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Abstract

Conventional Mean-field games/control study the behavior of a large number of rational
agents moving in Euclidean spaces. In this work, we explore the mean-field games on Rie-
mannian manifolds. We formulate the mean-field game Nash Equilibrium on manifolds. We
also establish the equivalence between the PDE system and the optimality conditions of
the associated variational form on manifolds. Based on the triangular mesh representation
of two-dimensional manifolds, we design a proximal gradient method for variational mean-
field games. Our comprehensive numerical experiments on various manifolds illustrate the
effectiveness and flexibility of the proposed model and numerical methods.

Keywords: Mean-field games, Manifolds, Proximal gradient method
2020 MSC: 49M41, 49M25, 53Z99

1. Introduction

Mean-field games (MFG) [27, 28, 31] study the behavior of a large number of rational
agents in a non-cooperative game. It has wide applications in various fields, such as economics
[1, 23], engineering [18, 50] as well as machine learning and reinforcement learning [16, 49,
51, 19]. Recently, mean field control problems have been extended into chemistry, biology,
pandemic control, traffic flow models, and social dynamics [35, 36, 37, 38, 22]. An important
task in mean-field games is to study the flow of all the agents in the state space and to
understand the behavior of mean-field Nash equilibrium.

Conventional studies of MFG focus on the choice of the state space as a Euclidean
flat domain, for instance, [0, 1]d with periodic boundary conditions. Besides research on
Euclidean flat domains, there are existing works focusing MFGs on graphs [21] or graphon
state spaces [24, 26, 12]. However, such spaces may not be adequate to reflect the metric
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structure of state spaces in many applications. For instance, the problems of population
flows or resource distributions on the Earth are actually defined on a sphere. In machine
learning, the manifold hypothesis is commonly used [17, 20], since many real-world data sets
are actually samples from low-dimensional manifolds in a high-dimensional ambient space.
Therefore, it is quite natural and necessary to explore mean-field game/control problems on
manifolds. In this work, we would like to generalize the concepts of finite horizon mean-field
games and mean-field Nash Equilibrium from Euclidean spaces to manifolds and propose a
numerical method to compute the Nash Equilibrium.

In this study, we consider a game with infinitely many indistinguishable agents on a
finite-dimensional compact and connected smooth Riemannian manifoldM within the time
interval [0, 1]. At any time t ∈ [0, 1], each agent is in a certain state x ∈M and the state of
all agents forms a distribution ρ(·, t) ∈ P(M). For each agent at t, given its current state
x and the anticipation of future state distribution ρ(·, s), s ∈ [t, 1], the game is to optimize
a control v(x(s), s) to guide its future trajectory x(s), s ∈ (t, 1] in order to minimize a cost
Jρ(x, t,v). Therefore the optimal control v depends on the state distribution ρ. Although
the state change of any single agent does not change ρ(·, t), when all the agents take the
same control, the state distribution ρ changes accordingly. Thus the optimal control v and
the state distribution ρ are interdependent, and the Nash Equilibrium [44, 14], the special
pair of (v, ρ), is an especially interesting topic in mean-field game.

In the conventional Euclidean setup, it has been shown that the mean-field Nash Equi-
librium is the solution of a forward-backward PDE system [31, 28, 27]. We generalize this
result to MFG on manifolds. Meanwhile, for a potential mean-field game on a Euclidean
domain [31, 13, 9, 10], its optimality condition is exactly the forward-backward PDE system
under mild conditions. Thus, the Nash Equilibrium can be obtained by searching for the
stationary point of the optimization problem. In this work, we show that the equivalence
between the PDE formulation and variational formulation of mean-field games still holds on
manifolds. It is worth mentioning that [48] studies dynamic optimal transport, a special form
of potential mean-field games, on manifolds. In this work, we consider more general forms
of mean-field games on manifolds, and we are interested in both the PDE and variational
formulations.

There are different approaches to numerically solve mean-field games on Euclidean do-
mains, such as finite difference methods [3, 2], monotone flows [5, 25], optimization algorithms
[8, 11, 52] and neural networks [15, 39, 47]. We refer readers to the surveys [4, 32] for more
details of the numerical methods on Euclidean domains. In our manifold setting, we focus on
the variational formulation to compute the Nash Equilibrium numerically. With the help of
triangular mesh and computational geometry strategies [43], we approximate the manifold,
probability space, and vector field space and formulate the discrete optimization problem.
Once the discretization is provided, most of the existing optimization-based algorithms can
be adapted to solve the proposed discretization problem. In this work, we specifically use an
optimization-based algorithm proposed in [52] since it is flexible and efficient. This algorithm
is adapted from the proximal gradient descent method considered in [46, 6, 7].

Contributions: As far as we know, we are the first to study mean-field games on man-
ifolds and propose computational methods for manifold mean-field games. We summarize
our contributions as follows:
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(i) We generalize the concept of mean-field games to manifolds and derive the correspond-
ing geometric PDE formulation of the Nash Equilibrium.

(ii) We show the equivalence of the PDE formulation and variational formulation of mean-
field games on manifolds.

(iii) We propose a numerical method for solving the variational problem based on a proximal
gradient descent method. Comprehensive experiments demonstrate the effectiveness
of the proposed method.

Organization: Our paper is organized as follows. In section 2, we derive the PDE
formulation of mean-field Nash Equilibrium on manifolds. We also show that the PDE system
is the optimality condition of an optimization problem, the potential mean-field game, on the
manifold. We discretize the potential MFG problems in space and time domain in section 3,
and adapt a proximal gradient method to solve the discrete counterparts in section 4. In
section 5, we provide numerical experiments that solve potential mean-field games with local
or non-local interaction costs on different manifolds.

2. Mean-field games on manifolds

In this section, we generalize the concepts of finite horizon mean-field games (MFGs)
and their variational forms from conventional Euclidean domains to smooth and compact
Riemannian manifolds.

2.1. Mean-field games on manifold

Let’s begin with some notations for convenience. We consider MFG on (M, g), a d-
dimensional compact and connected smooth Riemannian manifold with a metric g. As a
natural extension of MFG on Euclidean domains, controls at the state x ∈M are defined as
elements in TxM, the tangent space ofM at x ∈M. We further denote TM = {(x,p) | p ∈
TxM} for the tangent bundle of M; use Γ(TM) for the set of continuous vector fields on
M; and write P(M) for all probability density on (M, g) under the volume measurement
induced by the metric g.

To derive a first-order MFG system onM, we consider a finite horizon game on the time
interval [0, 1] with the state spaceM. More specifically, we assume that there is a continuum
number of agents, and each agent takes a state x ∈ M at any time t ∈ [0, 1]. We write the
state density of all the agents along t ∈ [0, 1] as ρ ∈ C([0, 1];P(M)); and assume that the
impact of any single agent to ρ is negligible. Since all the agents have the same goal in a
mean-field game, it is sufficient to take a representative agent as an example. Suppose that
an agent is in state x at time t, the agent aims at choosing a control v ∈ C((t, 1]; Γ(TM))
to guide the trajectory

dx(t) = v(x, t)dt, (1)

in order to minimize the cost

Jρ(x, t,v) :=

∫ 1

t

[L(x(s),v(x(s), s) + F (x(s), ρ(·, s))] ds+ FT (x(1), ρ(·, 1)). (2)

Here L : TM→ [0,+∞) is the dynamic cost, F :M×P(M)→ [0,+∞) is the interaction
cost, ρ(·, s) ∈ P(M) is the density of all agents at time s, and FT :M×P(M)→ [0,+∞) is
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the terminal cost. Note that the control v and the state distribution ρ are involved interac-
tively. The optimal control vρ := argminv J

ρ(x, t,v) generally depends on the evolution of
the state distribution ρ. Meanwhile, with given initial distribution ρ(·, 0) := ρ0 ∈ P(M), the
distribution of agents ρ is determined by the control v ∈ C([0, 1]; Γ(TM)) through equation
(1). The mean-field game problem is especially interested in a special pair of them, the Nash
Equilibrium, which is the same as the conventional Euclidean case [44, 14],

Definition 2.1 (Nash Equilibrium). A pair of control and state distribution (v, ρ) is called
a Nash Equilibrium if the following two conditions hold,

1. (Optimality) For any t ∈ [0, 1],x ∈M, Jρ(x, t,v) ≤ Jρ(x, t,u), ∀ u ∈ C([0, 1]; Γ(TM)).

2. (Consistency) ρ(·, 0) = ρ0 where ρ0 is the state distribution of all the agents at t = 0.
And ρ(·, t) is the state distribution of all the agents at time t following the control v.

With the definition, if (v, ρ) is a Nash Equilibrium of a MFG on (M, g). The optimal-
ity condition ensures that v is the optimal control for given state distribution ρ, and the
consistency requires that v lead to the state distribution ρ.

According to [31, 28], in Euclidean space, a Nash Equilibrium can be described by a
PDE system, which includes a backward Hamiltonian-Jacobi-Bellman (HJB) equation by
the optimality condition and a forward continuity equation by the consistency condition. In
the rest, we will establish a similar PDE description of a Nash Equilibrium on manifolds.

Similar as the Euclidean case [31, 28], let the value function φ be the cost with the
optimal control,

φρ(x, t) := inf
v∈C([0,1];Γ(TM))

Jρ(x, t,v). (3)

and H be the manifold Hamiltonian defined on the tangent bundle of M [34]

H : TM→ R, H(x,q) := sup
p∈TxM

{
−〈q,p〉g(x) − L(x,p)

}
. (4)

we have the following theorem.

Theorem 2.2. If ρ, φ,v are C1 in t, v is C1 in x, ρ, φ are C2 in x, and (v, ρ) is a Nash
Equilibrium of the aforementioned mean-field game on (M, g), then

v(x, t) = argmin
p∈TxM

{
L(x,p) + 〈∇Mφ(x, t),p〉g(x)

}
= −∂qH(x,∇Mφ(x, t)), (5)

and ρ, φ solve 
− ∂tφ(x, t) +H(x,∇Mφ(x, t)) = F (x, ρ(·, t)),
∂tρ(x, t)−∇M · (ρ(x, t)∂qH(x,∇Mφ(x, t))) = 0,

φ(x, 1) = FT (x, ρ(·, 1)), ρ(·, 0) = ρ0.

(6)

Before proving the theorem, we give several remarks to explain notations.

Remark 2.3. We emphasize that the metrics 〈·, ·〉g(x), and operators ∇M,∇M· are based on
the manifold metric g as a generalization of the conventional equations which only depend
on the flat Euclidean metric. More details on differential geometry can be refereed in [33].
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For example, let M be a two-dimensional manifold embedded in R3 with an induced
metric g on the manifold. To be precise, consider X : Ξ ⊂ R2 → M ⊂ R3, (ξ1, ξ2) 7→
X(ξ1, ξ2) as a local chart of M, then for any x = X(ξ1, ξ2) on the chart, the tangent space
is TxM = span{∂ξ1X, ∂ξ2X}. The matrix representation of the induced metric g in the
coordinate chart X is provided as:

gX(x) :=

(
(∂ξ1X)>∂ξ1X (∂ξ1X)>∂ξ2X
(∂ξ2X)>∂ξ1X (∂ξ2X)>∂ξ2X

)
. (7)

Any tangent vectors p,q ∈ TxM have the corresponding coordinate decomposition p =
p1
X∂ξ1X + p2

X∂ξ2X, q = q1
X∂ξ1X + q2

X∂ξ2X, and the metric g on each point x is

g(x) : TxM× TxM→ R, 〈p,q〉g(x) :=
(
p1
X p2

X

)
gX(x)

(
q1
X

q2
X

)
. (8)

Based on this metric, we have the following definitions of gradient and divergence operators:

∇Mφ(x) =
(
∂ξ1φX ∂ξ2φX

)
(gX(x))−1

(
∂ξ1X
∂ξ2X

)
, (9)

∇M · v(x) =
1√

det(gX(x))

2∑
d=1

∂

∂ξd

(√
det(gX(x))vdX

)
, (10)

where φX(ξ1, ξ2) = φ(X(ξ1, ξ2)) is the local representation of φ under the coordinate chart X,
and the tangent vector field v ∈ Γ(TM) has the local coordinate representation v(X(ξ1, ξ2)) =
v1
X(ξ1, ξ2)∂ξ1X + v2

X(ξ1, ξ2)∂ξ2X. While the above definitions are provided in terms of a spe-
cific coordinate representation X, the definitions g(x),∇Mφ and ∇M · v are invariant to
coordinates.

Remark 2.4. Following the settings and notations in the previous remark, we take the
quadratic dynamic cost function as an example,

L(x,p) :=
1

2
‖p‖2

g(x) =
1

2
〈p,p〉g(x). (11)

By definition, the Hamiltonian is

H(x,q) := sup
p∈TxM

{
−〈q,p〉g(x) −

1

2
〈p,p〉g(x)

}
= sup

p1,p2∈R

{(
−q1

X − 1
2
p1 −q2

X − 1
2
p2
)(∂ξ1X>

∂ξ2X
>

)(
∂ξ1X ∂ξ2X

)(p1

p2

)}
=

1

2

(
q1
X q2

X

)(∂ξ1X>
∂ξ2X

>

)(
∂ξ1X ∂ξ2X

)(q1
X

q2
X

)
=

1

2
‖q‖2

g(x).

(12)

Now we view TxM = span{∂ξ1X, ∂ξ2X} as a manifold and consider the nature coordinate
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representation q = q1
X∂ξ1X+q2

X∂ξ2X and the induced metric gX(x). Then H(x, ·) : TxM→
R has the coordinate form

HX(x, q1, q2) := H(x, q1∂ξ1X + q2∂ξ2X) =
1

2

(
q1 q2

)
gX(x)

(
q1

q2

)
(13)

and by definition of manifold gradient

∂qH(x,q) =
(
∂q1HX ∂q2HX

)
(gX(x))−1

(
∂ξ1X
∂ξ2X

)
=
(
q1
X q2

X

)
gX(x)(gX(x))−1

(
∂ξ1X
∂ξ2X

)
= q.

(14)

Remark 2.5. With manifold-metric-based notations explained in remarks 2.3 and 2.4, the
PDE system (6) is a generalization of the PDE system in a Euclidean space. To see the
difference, we state the system (6) in a coordinate chart X. Denoting ρX , φX , HX and gξ
as the local coordinate representations of ρ, φ,H and gX under X, respectively, we have the
coordinate representation of (6)
− ∂tφX(ξ1, ξ2, t) +HX

(
X(ξ1, ξ2),

(
∂ξ1φX ∂ξ2φX

)
g−1
ξ (ξ1, ξ2, t)

)
= F (X(ξ1, ξ2), ρ(·, t)),

∂tρX(ξ1, ξ2, t)− 1√
det(gξ))

2∑
i=1

∂

∂ξi

(
2∑
j=1

√
det(gξ)ρX(gξ)

−1
ij ∂qjHX

)
= 0,

φX(ξ1, ξ2, 1) = FT (X(ξ1, ξ2), ρ(·, 1)), ρX(ξ1, ξ2, 0) = ρ0(X(ξ1, ξ2)),
(15)

with ∂qjHX evaluated at
(
X,
(
∂ξ1φX ∂ξ2φX

)
g−1
ξ

)
(ξ1, ξ2, t).

It is clear to see that the above system is consistent with the formula in the Euclidean case
by choosingM = R2 and g as the conventional flat Euclidean metric. Though (15) converts
a manifold PDE system to a Euclidean PDE system, in practice, we do not directly work with
it. Because the coordinate chart of a manifold is not easy to compute. Moreover, besides
its forward-backward and nonlinear structure, the PDE system becomes more complicated
under the coordinate chart.

Next, we prove theorem 2.2.

Proof. By definition, the terminal boundary condition of φ is

φ(x, 1) = FT (x, ρ(·, 1)). (16)

For t ∈ [0, 1), by optimality of φ and dynamic programming principle, for any h > 0

φ(x, t) = inf
v∈C([t,1];Γ(TM))

{∫ t+h

t

[L(x(s),v(x(s), s)) + F (x(s), ρ(·, s))] ds+ φ(x(t+ h), t+ h)

}
,

(17)

where x(t + h) = x(t) +
∫ t+h
t

v(x(s), s)ds. Assume that φ is C2 in x and C1 in t. Then by
Leibniz integral rule,

φ(x(t+ h), t+ h) = φ(x, t) +

∫ t+h

t

[
∂tφ(x(s), s) + 〈∇Mφ(x(s), s),v(x(s), s)〉g(x)

]
ds. (18)
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Combining (17) and (18), we have∫ t+h

t

[∂tφ(x(s), s) + F (x(s), ρ(·, s))] ds

+ inf
v∈C([t,t+h];TM)

{∫ t+h

t

[
L(x(s),v(x(s), s)) + 〈∇Mφ(x(s), s),v(x(s), s)〉g(x)

]
ds

}
= 0.

(19)
Dividing both sides by h and letting h→ 0+ shows that φρ satisfies the HJB equation (20)
on M.

− ∂tφ(x, t)− inf
p∈TxM

{
L(x,p) + 〈∇Mφ(x, t),p〉g(x)

}
= F (x, ρ(·, t)). (20)

Plugging in the definition of manifold Hamiltonian

H : TM→ R, H(x,q) = sup
p∈TxM

{
−L(x,p)− 〈q,p〉g(x)

}
. (21)

we show that φ satisfies the HJB equation{
− ∂tφ(x, t) +H(x,∇Mφ(x, t)) = F (x, ρ(·, t)),
φ(x, 1) = FT (x, ρ(·, 1)).

(22)

And by properties of the convex conjugate, we obtain the optimal control

v(x, t) := argmin
p∈TxM

{
L(x,p) + 〈∇Mφ(x, t),p〉g(x)

}
= −∂qH(x,∇Mφ(x, t)). (23)

On the other hand, by consistency condition of a Nash Equilibrium, with initial density
ρ0, ρ satisfies the continuity equation driven by v(x, t),{

∂tρ(x, t) +∇M · (ρ(x, t)v(x, t)) = 0,

ρ(·, 0) = ρ0.
(24)

And v being the optimal control v(x, t) = −∂qH(x,∇Mφ(x, t)) implies that ρ satisfies{
∂tρ(x, t)−∇M · (ρ(x, t)∂qH(x,∇Mφ(x, t))) = 0,

ρ(·, 0) = ρ0.
(25)

To summarize, the solution (φ, ρ) to the following PDE system gives us a Nash Equilib-
rium (v, ρ) with v = −∂qH(x,∇Mφ(x, t)),

− ∂tφ(x, t) +H(x,∇Mφ(x, t)) = F (x, ρ(·, t)),
∂tρ(x, t)−∇M · (ρ(x, t)∂qH(x,∇Mφ(x, t))) = 0,

φ(x, 1) = FT (x, ρ(·, 1)), ρ(·, 0) = ρ0.

(26)
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At the end of this part, we present some common examples.

Example 2.6 (Local mean-field games). When the interaction cost and terminal cost func-
tions take the local form. i.e. the cost at x only depends on the density at x. the corre-
sponding mean-field game is called a local mean-field game.

We list some common choices of F and FT here.

• F (x, ρ(·, t)) = B(x) with B :M→ R. This interaction function gives a preference of
states. The agents tend to stay at x where the cost B(x) is low.

• F (x, ρ(·, t)) = log(ρ(x, t)) + 1 and F (x, ρ(·, t)) = (ρ(x, t))p, p > 0. These interaction
functions discourage the aggregation of densities.

• FT (x, ρ(·, 1)) = (ρ(x, 1) − ρ1(x))2 and FT (x, ρ(·, 1)) = log(ρ(x, 1)) − log(ρ1(x)) + 1
with a given ρ1. These terminal functions encourage ρ(·, 1) to approach to the desired
terminal density ρ1.

Example 2.7 (Non-local mean-field games). The interaction cost function F or terminal
cost function FT can also take non-local forms. Take F as an example. If K :M×M→ R
is a convolutional kernel, and

F (x, ρ(·, t)) :=

∫
M
K(x,y)ρ(y, t)dMy, (27)

then the mean-field game is non-local. Symmetric kernel functionsK withK(x,y) = K(y,x)
are of special interest to us. When K is symmetric, the PDE system is the optimality
condition of a variational problem [45, 40]. We provide detailed discussions in the following
section.

2.2. Potential mean-field games on manifold

According to [31, 13, 9, 10], when the state space is Euclidean, with H(x,q) convex in q,

F =
δF
δρ
, FT =

δFT
δρ

, the local minimizer of an optimization problem and the corresponding

dual variable is a weak solution to the MFG PDE system. In this part, we establish the
parallel results on manifolds. We formulate the potential MFG on a manifold and show that
the necessary optimality condition of this variational problem is exactly the PDE system (6)
under similar conditions on manifolds.

Theorem 2.8. Assume that L(x,p) is convex in p ∈ TxM at any x ∈ M, and there exist

F : P(M) → [0,+∞), FT : P(M) → [0,+∞) such that δF(ρ)
δρ

(x) = F (x, ρ), δFT (ρ)
δρ

(x) =

FT (x, ρ). Consider the optimization problem,

inf
ρ,m

Y(ρ,m) :=

∫ 1

0

∫
M
ρ(x, t)L

(
x,

m(x, t)

ρ(x, t)

)
dMxdt+

∫ 1

0

F(ρ(·, t))dt+ FT (ρ(·, 1))

subject to ∂tρ+∇M ·m = 0, ρ(·, 0) = ρ0,

ρ ∈ C([0, 1];P(M)),m ∈ C([0, 1]; Γ(TM)).
(28)
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When ρ(x, t) = 0, we take the conventional definition of L

L

(
x,

m(x, t)

ρ(x, t)

)
=

{
0, if m(x, t) = 0,

+∞, if m(x, t) 6= 0.
(29)

The following statements hold

1. If (ρ,m) is a local minimizer of (28), then there exists φ such that m = −ρ∂qH(·,∇Mφ(x, t))
and (ρ, φ) is the weak solution to the MFG PDE system (6), i.e. (ρ, φ) solves

− ∂tφ(x, t) +H(x,∇Mφ(x, t)) ≤ F (x, ρ(·, t)),
∂tρ(x, t)−∇M · (ρ(x, t)∂qH(x,∇Mφ(x, t))) = 0,

φ(x, 1) ≤ FT (x, ρ(·, 1)), ρ(·, 0) = ρ0.

(30)

In addition, if ρ > 0, then (ρ, φ) solves the PDE system (6).

2. If for any (ρ1,m1), (ρ2,m2) ∈ C([0, 1];P(M))×C([0, 1]; Γ(TM)),
∫ 1

0

∫
M δρY(ρ1,m1)(ρ2−

ρ1) + δmY(ρ1,m1) · (m2 −m1)dMxdt ≥ 0 implies Y(ρ2,m2) ≥ Y(ρ1,m1), i.e. Y is
pseudo-convex in (ρ,m), and (φ, ρ) is a solution to the MFG PDE system (6), then
m = −ρ∂qH(·,∇Mφ(x, t)), and (ρ,m) is the minimizer of (28).

Proof. We first derive the KKT system of (28) based on the theory of constrained opti-
mization [29]. We denote φ ∈ C([0, 1]×M) as the Lagrangian multiplier for the continuity
equation, and then the Lagrangian of (28) is,

A(ρ,m, φ) :=

∫ 1

0

∫
M
ρ(x, t)L

(
x,

m(x, t)

ρ(x, t)

)
dMxdt+

∫ 1

0

F(x, ρ(·, t))dt+ FT (x, ρ(·, 1))

−
∫ 1

0

∫
M
φ(x, t) (∂tρ+∇M ·m) (x, t)dMxdt (31)

=

∫ 1

0

∫
M
ρ(x, t)L

(
x,

m(x, t)

ρ(x, t)

)
dMxdt+

∫ 1

0

F(x, ρ(·, t))dt

+

∫ 1

0

∫
M

[ρ(x, t)∂tφ(x, t) + 〈m(x, t),∇Mφ(x, t)〉g] dMxdt

+ FT (x, ρ(·, 1)) +

∫
M

[−φ(x, 1)ρ(x, 1) + φ(x, 0)ρ0(x)] dMx. (32)

Since ρ ≥ 0, ρ(·, 0) = ρ0, the KKT system of (28) is
δρA(ρ,m, φ) ≥ 0, ρδρA(ρ,m, φ) = 0,

δmA(ρ,m, φ) = 0,

∂tρ(x, t) +∇M ·m(x, t) = 0, ρ(·, 0) = ρ0.

(33)

Among the system (33), δmA(ρ,m, φ) = 0 yields

∂pL

(
x,

m(x, t)

ρ(x, t)

)
+∇Mφ(x, t) = 0, (34)
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and consequently m = −ρ∂qH(·,∇Mφ) by convexity of L. Plugging in and simplifying
δρA(ρ,m, φ) ≥ 0 then gives{

− ∂tφ(x, t) +H(x,∇Mφ(x, t)) ≤ F (x, ρ(·, t)),
φ(x, 1) ≤ FT (x, ρ(·, 1)),

(35)

and the equality holds when ρ(x, t) > 0. Combining above, we see (30) is exactly the KKT
system (33).

According to optimization theory [29], because the constraints of (28) are linear in (ρ,m),
the KKT conditions are necessary for the local minimizer, and thus the first statement
holds. In addition, when Y is pseudo-convex, the KKT conditions are sufficient for the
minimizer [42]. Since the PDE system (6) implies the KKT system of (28), the second
statement holds.

With the above theorem, the forward-backward system (6) can be solved by searching
for the local minimizer of variational problem (28). In this study, we majorly focus on the
variational problem (28).

In the rest part of this section, we present some examples of potential mean-field games
as well as their corresponding PDE systems.

Example 2.9 (Quadratic dynamic cost with local interaction). Let L(x,p) = 1
2
‖p‖2

g(x) and
the local interaction and terminal costs

F(ρ(·, t)) =

∫
M
ρ(x, t) log(ρ(x, t))dMx,

FT (ρ(·, 1)) =

∫
M
ρ(x, 1) log

(
ρ(x, 1)

ρ1(x)

)
dMx,

(36)

where ρ1(x) is a given density. With these choices of costs, L(x, ·) is convex in p ∈ TxM and
the objective function Y is pseudo-convex in (ρ,m). According to theorem 2.8, searching for
the optimizer is equivalent to solving a mean-field game PDE system. To be precise, if the
optimizer ρ > 0, then the KKT system of this potential game is

− ∂tφ(x, t) +
1

2
‖∇Mφ(x, t)‖2

g(x) = log(ρ(x, t)) + 1,

∂tρ(x, t)−∇M · (ρ(x, t)∇Mφ(x, t)) = 0,

φ(x, 1) = log

(
ρ(x, 1)

ρ1(x)

)
+ 1, ρ(·, 0) = ρ0,

(37)

and v = −∇Mφ(x, t). It is easy to check that this system is the PDE formulation of the
mean-field game with

F (x, ρ(·, t)) =
δF(ρ)

δρ
(x) = log(ρ(x, t)) + 1,

FT (x, ρ(·, 1)) =
δFT (ρ)

δρ
(x) = log

(
ρ(x, 1)

ρ1(x)

)
+ 1.

(38)
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Example 2.10 (Quadratic dynamic cost with non-local interaction cost). Let L(x,p) =
1
2
‖p‖2

g(x) and the local terminal costs be

FT (ρ(·, 1)) =

∫
M

1

2
(ρ(x, 1)− ρ1(x))2dMx, (39)

with a given density ρ1. We consider a non-local interaction cost

F(ρ(·, t)) =
1

2

∫
M×M

K(x,y)ρ(x, t)ρ(y, t)dMxdMy, (40)

where K(x,y) = µ exp
(
− 1
σ2d

2
g(x,y)

)
is a Gaussian kernel based on the geodesic distance dg

of (M, g). The KKT system of this variational problem is
− ∂tφ(x, t) +

1

2
‖∇Mφ(x, t)‖2

g(x) =

∫
M
K(x,y)ρ(y, t)dMy,

∂tρ(x, t)−∇M · (ρ(x, t)∇Mφ(x, t)) = 0,

φ(x, 1) = ρ(x, 1)− ρ1(x), ρ(·, 0) = ρ0.

(41)

and v = −∇Mφ(x, t). This system is the PDE formulation of the mean-field game with

F (x, ρ(·, t)) =
δF(ρ)

δρ
(x) =

∫
M
K(x,y)ρ(y, t)dMy,

FT (x, ρ(·, 1)) =
δFT (ρ)

δρ
(x) = ρ(x, 1)− ρ1(x).

(42)

We note that δF(ρ)
δρ

(x) =
∫
MK(x,y)ρ(y, t)dMy holds because K is symmetric, i.e. K(x,y) =

K(y,x). For general non-symmetric kernels, the corresponding interaction cost function can
be written as F (x, ρ(·, t)) =

∫
M

(
1
2
K(x,y) + 1

2
K(y,x)

)
ρ(y, t)dMy.

3. Discretization on Manifolds

The optimization problem (28) is defined in an infinite-dimension space and in general
is solved approximately using appropriate discretization. Although with coordinate charts,
we can recast a manifold mean-field game to a Euclidean mean-field game, it is neither
practical nor efficient, because it is not easy to compute the global coordinate chart of a
manifold and the formulation of the problem under a coordinate chart can be extremely
complicated. Therefore, we directly work on the manifold. In addition, our intrinsic method
can be combined with conventional optimization methods naturally to handle the control
problems on manifolds. Different from conventional MFG problems in Euclidean space,
we need to approximate the ground manifold as well as functions and vector fields on the
manifold. In this section, we focus on two-dimensional manifolds and discuss the discrete
counterpart of (28). We first approximate the manifold with a triangular mesh. This leads
to a semi-discrete version of (28) and its associated KKT system. After that, we derive
a fully discretized version for our numerical implementation by equally splitting the time
interval.
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3.1. Space discretization

We follow a conventional approach [43, 30] to approximate a two-dimensional manifold

M by a triangular mesh M̃, which is a set of non-overlapping non-degenerate triangles
with no vertex of one triangle on edge (excluding both endpoints) of another triangle. For

simplicity of notations, we assume thatM⊂ R3 and represent the triangular mesh M̃ with
the set of vertices V = {Vi ∈ R3}hi=1 and the set of triangles T = {Tj}sj=1. We would like
to remark that our model and numerical methods can be straightforwardly extended on
two-dimensional manifolds embedded in higher-dimensional spaces as long as a reasonable
good triangular mesh approximation of the manifold is available. In section 5.3, we conduct
a numerical experiment on a two-dimensional unit sphere in R5. Figure 1 shows several
triangular meshes used in our numerical experiments later. For convenience, we also abuse
our notation M̃ for the piecewise linear approximation of M obtained from the given
triangular mesh.

Figure 1: Triangular mesh approximation of some manifolds.

For a real-valued function ψ : M → R, we approximate it with a piece-wise linear
function Ψ : M̃ → R, where on vertices Ψ(Vi) := ψ(Vi) and on each triangle Ψ(x)

is linear. In this way, any piece-wise linear function on M̃ is fully represented by its

values on vertices. With a slight abuse of notations, we denote Ψ :=

Ψ(V1)
...

Ψ(Vh)

 as a

vector in Rh. By piece-wise linearity, the gradient of Ψ is a piece-wise constant vector
field. For consistency, we let TM̃ := tsj=1 spanTj mimic the tangent bundle, Γ(TM̃) :=U : T → TM̃, U(Tj) =

U1(Tj)
U2(Tj)
U3(Tj)

 ∈ spanTj

 denote the set of piece-wise constant vec-

tor field. Similar to the function discretization, we use the matrix U =
(
U1, U2, U3

)
=(U(T1))>

...
(U(Vs))

>

 ∈ Rs×3 to fully describe the vector field.

12



Dual cell of 

Figure 2: Illustration of definition of areas, functions and vector field on triangular meshes. (Left: gradient
operator on one triangular face, right: dual cell of Vi.)

Given any Ψ : M̃ → R, its gradient ∇M̃Ψ ∈ Γ(TM̃) can be written as ∇M̃Ψ =(
G1Ψ G2Ψ G3Ψ

)
, where G1, G2, G3 ∈ Rs×h provides a discretization of ∇M. To see this,

take a triangle T1 with vertices V1, V2, V3 as an example (see the left image in Figure 2). We
first parameterise T1 by

V (ξ1, ξ2) := ξ1(V2 − V1) + ξ2(V3 − V1), 0 ≤ ξ1, ξ2 ≤ 1, ξ1 + ξ2≤1. (43)

Thus the induced metric on T1 is the constant matrix

g =

(
〈V2 − V1, V2 − V1〉 〈V2 − V1, V3 − V1〉
〈V3 − V1, V2 − V1〉 〈V3 − V1, V3 − V1〉

)
. (44)

Because Ψ restricted on T1 is linear, we have

Ψ(V (ξ1, ξ2)) := ξ1(Ψ(V2)−Ψ(V1)) + ξ2(Ψ(V3)−Ψ(V1)). (45)

The definition of gradient gives us

(
〈V2 − V1, (∇M̃Ψ)(T1)〉
〈V3 − V1, (∇M̃Ψ)(T1)〉

)
=

(
Ψ(V2)−Ψ(V1)
Ψ(V3)−Ψ(V1)

)
=

(
−1 1 0
−1 0 1

)Ψ(V1)
Ψ(V2)
Ψ(V3)

 . (46)

Since (∇M̃Ψ)(T1) ∈ spanT1, it is clear that the gradient of Ψ on T1 has the decomposition

(∇M̃Ψ)(T1) =
(
V2 − V1, V3 − V1

)(µ1

µ2

)
and therefore we have

(
〈V2 − V1, (∇M̃Ψ)(T1)〉
〈V3 − V1, (∇M̃Ψ)(T1)〉

)
= g

(
µ1

µ2

)
. (47)
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Because the triangle is non-degenerative, (46) and (47) together solves µ1, µ2

(
µ1

µ2

)
= g−1

(
−1 1 0
−1 0 1

)Ψ(V1)
Ψ(V2)
Ψ(V3)

 . (48)

And this implies

(∇M̃Ψ)(T1) =
(
V2 − V1, V3 − V1

)
g−1

(
−1 1 0
−1 0 1

)Ψ(V1)
Ψ(V2)
Ψ(V3)

 . (49)

Assigning Gd(T1, Vi) = 0 for Vi ∈ V \{V1, V2, V3}, d = 1, 2, 3 andG1(T1, V1) G1(T1, V2) G1(T1, V3)
G2(T1, V1) G2(T1, V2) G2(T1, V3)
G3(T1, V1) G3(T1, V2) G3(T1, V3)

 =
(
V2 − V1, V3 − V1

)
g−1

(
−1 1 0
−1 0 1

)
(50)

assures (∇M̃Ψ)(T1) =
(
(G1Ψ)(T1) (G2Ψ)(T1) (G3Ψ)(T1)

)
. Following the same approach

to define Gd(Tj, Vi) on Tj ∈ T , we have ∇M̃Ψ =
(
G1Ψ G2Ψ G3Ψ

)
.

Next, we define the discretization of the divergence operator based on its adjoint relation
to the gradient operator. Consider the following discretization of surface area and inner
product. Let ATj be the area of triangle Tj and AVi := 1

3

∑
j:Vi∈Tj ATj be the area of the

barycentric dual cell of Vi (Figure 2 right), and denote AV := diag(AV1 , · · · , AVh) ∈ Rh×h and
AT := diag(AT1 , · · · , ATs) ∈ Rs×s be the mass matrices of vertices and of triangles. We then
define the inner products of vector fields as 〈U1, U2〉T := tr(U>1 ATU2) =

∑3
d=1(Ud

1 )>ATU
d
2

and of functions as 〈Ψ1,Ψ2〉V := Ψ>1 AV Ψ2. To preserve the adjoint relation between negative
gradient and divergence under the above inner products, i.e. 〈−∇M̃Ψ, U〉T = 〈Ψ,∇M̃ ·U〉V ,

we assign ∇M̃ · U := −
∑3

d=1A
−1
V (Gd)>ATU

d ∈ Rh.

We use P,M to represent the discretization of ρ,m on the triangular mesh M̃. With
the notations of area, we write the set of probability density functions on M̃ as P(M̃) :=

{P ∈ Rh
+ : AV P = 1}. If the the initial density is given as P0 ∈ P(M̃), the semi-discrete

constraint is then
d

dt
P (Vi, t) +

(
∇M̃ ·M

)
(Vi, t) = 0, P (·, 0) = P0,

P ∈ C([0, 1];P(V )),M ∈ C([0, 1]; Γ(TM̃)).

(51)

For the objective function, let W : Rh → Rs : Ψ 7→ Ψ, Ψ(Tj) = w({ρ(Vi) : Vi ∈ Tj})
average the density values on each triangle. Below, we list some typical choices of w :=
w ({ρ(V1), ρ(V2), ρ(V3)}).

(i) Arithmetic mean:

ω :=
1

3

∑
i

ρ(Vi);
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(ii) Geometric mean:

w :=

(∏
i

ρ(Vi)

) 1
3

;

(iii) Harmonic mean:

w := 3

(∑
i

1

ρ(Vi)

)−1

.

We remark that these choices of average functions are useful in defining the related discrete
mean-field variational problems. They connect with the gradient flow studies of Markov pro-
cesses on discrete states. See related studies in [41]. For simplicity, we select the arithmetic
mean (i) in this work.

We evaluate the dynamic cost on triangles L̃ : TM̃ → R, and the interaction and terminal
cost on vertices F̃ : P(M̃) → R, F̃T : P(M̃) → R. With a suitable choice of triangular
mesh and discrete cost functions, the continuous cost is approximated by

Ỹ(P,M) :=

∫ 1

0

s∑
j=1

ATjP (Tj, t)L̃

(
Tj,

M(Tj, t)

P (Tj, t)

)
dt+

∫ 1

0

F̃(P (·, t))dt+ F̃T (P (·, 1)), (52)

where P (·, t) = W (P (·, t)). The semi-discrete formulation of (28) on triangular mesh M is
then

min
P,M

Ỹ(P,M)

subject to
d

dt
P (Vi, t) +

(
∇M̃ ·M

)
(Vi, t) = 0, P (·, 0) = P0,

P ∈ C([0, 1];P(M̃)),M ∈ C([0, 1]; Γ(TM̃)).

(53)

Remark 3.1. Recall that in the continuous setting, we show that the local minimizer of the
optimization problem (28) solves the PDE system (30) with F (x, ρ(·, t)) = δF(ρ(·,t))

δρ
(x) and

FT (x, ρ(·, 1)) = δFT (ρ(·,1))
δρ

(x). Since the constraint of (53) remains linear, the local minimizer
of this semi-discrete problem also solves a KKT-based ODE system

− d

dt
Φ(Vi, t) +

∑
j:Vi∈Tj

ATj
AVi

∂P (Tj, t)

∂P (Vi, t)
H̃
(
Tj, (∇M̃Φ)(Tj, t)

)
≤ 1

AVi
∂P (Vi)F̃(P (·, t)),

d

dt
P (Vi, t) +

(
∇M̃ ·M

)
(Vi, t) = 0, M(Tj, t) = −P (Tj, t)∂QH̃(Tj, (∇M̃Φ)(Tj, t)),

Φ(Vi, 1) ≤ 1

AVi
∂P (Vi)F̃T (P (·, 1)), P (·, 0) = P0,

(54)

where
H̃ : TM̃ → R, H̃(Tj, Q) = sup

U(Tj)∈spanTj

{−L̃(Tj, U(Tj))− 〈Q,U(Tj)〉}.
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Note that
∑

j:Vi∈Tj

ATj
AVi

∂P (Tj, t)

∂P (Vi, t)
H̃
(
Tj, (∇M̃Φ)(Tj, t)

)
is an approximation ofH(Vi,∇Mφ(Vi, t)).

If in addition, ∂P (Vi)F̃(P (·, t))/AVi and ∂P (Vi)F̃T (P (·, 1))/AVi approximate the costs F (x) and
FT (x) evaluated at x = Vi, then (54) is a semi-discrete formulation of (30) and is therefore
consistent with (6).

Before discretizing the time interval, we discuss the semi-discrete formulations of exam-
ples 2.9 and 2.10.

Example 3.2 (Quadratic dynamic cost with local interaction). This is a discretized coun-
terpart of example 2.9. Recall that in the continuous domain, Since we choose the surface
metric as the induced metric, then for U(Tj) ∈ spanTj, the dynamic cost is provided as

L̃(Tj, U(Tj)) =
1

2

3∑
d=1

(Ud(Tj))
2 =

1

2
‖U(Tj)‖2

R3 . (55)

And we approximate the interaction and terminal costs F ,FT by

F̃(P (·, t)) =
h∑
i=1

AViP (Vi, t) log(P (Vi, t)),

F̃T (P (·, 1)) =
h∑
i=1

AViP (Vi, 1) log

(
P (Vi, 1)

P1(Vi)

)
.

(56)

With w being the arithmetic average, if the optimizer P > 0, then the discrete KKT system
is 

− d

dt
Φ(Vi, t) +

∑
j:Vi∈Tj

ATj
3AVi

1

2

∥∥(∇M̃Φ)(Tj, t)
∥∥2

R3 = log(P (Vi, t)) + 1,

d

dt
P (Vi, t) +

(
∇M̃ ·M

)
(Vi, t) = 0, M(Tj, t) = −P (Tj, t)(∇M̃Φ)(Tj, t),

Φ(Vi, 1) = log

(
P (Vi, 1)

P1(Vi)

)
, P (·, 0) = P0.

(57)

Example 3.3 (Quadratic dynamic cost with non-local interaction cost). This is a discretized
counterpart of example 2.10. On triangular meshes, we use the following dynamic and
terminal costs,

L̃(Tj, U(Tj)) =
1

2
‖U(Tj)‖2

R3 ,

F̃T (P (·, 1)) =
h∑
i=1

AVi
1

2
(P (Vi, 1)− P1(Vi))

2.
(58)

And for the discrete interaction cost, we choose dM̃(V1, V2) being the length of the shortest
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path connecting V1, V2 to approximate the geodesic distance,

dM̃(V1, V2) = min


n∑
k=1

‖Vik − Vik−1
‖R3 :n = 0, 1, · · · , Vi0 = V1, Vin = V2,

∀k = 1, · · · , n, there exists Tjk such that Vik−1
, Vik ∈ Tjk ,

 . (59)

And we define the kernel as K̃(V1, V2) = µ exp
(
− 1
σ
d2
M̃

(V1, V2)
)

and the interaction cost as

F̃(P (·, t)) =
1

2

h∑
i

h∑
i′

AViP (Vi)K̃(Vi, Vi′)AVi′P (Vi′) =
1

2
P (·, t)>AV K̃AV P (·, t). (60)

Similarly, if w is the arithmetic average and the optimizer P > 0, the discrete KKT system
is 

− d

dt
Φ(Vi, t) +

∑
j:Vi∈Tj

ATj
3AVi

1

2

∥∥(∇M̃Φ)(Tj, t)
∥∥2

R3 =
∑
i′

K̃(Vi, Vi′)AVi′P (Vi′),

d

dt
P (Vi, t) +

(
∇M̃ ·M

)
(Vi, t) = 0, M(Tj, t) = −P (Tj, t)(∇M̃Φ)(Tj, t),

Φ(Vi, 1) = P (Vi, 1)− P1(Vi), P (·, 0) = P0.

(61)

3.2. Time discretization

To numerically solve (53), we fully discretize the problem by dividing the time interval
[0, 1] into n segments and let tk = k

n
. Now we consider the density on central time steps P =

{P (·, tk)}k=1,··· ,n ∈ (P(M̃))n and the flux on staggered time steps M = {M(·, tk− 1
2
)}k=1,··· ,n ∈

(Γ(TM̃))n.
Let the time differential operator be

(∂̃tP )(·, tk− 1
2
) :=

{
1

1/n
(P (·, tk)− P (·, tk−1)), k = 2, · · · , n,

1
1/n

(P (·, t1)− P0(·)), k = 1.
(62)

Then the discrete constraint set C̃(P0) is

C̃(P0) :=

{
(P,M) : (∂̃tP )(Vi, tk− 1

2
) + (∇M̃ ·M)(Vi, tk− 1

2
) = 0,∀Vi ∈ V, k = 1, · · · , n

P ∈ P(M̃))n,M ∈ (Γ(TM̃))n

}
.

(63)
Additionally, letting

P (·, tk− 1
2
) :=

1

2
W (P (·, tk)) +

1

2
W (P (·, tk−1)), k = 1, · · · , n

Ỹ(P,M) :=
1

n

n∑
k=1

s∑
j=1

ATjP (Tj, tk− 1
2
)L

(
Tj,

M(Tj, tk− 1
2
)

P (Tj, tk− 1
2
)

)
+

1

n

n−1∑
k=1

F̃(P (·, tk)) + F̃T (P (·, tn)).

(64)
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we formulate the discrete optimization problem as

min
P,M
Ỹ(P,M) + χC̃(ρ0)(P,M). (65)

Here χ is the indicator function χC(x) =

{
0, x ∈ C

+∞, x 6∈ C of a convex set C.

In the next section, we focus on solving the optimization problem (65).

4. Algorithm for Solving Variational MFGs on Triangular Meshes

In this section, we adapt the fast algorithm proposed in [52] to solve the discretized
potential mean-field game (65). This algorithm is based on a proximal gradient method
(PGD) [46, 7].

To solve (65), we conduct gradient descent on the smooth component Ỹ of the objective
function and proximal descent on the non-smooth component χC̃(P0). The gradient descent
step is trivially (

P (l+ 1
2

),M (l+ 1
2

)
)

=
(
P (l),M (l)

)
− η(l)∇P,M Ỹ

(
P (l),M (l)

)
(66)

with stepsize η(l). The proximal descent is exactly the projection to C̃(P0). The projection
guarantees that the continuity equation is satisfied and therefore the total mass does not
change over time. To conduct the projection step, let the inner product in discrete spaces
be

Ψ1,Ψ2 ∈ (P(M̃))n, 〈Ψ1,Ψ2〉V,t :=
1

n

n∑
k=1

〈Ψ1(·, tk),Ψ2(·, tk)〉V ,

U1, U2 ∈ (Γ(TM̃))n, 〈U1, U2〉T,t :=
1

n

n∑
k=1

〈U1(·, tk− 1
2
), U2(·, tk− 1

2
)〉T ,

Then

(P (l+1),M (l+1)) = projC̃(P0)(P
(l+ 1

2
),M (l+ 1

2
)) := argmin

(P,M)∈C̃(P0)

1

2

∥∥∥P − P (l+ 1
2

)
∥∥∥2

V,t
+

1

2

∥∥∥M −M (l+ 1
2

)
∥∥∥2

T,t
.

(67)
To solve the optimization problem (67), we introduce a dual variable Ψ = {Ψ(·, tk− 1

2
)}k=1,··· ,n ∈

(P(M̃))n on vertices and the staggered time steps. The Lagrangian is therefore

A(P,M,Ψ) :=
1

2

∥∥∥P − P (l+ 1
2

)
∥∥∥2

V,t
+

1

2

∥∥∥M −M (l+ 1
2

)
∥∥∥2

T,t

+
1

n

n∑
k=1

〈Ψ(·, tk− 1
2
), (∂̃tP )(·, tk− 1

2
) +∇M̃ ·M(·, tk− 1

2
)〉V .

(68)
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If we define ∂̃∗t as

(∂̃∗t Ψ)(·, tk) :=

{
1

1/n
(Ψ(·, tk− 1

2
)−Ψ(·, tk+ 1

2
)), k = 1, 2, · · · , n− 1,

1
1/n

Ψ(·, tn− 1
2
), k = n,

(69)

then the Lagrangian is also

A(P,M,Ψ) :=
1

2

∥∥∥P − P (l+ 1
2

)
∥∥∥2

V,t
+

1

2

∥∥∥M −M (l+ 1
2

)
∥∥∥2

T,t

+
1

n

n∑
k=1

〈(∂̃∗t Ψ)(·, tk), P (·, tk)〉V − 〈Ψ(·, t 1
2
), P0〉V

+
1

n

n∑
k=1

〈−∇M̃Ψ(·, tk− 1
2
),M(·, tk− 1

2
)〉T .

(70)

Thus the saddle point (P,M,Ψ) satisfies the linear system

(∂̃tP )(·, tk− 1
2
) +∇M̃ ·M(·, tk− 1

2
) = 0, k = 1, · · · , n. (71)

and {
P (·, tk) = P (l+ 1

2
)(·, tk)− (∂̃∗t Ψ)(·, tk), k = 1, · · · , n,

M(·, tk− 1
2
) = M (l+ 1

2
)(·, tk− 1

2
) +∇M̃Ψ(·, tk− 1

2
), k = 1, · · · , n.

(72)

Note that ∂̃t is a full rank operator, for k = 1, · · · , n, Ψ(·, tk− 1
2
) is the unique solution to

(∂̃t∂̃
∗
t Ψ)(·, tk− 1

2
)−∇M̃ · ∇M̃Ψ(·, tk− 1

2
) = (∂̃tP

(l+ 1
2

))(·, tk− 1
2
) +∇M̃ ·M

(l+ 1
2

)(·, tk− 1
2
). (73)

Since this linear solver is invariant to the data and the iteration number, in practice, we
precompute it to save cost in the main iteration.

To make sure the density is positive, we conduct the following safeguard step with a small
positive value ε after the proximal descent step.

P (l+ 1
2

) = max(P (l+ 1
2

), ε). (74)

We summarize our algorithm in Alg. 1.

5. Numerical Examples

In this section, we conduct various experiments to show the effectiveness and flexibility
of our mean-field game models on manifolds and the proposed numerical method. We pro-
vide numerical results on different manifolds. Most of these manifolds are non-Euclidean,
thus conventional settings of mean-field games cannot handle them. In all of our experi-
ments, we choose the induced metric for the manifold geometry, the quadratic dynamic cost

L (Tj, U(Tj, t)) := 1
2

∑
d

(
Ud(Tj, t)

)2
, and the arithmetic average w. The interaction and

terminal cost terms vary from examples and will be specified later. All of our numerical
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Algorithm 1 PGD for MFG on discrete mesh
Parameters P0

Initialization P (0) ∈ (P(M̃))n, and M (0) ∈ (Γ(TM̃))n.
for l = 0, 1, 2, . . . do

gradient descent(
P (l+ 1

2
),M (l+ 1

2
)
)

=
(
P (l),M (l)

)
− η(l)∇P,M Ỹ

(
P (l),M (l)

)
;

proximal descent for k = 1, · · · , n, solve Ψ for

(∂̃t∂̃
∗
t Ψ)(·, tk− 1

2
)−∇M̃ · ∇M̃Ψ(·, tk− 1

2
) = (∂̃tP

(l+ 1
2

))(·, tk− 1
2
) +∇M̃ ·M

(l+ 1
2

)(·, tk− 1
2
);

and conduct{
P (l+1)(·, tk) = P (l+ 1

2
)(·, tk)− (∂̃∗t Ψ)(·, tk), k = 1, · · · , n

M (l+1)(·, tk− 1
2
) = M (l+ 1

2
)(·, tk− 1

2
) +∇M̃Ψ(·, tk− 1

2
), k = 1, · · · , n.

safeguard P (l+ 1
2

) = max(P (l+ 1
2

), ε).
end for

experiments are implemented in Matlab on a PC with an Intel(R) i7-8550U 1.80GHz CPU
and 16 GB memory.

5.1. Numerical convergence analysis

In section 3, we derive the semi-discrete PDE system (54) from the optimality condition
of the semi-discrete problem (53) and show that it is consistent with the PDE system of the
continuous mean-field game (6). In this section, we conduct a numerical experiment to show
that the discrete minimizer of (65) approaches the continuous minimizer of (28) when the
mesh is refined. A theoretical convergence proof of the optimizer is out of the scope of this
paper and will be explored in the future.

Consider a Euclidean subspace M := [0, 1]2 ⊂ R2 and its uniform equilateral triangula-
tion. Let the dynamic cost be L(x,p) = 1

2
‖p‖2

2, the interaction cost F = 0 and the terminal
cost FT = ιρ1 , an indicator function of a given density ρ1. Then the problem becomes an
optimal transport problem. Taking ρ(x, 0) = x1 + 1

2
and ρ(x, 1) = 1 gives a closed-form

solution of the optimizer and the corresponding minimal objective value. As computed in
[52], the ground truth are Y∗ = 1

120
and

ρ∗(x, t) =


x1 +

1

2
, t = 0,

s(x, t) + t− 1

ts(x, t)
, 0 < t ≤ 1.
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m∗1(x, t) =


1

4
x1(x1 − 1)(2x1 + 1), t = 0,

x1

t2
− 3− t

2t3
s(x, t)− (t− 1)(t2 − 4)

8t3s(x, t)
− 3t− 4

2t3
, 0 < t ≤ 1.

with s(x, t) =
√

2tx1 +
(
t
2
− 1
)2

and m∗2 = 0.. Let n be the number of discretization

points in time and 1
nx

be the length of the triangles on the mesh. For given (n, nx),
we apply our algorithm to find the minimizer of the discrete problem (65) and compare
the objective value and numerical minimizer with the ground truth. We pick (n, nx) =
(8, 16), (16, 32), (32, 64), (64, 128) and plot the error in fig.3. It shows that when the space
and time discretizations are refined, the numerical minimizer approaches the continuous
minimizer and minimal objective value approaches the ground truth.
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Figure 3: The error of discrete objective values and optimizers with the continuous ground truth as the
triangular mesh is refined.

5.2. MFGs with local interactions

In this part, both F and FT take local forms for all experiments.

The U.S. map based triangular mesh. We first consider a U.S. map based triangular mesh,
which is the discretization of a subdomain on a spherical manifold. Assume that there are
two obstacles on the map and it takes extra effort for masses (agents) to pass through the

obstacle region C̃B ⊂ M̃. We define B : M̃ → R be the piece-wise linear indicator of the

obstacle with B(Vi) =

{
1, Vi ∈ C̃B,
0, Vi ∈ C̃B

(see Figure 4 obstacle).

We pick the initial density P0 shown in Figure 4 t = 0. The mass concentrates in
California. We let the mass move freely during the time interval. To reflect the impact
of the obstacle, we choose the interaction cost F̃(P (·, t)) = 50

∑h
i=1 AViP (Vi, t)B(Vi). We

also encourage the mass to stop in the central and eastern parts at the end. To achieve
this, we define the terminal cost F̃T (P (·, t)) = 1

10

∑h
i=1AViP (Vi, tn)BT (Vi) with BT (Vi) ={

1, 105◦W ≤ the longitude of Vi ≤ 130◦W,

0, otherwise.
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Our numerical results in Figure 4 show that the density in the obstacle region remains
low. This means the mass circumvents those areas very well. In addition, at t = 1, the
density in the central and eastern areas is generally denser than that in the western, which
meets our expectations.

Figure 4: Illustration of obstacle indicator B (column 1) and snapshots of a MFG on the US map (column
2-4).

“8”-shape with obstacles. In this example, we demonstrate that our model and algorithm can
successfully handle manifolds with complicated topology. We consider a “8” shape surface.
Similarly as before, we assume there are obstacles on the manifold and the indicator of
the obstacle B : M̃ → R is shown in Figure 5(a). In plots afterwards, we indicate the
obstacle region with a different transparency. We pick the initial density P0 aggregating on
the one end of “8” and the desired terminal density P1 on the other end (Figure 5(a)). For

the interaction cost, we still choose F̃(P (·, t)) = 50
∑h

i=1AViP (Vi, t)B(Vi) to avoid obstacle.

And we write the terminal cost as F̃T (P (·, t)) = 5
∑h

i=1AVi (P (Vi, 1)− P1(Vi))
2 to push the

terminal density P (·, 1) to the desired P1.
We list the snapshots of resulting density evolution in Figure 5(b). These results show

that the mass produced by our model successfully circumvents the obstacle on this genus-2
manifold. Additionally, the terminal density mainly aggregated in the support of P1 as we
expect.

Irregular Euclidean domain. Besides introducing B to impose a soft constraint of the ob-
stacle, the general setup on manifolds enables us to have a different implementation for the
hard obstacle constraints.

For example, consider an irregular Euclidean domain shown in Figure 6 with white regions
punctured. Instead of handling the complicated boundary conditions when conducting mean-
field game problems using conventional methods in Euclidean spaces, We view the region as
a two-dimensional manifold and use a triangular mesh to approximate it. Then we directly
apply our algorithm to the mesh without the shape complexity concern.

The initial density P0 and desired terminal density P1 are approximations of two Gaussian

distributions. And we choose terminal cost as F̃T (P (·, t)) = 10
∑h

i=1AViP (Vi, 1) log
(
P (Vi,1)
P1(Vi)

)
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(a) Illustration of the manifold, obstacle, initial density and terminal density

(b) Snapshots of the evolution

Figure 5: Illustration of the model and snapshots of the density evolution.

to push P (·, 1) to P1. In Figure 6, we compare the results with a vanilla interaction cost

F̃v(P (·, t)) = 0 (Figure 6(a)) and with a disperse cost F̃d(P (·, t)) =
∑h

i=1 AViP (Vi, t) log(P (Vi, t))

(Figure 6(b)). We see that with F̃d, the mass is prone to segregate during the evolution.

To understand this, we refer to the original game description. With F̃d, we actually solve
a mean-field game with F (x, ρ(·, t)) = log(ρ(x, t)) + 1. To reduce the cost J , agents prefer
locations with lower F (x, ρ(·, t)), i.e. lower density ρ(x).

Homer surface. As the last example with local cost, we work with the surface of homer. We
pick the initial density P0 concentrating on the belly and the desired terminal density P1

on the end of hands and feet. Fixing the terminal cost F̃T (P (·, 1)) = 5
2

∑h
i=1AVi(P (Vi, 1)−

P1(Vi))
2, we compare the vanilla interaction cost F̃v(P (·, t)) = 0 and congested F̃c(P (·, t)) =

1
10

∑h
i=1 AVi

√
P (Vi, t) + 10−4. The choice of F̃c actually corresponds to the mean-field game

with F (ρ(·, t)) = 1

10
√
ρ(x,t)+104

. To reduce the cost during evolution, the agents tend to

aggregate for a larger density value.
We solve the games with F̃v, F̃c to obtain the local minimizers (Pv,Mv), (Pc,Mc) and

report the corresponding dynamic cost, terminal cost and value of F̃c in Table 1. We also
show and compare Pv(·, t), Pc(·, t) at several time steps in Figure 7. The costs in Table 1
show that our algorithm effectively reduces the interaction cost. From the snapshots, we
observe that with the congested interaction cost, the mass move in a more compact manner.
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(a) MFG with vanilla F̃v(P (·, t)) = 0

(b) MFG with disperse F̃d(P (·, t)) =
∑h

i=1 AViP (Vi, t) log(P (Vi, t))

Figure 6: Snapshots of MFGs with different interactions on constrained Euclidean space.

(a) MFG with vanilla F̃v(P (·, t)) = 0

(b) MFG with congested F̃c(P (·, t)) = 1
10

∑h
i=1 AVi

√
P (Vi, t) + 10−4

Figure 7: Snapshots of a MFG on the homer surface.

Table 1: Comparison of dynamic, interaction and terminal costs for experiments on the homer surface.

dynamic cost 1
n

∑n−1
k=1 F̃c(P (·, tk)) terminal cost

vanilla 0.0079 0.0393 5.5× 10−5

congested 0.0084 0.0378 8.2× 10−5
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5.3. MFGs with non-local interactions

In this part, we show some mean-field games with non-local interaction costs.

The unit Sphere. In this example, we work on the triangular mesh of the unit sphere in five-
dimensional space. We first generate the mesh in three-dimensional space and then patch
zero to put the vertices in R5. After that, we apply a rigid transformation to the sphere by
multiplying the coordinates of the vertices with an orthogonal matrix. The initial density
P0 and desired terminal density P1 are spherical Gaussian. Again, we use the terminal cost

F̃T (P (·, t)) = 0.5
∑h

i=1AViP (Vi, 1) log
(
P (Vi,1)
P1(Vi)

)
. We then compute the game with vanilla in-

teraction cost F̃v(P (·, t)) = 0 and non-local F̃n(P (·, t)) = 25
∑h

i=1

∑
i′ AViP (Vi)K̃(Vi, Vi′)AVi′P (Vi′).

The kernel is defined as

K̃(Vi, Vi′) = exp
(
−(arccosVi

>Vi′)
2/σ2

)
.

Here σ = 0.1 and Vi
>Vi′ is the inner product of the two vectors in Euclidean space and

arccosVi
>Vi′ is the geodesic distance between Vi and Vi′ on the sphere. We use the ground

truth geodesic distance for simplicity. One can also compute the shortest path on the mesh
and store it when pre-processing the manifold. We conduct the quantitative and snapshot
comparison in Table 2 and in Figure 8. To view the result, we inversely transform the
sphere in R5 to R3 and plot the mesh therein. The table shows our algorithm effectively
leverages the dynamic, interaction and terminal cost when taking the non-local cost F̃n. And
the comparison in Figure 8 clearly illustrates that the non-local cost F̃n encourages mass
dispersion.

(a) MFG with vanilla F̃v(P (·, t)) = 0.

(b) MFG with non-local F̃n(P (·, t)) = 25
∑h

i=1

∑
i′ AVi

P (Vi)K̃(Vi, Vi′)AVi′P (Vi′).

Figure 8: Snapshots of MFGs with different interactions on the sphere.

Kitten. In the last example, we work with the kitten surface (Figure 9). Let the initial
density P0 concentrate on the paws and the desired terminal density on the ears. We

25



Table 2: Comparison of dynamic, interaction and terminal costs for experiments on the sphere.

dynamic cost 1
n

∑n−1
k=1 F̃n(P (·, tk)) terminal cost

vanilla 0.0267 0.1220 0.0023
non-local 0.0292 0.1152 0.0036

take the terminal cost F̃T (P (·, 1)) =
∑h

i=1AVi (P (Vi, 1)− P1(Vi))
2 to push the mass mov-

ing from bottom to top. We also compare the non-local interaction cost F̃n(P (·, t)) =
1
2

∑h
i=1

∑
i′ AViP (Vi, t)K̃(Vi, Vi′)AVi′P (Vi′ , t) with the vanilla F̃v(P (·, t)) = 0 in Figure 9.

The kernel is chosen as a weighted Laplacian matrix on the triangular mesh

K̃(Vi, Vi′) =
1

AVi

1

AVi′

3∑
d=1

s∑
j=1

ATjG
d(Tj, Vi)G

d(Tj, Vi′).

With this choice, the interaction cost is exactly

F̃n(P (·, t)) =
1

2

s∑
j=1

ATj
∥∥(∇M̃P )(Tj, tk)

∥∥2

2
,

and approximates 1
2

∫
M ‖∇Mρ(x, t)‖2

g(x) dMx. To reduce this cost, the density at each time
step P (·, tk) tends to be smooth on the space domain. The quantitative result in Table 3

shows the value 1
n

∑n−1
k=1 F̃n(P (·, tk)) is reduced by adding F̃n to the objective function. And

the comparisons of densities and colorbars in Figure 9 show that with F̃n in the objective
function, at each time step, the density distributes more uniformly on the manifold.

(a) (vanilla) MFG with F̃v(P (·, t)) = 0

(b) (non-local) MFG with F̃n(P (·, t)) = 1
2

∑h
i=1

∑
i′ AViP (Vi, t)K̃(Vi, Vi′)AVi′P (Vi′ , t)

Figure 9: Snapshots of MFGs with different interactions on “kitten”.
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Table 3: Comparison of dynamic, interaction and terminal costs for experiments on “kitten”.

dynamic cost 1
n

∑n−1
k=1 F̃n(P (·, tk)) terminal cost

vanilla 0.5998 213.6033 0.0312
non-local 1.2429 0.6678 0.1710

5.4. Computation time and accuracy

At the end of this numerical section, we report the computation time and accuracy of the
above experiments in Table 4. As the computational complexity of our algorithm depends
on the number of vertices h and number of triangles s on the mesh, we also include h, s in
the table.

As we mentioned in section 4, the proximal descent step requires solving a linear system
(73). And since the linear solver is invariant to iteration numbers, we precompute it to
reduce the total cost in the main iteration. The times reported in Table 4 include both the
precomputation and the main iteration.

To show that our numerical result is close to the local minimizer of the fully discretized
problem (65), we report the KKT residue in Table 4. To compute the KKT residue for a

given output (P,M), we first solve for Ψ = {Ψ(·, tk− 1
2
)}k=1,··· ,n ∈ (P(M̃))n such that

∂̃t∂̃
∗
t Ψ−∇M̃ · ∇M̃Ψ = ∂̃t(A

−1
V ∂P Ỹ(P,M)) +∇M̃ · (A

−1
T ∂M Ỹ(P,M)). (75)

Then let
EP (Vi, tk) := min

{
1

AVi
∇P (Vi,tk)Ỹ(P,M)− (∂̃∗t Ψ)(Vi, tk), P (Vi, tk)

}
,∀Vi ∈ V, k = 1, · · · , n

EM(Tj, tk) :=
1

ATj
∇M(Tj ,tk− 1

2
)Ỹ(P,M) + (∇M̃Ψ)(Tj, tk− 1

2
) = 0,∀Tj ∈ T, k = 1, · · · , n

Ec(Vi, tk− 1
2
) := (∂̃tP )(Vi, tk− 1

2
) + (∇M̃ ·M)(Vi, tk− 1

2
),∀Vi ∈ V, k = 1, · · · , n.

(76)
The KKT residue is defined as min{‖EP‖V,t, ‖EM‖T,t, ‖Ec‖V,t}. And P,M is the local mini-
mizer of (65), if and only if the KKT residue is 0.

6. Conclusion

In this work, we generalize mean-field games from Euclidean space to manifolds, design an
optimization-based algorithm to solve variational mean-field games, and conduct numerical
experiments on various manifolds with triangular mesh representation. We first propose both
the PDE formulation and the variational formulation of the Nash Equilibrium of a mean-field
game. We also establish their equivalence on manifolds. To solve the potential mean-field
games on manifolds, we use triangular meshes, piece-wise linear functions, and piece-wise
constant vector fields for discretization. Then we apply the proximal gradient method to solve
the corresponding discrete optimization problems. We conduct comprehensive numerical
experiments to demonstrate the flexibility of the model in handling different MFG problems
on various manifolds.
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Table 4: Computation time and accuracy

Triangle mesh
and interaction cost

h s time(s)
number of
iteration

time(s)
per iteration

KKT
residue

U.S. map 2900 5431 199.4813 3000 0.0665 3.15e-02
“8”-shape 766 1536 97.5769 5000 0.0195 1.70e-01

Irregular
Euclidean

vanilla
2473 4627

250.6317
5000

0.0501 1.49e-01
disperse 274.1786 0.0548 1.42e-01

Homer
vanilla

2353 4702
163.2711

3000
0.0544 2.62e-03

congested 168.6198 0.0562 2.75e-03

Unit shpere
vanilla

2562 5120
132.0967

2000
0.0660 8.42e-03

non-local 147.9476 0.0740 8.25e-03

Kitten
vanilla

2884 5768
213.8950

3000
0.0713 2.99e-02

non-local 260.6147 0.0869 1.10e-01
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