= 0.678735 0.743132
0.757740  0.392227
Steepest Descent on JN(¢")
0.86 ; ; —
0.84 J
0.82 | .
0.8 g
. 0.78 1 g
=
© 076} ]
0.74 | g
0.72 .
0.7r .
0.68 : : .
0 50 100 150 200
lterations

Figure 20: Steepest descent on ¢ with fixed randomly generated £ and changing
Y
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2. For

P5(x,y) = [(x(z — )y(y — 1)),0]

and
¢ = 0.655478 0.706046
~10.171187 0.031833
Steepest Descent on J_(¢¥)
0.26 : : d ;
0.25 .
0.24 |
0.23 | 7
. 0.22 7
=y
© 021] .
0.2 H a
019 7
018 7
0-1 ? 1 1 1
0 50 100 150 200
lterations

Figure 21: Steepest Descent on ¢ with fixed randomly generated £ and changing
g
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3. For

3(z,y) = [% sin(2nz), % sin(27ry)}

and
¢ = 0.694828 0.950222
“10.317099 0.034446
Steepest Descent on JN(¢>")
120 : : d .
100 { .
80§ .
N
—=_ 60 .
o
40 .
20 .
0 Il Il Il
0 50 100 150 200
lterations

Figure 22: Steepest descent on ¢3 with fixed randomly generated £ and changing
g
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4. For

0 = [ sin(ra). - sin(3T
Ae.y) = | 155 sinlre), 15 sin(5v)]
and
¢ = 0.709365 0.276025
~10.754686 0.679703
Steepest Descent on JN(¢>")
0.385 . . : .

0.38 |

0.375

d (6

0.37

0.365

0-36 1 1 1
0 50 100 150 200

lterations

Figure 23: Steepest descent on ¢4 with fixed randomly generated £ and changing
g
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5.2.2.6 Results with ¢ randomly generated at the beginning of each

iteration
1. For
¢ (x,y) = [sin(z(z — Dy(y — 1)), sin(z(z — Dy(y — 1))?],
we get
Steepest Descent on J (qbk)

35¢ 7

3 L

2.5r

2 L

0 100 200 300 400 500 600 700 800 900
lterations

Figure 24: Steepest descent on ¢, with £ randomly generated in each iteration
and changing v
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Table 1: Numerical values of &,v, J,(¢x) and d(¢) when d(¢r) <0

¢ g T, (1) d. ()

066684 0.03839]
L 0097573 0.65068) 228 01181 -0.01289

[0.66771  0.12654]
2 |o.049308 o09mas| 29 01047 -0.01239

0.72935 0.086371
0.10256  0.88553

@

2.2395 -0.13993 -0.016581

[ 0.75449  0.043381]
4. 0.0062739 058269 2.1609 -0.036257 -0.0010055

[ 0.78112  0.039509]
> looose236 0616 | 21205 0031675 -0.00039584

2.0857 -0.015927 -7.4392e-05

[0.60279  0.079766
0026003 0.64121

[ 0.75449  0.043381
™ |0.0062739 0.58269} 2.1609  -0.036257  -0.0010055

The table above lists the values of £ and v when the Jensen inequality is
violated, i.e. d(¢) < 0, during the iterations.
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2. For
P (x,y) = [(x(z — )y(y — 1)),0],

we get
Steepest Descent on wak)
3 —
251
2 -

d_(¢9

_D- 5 1 1 1 1 ]
0 200 400 600 800 1000

lterations

Figure 25: Steepest descent on ¢o with £ randomly generated in each iteration
changing
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Table 2: Numerical values of &,v, J,(¢x) and d(¢) when d(¢r) <0
¢ g I (1) d. (61

[0.98180  0.33618]
L looss7o2 0.92305) 23088 017268 -0.0049726

[0.95611  0.32192]
2 |oowsss7  o0.s34 | ZFTS 0 015057 -0.0038753

[0.76279  0.060225]
3 |0.19213 o.s604a | 22098 014815 -0.014408

0.8279  0.027321
0.26833  0.96424

~

2.2642 -0.19228 -0.018429

[0.81574  0.011821]
> o179 osa0e2 | 22237 021947 -0.027838

[0.89173  0.1669 ]
O |o.o26521 0.72494| 22172 010633 -0.0061888

[0.90207  0.032499]
" |oiss6 099237 | 21021 0178160018311
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3. For ) .
¢5(x,y) = o sin(27z), by sin(27ry)} ,

we get
Steepest Descent on Jﬁr(qbk)

3 -

25}

2 L

d (¢

5 . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000

lterations

Figure 26: Steepest descent on ¢35 with £ randomly generated in each iteration
changing v
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Table 3: Numerical values of &,7, J,(¢x) and d(¢x) when dy(¢r) <0
3 2 Iy (dr) dy (1)

) [0.66064 0.074988

0.0058409 0.57225] 2.2717 -0.073426 -0.005525

2 {0'70309 0'038669} 2.2633 -0.084793 -0.0066755

0.19216  0.70708

3 {0'96291 0'072563} 2.1241 -0.11515 -0.0083836

0.10086  0.86599

55



4. For

1 1 3
0 N = (2t
#ay) = |55 sin(ra). 155 sin(5 )]
we get
Steepest Descent on J,T(c,bk)
3 _
#* dq_(¢)<0

251
2 L

d_ (¢

-0.5 1 1 1 1 ]
0 200 400 600 800 1000

Iterations

Figure 27: Steepest descent on ¢4 with £ randomly generated in each iteration
changing v
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Table 4: Numerical values of &,v, J,(¢x) and d(¢) when d(¢r) <0

§ g T, () d, (1)

[0.7246  0.01548
L o.20019 0.82154} 2.2918  -0.16219 -0.017237

[ 0.66072  0.28593

2 |0.0055909 ().8434] 2.2837  -0.049032  -0.00071716
0.81874 0.021442

3 1011408 0.8742] 22327 -0.24057 -0.031294
[0.82189  0.038704

10038139 0.68668] 2.1485  -0.07333  -0.0050091

[ 0.45435  0.0023352]
5. 0015027 0.40725 | 2.1368 -0.0086804  -0.00019427

[ 0.6931  0.0099955]
0 |o.014925 092606 | 139 0026195 -0.0018741
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5.3 Gradient Descent Algorithm
In this part, we only consider the case when & = {8 8} .

Inspired by the Duke University’s research [10], we can derive a new constraint
for v when f, (&) is quasi-convex.

The definition of quasi-convexity is given by

/Q £ (€ +V6) — £,(£)d2 > 0 (5.55)

We continue to use the Dacorogna and Marcellini’s example function [12], so we
get

/Q € + VoII* =Nl + Vol[*rdet(€ + Vo) — [IE]|* + [l¢][*vdet(€)d2 > 0 (5.56)

We plug & = [8 g] into the above ineqaulity,

[ Iv6l = 190l det (D)0 > o (5.57)
Jo I8
5.58
7 TVt (v o) (5:58)
Thus,
Jo I8 }
= 5.59
! ¢eW§E’}’)(Q,R) {fﬂ [Vol[2det(V ) ( )

Finding the top bound for v is then equivalent to finding the minimal value for
function h which we define below

JolIVel*

h=— )
Jo IVo||2det(V)

(5.60)

5.3.1 Expressions of function ¢ and plots of its surfaces

For the mappings ¢, we consider separable functions in the form of g(z) cos(y),
g(z)sin(y) or simply g(x)u(y) where

g(x) =agp + Zai sin(i x) + Z bj cos(j x) (5.61)
i=1 j=1
and
u(y) = co + Z c¢isin(i y) + Z d;cos(j y). (5.62)
i=1 j=1

In the following figures, we plot the surfaces of g(x)cos(y) and g(z)sin(y)
which may entail some useful information.
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Figure 28: Illustration of the surface g(x) cos(y)
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Figure 29: Illustration of the surface g(x) sin(y)
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5.4 Numerical Results

We first consider

_ |9(x) cos(y)
We can turn h(z) in Eq.(5.60) into a function of the variables x =
[ag, a1, ..., an,b1,...,by]. The gradient descent algorithm is then
Pt = ok — 7V f(2F) (5.64)

First we let n =4 in g(z), the results show that the minimum value of v we can
find is around 5.0052.

-0 Gradient Descent on h(xk}

0 50 100 150 200 250 300 350
lterations

Figure 30: Gradient descent on h(z) with n =4
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The optimal value for «y is around 5.0052 which means that with the ¢ we check,
f~(@) is quasi-convex if v < 5.0052.

Gradient Descent on h(xk}
5.011

5.01
5.009
—
2.5.008
IS

5.007

5.006
+ =5.0052
5.005 1 1 1 1 1 1 ]
200 220 240 260 280 300 320 340

lterations

Figure 31: Gradient descent on h(x) with n = 4 for last larger iterations
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Then we increase the number of coefficients to 11, i.e. n = 5.

80 Gradient Descent on h(xk}

60 K a

20+ .

0 . . . . . .
0 20 40 60 80 100 120 140

lterations

Figure 32: Gradient descent on h(x) with n =5
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We can see that the descending speed gets slower and ~ finally converges at
about 4.7225.

51 Gradient Descent on h(xk}

5.05

4.95
—

X 4.9
=

4.85

4.8

4.75
v ~4.7225
4.7 1 1 1 1 1 1 1 1 ]
50 60 70 80 90 100 110 120 130 140

lterations

Figure 33: Gradient descent on h(x) with n =5 for last larger iterations
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4
However, since 4.7225 is far from 7 we decide to continue increasing the

number of coeflicients in the function g(x) in Eq.(5.63) to n = 6.

6 6
g(z) = ao + Z a;sin(i x) + Z b; cos(j ) (5.65)

The results are shown below. With 13 coefficients, « converges at 4.5958.

160 Gradient Descent on h(xk}

140} b
120 b
100 b

£
X 80 4
=

40t -

20+ a

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Iterations

Figure 34: Gradient descent on (z) with n =16
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Gradient Descent on h(xk}
4603

4.602
4.601
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—
X 4.589

=
4.598
4.597

4.586

~ ~4.5958

595 1 1 1 1 1 1 1 ]
200 220 240 260 280 300 320 340 360 380
lterations

Figure 35: Gradient descent on (z) with n = 6 for last larger iterations
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The next function family we check is in the form

bl = |90 o) (5.66)

where g(z) and u(z) are in the form described in Eq.(5.61) and Eq.(5.62).
Since a large n will result in the number of terms produced by the norms
increasing drastically, leading to significantly long computation time, we start

our algorithm with n = 4.

After running nearly 1100 iterations, we get the following results

" Gradient Descent on h(xk}

30 a

25+ .

15 b

10+ .

0 200 400 600 800 1000 1200
lterations

Figure 36: Gradient Descent on h(x) with n =4
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The gradient descent on 7 converges at v ~ 3.4128.

Gradient Descent on h(xk}

h(x")

3 . |
400 500 600 700 800 900 1000 1100

lterations

Figure 37: Gradient Descent on h(z) with n = 4 for last larger iterations
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With previous experience, we then increase n to 5.

60 Gradient Descent on h(xk}

50 a

401 1

20 R

10 b

0 500 1000 1500
lterations

Figure 38: Gradient Descent on h(x) with n =5
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It takes longer for the algorithm to converge. This time the smallest value we
can get for v is around 3.2578.

Gradient Descent on h(xk}

3.55

3.5

3.4

3.35

3.3

v =3.2578

3.25 1 1 1 1 1 1 1 1 1 ]
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
lterations

Figure 39: Gradient Descent on h(z) with n =5 for last larger iterations
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The last function family we check is in the form

__ [9(@)h(y)
¢35 = {u(a:)v(y)] (5.67)

g(x) and u(x) are still in the form described in Eq.(5.61) and Eq.(5.62), we
define them as

ni ni

g(x) =ag + Z a;sin(i x) + Z bj cos(j x) (5.68)
i=1 j=1
na na

u(z) =co + Z cisin(i x) + Z d;cos(j x) (5.69)
i=1 j=1

and
ns ns
h(y) =eo+ Y _eisin(iy)+ Y _ fjcos(j y) (5.70)
i=1 j=1
N4 N4
v(y) =go+ Zgi sin(i y) + Z hjcos(j y) (5.71)
i=1 j=1

If we continue to set all n to be 4, there will be a total of 36 coefficients, result-
ing in extraordinarily long runtime. In order to obtain a relatively reasonable
runtime, we start with ny 234 = 1.
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Figure 40: Gradient descent on h(x) with ny 234 =1

72

1400



Gradient Descent on h(xk}
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v ~6.0555

5 1 1 ]
200 400 600 800 1000 1200 1400
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Figure 41: Gradient descent on h(x) with n1 234 =1 for last larger iterations
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We gradually increase the number of coefficients and observe whether the min-
imal value of v will decrease. Next we proceed with nz = 2, so

2 2

h(y) =eo+ » eisin(iy) + Y fjcos(j y) (5.72)

i=1 j=1

The results show that with 2 more coefficients, the best v value we can get is
reduced to 5.5468.

55 Gradient Descent on h(x")

45} 1

10 .

5 1 T I I I
0 200 400 600 800 1000 1200

Iterations

Figure 42: Gradient descent on h(x) with ny 24 =1,n3 =2
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6.1 Gradient Descent on h(xk)

59F
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X58F
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5.5 ! :
200 300 400 500 600 700 800 900 1000 1100
Iterations

Figure 43: Gradient descent on h(z) with n124 = 1,n3 = 2 for last larger
iterations)
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We continue in this fashion and add 1 to n4 so now there are 16 coefficients in
total.

0 Gradient Descent on h(xk}

80| R

70| R

60 [ b

30 .

20 7

101 a

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

lterations

Figure 44: Gradient descent on h(x) with n1 o =1,n34 =2
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Figure 45: Gradient descent on h(z) with nio = 1,n34 = 2 for last larger
iterations
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6 Discussion

The results we found are of several types and demonstrate that Morrey’s conjec-
ture is valid, at least numerically speaking. Figure 4 - Figure 27 represent the
changes of d. (¢%) = J,(¢*) — f,(£) as the iterations proceed for various values
of £ and 7. The oscillations observed in Figure 24 - Figure 27 do not character-
ize any default of the algorithm we designed and used; they appear because we
used random values of £: at each of the steepest descent algorithm iterations, a
new value of the matrix £ is used. Doing so allows us to increase our chance of
finding a matrix £, a value of v and a mapping ¢ for which the Jensen inequality
0.7246  0.01548
0.20019 0.82154
and vy = 2.2918, our numerical simulations show that the expression Eq.(5.52)
becomes negative, which violates the Jensen’s inequality, and thereby confirm-
ing that the function is not quasi-convex. The rest of the analogous values of
¢ and v can be found from Table 1 - Table 4. The four figures Figure 24 -
Figure 27 differ from each other by the initial trial functions used to enter the
steepest descent algorithm. We obtained the violation of the Jensen’s inequality
for initial guess mappings that are

¢1(2,y) = [sin(z(z — Dy(y — 1)),sin(z(z — Dy(y — 1))?]

is violated. And indeed, for instance, for the values of £ =

¢2(2,y) = [(2(z — Dy(y — 1)),0]

1 1
o3(z,y) = {% sin(27 ), by sm(2ﬂ'y)}
ba(z,y) = [ﬁ sin(rz), ﬁ sin(%y)} :

For fixed values of £, the values of the Jensen function at each iteration
shown in Figure 8 - Figure 14 show a decrease of the Jensen function until a
minimal value after which it becomes a plateau or starts growing slowly. The
oscillations observed in some of those figures maybe the results of numerical
approximations that probably come from the discretization of the domain
we used as it is the case in the numerical simulation of problem using finite
element or finite difference methods. The decrease of the Jensen function
is in the line of the steepest descent approach we used for the minimization
problem we are solving. However, it is unclear the origin of the slow growth of
this function observed in some of the figures after reaching a minimal point.
It is also unclear why there is a sharp descent followed by a substantial growth.

Another investigation we have performed was to reproduce Duke University
work results [10] by using a software we independently developed and exercised.
Our code is based on the Duke University’s suggestion of finding ~ such that v
is bounded below by the right-hand side of the Eq.(5.58) for a given ¢. Duke
University suggests some families of functions ¢, see for reference the functions ¢
defined in Section 5.3.1. We are looking for the one that realizes the supremum
of the right-hand side of the Eq.(5.58) over these families of functions ¢. If we do
find this supremum ~y such that f. is rank-one convex, then we would have found
a function that is rank-one convex but not quasi-convex. We then changed this
problem into a minimization problem on the coefficients in the functions defined
in Section 5.3.1 and used a gradient descent algorithm to solve such problem
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using Maple software. The values of the coefficients that realize minimal of our
version of the problem could be associated to the sought mapping ¢. Figure 30
- Figure 45 represent the change of h(z) in Eq.(5.60) during the iterations. The
best value of v we obtained is 3.2578 with

o(x,y) = {g(ﬂf) cos<y>]

u(z) sin(y)
where
5 5
g(x) =ap + Z a;sin(i r) + Z bj cos(j x)
i=1 Jj=1
and

5 5
u(z) =co + Z ¢isin(i x) + Z d;cos(j x).
i=1 j=1

For this type of functions, Duke University found v = 3.91. Even though the
value of v we found is not making the function f, rank-one convex, we have
significantly improved Duke University’s research results. We believe that
this improvement is due to the refinement of the function ¢ we used. Indeed,
our function ¢ differs from the one from Duke University by the fact that we
augment the number of terms in g(x) and u(z).

For a function family of the form

o= iG]

where g(z),u(x), h(y) and v(y) are defined at Eq.(5.68) and Eq.(5.70). Even
though the Duke University’s best result was obtained as v = 3.19, our research
shows that by increasing the number of terms in the trial functions, the values
of v are decreasing, see Figure 40 - Figure 45, until v = 4.184, value after which
due to computational limitation we could not keep the refinement of the trial
function going. Our strong belief is that the more refine function we use, the
closer we will get v to the value that makes f, rank-one convex, but this is left
for future work.
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7 Conclusion Remarks

7.1 Conclusion of our work

We report here the results of some numerical simulations we performed to
address the Morrey’s conjecture [27] problem. Unlike in the method proposed
by Dacorogna [13] and Gremaud [15], where the gradient descent algorithm
was either “ad hoc” or unrelated to the minimization problem to be addressed,
our approach used an exact vector gradient of the functional I(¢) to be
minimized over a Sobolev space which we defined previously. We derived an
exact expression of this gradient. Then, we solved the minimization problem
numerically by using the approximated values of the trial functions at each of
the nodes on the mesh we used. Once the updated values of the trial functions
at the nodes are obtained, we used them to check the Jensen’s inequality which
is associated to the quasi-convexity property of the function f,. The initial
trial functions to enter the gradient descent iterative algorithm are chosen as
oscillating functions for some fixed values of the 2 x 2 matrix €. By randomizing
the entries of £, we successfully used for each of the iterations a new value of
&. For instance, the procedure gets us luck: for v = 2.2958, that is f, rank-one
convex, we found that the Jensen’s inequality is violated (the function f, is not
0.66684 0.03839
0.097573  0.65968|’
conjecture, at least numerically.

quasi-convex) for £ = and thereby validating Morrey’s

In addition, we also show the results of the improvements we performed
on Duke University’s [10] results for the same minimization problem. The
gradient descent algorithm we developed and used demonstrated that by
refining the trial functions suggested by Duke University, we obtained a value
for v = 3.2578 while Duke University’s trial functions yield 3.91. Even though
we were not successful in finding a value of v for which f, is rank-one convex,
we significantly reduced the value of 7 than Duke University does. Many of our
numerical calculations were stopped due to the limitations of our computational
resources. We believe that with a more powerful computational infrastructure
we can keep on improving Duke University’s results with our algorithm. These
efforts are left for future investigations.

7.2 Potential future works

Future research directions on this project consist of examining the connections
between Morrey’s conjecture with Iwaniec conjecture. Indeed, the Iwaniec
conjecture is closely related to rank-one convexity and quasi-convexity prop-
erties, specifically to Morrey’s and Sverak’s conjectures. Note that if the
Banuelos-Wang conjecture [8] is true, then the Iwaniec conjecture will be true.
If the Banuelos-Wang conjecture is not true, then Morrey’s conjecture would be
settled for the case n = m = 2. The truth of the Iwaniec conjecture will impact
the quasi-conformal mappings in R™. If the Iwaniec conjecture does hold,
then it would be a stronger variation of Astala’s area distortion theorem on
quasi-conformal mappings, see Astala [3]. The truth of the Iwaniec conjecture
would provide a mean to tell whether the Cauchy-Riemann operators df, Of
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are similar to differentially subordinate harmonic functions, or differentially
subordinate martingales. Experts believe that this is in fact the key to settling
the Morrey’s conjecture.

Other possible future research works on this project could consist of (i) devel-
oping robust numerical algorithms for the minimization problem at hand in the
context of Morrey’s conjecture problem, (ii) finding suitable Sobolev spaces on
which the minimization problem will be performed, and (iii) discovering new
mappings or improving the existing for the Sobolev space used in the minimiza-
tion problem.
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Software Availability

A version of the code developed for this work is available at:
https://github.com /xdong99/Numerical-Quasiconvexity.
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