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Abstract

Commonly implemented material processing routines not limited to quenching, welding or heat treatment requires 
exposure of a part to complex thermal and mechanical loading histories that in turn manifest as residual stress and 
distortion. Of interest to material designers and fabricators is modeling and simulating the evolutionary process a part 
undergoes for the sake of capturing this observable residual stress states and geometric distortion accumulated after 
processing. In an attempt to move toward an overall consistent modeling approach, we premise this investigation with a 
consistent thermodynamic framework for a generalized multiphase material. Following this, we extend the single phase 
Evolving Microstructural Model of Inelasticity (EMMI) internal state variable model to multiphase affirming that the 
interaction between phases is through an interfacial stress. We then employ a self-consistent polycrystalline model in 
order to partition each individual phase’s strain field ensuring a hybrid between compatibility and equilibrium. With a 
synthesis of the aforementioned ideas, the additional transformation plasticity (TRIP) is accounted for by modifying 
each phase’s flowrule to accommodate an interfacial stress. Following this, we couple the mechanical multiphase model 
equations with a previously developed non-diffusional phase transformation kinetics model. A numerical evaluation of 
the coupled model is performed and applied to a simplified quenching boundary value problem.

Keywords: Inelasticity, Continuum Mechanics, Phase Transformation, Kinetics, Thermodynamics

1. Introduction

The pioneering working of Truesdell and Noll [1, 2] on developing, composing and documenting the
nonlinear-field theories of mechanics has fostered the extensive application of continuum mathematics to
modeling of engineering materials exhibiting non-linear behavior. Subsequent works of Coleman and Noll
[3, 4] on finding the restrictions placed on the constitutive formulation designed to account for the dissipa-
tive effects expressed through heat conduction and subsequent deformation helped propel the application of
thermodynamics to continuum mechanics. Based on the approach taken by [3, 4], Coleman and Gurtin [5]
formulated a continuum thermodynamics framework for the application of Internal State Variables (ISVs)
to modeling the nonlinear behavior of engineering materials.
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The works of Eshelby [6, 7] on determination of the elastic field in and around an ellipsoidal inclu-
sion encouraged the development of view point of a framework for handling materials with discontinuous
properties. Further works of Ericksen [8], Ball [9] encouraged the development of an approach to mathe-
matically model the existence of multiphases in an elastic solid. A number of researchers [10, 11] through
experimentation, theoretical derivation and calculation have established the fact that martensite develops 24
possible variants in the presence of an austenite phase with each variant showing a distinct lattice orientation.

In the past, several researchers have demonstrated the possibility of extending a continuum mechanics
based formulation with ISVs to modeling of co-existing phases. Tanaka and Nagaki [12] devised an ap-
proach for modeling engineering materials experiencing phase transition. They introduce two ISVs, one
that kept track of crystallographic structure evolution and the other that measures the extent of phase transi-
tion. To model the interaction or effects of parent and product phases they introduce a TRIP strain quantity
to account for the additional plasticity experienced during phase transformation. In an attempt to capture
the plasticity induced as a result of phase transition, Leblond et al. [13, 14] used the Hill-Mandel [15, 16]
homogenization process to decompose the macroscopic plastic strain into two contributing portions. They
decompose the macroscopic plastic strain into a contribution from classical plasticity and the other from
transformation plasticity without a priori assumption of a new microscopic plastic strain.

In an attempt to capture the plasticity induced as a result of phase transition, Leblond et al. [13, 14]
via the Hill-Mandel [15, 16] homogenization process decompose the macroscopic plastic strain into two
contributing portions. More notably, they decompose the macroscopic plastic strain into a contribution
from classical plasticity and the other from transformation plasticity without a priori assumption of a new
microscopic plastic strain. In a later work, Leblond et al. [17, 18] experimented with previously proposed re-
lationship between the macroscopic TRIP stain-rate quantity and the stress deviator [19, 20]. Subsequently,
neglecting the Magee mechanism [21], they pursued a numerical investigation of the transformation induced
plasticity component with a consideration of both perfectly-plastic and strain hardening effects. It is note-
worthy to mention that based on experimental observations several other authors [22, 23, 24, 25] had derived
constitutive relationships between macroscopic TRIP strain or strain rate and stress analogous to the form
of the flow-law for classical plasticity.

Previously, Bammann et al. [26, 27, 28, 29] developed an ISV framework that enabled capturing the
temperature and strain rate dependent behavior observable in engineering materials notably the Bammann-
Chelsea-Johnson (BCJ) plasticity model. The well established kinematic hardening phenomena was cap-
tured using a tensorial state variable where it’s rate was cast in a hardening minus recovery format following
Ashby [30]. Similarly to the format of the kinematic hardening rate state variable, isotropic hardening rate
though a scalar variable, was cast in a hardening minus recovery format. In a subsequent work, Bammann
et al. [31] extend the BCJ single phase framework to capture the occurrence of coexisting phase in an en-
gineering material. The effort was directed toward capturing the residual stress and distortion observable in
the event of a welding, heat treatment or quenching procedure performed on low alloy steels.

Several finite deformation kinematic frameworks have been proposed to enable capturing the phase
transformation phenomena observed in crystalline materials. The more common mathematical framework
used to formulate the kinematics of finite deformation for a single phase is based on a multiplicative decom-
position of the deformation gradient (F) into an elastic and plastic component. Following Khan [32], the
deformation gradient can be decomposed into:

F = FeFp (1)

where Fe and Fp is the elastic and plastic part. In a similar manner, this approach has been extended to a
multiphase framework. Bock and Holzapfel [33], Kroner [34], and Lee and Liu [35] extended the small
strain phase transition framework work earlier developed by Leblond et al. [17, 18] to a large strain frame-
work. They accounted for the additional plasticity relating to the orientation process (Magee Effect) [21].
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The evolution law accounting for the TRIP strains was chosen to be of a visco-plastic nature.

More recently, Hallberg et al. [36] using a large-strain plasticity framework proposed a phase transi-
tion model to describe martensitic formation in austenitic steels. For the thermodynamic formulation, their
choice of state variable included the elastic strain, a hardening variable, temperature and the phase volume
fraction of martensite. Using a Crystal plasticity framework, Tjahjanto et al. [37] modeled the Transforma-
tion plasticity phenomenon. Based on a finite strain framework they decompose the deformation gradient
into:

F = FeFpFtr (2)

where Fe, Fp and Ftr is the elastic, plastic and transformation deformation gradient component. A similar
model development approach as described above had been taken by numerous authors [38, 39, 40, 41, 42,
43, 44] where the fundamental difference in the model approach may lie in either the TRIP strain formula-
tion and or incorporation, the kinematic assumption, the scale of interest, the choice of internal state variable
or the phase evolution kinetics model used.

Continuum mechanics as an approach to modeling and simulating engineering material behavior is at-
tractive. Its mathematical framework enables scientist and engineers capture the behavior of a material in an
average manner. Effectively coupling phase kinetics models to a continuum mechanics framework requires
several consideration. One of which includes homogeneity, that is, uniform without irregularities, have to be
made in order to deem a material point differentiable or continuous where in a numerical sense, the imposed
differentiability would allow for a discretizable subset space. It would only be reasonable to assume that
each continuum point can readily accommodate evolving new phases. With this approach, phase transfor-
mation kinetics can be modeled. Similarly, conservation of energy or similar principles can be estimated as
a cumulative sum of each cohabiting phase. In addition, the cumulative stress may then be deduced using a
volume fraction weighted rule of mixtures.

Today several researchers are given credit for the development of the equation for modeling the kinetics
of phase transformation of a diffusional or non-diffusional type. Common diffusional models are commonly
referred to as JMAK after Johnson and Mehl [45], Avarami [46, 47, 48] and Kolmogorov [49]. For a non-
diffusional transformation the Koistinen-Marburger [50] model (KM) or some form of it is the most widely
adopted model for austenite to martensite transformation. In more recent years, Lusk et al. [51, 52, 53] have
experimented with similar approaches to phase transformation kinetics where they premise the development
of their model with the balance principle for both diffusional and non-diffusional types. Of consideration
here are non-diffusion type models with a focus on low to mild carbon steels.

The rapid development in computer architecture coupled with industrial demand for high resolution and
low cost computer simulations has led to the continuous development of numerical tools for simulating heat
treatment. Ferguson et al. [54, 55], developed DANTE R© a heat treatment subroutine that interfaces with
ABAQUS [56]. Using DANTE R©, several numerical studies have been conducted in an attempt to better
understand the physics of heat treatment and quenching. The development of DANTE R© has also fostered
collaborative efforts [57, 58, 59, 60]. Other tools such as HEARTS [61, 62], SYSWELD [63] and TRAST
[64] have also been developed. The aforementioned tools work as either stand-alone packages or in a plug-in
type fashion into well know table-top multi-physics packages like COMSOL [65], ABAQUS [56], Solid-
Works [66] and so on.

Motivated by the need to develop a better understanding of heat treatment and quenching of metal alloys,
the continuum based EMMI framework has being extended to capture the occurrence of more than a single
phase coexisting in a polycrystalline material. Of interest here are materials that undergo phase transforma-
tion that consequentially modifies the material mechanical response. Here in we premise this investigation
with a consistent thermodynamic framework generalized for n phases. Following this, we extend the single
phase EMMI plasticity state variable model to multiphase affirming that the interaction between multiple
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phases is through an interface stress. We then employ a self-consistent polycrystalline model to help parti-
tion each individual phase’s strain field, in a manner where a hybrid between compatibility and equilibrium
is satisfied. With a synthesis of the aforementioned ideas, the additional TRIP is numerically accounted for
by augmenting each flowrule with the computed interfacial stress. Here we assume a two-phase system and
qualitatively associate these phases with martensite and austenite. The transformation kinetics proposed by
Lusk [51, 67, 52], as well as some experimental data over a limited strain rate and temperature regime were
available to us. The goal of this is to eventually extend this work to all five phases in an attempt to modify
and extend the approach taken by Bammann et al. [31, 27, 68, 69]. The following mathematical operations
in direct notation are used in the remainder of this paper. They are defined as follows. Given a second rank
tensorial quantity A, it follows that ‖A‖ = (A : A)1/2, Tr [A] = (A : I)1/2 and Dev [A] = Á = A − 1

3 Tr [A] I.

2. Methodology

2.1. Multiphase Modeling - Thermodynamic arguments for a multiphase polycrystalline material

The formulation of the model follows the general thermodynamic formulation proposed by Bammann
[70, 71]. The deformation or strain is decomposed into a lattice strain (which is further decomposed into
strains in each component if multiple phases are present), the interface between phases, and the elastic strain
associated with each defect densities in each phases. Therefore, given a body consisting of n phases, the
strain components are:

ε ⊃
{
ε(i)

l , ε
(i)
ss , ε

(i)
β , επ

}
(3)

where ε(i)
l is the lattice strain in the each phase. ε(i)

ss is the strain resulting from statistically stored dislocations
(SSDs) in the each phase. ε(i)

β is the strain resulting from geometrically necessary dislocations (GNDs) in
the each phase. επ is the interface strain between phases. The superscript i is a range variable representing
each phase where the symbol n represents the total number of phases under consideration. Furthermore,
each of these strains is decomposed into elastic and inelastic (plastic) parts, such that:

ε(i)
l =

(
ε(i)

l,e + ε(i)
l,p

)︸               ︷︷               ︸
lattice

ε(i)
β =

(
ε(i)
β,e + ε(i)

β,p

)︸                ︷︷                ︸
GNDs

ε(i)
ss =

(
ε(i)

ss,e + ε(i)
ss,p

)︸                  ︷︷                  ︸
SSDs

επ =
(
επ,e + επ,p

)︸               ︷︷               ︸
interface

.
(4)

From the second law of thermodynamics, the reduced entropy inequality is:

ψ̇ ≤ Wtotal (5)

where Wtotal represents the total work done. Similar to the thermodynamics proposed by Gurtin [72], for
a single phase material the right hand side of the inequality represents the total work done comprising of
macroscopic and microscopic:

ψ̇ ≤ Wmacro + Wmicro. (6)

The composition of the macroscopic work is:

Wmacro =

n∑
i=1

σ(i) :
(
ε̇(i)

l + ε̇(i)
β + ε̇(i)

ss + ε̇π
)

︸                                  ︷︷                                  ︸
total marcro work

→

n∑
i=1

σ(i) :
(
ε̇(i)

l

)
+

n∑
i=1

σ(i) :
(
ε̇(i)
β + ε̇(i)

ss + ε̇π
)

︸                          ︷︷                          ︸
cross components

(7)

where σ(i) is the macroscopic Cauchy stress operating on each component of strain in a multiphase body.
The microscopic work comprises of:

Wmicro = π : ε̇π︸︷︷︸
interface work

+

n∑
i=1

[
α(i) :

(
ε̇(i)
β

)
+ κ(i) :

(
ε̇(i)

ss

)]
︸                               ︷︷                               ︸

micro-stress work

(8)
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where π is the tensorial interface stress between phases. κ(i) is the tensorial stress like internal state variable
serving as a work conjugate pair to the straining ε(i)

ss associated with the SSDs in each phase. α(i) is the
tensorial stress like internal state variable serving as a work conjugate pair to the straining ε(i)

β associated

with the GNDs in each phase. At this point, we assume that (ε(i)
ss) the SSDs strain reduces to a scalar measure

of the elastic strain in a dislocation array. In that case, for a polycrystalline material ε(i)
ss averages to the same

value in all directions; similar to the concept of isotropic hardening in classical plasticity. Similarly, we treat
the interfacial stress in the same manner as the as acting in a non-directional manner. In a future work, we
will utilize an orientation tensor to introduce the directionality of the tensorial interfacial π stress into the
model, naturally incorporating the shearing aspects of the transformation process. In addition, we would
neglect cross terms between stresses and strain rates. With this assumption, a given a body consisting of two
phases, austenite and martensite, the macroscopic work simplifies to:

Wmacro =

2∑
i=1

σ(i) :
(
ε̇(i)

l

)
.︸             ︷︷             ︸

approx. total marcro work

(9)

Following the aforementioned assumptions the microscopic work reduces to:

Wmicro = πε̇π +

2∑
i=1

[
κ(i)

(
ε̇(i)

ss

)
+ α(i) :

(
ε̇(i)
β

)]
.︸                                      ︷︷                                      ︸

approx. total micro work

(10)

Following the approach introduced by Coleman and Noll [3] in an attempt to determine the logical con-
nection between the principles of conservation of energy, entropy inequality and the general principles in
mechanics, Coleman and Gurtin [5] determined the thermodynamic restrictions necessary when introducing
ISVs to a continuum mechanics framework. In the same light we argue that, the Helmholtz free energy is of
the form:

ψ = e − θη (11)

where e is the internal energy, θ represents temperature and η the entropy. In rate form the Helmholtz free 
energy is:

ψ̇ = ė − θ̇η − θη̇. (12)

If we assume isothermal conditions, the rate form of the Helmholtz free energy reduces to:

ψ̇ = ė − θη̇. (13)

Substituting Eqn. (9) and Eqn. (10) into Eqn. (6) gives:

ψ̇ ≤ πε̇π +

2∑
i=1

[
σ(i) :

(
ε̇(i)

l

)
+ α(i) :

(
ε̇(i)
β

)
+ κ(i)

(
ε̇(i)

ss

)]
.︸                                                        ︷︷                                                        ︸

approx. total work

(14)

Furthermore, decomposing each of these strains into elastic and inelastic or plastic parts, Eqn. (14) becomes:

ψ̇ ≤ π
[
ε̇π,e + ε̇π,p

]︸         ︷︷         ︸
total interface work

+

2∑
i=1

σ(i) :
[
ε̇(i)

l,e + ε̇(i)
l,p

]︸              ︷︷              ︸
total external work

+α(i) :
[
ε̇(i)
β,e + ε̇(i)

β,p

]
+ κ(i)

[
ε̇(i)

ss,e + ε̇(i)
ss,p

]︸                                        ︷︷                                        ︸
total internal work

 . (15)

Assuming that no inelastic deformation occurs, at the interface, Eqn. (15) becomes:

ψ̇ ≤ π
[
ε̇π,e

]
+

2∑
i=1

[
σ(i) :

[
ε̇(i)

l,e + ε̇(i)
l,p

]
+ α(i) :

[
ε̇(i)
β,e + ε̇(i)

β,p

]
+ κ(i)

[
ε̇(i)

ss,e + ε̇(i)
ss,p

]]
. (16)
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We assume that the Helmholtz free energy depends on a number of independent state variables namely the
elastic portion of the lattice strain in each phase ε(i)

l,e, the elastic strain like internal state variable due to SSDs
and GNDs ε(i)

ss,e and ε(i)
β,e and the elastic interfacial strain επ,e. We further represent each category of state

variables in each phase as:

Zl,e ⇒
{
ε(1)

l,e , ε
(2)
l,e

}︸               ︷︷               ︸
lattice

Zβ,e ⇒
{
ε(1)
β,e, ε

(2)
β,e

}
Zss,e ⇒

{
ε(1)

ss,e, ε
(2)
ss,e

}︸                                                 ︷︷                                                 ︸
internal elastic strain fields

Zπ,e ⇒
{
επ,e

}︸         ︷︷         ︸
internal elastic interface

.
(17)

Therefore the Helmholtz free energy is further expressed as dependent on:

ψ = ψ̂
(
Zl,e,Zβ,e,Zss,e,Zπ,e

)
. (18)

Applying the chain rule to Eqn. (18) yields:

ψ̇ =

2∑
i=1

 ∂ψ
∂ε(i)

l,e

: ε̇(i)
l,e +

∂ψ

∂ε(i)
β,e

: ε̇(i)
β,e +

∂ψ

∂ε(i)
ss,e

ε̇(i)
ss,e

 +
∂ψ

∂επ,e
ε̇π,e. (19)

Substituting Eqn. (19) into Eqn. (16) and further expanding:

2∑
i=1

 ∂ψ
∂ε(i)

l,e

: ε̇(i)
l,e +

∂ψ

∂ε(i)
β,e

: ε̇(i)
β,e +

∂ψ

∂ε(i)
ss,e

ε̇(i)
ss,e

 +
∂ψ

∂επ,e
ε̇π,e ≤

2∑
i=1

[
σ(i) :

(
ε̇(i)

l,e + ε̇(i)
l,p

)
+ α(i) :

(
ε̇(i)
β,e + ε̇(i)

β,p

)
+ κ(i)

(
ε̇(i)

ss,e + ε̇(i)
ss,p

)]
+ π

(
ε̇π,e

)
. (20)

Employing the Coleman and Noll [3] argument and grouping yields:

2∑
i=1


 ∂ψ
∂ε(i)

l,e

− σ(i)

 : ε̇(i)
l,e +

 ∂ψ
∂ε(i)

β,e

− α(i)

 : ε̇(i)
β,e +

 ∂ψ

∂ε(i)
ss,e

− κ(i)

 ε̇(i)
ss,e

 +

[
∂ψ

∂επ,e
− π

]
ε̇π,e ≤

2∑
i=1

[
σ(i) :

(
ε̇(i)

l,p

)
+ α(i) :

(
ε̇(i)
β,p

)
+ κ(i)

(
ε̇(i)

ss,p

)]
. (21)

Therefore as the elastic strains vanish the stresses and internal state variables associated with each phase is:

σ(1) =
∂ψ

∂ε(1)
l,e

, σ(2) =
∂ψ

∂ε(2)
l,e

,︸                               ︷︷                               ︸
lattice

α(1) =
∂ψ

∂ε(1)
α,e

, α(2) =
∂ψ

∂ε(2)
α,e

,︸                               ︷︷                               ︸
GNDs

κ(1) =
∂ψ

∂ε̇(2)
ss,e

, κ(2) =
∂ψ

∂ε̇(2)
ss,e

,︸                               ︷︷                               ︸
SSDs

π =
∂ψ

∂επ,e︸     ︷︷     ︸
interface

.
(22)

The dissipation inequality becomes:

2∑
i=1

[
σ(i) :

[
ε̇(i)

l,p

]
+ α(i) :

[
ε̇(i)
β,p

]
+ κ(i)

[
ε̇(i)

ss,p

]]
︸                                                 ︷︷                                                 ︸

plastic dissipation

≥ 0 (23)
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2.2. Multiphase Modeling - Multiphase EMMI Constitutive Equations
In order to extend the EMMI model to capture the physics of materials undergoing phase transformation,

while the dislocation based internal state variable (ISV) model is developed for finite strain, the assumption
that each continuum point is occupied by both a parent and a product phase had to be made. Using a volume
fraction weighted rule of mixtures the Cauchy stress in the current configuration is determined to be of the
form:

σ =

n∑
i=1

φ(i)σ(i) (24)

where σ́(i) represents the Cauchy stress in each phase and the superscript indicate the ith phase. Subsequent
volume fraction (φ(i)) are given by:

φ(i) = (1 −
n∑

j,i

φ( j)). (25)

Here we assume a two-phase system and qualitatively associate these phases with austenite and martensite.
Therefore the Cauchy stress reduces to:

σ = φ(1)σ(1) + φ(2)σ(2)︸                ︷︷                ︸
total stress

→ σ = (1 − φ)σ(1)︸       ︷︷       ︸
austenite

+ φσ(2)︸︷︷︸
martensite

(26)

where φ(1) and φ(2) represents the volume fraction of the austenite and martensite and therefore can be
mathematically replaced by 1 − φ and φ. From the assumption of linear elasticity, and for a homogeneous
isotropic material, the deviatoric stress and pressure in each phase is given by:

◦

σ́
(i)

=

(
σ́(i)

µ(i)

dµ(i)

dθ

)
θ̇ + 2µ(i)d́(i)

e︸                       ︷︷                       ︸
deviatoric stress rate

ṗ(i) =

(
p(i)

κ(i)

dκ(i)

dθ

)
θ̇ + κ(i)Tr

[
d(i)

e

]
I︸                              ︷︷                              ︸

hydrostatic stress rate

(27)

where µ(i) and κ(i) represent the temperature dependent shear and bulk modulus for each phase. θ(i) is the
temperature in each phase. d́(i)

e is the deviatoric elastic part of the symmetrical portion of the velocity
gradient in each phase. I is the three dimensional identity tensor. The convective derivative of the Cauchy
stress is of the form:

◦

σ
(i)

= σ̇(i) − w(i)
e σ

(i) + σ(i)w(i)
e (28)

where w(i)
e is the elastic part of the asymmetrical portion of the velocity gradient in each phase. The elastic

symmetrical and asymmetrical portions of the velocity gradient in each phase are respectively:

d(i)
e = d(i) − d(i)

p − d(i)
θ︸            ︷︷            ︸

sym(le)

w(i)
e = w(i) − w(i)

p − w(i)
θ︸              ︷︷              ︸

asym(le)
(29)

where the total, plastic and thermal parts of the symmetrical portion of the velocity gradient in each phase
is d(i), d(i)

p and d(i)
θ , respectively. Similarly the total, plastic and thermal parts of the asymmetrical portion of

the velocity gradient in each phase is w(i), w(i)
p and w(i)

θ , respectively. The partitioning of the total velocity
gradient based on it’s constituent spin and stretch is will be dependent on the polycrystalline model chosen.
The form of the temperature dependent portion of each material property was chosen following the approach
taken by Marin et al. [73]. The shear modulus (µ(i)) in each phase is defined as:

µ(i) = µ(i)
0 µ̂ (θ)(i) (30)

where µ(i)
0 is the shear modulus at room temperature in each phase. µ̂ (θ)(i) is the functional form of the tem-

perature dependence of the shear modulus. Following Frost and Ashby [74] the definition of the temperature
dependence is:

µ̂ (θ)(i) = 1 + c(i)
θµ

θ − θ(i)
0

θ(i)
m

 c(i)
θµ =

θ(i)
m

µ(i)
0

dµ(i)

dθ
< 0 (31)
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θ represents the temperature of the material. θ(i)
0 represents the reference temperature in each phase. θm

represents the melt temperature in each phase. Similarly, the bulk modulus κ(i) is defined as:

κ
(i) = κ

(i)
0 κ̂ (θ)(i) (32)

where κ(i)
0 is the bulk modulus at room temperature in each phase. κ̂ (θ)(i) is the functional form of the tem-

perature dependence of the bulk modulus. Following Frost and Ashby [74] the definition of the temperature
dependence of the bulk modulus is:

κ̂ (θ)(i) = 1 + c(i)
θκ

θ(i) − θ(i)
0

θ(i)
m

 c(i)
θκ =

θ(i)
m

κ
(i)
0

dκ(i)

dθ
< 0 (33)

similarly, θ represents the temperature of the material. θ(i)
0 represents the reference temperature in each

phase. θm represents the melt temperature in each phase. The tensorial internal state variables α(i) is of the
form:

α(i) = 2µ(i)c(i)
α ε

(i)
β (34)

where µ(i) is the temperature dependent shear modulus in each phase. ε(i)
β is the straining associated with

GNDs in each phase. c(i)
α is a dimensionless material parameter associated with each phase. In rate form α(i)

in each phase is:
α̇(i) =

α

µ(i) µ̇
(i) + 2µ(i)c(i)

α ε̇
(i)
β (35)

The tensorial rate form of the straining associated with GNDs density in each phase is determined to be in a
hardening minus recovery format following Armstrong and Frederick [75]:

ε̇(i)
β =

h(i)Ń(i)︸ ︷︷ ︸
hardening

− r(i)
d

√
2
3
ε(i)
β

∥∥∥∥ε(i)
β

∥∥∥∥︸              ︷︷              ︸
dynamic recovery

 ˙̄ε(i)
p (36)

Substituting Eqn. (34) into Eqn. (36) gives the evolution equation for α (Eqn. (37)):

◦

α
(i)

=

(
α(i)

µ(i)

dµ(i)

dθ

)
θ̇ +

3µ(i)c(i)
αh(i)Ń(i)

−
r(i)

d

2µ(i)c(i)
α

√
2
3

∥∥∥α(i)
∥∥∥α(i)

 ˙̄ε(i)
p (37)

where h(i) the hardening parameter in each phase. r(i)
d (θ) is the temperature dependent dynamic recovery

parameter in each phase. ˙̄ε(i)
p is the net effective plastic strain rate. The convective derivative of the kinematic

state variable is of the form:
◦

α
(i)

= α̇(i) − w(i)
e α

(i) + α(i)w(i)
e (38)

Following the assumption that the SSDs strain (ε(i)
ss) reduces to a scalar measure of the elastic strain in a

dislocation array, for a polycrystalline material it mathematically implies that ε(i)
ss averages to the same value

in all directions; similar to the concept of isotropic hardening in classical plasticity. Therefore the stress
like internal state variable κ(i), the work conjugate pair to the straining ε(i)

ss associated with the SSDs in each
phase reduces to a scalar chosen to be of the form:

κ(i) = 2µ(i)c(i)
κ ε

(i)
ss (39)

where µ(i) is the temperature dependent shear modulus. ε(i)
ss is the straining associated with SSDs. c(i)

κ is the
dimensionless material parameter associated with each phase. In rate form κ(i) is:

κ̇(i) =
κ

µ(i) µ̇
(i) + 2µ(i)c(i)

κ ε̇
(i)
ss (40)
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The mathematical definition of ε(i)
ss in each phase is:

ε(i)
ss = b(i)

√
ρ(i)

ss (41)

where b(i) is the magnitude of the burger and ρ(i)
ss is the dislocation density of SSDs. The rate form the SSDs

density is:

ε̇(i)
ss = ḃ(i)

√
ρ(i)

ss︸   ︷︷   ︸
negligible

+b(i) −1
√

4ρ(i)
ss ρ̇

(i)
ss → ε̇(i)

ss = b(i) −1
√

4ρ(i)
ss ρ̇

(i)
ss (42)

The form of the evolution law for ρ̇(i)
ss as determined by Kock and Mecking [76] and Estrin and Mecking

[77] accounting for thermally activated hardening and dynamic recovery of SSDs, in each phase is:

ρ̇(i)
ss =

c(i)
1

√
ρ(i)

ss︸   ︷︷   ︸
hardening

− c(i)
2 (θ) ρ(i)

ss︸     ︷︷     ︸
dynamic recovery

 ˙̄ε(i)
p (43)

where ˙̄ε(i)
p is the effective plastic strain rate in each phase. c(i)

1 and c(i)
2 are material parameters in each phase

determined using experimental data. The static recovery component of ρ̇(i)
ss accounting for thermal diffusion

of dislocations as determined by Nes [78] is of the form:

ρ̇(i)
ss = −c(i)

3 (θ) ρ(i)
ss sinh

[
c(i)

4 (θ)
√
ρ(i)

ss

]
︸                                 ︷︷                                 ︸

static recovery

(44)

where c(i)
3 and c(i)

4 are material parameters associated with each phase determined using experimental data. In
full form, the SSDs density rate ρ̇(i)

ss accounting for thermal diffusion of dislocations and thermally activated
hardening and dynamic recovery is:

ρ̇(i)
ss =

(
c(i)

1

√
ρ(i)

ss − c(i)
2 (θ) ρ(i)

ss

)
˙̄ε(i)

p − c(i)
3 (θ) ρ(i)

ss sinh
[
c(i)

4 (θ)
√
ρ(i)

ss

]
(45)

Substituting Eqn. (40), Eqn. (41) and Eqn. (42) into Eqn. (45) gives the evolution equation for κ (Eqn. (46)):

κ̇(i) =

(
κ(i)

µ(i)

dµ(i)

dθ

)
θ̇ +

(
2µ(i)H(i)c(i)

k

)
˙̄ε(i)

p −

R(i)
d

˙̄ε(i)
p + R(i)

s sinh

 Q(i)
s κ

(i)

2µ(i)c(i)
k

 κ(i) (46)

where H(i) is the hardening parameter in each phase. R(i)
s (θ) and R(i)

d (θ) are the static and dynamic recovery
parameter associated with each phase. c(i)

k is the dimensionless isotropic parameter in each phase. The
constitutive equation governing plastic flow is presumed to be of the form:

d(i)
p =

√
3
2

˙̄ε(i)
p Ń(i)

(47)

where Ń is the normalized deviatoric tensorial quantity dictating direction of plastic flow in each phase given
by:

Ń(i)
=
ξ́

(i)∥∥∥∥∥ξ́(i)∥∥∥∥∥
∥∥∥∥ξ́(i)

∥∥∥∥ =
∥∥∥σ́(i) − 2

3 ά
(i)
∥∥∥ (48)

The effective plastic flow (˙̄ε(i)
p ) in each phase given by:

˙̄ε(i)
p = f (i) sinh


√

3
2

∥∥∥∥ξ́(i)
∥∥∥∥ ± π(i)

κ(i) + Y (i)(θ)
− 1


n(i)

(49)
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where f (i) the transition parameter in each phase. n(i) is the plastic exponent in each phase. Y (i) is the
temperature dependent yield strength in each phase given by:

Y (i) = 2µ(i)
0 c(i)

8 Ŷ (θ)(i) (50)

where c(i)
8 is the yield parameter in each phase fitted to experimental data. Ŷ (i)(θ) is the temperature depen-

dent portion of the yield strength in each phase assumed to be of the form:

Ŷ (θ)(i) =

 m(i)
1

1 + m(i)
2 exp

(
−m(i)

3
θ

)
 1

2

[
1 + tanh

(
m(i)

4 (m(i)
5 − θ)

)]
. (51)

The thermal part of the symmetric portion of the velocity gradient in each phase is given by:

d(i)
θ = ε̇(i)

θ I. (52)

ε̇(i)
θ represents the thermal elastic strain rate due to result of thermal expansion and contraction in each phase

is given by:
ε̇(i)
θ = fβ (θ)(i) θ̇ (53)

where θ̇ is the rate of change of temperature in the material volume and fβ (θ)(i) is the temperature dependent
thermal expansion coefficient in each phase given by:

fβ(θ)(i) =
β (θ)(i) − β(i)

0 b(i)
θ (θ − θ0)

1 − β (θ)(i) (θ − θ0)
β (θ)(i) = β(i)

0 (1 − b(i)
θ (θ − θ0)) (54)

where β(i)
0 is a thermal parameter fitted to experimental data. β(θ)(i) is the functional form of the temperature

dependence of the thermal expansion coefficient in each phase.

2.3. Multiphase Modeling - Interfacial stress formulation, polycrystalline approximation and transforma-
tion kinetics model

The transformation from austenite into martensite occurs via a shearing process. Here, we treat the
interfacial stress in the same manner as the scalar hardening internal state variable κ, as acting in a non-
directional manner. In a future work, we will utilize an orientation tensor to introduce the directionality of
the interfacial (π) stress into the model, naturally incorporating the shearing aspects of the transformation
process. The interfacial stress is determined to act in a manner where prior to the appearance of a second
phase, the parent phase must experience a zero interfacial stress. This implies that the interfacial stress
must ceases to evolve at a parent phase volume fraction value of unity. With the aforementioned mathemat-
ical requirements in mind and assuming a two phase system, the interfacial stress experienced by both the
austenitic and martensitic phases is determined to be of the form:

π = cπ
∆V
V

[
φ − φ2

]
(55)

where cπ is the interfacial stress parameter fitted to experimental data. ∆V
V is the change in lattice volume

due to carbon addition given by:

∆V
V

=
Vn+1 − Vn

Vn V = (3.548 + 0.44%c)3 (56)

The resulting interfacial stress evolution equation is of the form:

π̇ = cπ
∆V
V

[
φ̇ − 2φφ̇

]
(57)
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The formulation of the interfacial stress evolution implemented here stipulates that communication between
each phase is through an interaction stress π where each phase imposes its presence on all others and vise
versa. This representative form of communication between each phase stipulates that the interaction between
each phase is strictly through and resulting from each phases volume fraction, volume fraction rate and
volume change. In the absence of an evolving volume fraction the interfacial stress ceases to evolve leading
to a constant inter-phase interaction stress. In an attempt to satisfy the requirements of a polycrystalline
model several techniques have been developed in the past to satisfy either equilibrium, compatibility or a
combination of both. A Taylor [79, 80, 81] polycrystalline approximation (compatibility) requires uniform
straining in all phases of a multiphase material. Therefore the elastic symmetric portion of the velocity
gradient (Eqn. (29))in each phase becomes:

d(i)
e = d − d(i)

p − d(i)
θ . (58)

For the case where there is negligible plasticity and thermal straining, the upper bound on the stress field is
proportional to the symmetric portion of the velocity gradient:

σ(i) ∝ d (59)

A Sachs [82] approximation requires proportional straining in all phases implying that the far-field forc-
ing function is proportional to that experienced in each phase. For a two phase model, the austenite and
martensite phases experience a stretch rate proportional to the far field strain rate:

d(1) = (1 − φ) d︸             ︷︷             ︸
austenite strain rate

d(2) = (φ) d︸       ︷︷       ︸
martensite strain rate

(60)

where 1 − φ represent the volume fraction of the austenite phase. For the case where φ = 0 we recover a
single phase model. When φ = 1 a complete transformation in the material has occurred from austenite to
martensite. Using a Sachs [82] argument, the coefficient of proportionality at the upper and lower bounds of
the volume fraction must satisfy the constraint:

(1 − φ)φ = 0 (61)

mathematically enforcing a bound for the martensitic volume fraction φ such as:

0 ≤ φ ≤ 1 (62)

Budiansky and Wu [83] and a host of others as documented by Kocks et al. [84] developed a polycrystalline
approximation technique that combines the benefits of both a Sachs and Taylor approach. Commonly re-
ferred to as a self-consistent approximation, it satisfies neither compatibility nor equilibrium but combines
the physical features of both models. According to Knocks et al. [84], ’́self-consistent polycrystal models
aim at deducing the overall response of the aggregate from the known properties of the constituent grains
and an assumption concerning the interaction of each grain with its environment.’́ With this in mind, we
modify the requirements on the proportionality constants Eqn. (61) and replace the scalar volume fraction
with a functional constraint:

(1 − f (φ)) f (φ) = 0 (63)

therefore the response of a satisfactory function f (φ) must satisfy the Eqn. (62). Therefore we can replace
Eqn. (??) and Eqn. (??) with:

d(1) = (1 − f (φ)) d︸                  ︷︷                  ︸
mod. austenite strain rate

d(2) = ( f (φ)) d︸            ︷︷            ︸
mod. martensite strain rate

(64)

The efficacy of the multiphase model is dependent on the ability of each constituent part to capture the
underlying physical behavior therefore implementing a physically based portioning algorithm is important.
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We determine that a functional form that satisfies the constraint Eqn. (63) is sufficient; such as those used in
determining a self-consistent approximation or as applied in percolation theory. We propose:

f (φ) =
1
2

(
1 + tanh

[
c f 1

(
φ − c f 2

)])
(65)

where c f 1 determines the profile of the partitioning function. Analogous to inclusion used in material
strengthening, further investigation will be directed towards determining the relationship between the shape
parameter c f 1 and martensitic spheroidal particles or platelets and how they affect the partitioning profile.
The parameter c f 2 is a transition parameter that determines the volume faction at which the martensite phase
starts to experience the intensity of the strain field upon yielding of the softer austenite phase. The final set
of evolution equations needed to complete the multiphase model is the phase kinetics evolution. As afore-
mentioned, we are assuming a two phase system and qualitatively associate these phases with austenite
to martensite; a non-diffusional type of transformation. The classical approach used to represent a non-
diffusional transformation is the KM [50] kinetics model given by:

φ̇ = −bkm exp [−bkm (θs − θ)] U (θ) θ̇ (66)

where bkm is a fixed parameter. θs is the temperature at which martensite starts forming determined using
Andrews [85]. U[θ] is a unit step function given by:

U (θ) =

1 θ f ≤ θ ≤ θs,

0 else.
(67)

where θ f is the temperature at which martensite stops forming. For many reasons not limited to the notable
burst in transformation rate analogous to a mathematical discontinuity [86], it has become necessary to
develop alternative models. The KM [50] model is explicitly dependent on temperature rate and a fixed
parameter bkm = 0.011. In other to circumvent the burst in transformation rate new models have been
developed Lusk et al. [51, 67, 52]. These models are analogous in part to the transformation profile but
with less of a discontinuous transformation rate. The non-diffusional kinetics model adopted here is that
of Lusk et al. [51, 67, 52] where additional consideration was given to the carbon content influence on the
transformation kinetics. Lusk’s model for computing martensite’s phase fraction (φ) is given by:

φ̇ = −v (%c) (φ)a(%c) (1 − φ)b(%c) U (θ) θ̇ (68)

where %c is the carbon content in percentage. θ̇ is the temprature rate. v, a, and b are transformation
parameters fitted to dilatometry test. With initial conditions:

φ (0) = 1E − 5 (69)

3. Results

3.1. Multiphase model evaluation - Parameter Identification

Parameter identification for the mechanical response of both the martensite and austenite phases was per-
formed using a gradient based optimization routine following previous works of Marin et al. [73]. Table (1)
is a list of the functional dependencies of mechanical and kinetics parameters. The material properties used
here are that of SS304L table (3). Table (2) is a listing of 5120 Steel material constants. Figure (1a) and
(1b) show EMMI model’s mechanical response fitted to experimental data of 5120 austenite and martensite
steel. Uniaxial tension tests for 5120 stainless steel were performed at a limited range of temperatures and
strain rates.
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Table 1: Material Parameters - Functional Dependencies

˙̄εp-equation α̇-equation κ̇-equation π̇-equation φ̇-equation

f (i) = c(i)
2 exp

(
−Q(i)

1
θ

)
r(i)

d = c(i)
3 exp

(
−Q(i)

2
θ

)
R(i)

d = c(i)
3 exp

(
−Q(i)

3
θ

)
cπ ν =

3∑
i=0
νi%ci

n(i) =
c(i)

9
θ

+ c(i)
1 h(i) = c(i)

4 H(i) = c(i)
6 a =

1∑
i=0

ai%ci

c(i)
α = c(i)

11 R(i)
s = c(i)

7 exp
(
−Q(i)

4
θ

)
b =

1∑
i=0

bi%ci

Q(i)
s = c(i)

10 exp
(
−Q(i)

5
θ

)
c(i)
κ = c(i)

12

Table 2: Material Parameters - 5120 Steel Constants

Contant Austenite Martensite

c1 0.2074 5.8897
c2 3.89E-10 9.36E-12
c3 720940 370010
c4 0.1090 0.1090
c5 297.21 330.95
c6 0.0011993 0.0470
c7 0.0025771 0.11408
c8 0.0001075 0.0055168
c9 0.36714 1.6346
c10 0 0
c11 1.0 1.0
c12 1.0 1.0
Q1 0.2339 0.26523
Q2 0.023787 0.045734
Q3 2.1306 1.3961
Q4 24.134 24.134
Q5 0 0

Table 3: Material Parameters - Functional Dependencies

˙̄εp-equation α̇-equation κ̇-equation π̇-equation φ̇-equation

f (i) = c(i)
2 exp

(
−Q(i)

1
θ

)
r(i)

d = c(i)
3 exp

(
−Q(i)

2
θ

)
R(i)

d = c(i)
3 exp

(
−Q(i)

3
θ

)
cπ ν =

3∑
i=0
νi%ci

n(i) =
c(i)

9
θ

+ c(i)
1 h(i) = c(i)

4 H(i) = c(i)
6 a =

1∑
i=0

ai%ci

c(i)
α = c(i)

11 R(i)
s = c(i)

7 exp
(
−Q(i)

4
θ

)
b =

1∑
i=0

bi%ci

Q(i)
s = c(i)

10 exp
(
−Q(i)

5
θ

)
c(i)
κ = c(i)

12
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Fig. 1: Comparison of EMMI model response to experimental data for 5120 steel at various strain rates
and temperatures. Figure (a): Experimental and numerical data and for 5120 steel austenite. Figure (b):
Experimental and numerical data and for 5120 steel martensite.

3.2. Multiphase model evaluation - Polycrystalline approximation
A quantitative assessment of a Taylor, Sach and self-consistent polycrystalline approximation was car-

ried with the help of a number of simplifying assumptions. We assumed isothermal conditions therefore
material parameter and properties were evaluated at a fixed temperature. For the cases implemented here
the material parameters were assumed to be a fit for a fixed carbon content, therefore:

∆V
V

= 1. (70)

Figure (2a) is strain rate as appropriated to each phase based on a Sachs, Taylor and a self-consistent poly-
crystalline approximation at a strain rate of ε̇ = 1/s. The Taylor model, represented by the horizontal line
at ε̇ = 1/s, shows each phase experiences the same strain rate at all volume fractions of martensite. The
Sachs model however, represented by a linear line through the origin, requires that each phase experiences
a strain rate proportional to it’s respective volume fractions. The self-consistent polycrystalline approxima-
tion using the constraint Eqn. (63) captures a more physical interaction between the mechanical properties
of constituent phases.

For an assessment of the material response based on a Taylor, Sachs and self-consistent polycrystalline
approximation three combinations of volume fraction ratios of both phases were tested. A combination of
90%A + 10%M, 50%A + 50%M and 10%A + 90%M were used, where A and M stand for austenite and
martensite. The resulting deviatoric stress field for all cases were determined using Eqn. (26). The parameter
values chosen for the self-consistent approximation are c1 = 3.68 and c2 = 0.5.

At 10% martensite figure (2b), the self-consistent and Sachs models are expected to predict a similar
deviatoric stress field. This is because the value of the proportionality functional in the self-consistent and
Sachs are of very close. The result is physically meaningful because the stress field in general should not
deviate much from a predominantly austenitic field irrespective of the material properties of the martensite.
The disparity in the resulting deviatoric stress field from the Taylor model when compared with the Sachs
and self-consistent is because both phases experience the same straining; this is in most cases non physical.

Similarly, at 50% martensite figure (2c), the self-consistent and Sachs approximations are expected to
predict exactly the same magnitude of deviatoric stress field. This is because the transition parameter for the
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Fig. 2: Polycrystalline approximation. Figure (a): Strain rate partitioning as a function of martensite volume
fraction based on a Sachs, Taylor and a self-consistent (sc) polycrystalline approximation at ε̇ = 1/s. For
the self-consistent model the parameter c f 1 is 4, 6, 11 evaluated at c f 2 = 0.5. Predicted deviatoric stress
field using a Taylor, Sachs and self-consistent approximation: figure (b) at 90%A + 10%M, figure (c) at
50%A + 50%M, figure (d) at 10%A + 90%M.
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self-consistent approach was chosen to match exactly exactly at φ = 0.5. The difference however with the
Taylor assumption in emphasized by the difference in the internal state variable material parameter.

At 90% martensite figure (2d), there is very little distinction between a Taylor, Sachs or self-consistent
approximation. For a self-consistent and Sachs approach the dominant strain rate in carried by the martensite
which is naturally imposed using a Taylor approximation.

3.3. Multiphase model evaluation - Cooling rate and carbon content variation
A quantitative assessment of the multiphase EMMI material model coupled with the non-diffusive phase

transformation kinetic model of Lusk et al. [51, 67, 52] was carried out. The parameters used for the
transformation kinetics are published values based on previous works of Lusk et al. [51, 67, 52]. For the
sake of simplicity material hardening dependence on carbon content was not accounted for. A evaluation
of how the local thermal histories affect phase transformation was performed. Three multiphase EMMI
material point simulation (mmps) runs were performed at 100C/s, 200C/s and 300C/s cooling rates. The
transformation kinetics as depicted on figure (3a) shows a rapid transformation from austenite to martensite
at higher cooling rates. As shown on figure (3b) and (3c) the deviatoric stress in the austenite and martensite
phases increases as the transformation proceeds. Though these simulations only indicate the effect of cooling
rate at a material point they qualitatively help to highlight how the deformation at juxtaposed material points
would interact to cause deformation due to a temperature gradients. Figure (3d) shows the interfacial stress
acting as a forward in the austenite and backward stress in the martensite phase. The simulation shows
how the cooling rate controls the interfacial stress and consequentlythe transformation plasticity. Carbon
content effect on the mechanical response was investigated. The transformation kinetics coupled with the
multiphase EMMI model for a fixed cooling rate of 20/s at a carbon content ranging from 0.05% to 0.2%.
Prantil et al. [86] determined that the rate of transformation was faster as the carbon content was increased.
The results here show a similar qualitative behavior when coupled with the EMMI mechanical response.
The field variables however show no change in the mechanical response. The transformation kinetics as
depicted on figure (4a) the effect of carbon content on the transformation kinetics. The percentage of carbon
content controls the smoothness of the rate of additional deformation due to transformation from austenite
to martensite. Figure (4b) shows the additional straining induced by the transformation accounted for by the
interfacial stress.Though these simulation only indicate the effect of carbon content locally, however they
help qualitatively determine how carbon gradients at juxtaposed material points affect the transformation
kinetics.

3.4. Multiphase model evaluation - Quenching BVP
The multiphase EMMI model coupled with the phase transformation kinetics model proposed by Lusk

et al. [51, 67, 52] is applied to the case of a high aspect ratio annular rod (figure (5a)). In a high aspect ratio
annular rod the temperature only varries in the radial direction. The inner and outer radius of the annular rod
are 18mm and 56mm, respectively. In order to compute the thermal history of a high aspect ratio annular
rod the one dimensional heat equation given by:

θ̇ − k∇2θ = 0 (71)

has to be solved for temperature field. k is the thermal diffusitivity coefficient of SS304L steel. The initial
conditions of the one dimensional rod is such that:

θ (t0, r) =

 700-6 Exp [r], if r ≤ 0
700-6 Exp [−r], if r ≥ 0.

(72)

The boundary conditions at the inner and outer radii were prescribed to be at:

θ (t, ri) = 372.41̄, θ (t, ro) = 372.41̄. (73)

Carbon content was chosen to be at c = 0.2% and therefore martensite start and finish temperatures were
determined to be at θs = 650K and θ f = 300K. Figure (5b) shws the total deviatoric stress distribution at
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Fig. 3: Numerical evaluation of effects cooling rate. Multiphase EMMI model coupled with phase transfor-
mation kinetics model of Lusk et al. [51, 67, 52] evaluated at cooling rate 100C/s, 200C/s and 300C/s and
0.2% carbon content. Figure (a): Showing transformation kinetics from austenite to martensite. Figure (b):
Showing the deviatoric stress in the austenite phase. Figure (c): Showing the deviatoric stress in the marten-
site phase. Figure (d): Showing the interfacial stress acting as a forward and backward stress in the austenite
and martensite phases respectively.
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Fig. 4: Numerical evaluation of effects carbon content. Multiphase EMMI model coupled with phase trans-
formation kinetics model of Lusk et al. [51, 67, 52] evaluated at 0.05%, 0.1% and 0.2% carbon content
and 20C/s. Figure (a): Showing the kinetics of transformation from austenite to martensite. Figure (b):
Showing the TRIP strain computed using the interfacial stress acting in the austenite and martensite phases,
respectively.

evenly spaced radial locations after 300 and 600 seconds after quenching. The results captures the overall
expected behavior given that the initial radial temperature distribution was specified to be at the maximum
midway between the inner and outer radii; θmax = θ (t = 0, x = 36mm). The volume fraction distribution
along the radius after 300 and 600 seconds indicate that the areas along the radius of the annular rod with
a higher volume fraction of martensite in turn have larger residual stresses. This is quantitatively correct
given that the mechanical properties of the martensite is an order of magnitude larger than that of austenite.

Figure (5c) and (5d) shows the total deviatoric stress along side with martensite volume fraction at evenly
spaced radial locations after 300 and 600 seconds evaluated with and without accounting for transformation
plasticity. The results highlights the significance of account for transformation plasticity. At 300 seconds
(figure (5c)), the transformations kinetics does not have a pronounced effect when compared to a later time
(figure (5d)) during the quench. The difference in the magnitude of the stresses with and without accounting
for TRIP becomes significant as martensite’s volume fraction locally dominates the parent austenite. The
quantity of the martensitic platelets are insignificant at (figure (5c)) and therefore not enough to overwhelm
the overall internal state of the bulk/parent austenite. This feature highlights the volume fraction sensitivity
of the multiphase EMMI inelasticity model. The sustainability of an internal state variable model as a viable
option for modeling multiphase material lies in its ability to accurately capture the physics of the internal
state of a multiphase body.

4. Summary

The EMMI single phase internal state variable model was extended to accommodate the presence of
product phases. We assumed a two-phase system where the mechanical response and transformation kinetics
model for austenite and martensite were qualitatively associated with austenite and martensite. Available is
experimental data of 5120 steel over a limited strain rate and temperature regime.

The additional TRIP was accounted for through the introduction of a physically appropriate interfacial
stress acting as a forward stress in the softer austenite, and a backward stress in the martensite. Since the
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Fig. 5: Numerical evaluation of quenching BVP. Multiphase EMMI model coupled with the phase transfor-
mation kinetics model of Lusk et al. [51, 67, 52] applied to the quenching of a long annular rod. Figure (a):
Showing dimensions of high aspect ratio annular rod. Figure (b): Showing the σ́total and φ distribution
along the radius after 300 and 600 seconds. Figure (c): Showing the σ́total and φ distribution along the
radius after 300(s) with and without accounting for transformation plasticity. Figure (d):Showing the σ́total

and φ distribution along the radius after 600(s) with and without accounting for transformation plasticity.
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efficacy of a multiphase model is dependent on its ability to capture the behavior of constituents phases
and their subsequent interaction, we introduce a physically based self-consistent partitioning algorithm.
A quantitative assessment of the material response and plastic flow based on the Taylor, Sachs and self-
consistent approximation was carried out.
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