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1. Introduction

With the rapid developement of nanoscale technologies, there is a resurgence
of interest in the study of the flexoelectric effect in solid materials. The flexoelec-
tric effect describes the generation of an electric polarization under mechanical
strain or stress gradient or the reverse, that is, the mechanical field response to
an electric field gradient. The flexoelectric effect was first theoretically predicted
for crystalline dielectrics by Maskevich and Tolpygo [34], and later observed and
described from a phenomenological standpoint by Kogan [27].

The theory of flexoelectricity is analogous to the polarization-gradient ap-
proach suggested by Mindlin [38] which links the polarization gradient to the
strain field, see Askar and co-workers [1], Bursian and Trunov [2] and Cata-
lan and co-workers [3] to name few. More generally, most of the works on the
theoretical modeling of the flexoelectric effect result from generalized contin-
uum approaches. The later comes from the seminal works by Lord Kelvin, the
Cosserat brothers and before them by the (maybe not so universally known)
Italian mathematician Gabrio Piola, and has recently (mainly due to the in-
crease of the power of the computers) been object of intensive study in the
works of Sciarra and co-workers [47], Sedov [45], Madeo and co-workers [32, 31],
Rosi and co-workers [43], Pideri and Seppecher [40], Placidi and co-workers [41],
dell’Isola and co-workers [7] among others. Generalized continuum theories such
as micropolar and micromorphic approaches of Eringen [19] and Eringen and
Suburi [20, 21] were applied to model flexoelectric effect in materials, see for
instance Chen [4] and Romeo [42].

Other fundamental models of flexoelectric effect based on generalized con-
tinuum approaches result from the application of Toupin [50]-like variational
principle. Among them we can mention the works of Mao and Purohit [33] and
of Sharma and co-workers [49]. The governing equations of the flexoelectric ef-
fect in the works of Mao and Purohit are analagous to those of Mindlin [35, 36]
strain gradient elasticity theory. The constitutive relations of the flexoelectricity
model presented by Sharma and co-workers are inspired from a previous work
by Sahin and Dost [44] and include both the polarization and the second gradi-
ent of the displacement field; the contributions of the higher order terms (fifth
and higher order tensors) in the internal energy were not account for. These
approximations were necessary to reduce the number of parameters involved in
Sharma and co-workers model so that practical numerical nanoscale electrome-
chanical coupling applications based on this model are amenable.

Recent works by Enakoutsa and co-workers [16, 17] went beyond these ap-
proximations. Namely, these authors proposed a model for flexoelectric effect
in materials resulting from Toupin [50] and Gao and Park [22]-like variational
approaches. This model is based on an internal energy density function which
generalizes the one suggested by Mao and Purohit [33] by accounting for a
fifth-order tensor which represents the coupling between first and second order
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gradient effects (as a general rule these effects exist in all non-centrosymmetric
materials) following an earlier suggestion by dell’Isola et al. [8, 10, 9, 11].
Enakoutsa and co-workers [16, 17]’s proposal was recently studied by Enakoutsa
[15, 18]. In the latter works, a benchmark analytical solution of the problem
of a thin-walled cylinder deformed in plane strain based on the proposed model
for flexoelectric effect was developed as an application of this model. The out-
come of the solution developed has clearly evidenced the correlation between the
strain gradient and the electrical polarization generated, establishing thus some
analytical foundations of flexoelectric based nanodevices, especially nanogener-
ators and nanopiezotronics devices. Also, Enakoutsa and co-workers [16, 17]’s
works are the same vein of the previous ones of Wang and co-workers [51, 52]
who developed a nanogenerator system which has the potential to convert the
mechanical energy produced by the mechanical bending of a zinc oxide nanowire
into an electricical energy, see [5].

Similar studies aimed at designing nanoscale piezoelectric based devices exit.
Among them, we can mention the works of Gao and Wang [24] where a per-
turbation theory was used to derive an analytical solution for the piezoelectric
potential repartition in the cross section of a bending nanowire; also, Shao and
co-workers [48] presented a simplified but efficient constitutive model to calcu-
late the piezoelectric potential in a bending nanowire. Furthermore, Moemeni
and co-workers [39] fabricated a nano-composite generator which consits of an
array of zinc oxide nanowires based on some analytical solution. The contribu-
tions of the flexoelectric effect, which is known to be tremendous at the material
lower level length scales, were neglected in the studies mentioned above, perhaps
as a first step.

The objective of this paper is to rectify this drawback and/or to complete
the very few exsiting studies that account for the flexoelectric effect in their
proposed flexoelectric based nanodevice prototypes. To do so we shall use the
new flexoelectric effect model developed by Enakoutsa and co-workers [16, 17].
The advantage of this model over its few competitors is that it accounts for
more detailed physics description, which is by now required by both theoretical
and applicative reasons. This model will be used to predict the repartition of
the electric potential a thin wire structures made of zinc oxide. The plan of this
paper is the following.

• In Section 2, we review the governing equations of the flexolectric effect
model as presented by Enakoutsa and co-workers [16, 17]. This model is
derived from Toupin [50]-like variational formulation for electromechan-
ical problems. Enakoutsa and co-workers’s constitutive relations mainly
consist of three independent constitutive relations, each of them defining
some electromechanical “stress” which result from a postulated internal
energy density function. A simplified version of Enakoutsa and co-workers
[16, 17]’s model for the flexoelectric effect in material, which differs from
the simplifications introduced by Sharma and co-workers [49], is also pre-
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sented.

• Next, in Section 3 the simplified version of Enakoutsa and co-workers
[16, 17]’s model presented in Section 2 is used to predict analytically the
distribution of the electrostatic potential in a thin-walled nanowire made
of zinc oxide, subjected to some external pressure load conditions. The
procedure of the solution of this problem is analogous to those developed
in Gao [23], Gao and Park [22], Collins and co-workers [6], and Enakoutsa
[14] and reduces to find the solution of a modified Bessel-type differential
equation. The analytical expression of the distribution of the electrostatic
potential is provided and depends on modified Bessel functions.

• Finally, Section 4 discusses the implications of the solutions obtained in
the course of this work. This Section also establishes the relevance of
the model proposed by Enakoutsa and co-workers [16, 17] to describe
the flexoelectric effect in materials and to simulate nanoscale flexoelectric
based devices at the early stage of the fabrication of these devices.

2. Continuum model of flexoelectric effect in materials

This section presents the governing equations of Enakoutsa and co-workers
[16, 17]’s model for the flexoelectric effect in materials as well as its simplified
version.

2.1. Generalities

The constitutive relations of Enakoutsa and co-workers [16, 17]’s model are
derived from a postulated internal energy density function W wich depends on
the strain and its gradient as well as the polarization and its gradient, that is,
W ≡ W (Dij , Dij,k, Pi, Pi,j) in the context of small displacement and deforma-
tion assumptions. The proposed internal energy density function generalizes the
one suggested by Sahin and Dost [44] and adopted by Sharma and co-workers
[49]; this function is defined as

W ≡


1
2CijklDijDkl + 1

2HijklmnDij,kDlm,n + 1
2χijPiPj

+ eijkPiDjk +GijklmDijDkl,m +KijklPiDjk,l + aijPi,j
+ 1

2bijklPi,jPk,l + dijklPi,jDkl + gijkPiPk,j

(1)

with

• C ≡ Cijkl,1≤i,j,k,l≤3 is the usual fourth-rank “simple” elastic (stiffness)
constants tensor;

• e ≡ eijk,1≤i,j,k≤3 represents the third-rank piezoelectric constants tensor;
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• H ≡ Hijklmn,1≤i,j,k,l,m,n≤3 and G ≡ Gijklm,1≤i,j,k,l,m≤3 denote the sixth-
rank and fifth-rank SGE elastic constants as suggested by dell’Isola and
co-workers [8, 10, 9, 11];

• K ≡ Kijkl,1≤i,j,k,l≤3 is the fourth-rank flexoelectric constants tensor;

• χ ≡ χij,1≤i,j≤3 is the familiar second order reciprocal dielectric suscepti-
bility tensor;

• d ≡ dijkl,1≤i,j,k,l≤3 is a Mindlin [37]’s fourth-order tensor which connects
the gradient of polarization to the strain;

• b ≡ bijkl,1≤i,j,k,l≤3 is the polarization gradient-polarization gradient cou-
pling fourth order tensor;

• the material constant tensor g ≡ gijk,1≤i,j,k≤3, which was introduced by
Mindlin [37], links the polarization with the gradient of the polarization;

• the material constant tensor a ≡ aij,1≤i,j≤3, which was also introduced by
Mindlin [37], is linked to the gradient of the polarization and is introduced
to avoid strain and polarization localization at the surface of the body, see
Mindlin [37];

• the vector P ≡ Pi,1≤i≤3 is the polarization vector field while Pi,j1≤i,j≤3 is
a second order tensor representing the gradient of the polarization vector;

• the comma denotes the differentiation with respect to spatial variables;

• D ≡ Dij,1≤i,j≤3 is the second-rank symmetric strain tensor which is de-
fined as

Dij = 1/2 (ui,j + uj,i) , (2)

with u ≡ ui,1≤i≤3 denoting the displacement vector field.

The elastic constants tensor C, and the SGE constants tensors H and G in
Eq.(1) obey the following symmetry properties

 Cijkl = Cklij
Hijklp = Hlpijkl

Gijklpq = Glpqijk.
(3)

Using the symmetry properties of the strain tensor D we obtained some addi-
tional symmetry properties upon the tensors C, H, and G defined as

 Cijkl = Cijlk = Cjikl
Hijklp = Hjiklp = Hijkpl

Gijklpq = Gjiklpq = Gijkplq.
(4)
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Details on the symmetry properties of the material constant tensors b and d are
provided, for instance, in Mindlin [38], while Kogan [26, 27] can be consulted for
the flexoelectric effect constants tensor K. Details studies of the mathematical
properties of the flexoelectric effect constants tensor can be found in Le Quang
and He [28]. The piezoelectric constants tensor e obeys the usual symmetry
properties given by

eijk = ejik. (5)

2.2. Governing equations

The internal energy density function (1) is used to define an internal energy
Ei as

Ei =

∫
Ω

Wdv =
1

2

∫
Ω

(ΣijDij +MijkDij,k − EiPi + EijPi,j) dv (6)

with the components of the Cauchy stress, Σij , the hyperstress, Mijk, the local
electric force, Ei, the higher order local electric force, Eij , and the gradient of
the strain, Dij,k, given by



Σij =
∂W
∂Dij

= CijklDjk +GijklmDkl,m + eijkPl

Mijk =
∂W
∂Dij,k

= GijklpDlp +HijklpqDlp,q +KijklPl

Ei = −∂W
∂Pi

= eijkDjk +KijklDjk,l + χijPj

Eij =
∂W
∂Pi,j

= bijklPk,l + dijklDkl + gijkPk,j + aij

(7)

and

Dij,k =
1

2
(ui,jk + uj,ik) , (8)

ui,1≤i≤3 being the displacement vector field.

The work done by the external forces Ee is defined as

Ee =

∫
Ω

(
fiui + E0

i Pi
)
dv +

∫
∂Ω

(tiui + qiDui) da (9)

where

• fi is the external body force;

• E0
i denotes the external electric body force;

• ti is the Cauchy traction vector;
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• qi is the double stress traction vector;

• ∂Ω is the closed smooth bounding surface of Ω;

• Dui is the normal (directional) derivative of the displacement component
ui defined by

Dui = nlui,l (10)

with nl being the outward unit normal vector to the surface ∂Ω. Let us
mention that the integrand (tiui + qiDui) in the right-hand of Eq.(9) was
also adopted by Gao and Park [22].

We shall now apply Toupin and Mindlin [50, 37]-like variational approaches
to obtain both the balance equations and the boundary conditions. To do so, an
additional term is needed in the integrand (the energy density function) of the
energy density (1) to be consistent with Toupin [50] and Mindlin [37] variational
approaches; thus the new energy density function is given by

W =

{
1
2 (ΣijDij +MijkDij,k − EiPi + EijPi,j)

− 1
2ε0 (∇Φ)i (∇Φ)i + (∇Φ)i Pi

(11)

with Φ being an electric potential which is related to the local electric force Ei as

Ei = (∇Φ)i (12)

With this new expression of the density function, the variational approaches
of Toupin and Mindlin [50, 37] as well as Gao and Park [22] can be applied to the
internal energy (11) and the external energy (9) in a body occupying a volume
Ω bounded by a surface ∂Ω, separating Ω from the external environement Ω?

to obtain, in the context of quasi-static analyses, the following balance equations



Σij,j −Mijk,jk + fi = 0

Ei + Eij,j − (∇Φ)i + E0
i = 0

−ε0 (∇Φ)ii + Pi,i = 0 in Ω

(∇Φ)ii = 0 in Ω?

(13)
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and the boundary conditions



Σijnj − (Mijknk),j + (Mijknknj),lnj = ti

Mijknjnk = qi

ni (−ε0 [[(∇Φ)i]] + Pi) = 0

niEij = 0

(14)

where [[(∇Φ)i]] is the jump in (∇Φ)i across the bounding surface of the body Ω.

Eqs.(8) and (7) along with the boundary conditions (14) constitute the gov-
erning equations for the model proposed by Enakoutsa [16, 17] for elastic flex-
oelectric materials under small deformation assumptions.

2.3. Simplified version

This section presents a version of Enakoutsa and co-workers [16, 17]’s model
when the material is centrosymetric where the classical piezoelectric effect is
absent. In this case, according to Mindlin [37], the piezoelectric coefficients
tensor eijk,1≤i,j,k≤3, the “Mindlin constants” tensor gijkl,1≤i,j,k,l≤3 which links
polarization with the gradient of the polarization as well as the fifth rank strain
gradient elastic tensor Gijklmn,1≤i,j,k,l,m,m≤3 vanish. Therefore, the electrome-
chanical forces (7) reduce to



Σij = CijklDjk

Mijk = HijklpqDlp,q +KijklPl

Ei = KijklDjk,l + χijPj

Eij = bijklPk,l + dijklDkl + aij

(15)

For the particular case of linear isotropic materials, the strain gradient elas-
tic constants in the reduced electromechanical forces relations Eq.(15) are re-
duced to those of dell’Isola and co-workers [8] which result from some material
symmetry arguments previously proposed by Suicker and Chang [46]. Also,
the electromechanical coupling coefficients tensors χij,1≤i,j≤3, Kijkl,1≤i,j,k,l≤3,
dijkl,1≤i,j,k,l≤3 and bijkl,1≤i,j,k,l≤3 simplified to those obtained by Masson [29]
and Mindlin [37] and used in Maranganti and coworkers [30] so that the elec-
tromechanical stress relations (15) become:

8





Σij = λDkkδij + 2µDij

Mijk = 2c1Dkp,pδij + c1Dpp,jδik + c1Dpp,iδjk + c2Dll,kδij

+ 2c3(Djq,qδik +Diq,qδjk) + 2c4Dij,k + 2c5(Dik,j +Djk,i)

+ δijk12Pk + k44 (δikPj + δjkPi)

Ei = k12Dik,k + k44 (Dji,j +Djj,i) + χPi

Eij = b12δijPk,k + b44(Pj,i + Pi,j) + b77(Pj,i − Pi,j)

+ d12δijDkk + 2d44Dij + aδij

(16)

where

• the symbol δij denote the Kronecker delta tensor;

• the coefficients ci,1≤i≤5 are the strain gradient elastic material constants
of dell’Isola and co-workers [8];

• the constants kij represent the non-zero flexoelectric coupling effect mod-
uli;

• the constants bij and dij are the Masson [29] and Mindlin [37] non-zero
electromechanical coupling effect moduli;

• λ and µ denote the usual Lame elastic stiffness tensor

The relations (16) include sixteen constitutive constants; along with the balance
equations and boundary conditions Eqs.(13, 14), these relations define a sim-
plified version of Enakoutsa and co-workers [16, 17]’s model for the flexoelectric
effect in linear elastic solids. The practical used of this version of the model is
demonstrated in the two following sections. The first application consists of an
analytical study of the distribution of the electrostatic potential in a thin-walled
nanowire made of zinc oxyde and subjected to an external pressure while the
second application deals with the numerical solution of the same model problem
using COMSOL Multiphysics finite element software.

3. Thin-walled nanowire under external pressure, analytical study

3.1. The thin-walled nanowire problem

In this section, we developed a closed form analytical solution for the prob-
lem of a thin-walled cylindrical nanowire made of zinc oxide subjected to some
external pressure. The nanowire is of inner and outer radii ri and re, respec-
tively and obeys the constitutive relations (16) where the strain gradient elastic
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coefficients ci,1≤i≤5 are given as functions of the Lame elastic coefficients λ and
µ, following a suggestion made by Gologanu and co-workers [25] and studied by
Enakoutsa [12] and Enakoutsa and Leblond [13] some years ago. In Gologanu
and co-workers [25]’s proposal, the strain gradient elastic constants are related
to the Lame elastic coefficients as


c1/(b

2/5) = −λ4
c2/(b

2/5) = λ
c3/(b

2/5) =
(
λ
16 −

µ
4

)
c4/(b

2/5) = µ
c5 = 0

(17)

with the parameter b representing some material charateristic length scale. The
problem is assumed to be a plane strain problem and for this reason the com-
ponent of the displacement in the z-direction is assumed to be equals to zero.
Use will be made of the classical cylindrical coordinates r, θ and z and the cor-
responding orthogonal basis er, eθ, ez and the following property on a radial
vector W ≡ ∆U:

(∇D)hhi = Uh,hi = Wi and (∇D)ihh = Ui,hh = ∆Ui, (18)

that is,

(∇D)hhi = (∇D)ihh = Wi. (19)

The canonic decomposition Eq.(19) was invented by Enakoutsa [12] and later
used in the solution of several boundary problems involving curvilinear coordi-
nates, see Enakoutsa [14, 15] to name few. Figures (1; 2) illustrate this model
problem.

3.2. Derivation of the analytical solution

We want to find axi-symmetric solutions where the displacement vector field
U, the polarization vector field P and the electric potential field Φ are assumed
to be radial, which means that U ≡ U(r)er, P ≡ P (r)er and Φ ≡ Φ(r). The
procedure of solution of the thin-walled cylindrical problem consists of finding
the radial displacement field and deduces the polarization vector field using the
balance equations Eqs.(13)1,2 and then calculate the electric potential Φ. We
start by taking the spatial derivatives of the stress and the higher order electric
force as well as the second spatial derivatives of the hyperstress in Eq.(16)1,2.
Using the properties (19) and the constitutive constants (17) we get, after deriva-
tion and application of the Kronecker delta symbol:
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Figure 1: Illustration of the polarization of a thick walled cylindrical tube undergoing ax-
isymmetric loading model problem. The thick walled cylindrical tube is of inner and outer
radii ri and re, respectively and use is made of the curvilinear cylindrical coordinates system
er, eθ, ez .

Figure 2: Illustration of the classical cylindrical coordinates r, θ and z and the corresponding
orthogonal basis er, eθ, ez used to solve the problem model considered.



Σij,j = (λ + 2µ)Wi

Mijk,jk = 2
µb2

5

λ+ 2µ

λ+ 4µ
(∆W )i + (k12 + k44)Pk,ik + k44(∆P )i

Ei = (k12 + 2k44)Wi + aPi

Eij,j = (d12 + 2d44 + b12 + 2b44)Wi.

(20)
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Using the relations (20) in the balance equations (13) we get the following re-
duced system of equations:


Wi −

2µ

λ+ 4µ

b2

5
(∆W )i +

k12 + k44

λ+ 2µ
Pk,ik +

k44

λ+ 2µ
(∆P )i = 0

(k12 + 2k44 + d12 + 2d44 + b12 + 2b44)Wi + aPi − (∇Φ)i = 0

(21)

in the absence of body external mechanical and electrical forces, that is fi =
E0
i = 0. The system of equations (21) then reduces


Wi −

2µ

λ+ 4µ

b2

5
(∆W )i + k2Pk,ik + k3(∆P )i = 0

k4Wi − (∇Φ)i + χPi = 0

(22)

where



k2 =
k12 + k44

λ+ 2µ

k3 =
k44

λ+ 2µ

k4 = k12 + d12 + b12 + 2 (k44 + d44 + b44) .

(23)

Using the component (13)3 of the balance equations (13), Eqs.(24, 23) reduce
to 

Wi − 2
µb2

5

λ+ 2µ

λ+ 4µ
(∆W )i + k2Pk,ik + k3(∆P )i = 0

k4Wi − χ′Pi = 0

(24)

Upon substituting of (24)2 into Eq.(24)1, we find

Wi − 2
µb2

5

λ+ 2µ

λ+ 4µ
(∆W )i + k2Pk,ik −

k3k4

χ′
(∆Wi) = 0. (25)

Remembering that both the displacement and polarization vector fields only
depend on the radial coordinate r, Eq.(25) becomes

Wr −

(
2
µb2

5

λ+ 2µ

λ+ 4µ
+

(
k2 + k3

)
k4

χ′

)
(∆W )r = 0 (26)
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or in compact form

W − k(∆W) = 0; k = 2
µb2

5

λ+ 2µ

λ+ 4µ
+

(
k2 + k3

)
k4

χ′
(27)

The solution of the differential equation is well-known and yields

U(ρ) = D1I1(ρ) +D2K1(ρ) +D3ρ+
D4

ρ
. (28)

In Eq.(28)

• ρ =
√
kr and the definitions of the constants Di,1≤i≤4 (the values of these

constants will be fixed by the boundary conditions of this problem) have
been changed

• I1 and K1 are the modified Bessel functions of the first and second kinds
of order one, respectively.

Once we have the displacement field, the polarization vector P ≡ Pr is
computed as:

P = −k
4

χ′
Φ′, (29)

that is,

P ≡ P (ρ) = A1I1(ρ)−A2J1(ρ), (30)

with A1,2 being two integration constants.
The solution of the electrical potential can easily be worked out through the

use of Eq.133 whose solution is given by

φ(ρ) = B1I0(ρ)−B2J0(ρ) +B3, (31)

where B1,2,3 defines three integration constants.

To summarize, the analytic expressions for the displacement, polarization
and electric potential fields for the problem considered are given by

U(ρ) = D1I1(ρ) +D2K1(ρ) +D3ρ+
D4

ρ

P (ρ) = A1I1(ρ)−A2J1(ρ)

Φ(ρ) = B1I0(ρ)−B2J0(ρ) +B3,

(32)

where Ai,1≤i≤2, Bi,1≤i≤3 and Di,1≤i≤4 represent some integration constants that
can be fixed by an appropriate choice of the boundary conditions. The integra-
tion constants Di,1≤i≤4 can be found by prescribing U(ri), U(re), ∂rU(ri) and
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∂rU(re). The integration constants Ai,1≤i≤2 in the expression of the polariza-
tion field vector can also be obtained by prescribing the values of P (ri) and
P (re) on the inner and outer surface of the cylindrical tube, respectively. Cal-
culations are straightforward. The same conditions on the displacement and
polarization fields were recently applied by the authors and several other au-
thors to analytically solve a closely related boundary value problem, see [6].

The integration constants Bi,1≤i≤3 can be obtained by assuming a potential
at both the inner and the outer surfaces of the cylinder, that is, Φ(ri) = 0
and Φ(re) = V . This will provide two out of three integration constants; the
remaining constant, B3, can of course be adjusted to zero.

4. Discussion of the analytic results

An interesting point of interest of the analytical solution developped is that
the displacement field, the polarization and the electric potential are signifi-
cantly perturbed by the presence of flexoelectric effects. Also, in the absence of
flexoelectric effects strain gradient elasticity (SGE) solution for the same model
problem is recovered. Also, the presence of flexoelectric effects in the model
reduces the magnitude of the displacement vector with respect to the classical
and SGE solutions. The explanation is that a part of the energy induced by
the external forces on the flexoelectric material has served to polarize the cylin-
drical tube. This is in contrast with purely elasticity where all the work done
by the external loads is stored as elastic energy in the body. As a result, the
circumfacial normal (orthonormal) strain in the presence of flexoelectric effects
is also significantly reduced with respect to its values in the case of elastic and
strain gradient elastic solutions.
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5. Conclusion

We derive a close-form solution to the problem of a thick walled cylindrical
tube subjected to axisymmetric loading in terms of modified Bessel functions.
The solution of this problem demonstrates how the mechanical behavior of a
flexoelectric material can be influenced (at the nanoscale) by the use of electric
fields. This solution, besides allowing a comparision with simple elastic and
SGE solutions, could be used as a benchmark solution to assess future compu-
tational design tools for flexoelectric nano-structure materials.

Future work will present a numerical solution for the same benchmark prob-
lem described in Section 3 using COMSOL Multiphysics, a finite element anal-
yses software package for various multiphysics and engineering applications,
expecially coupled phenomena, or multiphysics. Comparisons between the an-
alytical and numerical predictions for the mechanical and electriccal field vari-
ables distribution in the nanostructure will also provided. We anticipate the
numerical simulations of the benchmark problem will show an increasing of the
electrostatic potential for decreasing values of the thickness of the cylinder (size
effects).
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