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Abstract. A constitutive model for elastic flexoelectric materials under
small deformation based on second gradient continuum theory is de-
veloped, using a Toupin-like variational formulation to simultaneously
obtain constitutive relations, balance equations and boundary condi-
tions. The model includes three different electromechanical “stresses”:
a higher order stress, an extended local electric force, and a generalized
Cauchy stress tensor. The constitutive equations of the model are ob-
tained by postulating an internal energy density function which depends
on both the strain and its gradient as well as the polarization. Finally, as
an application of the model, we derive the explicit analytical expressions
of the polarization and displacement vector fields for the problem of the
polarization induced over a thin spherical shell subjected to hydrostatic
loading conditions.

Keywords. Flexoelectric materials, Second gradient theory, Constitutive
equations, thin shell, electromechnical couplings.

1. Introduction

Flexoelectricity is a physical phenomenon that was first theoretically pre-
dicted for crystalline dielectrics by Maskevich and Tolpygo [25], and later
observed and described from a phenomenological standpoint by Kogan [34]
some decades ago. Lately, an increasing in the interest for this subject has
occurred, the origin of which mainly comes from two sources.

First of all, there is the need to develop novel methodologies to de-
sign and manufacture materials showing connection between mechanical and
electrical behavior (as the well established piezoelectric composites do) with
environmentally friendly industrial processes. Indeed, while the current meth-
ods used for the manufacturing of piezoelectrics in industries are complicated
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plex Systems of Università dell’Aquila is acknowlegded.



2 Koffi Enakoutsa, Alessandro Della Corte and Ivan Giorgio

and expensive, flexoelectric effects can be exploited just relying on the prop-
erties of a very large class materials (Foussek and Cross [19]). Another reason
for the rapid growth of interest for flexoelectricity is that, unlike piezoelectric
effects, flexoelectricity is not limited to non-centrosymmetric materials.

Currently, flexoelectric effects are well established for several dielectrics
and semi-conductors and can thus be very useful for many practical appli-
cations. However, due to the novelty of this research line, there are still few
available theoretical and experimental works in the field. Among these works,
let us mention those of (i) Bursian and Trunov [2] where the flexoelectric phe-
nomena were observed during the bending of crystal plates and (ii) Catalan et
al. [4] where flexoelectricity was demonstrated during measurements on thin
films. A comprehensive review of experimental works that demonstrate the
role of flexoelectricity in crystalline materials, liquid crystals, and biomem-
branes can be found in Sharma et al. [40].

On theoretical grounds, most of the works in the field use constitutive
relations based on a strain gradient approach. This approach originates from
the seminal works by Lord Kelvin, the Cosserat brothers and before them by
the (maybe not so universally known) Italian mathematician Gabrio Piola,
and has recently (mainly due to the increase of the power of the computers)
been object of intensive study in the works of Sciarra et al. [39] , Sedov [37],
Madeo et al. [30, 29], Rosi et al. [36], Pideri and Seppecher[32], Placidi et
al. [33], dell’Isola et al. [10] to mention a few. In particular, higher order
continuum theories such as micropolar and micromorphic theories of Eringen
[13] and Eringen and Suburi [14, 15] can be applied to model flexoelectric
effects, as shown for instance in Chen [5] and Romeo [35].

Several other authors have used strain gradient continuum theory to de-
rive the constitutive equations for elastic flexoelectric solids. Among them let
us mention the works of Mao and Purohit [23] where the governing equations
for elastic flexoelectric solids were derived using a Toupin [42]-like variational
principle in the context of small strain approximation. The Navier-Cauchy
equations obtained in the work of Mao and Purohit are similar to those of
Mindlin[26, 27] strain gradient elasticity theory. Toupin’s variational princi-
ple was also used by Sharma et al.[40] to develop a slightly different model for
elastic flexoelectric solids. The internal energy density employed in the works
of Sharma et al. is inspired by a previous paper by Sahin and Dost [38]; it
contains both the second gradient of the displacement and the polarization.
The constitutive relations these authors obtained neglect the contributions
of higher order terms (fifth and higher order tensors) in the internal energy.
These approximations were conceived in order to obtain simplified constitu-
tive models (with reduced number of internal parameters) for flexoelectric
solids for practical applications. However, the refining of these assumptions,
which could include a more detailed physic description, is by now required by
both theoretical and applicative reasons. In the present work, we shall follow
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up the development of constitutive laws for elastic flexoelectric materials as
well as their applications to boundary value problems of either theoretical or
practical interests. Namely, we propose a new model for elastic flexolectric
materials based on an internal energy density function which depends on the
strain, its gradient and the polarization. This density function generalizes the
one suggested by Mao and Purohit [23] by accounting for a fifth-order tensor
coupling between first and second order effects (as a general rule these effects
exist in all non-centrosymmetric materials) as proposed by dell’Isola et al.
[6, 8, 7, 9] and recently studied by Enakoutsa [16]. Also, the density function
proposed in this work does not depend on the polarization gradient as it is
the case in Sharma et al. [40]. This simplification will allow us to perform
explicit calculation which would be much more complex with assumptions
similar to those of Sharma et al., where both the polarization due to the
strain gradient and the gradient of the polarization were accounted for. A
variational principle, which is inspired by those developed by Toupin[42] and
Gao and Park [20], based on our proposed internal energy density function
is used to find both the balance equations and the boundary conditions. The
plan of the paper is the following.

• In Section 2 we present the governing equations of the model proposed
for elastic flexoelectric materials. They consist of three different consti-
tutive relations, each of them defining some electromechanical “stress”.
These stresses are deduced from a postulated internal energy density
function, which is also presented in this section. The same section in-
cludes a variational formulation used to determine both the balance
equations and the boundary conditions.

• Section 3 provides an application of our model for flexoelectric solids;
namely, we derive an explicit analytical solution of the problem of the
polarization induced by a thin spherical shell subjected to hydrostatic
loading conditions. The solution of this simple problem offers not only
a direct comparison to classical elasticity and strain gradient elasticity
but also some insights into the polarization fields near point defects in
flexoelectric materials.

• A discussion of the analytical solution is provided in Section 3.2. Namely,
a comparison between the displacement field here found and those ob-
tained with classical elasticity and strain gradient elasticity are pro-
vided.

2. Governing equations

This section presents the derivation of the governing equations for elastic
flexoelectric materials. Flexoelectric effects are observed in a large class of
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materials, characterized by diverse elastic behaviors. Anyway, since well con-
solidated experimental data show appreciable flexoelectric effects in case of
small deformation, our proposed model aims to describe flexoelectric effects
in the linear elastic regime of materials. We thus do not consider in the
present paper dissipative mechanical phenomena, whose investigation will be
of course of great interest in the future.

2.1. Internal energy density function

We postulate an internal energy density function W which depends on the
strain, the gradient of the strain, and the polarization. This last assumption is
to us very natural, since the polarization, just like the strain and its gradient,
is of course measurable, traceable, independent from other descriptors and
it has a well defined initial state. This density function, which is inspired by
the one proposed by Sahin and Dost[38] and studied by Sharma et al.[40], is
defined by

W (Dij , Dij,k, Pi) :=
1

2
CijklDijDkl +

1

2
HijklmnDij,kDlm,n +

1

2
χijPiPj

+ eijkPiDjk +GijklmDijDkl,m +KijklPiDjk,l (2.1)

where

• the tensor Cijkl,1≤i,j,k,l≤3 is the usual fourth-rank elasticity tensor;
• the tensor eijk,1≤i,j,k≤3 represents the third-rank piezoelectric tensor;
• the tensorHijklmn,1≤i,j,k,l,m,n≤3 andGijklm,1≤i,j,k,l,m≤3 denote the sixth-
rank and fifth-rank generalized second gradient elastic constants as sug-
gested by dell’Isola et al.[6, 8, 7, 9];

• the tensor Kijkl,1≤i,j,k,l≤3 is the fourth-rank flexoelectricity tensor;
• the tensor χij,1≤i,j≤3 is the familiar second order reciprocal dielectric
susceptibility tensor;

• the tensor Dij,1≤i,j≤3 is the second-rank symmetric strain tensor which
is defined as

Dij = 1/2 (ui,j + uj,i) (2.2)

assuming small deformation approximation;
• the vector Pi,1≤i≤3 is the polarization vector field;
• the comma denotes the differentiation with respect to spatial variables

Also, in Eq.(2.1) the tensors C, H, and G obey the following symmetry prop-
erties







Cijkl = Cklij

Hijklp = Hlpijkl

Gijklpq = Glpqijk .
(2.3)
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The symmetry properties of the strain tensor D enforces the following addi-
tional symmetry properties:







Cijkl = Cijlk = Cjikl

Hijklp = Hjiklp = Hijkpl

Gijklpq = Gjiklpq = Gijkplq .
(2.4)

Note that the internal energy density function Eq.(2.1) is a modified version
of the one proposed by Mindlin [28]. This density function is an extension of
the one suggested by Mao and Purohit [23]; it does not include the gradient
of the polarization as it is the case in the works of Maranganti et al.[22] and
Sharma et al.[40]. Also, it does not include a remaining part as suggested
by Toupin[42]; finally, it differs from the one used in classical theory for
piezoelectric materials and includes nonlocal effects.

2.2. Variational formulation

From the definition of the internal energy density function Eq.(2.1), we get
the internal energy E i of the (deformed) flexoelectric materials as

E
i =

∫

Ω

Wdv =
1

2

∫

Ω

(ΣijDij +MijkDij,k − EiPi) dv (2.5)

where the components of the Cauchy stress, Σij , the hyperstress, Mijk, the
strain gradient Dij,k, and the local electric vector field E are given by











































Σij =
∂W

∂Dij

= CijklDjk +GijklmDkl,m + eijkPl

Mijk =
∂W

∂Dij,k

= GijklpDlp +HijklpqDlp,q +KijklPl

Ei = −
∂W

∂Pi

= eijkDjk +KijklDjk,l + χijPj ,

(2.6)

with

Dij,k =
1

2
(ui,jk + uj,ik) . (2.7)

In Eq.(2.7) ui,1≤i≤3 is the displacement vector field. Strictly speaking the
internal energy U in the integral over the body domain of the internal energy
density function Eq.(2.1) should include the additional terms 1

2ψ,iψ,i+ψ,iPi

in the integrand of the internal energy U (where ψ is an electrical potential)
to be consistent with Toupin[42]’s variational principle. However, they are
omitted here because they are not needed in the derivation of the electrome-
chanical forces.

The work done by the external forces Ee is defined as

E
e =

∫

Ω

(

fiui + E0
i Pi

)

dv +

∫

∂Ω

(tiui + qidDui) da (2.8)
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where

• fi is the external body force;
• E0

i denotes the external electric field;
• ti is the Cauchy traction vector;
• qi is the double stress traction vector;
• ∂Ω is the closed smooth bounding surface of Ω;
• Dui is the normal (directional) derivative of the displacement compo-
nent ui defined by

Dui = nlui,l (2.9)

with nl being the outward unit normal to the surface ∂Ω

Using Toupin [42]-like variational approach under the assumption of quasi-
static analyses1

δE i
− δEe = 0, (2.10)

along with a double integration by parts, and the divergence theorem, we
find the balance equations







Σij,j −Mijk,jk + fi = 0

Ei + E0
i = 0

(2.11)

and the boundary conditions







Σijnj − (Mijknk),j + (Mijknknj),lnj = ti

Mijknjnk = qi

(2.12)

Let us mention that, formally speaking Eq.(2.11)1 are similar to those found
in [31, 18, 1, 21, 11, 12, 16]; however, our definition of the third-rank tensor
Mijk, work conjugate of the strain gradient Dij,k, differs from those obtained
in the works mentioned above. The balance equations (2.11), the boundary
conditions (2.12) along with the relations (2.6) represent our proposed gov-
erning equations of elastic flexoelectric materials under small deformation.

2.3. Centrosymmetric materials

For centrosymmetric materials, the piezoelectricity coefficients tensor eijk,1≤i,j,k≤3

as well as the fifth rank strain gradient tensor Gijklmn,1≤i,j,k,l,m,m≤3 vanish.
Thus, the constitutive relations (2.6) reduce to























Σij = CijklDjk

Mijk = HijklpqDlp,q +KijklPl

Ei = KijklDjk,l + χijPj

(2.13)

1In Eq.(2.10) the term δX denotes the variation of the parameter X.
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For isotropic linear elastic materials, dell’Isola et al.[6], using some material
symmetry arguments previously developed by Suiker et al. [41], have shown
that







Cijkl = λδijδkl + µ (δikδjl + δilδjk)

Hijklp = 0
(2.14)

and














Hijklpq = c1 (δijδklδpq + δijδkpδlq + δikδjqδlp + δiqδjkδlp)
+ c3 (δikδjlδpq + δikδjpδlq + δilδjkδpq + δipδjkδlq)
+ c5 (δilδjqδkp + δipδjqδkl + δiqδjlδkp + δiqδjpδkl)
+ c2δijδkqδlp + c4(δilδjpδkq + δipδjlδkq)

(2.15)

where δij denotes the Kronecker delta symbol and ci some strain gradient
elastic material constants that are characteristic of different materials.

Also, Mason [24] and Maranganti et al. [22] have shown that, for linear
isotropic centrosymmetric materials the tensors χij,1≤i,j≤3 andKijkl,1≤i,j,k,l≤3

reduce







Kijkl = k12δijδkl + k44 (δikδjl + δilδjk)

χij = aδij .
(2.16)

Thus, from Eqs.(2.13), (2.14), (2.15) and (2.16) we get























































Σij = λDkkδij + 2µDij

Mijk = 2c1Dkp,pδij + c1Dpp,jδik + c1Dpp,iδjk + c2Dll,kδij

+ 2c3(Djq,qδik +Diq,qδjk) + 2c4Dij,k + 2c5(Dik,j +Djk,i)

+ δijk12Pk + k44 (δikPj + δjkPi)

Ei = k12Dik,k + k44 (Dji,j +Djj,i) + aPi

(2.17)

The relations (2.17) involve ten constitutive constants: two of them represent
the usual Lame’s elastic coefficients, λ and µ; the remaining eight constants
(five strain gradient elasticity constants, two flexoelectricity constants and
one second-order reciprocal dielectric susceptibility constant) are needed. To
illustrate the potential of the proposed constitutive relations, we shall use
them to model the matrix material in the solution of the polarization of a
thin spherical shell subjected to axisymmetric loading conditions.
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3. Polarization of a thin spherical shell

This section is devoted to the solution of a polarization problem for a thin
walled spherical shell deformed under axisymmetric loading conditions prob-
lem, the deformation being inhomogeneous. The aim in introducing this sim-
ple problem is twofold. On one hand, our analytical solution could provide
insights into nanoscale experiments based on flexoelectric solids. Besides, this
solution could be used as a benchmark solution to assess computational tools
(based on the constitutive model developed in this paper) for flexoelectric
materials. The model problem is illustrated in Figures (1, 2).

3.1. Problem description

Figure 1. Polarization of a thin spherical shell undergoing
axisymmetric loading model problem

Figure 2. Polar coordinates associated with the problem model

The internal radius of the spherical shell is denoted by ri, while the
external radius is re. The matrix of the shell is supposed to be linear elas-
tic, obeying the constitutive relations (2.17). Use will be made of the classi-
cal spherical coordinates r, θ and φ and the corresponding orthogonal basis



A model for elastic flexoelectric materials 9

er, eθ, eφ. Closely related boundary value problems (BVPs) were considered
in Enakoutsa[12, 16], Collina et al.[3] and Gao et al. [21] but in the context
of another strain gradient elasticity theory. The problem under consideration
involves spherical symmetries, hence the displacement and polarization vec-
tor fields (denoted here by U ≡ Ur and P ≡ Pr, respectively) in the spherical
shell are radial.

During the solution of the model problem use will be made of the vector
field W = ∆U (the symbol ∆ stands here for the Laplacian operator) which
satisfies the following mathematical properties

Wi,hh =Wh,hi (3.1)

thanks to the facts that W is a radial vector and that the curl of a gradient
is zero. As a consequence, considering the definitions of the strain tensor D
and of the vector W, we have

Dhh,i = Uh,hi =Wi and Dih,h =
1

2
(Ui,hh + Uh,ih) = Ui,hh = ∆Ui, (3.2)

and so,

Dhh,i = Dih,h =Wi. (3.3)

Despite their simple formulation, the properties (3.2) and (3.1) are very pow-
erful to solve (as performed by Enakoutsa in [11, 12, 16]) BVPs involving
spherical symmetries, these BVPs including geometries such as full or hollow
cylinders, disks and spheres. We begin the solution of the problem by taking
the first spatial derivatives of the stress and the second spatial derivatives of
the ordinary Cauchy stress and hyperstress in Eq.(2.17)1,2 to get















Σij,j = λDkk,i + 2µDij,j

Mijk,jk = c1 (2Dkp,pik +Dpp,jji +Dpp,ikk) + c2Dll,kik

+ 2c3(Djq,qji +Diq,qjk) + 2c4Dij,kjk

+ 2c5(Dik,jjk +Djk,ijk) + (k12 + k44)Pk,ik + k44Pi,jj .
(3.4)

Using the properties (3.2, 3.3) the expressions (3.4) and (2.17)3 become















Σij,j = (λ+ 2µ)Wi

Mijk,jk = (4c1 + c2 + 4c3 + 2c4 + 4c5)(∆W )i
+ (k12 + k44)Pk,ik + k44(∆P )i

Ei = (k12 + 2k44)Wi + aPi

(3.5)

Introducing the spatial derivatives of the stress and the hyperstress tensors
(3.5)1, 2 and the electric field (3.5)3 in the balance equations (2.17) we obtain
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

































Wi −
(4c1 + c2 + 4c3 + 2c4 + 4c5)

λ+ 2µ
(∆W )i

+
k12 + k44
λ+ 2µ

Pk,ik +
k44

λ+ 2µ
(∆P )i +

1

λ+ 2µ
fi = 0

(k12 + 2k44)Wi + aPi + E0
i = 0

(3.6)

Note that in Eq.(3.6) the displacement and polarization fields are coupled
through the flexoelectricity constants Kijkl. In the absence of body external
forces (fi = E0

i = 0) the system of differential equations (3.6) reduces







Wi − k1(∆W )i + k2Pk,ik + k3(∆P )i = 0

k4Wi + aPi = 0
(3.7)

where


























































k1 =
(4c1 + c2 + 4c3 + 2c4 + 4c5)

λ+ 2µ

k2 =
k12 + k44
λ+ 2µ

k3 =
k44

λ+ 2µ

k4 = (k12 + 2k44)

(3.8)

Using (3.7)2 in (3.7)1 we obtain

Wi − k1(∆W )i + k2Pk,ik −
k3k4

a
(∆Wi) = 0 (3.9)

Remembering that both the displacement and polarization vector fields only
depend on the radial coordinate r, Eq.(3.9) becomes

Wr −

(

k1 +

(

k2 + k3
)

k4

a

)

(∆W )r = 0 (3.10)

or in compact form

W − k(∆W) = 0 (3.11)

where k =

(

k1 +
(k2+k3)k4

a

)

.

The partial derivative equation (3.11) generalizes those obtained in pre-
vious works by Enakoutsa [11, 12, 16] by accounting for flexoelectric effects
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through the constants Kijkl in the co-factor of (∆W). This equation bears
some similarities with the equation of radial vibration of a sphere. The solu-
tion of this equation mainly relies on the fact that the vector W is assumed
to be radial, deriving from a scalar field, which we shall denote here by ϕ.
Following Enakoutsa [11, 12], Eq.(3.11) reads

∆ϕ− k2ϕ = Cst. (3.12)

For the sake of simplicity, we shall set the constant Cst in Eq.(3.12) to zero.
Solving the resulting equation for ϕ we obtain

ϕ = αekr/r + βe−kr/r and W ≡Wr = ϕ′ (3.13)

where α and β represent integration constants and the symbol ′ denotes the
partial derivative ∂/∂r. The radial displacement Ur := U can then be ob-
tained through the ordinary differential equation

W ≡Wr = (∇trD) = (trD),r = (U ′ + 2U/r)′ (3.14)

which is solved for U as

U(x) = α
(

1/x− 1/x2
)

ex + β
(

1/x+ 1/x2
)

e−x + γx+ δ/x2. (3.15)

In Eq.(3.15) the variable x ≡ kr, and α, β, γ and δ represent integration
constants.

Once we have the displacement field, the polarization vector Pr := P
can be determined using Eqs.(3.7)2 and (3.13)2; we get

P = −
k4

a
ϕ′, (3.16)

that is,

P (x) = α1

(

1/x− 1/x2
)

ex + β1
(

1/x+ 1/x2
)

e−x (3.17)

where α1 and β1 are two additional constants in the solution of the problem.
Overall, the displacement and polarization vector field expressions contain
six unknown constants, therefore six boundary conditions (BCs) are needed
to solve them. The integration constants α, β, γ, δ can be determined using
the following boundary conditions







Mrrr(ri) = 0, Ur(ri) = ∆i

Mrrr(re) = 0, Ur(re) = ∆e.
. (3.18)

The conditions Mrrr=ri,e = 0 in Eq.(3.18) can be obtained by writing the
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variational formulation using the thin spherical shell as the body material.
A simplified version of this formulation (not including flexoelectric effects)
can be found in Enakoutsa [12] and Zhao and Pedroso [43]. The constraints
U(ri,e) = ∆i,e are simply prescribed Dirichlet boundary conditions. Two
other BCs related to the polarization vector field, Eq.(3.17), are needed; they
can be obtained by fixing the values of the polarization on the inner and
outer faces of the spherical shell, that is, P (xi) = Pi and P (xe) = Pe which
serve to determine the constants α1 and β1 as























α1 =
Pek

2
(

1/xi + 1/x2i
)

e−xi − Pik
2
(

1/xe + 1/x2e
)

e−xe

∆d

β1 =
Pik

2
(

1/xe − 1/x2e
)

exe − Pek
2
(

1/xi + 1/x2i
)

exi

∆d

. (3.19)

with ∆d defined as

∆d = k4
[

(

1/xe − 1/x2e
) (

1/xi + 1/x2i
)

e−(xi−xe)
]

− k4
[

(

1/xi − 1/x2i
) (

1/xe + 1/x2e
)

e(xe−xi)
]

(3.20)

The determination of the integration constants α, β, γ, δ requires the calcu-
lation of the component Mrrr of the hyperstress. Employing the constitutive
relation (2.17)2, the definition of the gradient of the strain ∇D in spherical
coordinates, and the polarization vector field (3.17) we obtain the component
Mrrr as

Mrrr = αexT (x) + βe−xQ(x) + 6δ/x4 + (k12 + 2k44)P (x) (3.21)

with























k1 = 4c1 + c2 + 4c3, k2 = 2(c4 + 2c5)

T (x) = k2(k1 + k2)/x− k2(k1 + 3k2)/x
2 + 6/x3 − 6/x4

Q(x) = k2(k1 + k2)/x− k2(k1 + 3k2)/x
2 + 6/x3 + 6/x4.

Assuming that xi = kri, xe = kre, Ti ≡ T (xi), Te ≡ T (xe), Qi ≡ Q(xi), and
Qe ≡ Q(xe) and using the expressions of the radial displacement and the
componentMrrr Eqs.(3.15) and (3.21) the boundary conditions (3.18) yields
the following system of equations
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





































αexiTi + βe−xiQi + 6δ/x4i = − (k12 + 2k44)Pi

αexeTe + βe−xeQe + 6δ/x4e = − (k12 + 2k44)Pe

α
(

1/xi + 1/x2i
)

exi − β
(

1/xi + 1/x2i
)

e−xi + γxi + δ/x2i = ∆i

α
(

1/xe + 1/x2e
)

exe − β
(

1/xe + 1/x2e
)

e−xe + γxe + δ/x2e = ∆e,

.

which is solved for the unknown constants α, β, γ and δ as



























































































α =
(

x4eQee
−xe − x4iQie

−xi
)

×

(

∆e

xe
−

∆i

xi
+ xi

6 (k12 + 2k44)Pi(1 + x3i /x
3
e)
)

/De

− (−e−xeBe +Aie
−xi) (k12 + 2k44)

(

x4iPi − x4ePe

)

/De

β =
(

x4eTee
xe − x4iTie

xi
)

×

(

∆e

xe
−

∆i

xi
+ xi

6 (k12 + 2k44)Pi(1 + x3i /x
3
e)
)

/De

− (exeBe − Cie
xi) (k12 + 2k44)

(

x4iPi − x4ePe

)

/De

δ = −
αx4i e

xiTi + βx4i e
−xiQi

6
−
x4i (k12 + 2k44)

6
Pi

γ =
∆i

xi
−

[

α

(

1

x2i
−

1

x3i

)

exi − β

(

1

x2i
+

1

x3i

)

e−xi −
δ

x3i

]

(3.22)

where the values of A,B,Ai,Bi and De are defined by


























































B(x) ≡
1

x3
+

1

x2

A(x) ≡

(

1

x3
+

1

x2

)

−
xQ

6
−
xQ

6x3e

C(x) ≡

(

1

x2
−

1

x3

)

+
xT

6
+
xT

6x3e

Ai ≡ A(xi), Bi = B(xi), Ci = C(xi)

(3.23)

and
{

De =
(

x4eTee
xe − x4iTee

xi
) [

e−xiBi − e−xeBe

]

−
(

x4eQee
−xe − x4iQie

−xi

)

[exiBe − exiCi] ,
(3.24)

respectively.

3.2. Discussion

The analytical solution developed raises several points of interest which are
presented as follow.
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• The displacement vector field (3.15) includes the combined effects of
strain gradient elasticity and flexoelectricity through the parameter k.
As expected, in the absence of flexoelectric effects in the model, the
strain gradient elasticity displacement field of Enakoutsa [11, 12] is
recovered. The relation (3.15) also shows that the magnitude of the
displacement field vector is substantially reduced with respect to the
classical elasticity and strain gradient elasticity solutions. This can be
explained by the fact that in flexoelectric materials, some part of the ex-
ternal forces work is employed to polarize the material, unlike in elastic
materials where all the work produced by the external forces is stored in
the material as an elastic energy. Mao and Purohit ([23]) have reached
the same conclusions for a closely related boundary value problem, a
pressurized thick-walled cylinder.

• The polarization vector field (3.17) is also significantly affected by the
flexoelectric effects. Note that the polarization in the spherical shell
is determined by the combined effects of strain gradient through the
constants ci,1≤i≤5 and the flexoelectric constants Kijkl. When the strain
gradient constants vanish (that is ci,1≤i≤5 = 0), the spherical shell is
still polarized (strain gradient-polarization couplings) according to the
formula (3.17) through the flexoelectric constants Kijkl . Eq.(3.17) also
shows that the polarization vector field can be controlled by changing
the mechanical loading parameters, ∆i and ∆e. However, it is not clear
from this equation whether the polarization of the spherical shell will
increase with increasing values of the mechanical loading parameters or
the reverse. Similarly, the local electrical behavior can also be controlled
by changing the mechanical loading parameters as demonstrated by the
expression (3.5)3.

4. Concluding remarks

In this paper, we presented the constitutive relations, the equilibrium equa-
tions and the boundary conditions for isotropic flexoelectric solids within
the framework of small strain deformations. These governing equations are
obtained using a variational formulation which includes a postulated inter-
nal energy density function that extends the one used by Toupin, Sahin and
Dost, and Sharma et al. The model is used to provide the explicit analytical
solution of the problem of the polarization induced by a thin-spherical shell
subjected to axisymmetric loading conditions. The analytical expressions of
the radial displacement and polarization vector fields are provided; these ex-
pressions involve six constitutive constants which are obtained using some
suitable Dirichlet prescribed boundary conditions along with some boundary
conditions given by the variational formulation. Our analytical solution could
be employed to provide insights into nanoscale experiments based on flexo-
electric solids. Besides, this solution could be used as a benchmark solution
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to assess computational tools (based on the constitutive model developed in
this paper) for flexoelectric materials.

As already observed, our proposed model was intended as a first step,
as our aim was to describe flexoelectric effects in the linear elastic regime of
materials. The wide class of materials that experimentally show flexoelectric
effects, however, will likely require at some point the need to investigate
this kind of effects above the elastic regime, possibly in conjunction with
dissipation phenomena. Especially considering the technological interest for
both flexoelectricity and energy harvesting, this research line seems to offer
plenty of prospects for the near future.
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