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First-order optimization algorithms are widely used today. Two stan-
dard building blocks in these algorithms are proximal operators
(proximals) and gradients. Although gradients can be computed for a
wide array of functions, explicit proximal formulas are only known for
limited classes of functions. We provide an algorithm, HJ-Prox, for
accurately approximating such proximals. This is derived from a col-
lection of relations between proximals, Moreau envelopes, Hamilton-
Jacobi (HJ) equations, heat equations, and Monte Carlo sampling. In
particular, HJ-Prox smoothly approximates the Moreau envelope and
its gradient. The smoothness can be adjusted to act as a denoiser.
Our approach applies even when functions are only accessible by
(possibly noisy) blackbox samples. We show HJ-Prox is effective nu-
merically via several examples.
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The rise of computational power and availability of big1

data brought great interest to first-order optimization2

methods. Second-order methods (e.g. Newton’s method) are3

effective with moderately sized problems, but generally do not4

scale well due to memory requirements increasing quadrat-5

ically with problem size and computation costs increasing6

cubically. First-order methods are often comprised of gra-7

dient and proximal operations, which are typically cheap to8

evaluate relative to problem size. Although gradients can be9

computed for many functions (or numerically approximated),10

the computation of proximals involves solving a small opti-11

mization problem. In special cases (e.g. with `1 norms), these12

subproblems admit closed-form solutions that can be quickly13

evaluated (e.g. see (1)). These formulas yield great utility14

in many applications. However, we are presently interested15

in the class of problems with (potentially nondifferentiable)16

objectives for which proximal formulas are unavailable.17

We propose a new approach to compute proximal operators18

and corresponding Moreau envelopes for functions f . We19

leverage the fact that the Moreau envelope of f is the solution20

to a Hamilton-Jacobi (HJ) equation (2). The core idea is to21

add artificial viscosity to HJ equations and obtain explicit22

formulas for the proximal and Moreau envelopes using Cole-23

Hopf transformation (2, Section 4.5.2). This enables proximals24

and Moreau envelopes of smooth f to be approximated.25

Our proposed proximal approximations (called HJ-Prox)26

are computed using only function evaluations and can, thus,27

be used in a zeroth-order fashion when integrated within28

an optimization algorithm. Finally, Monte Carlo sampling29

is employed to mitigate the curse of dimensionality when30

using HJ-Prox in dimensions higher than three. Numerical31

experiments show HJ-Prox is effective when employed within32

optimization algorithms when the proximal is unavailable,33

including with blackbox oracles. Our work can generally34

be applied to first- order proximal-based algorithms such as35

Alternating Direction Method of Multipliers (ADMM) and its36

variants (3–6), and operator splitting algorithms (7–11).37

Proximal Operators and Moreau Envelopes 38

Consider a function f : Rn → R and time t > 0. The proximal 39

proxtf and the Moreau envelope u of f (12, 13) are defined by 40

proxtf (x) , argmin
z∈Rn

{
f(z) + 1

2t‖z − x‖
2
}

[1] 41

and 42

u(x, t) , min
z∈Rn

{
f(z) + 1

2t‖z − x‖
2
}
, [2] 43

where ‖ · ‖ denotes the `2 norm. The proximal is the set of
minimizers defining the envelope. As shown in Figure 1, the
envelope u widens valleys of f while sharing global minimizers.
A well-known result (e.g. see (1, 14)) states, if the envelope u
is differentiable at x, then

∇u(x, t) =
x− proxtf (x)

t
. [3]

Rearranging reveals 44

proxtf (x) = x− t∇u(x, t). [4] 45

A key idea we use is to estimate the proximal for continuous 46

f by replacing u with a smooth approximation uδ ∈ C∞(Rn), 47

derived from a Hamilton-Jacobi (HJ) equation. 48

Hamilton-Jacobi Connection 49

The envelope u is a special case of the Hopf-Lax formula (2). 50

Fix any time T > 0. For all times t ∈ [0, T ], the envelope u 51

is a viscocity solution (e.g. see (2, Chapter 3, Theorem 6)) to 52

the HJ equation 53{
ut + 1

2‖∇u‖
2 = 0 in Rn × (0, T ]
u = f on Rn × {t = 0}.

[5] 54

Fixing δ > 0, the associated viscous HJ equation is 55{
uδt + 1

2‖∇u
δ‖2 = δ

2 ∆uδ in Rn × (0, T ]

uδ = f on Rn × {t = 0},
[6] 56

where ∆u is the Laplacian of u. If f is bounded and Lipschitz, 57

Crandall and Lions (15) show uδ approximates u, i.e. uδ → u 58

uniformly as δ → 0+. 59

Significance Statement

Many objectives do not admit explicit proximal formulas and
cannot be estimated using exact gradients (e.g. when objec-
tives are only accessible via an oracle). Yet, only using (possi-
bly noisy) objective samples, we give a formula for accurately
approximating such proximals.
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Fig. 1. Moreau envelope approximation uδ using only noisy function samples with
δ1 = 0.1 and δ2 = 0.01. Here, f(x) = |x|+ ε, with additive noise ε ∼ N (0, 0.1)
in each function evaluation. To aid visualization, we include the envelope u (black
line) of |x|. Here larger δ1 better smooths noise and approximates the envelope u.

Cole-Hopf Transformation60

Using the transformation vδ , exp(−uδ/δ), originally at-61

tributed to Cole and Hopf (2, 16), the function vδ solves62

the heat equation, i.e.63 {
vδt − δ

2 ∆vδ = 0 in Rn × (0, T ]
vδ = exp(−f/δ) on Rn × {t = 0}. [7]64

This transformation is of interest since vδ can be expressed
via the convolution formula (e.g. see (2) for a derivation)

vδ(x, t) =
(

Φδt ∗ exp(−f/δ)
)

(x) [8a]

=
∫
Rn

Φδt(x− y) exp (−f(y)/δ) dy, [8b]

where Φδt is a fundamental solution to [7], i.e.65

Φδt(x) ,
{

(2πδt)−n/2 exp
(
−|x|2/(2δt)

)
in Rn × (0,∞)

0 otherwise.
[9]66

Using algebraic manipulations, we recover the viscous solution67

uδ(x, t) = −δ ln
(

Φδt ∗ exp(−f/δ)
)

(x) in Rn × (0, T ]. [10]68

Differentiating reveals69

∇uδ(x, t) = −δ · ∇
[
ln
(
vδ(x, t)

)]
= −δ · ∇v

δ(x, t)
vδ(x, t) . [11]70

Monte Carlo Sampling71

There are different ways to estimate the integral formula for
vδ in [8]. For example, one may use a grid for numerical
estimation, use uniform sampling, or potentially sample from
exp(−f(y)/δ). However, we find the most efficient way to
estimate this vδ by writing this as an expectation with respect
to a Gaussian, i.e.

vδ(x, t) =
(

Φδt ∗ exp(−f/δ)
)

(x) [12a]

= Ey∼N (x,δt) [exp (−f(y)/δ)] , [12b]

where y ∼ N (x, δt) denotes y ∈ Rn is sampled from a normal
distribution with mean x and standard deviation

√
δt. In prac-

tice, finitely many samples yi ∼ N (x, δt) are used to estimate

Algorithm 1 HJ-Prox – Naïve Implementation

1: HJ-Prox(x, t; f, δ, N, ε) :
2: for i ∈ [N ]:
3: Sample yi ∼ N (x, δt)
4: zi ← f(yi)
5: prox ← softmax(−z/δ)>[y1 · · · yN ]
6: return prox

[12b]. This can greatly reduce sampling complexity (17, 18).
Differentiating vδ with respect to x reveals

∇vδ(x, t) = − 1
δt
· Ey∼N (x,δt) [(x− y) exp (−f(y)/δ)] . [13]

Plugging [12b] and [13] into [11] enables ∇uδ to be written as 72

∇uδ(x, t) = 1
t
·
(
x−

Ey∼N (x,δt) [y· exp (−f(y)/δ)]
Ey∼N (x,δt) [exp (−f(y)/δ)]

)
. [14] 73

The above relation was used in (19). Here we take a further
step, combining [4] and [14] to get an HJ-based estimate

proxtf (x) = x− t∇u(x, t) [15a]

≈ x− t∇uδ(x, t) [15b]

=
Ey∼N (x,δt) [y · exp (−f(y)/δ)]
Ey∼N (x,δt) [exp (−f(y)/δ)] . [15c]

As shown below, Monte Carlo sampling enables efficient ap- 74

proximation of proximals in high dimensions (e.g. see Figure 2). 75

Moreover, [15c] estimates proximals only using function values, 76

making it apt for zeroth-order optimization. 77

Numerical Considerations 78

A possible numerical challenge in our formulation is to address
numerical instabilities arising from the exponential term un-
derflowing or overflowing with limited numerical precision, due
to either δ being small or f(y) being large. Indeed, this makes
the naïve implementation shown in Algorithm 1 numerically
unstable. However, this may be remedied as the proximal
formula may equivalently be re-scaled via

proxtf (x) = prox t
α
αf (x) [16a]

≈
Ey∼N (x,δt/α) [y· exp (−αf(y)/δ)]
Ey∼N (x,δt/α) [exp (−αf(y)/δ)] , [16b]

where t is replaced by t/α and f by αf in [15c]. In this case, 79

if f/δ becomes too large with respect to numerical precision 80

limitations, it may be scaled down with a corresponding α. We 81

can check whether we obtain an underflow with exp(αf(y)/δ) 82

and rescale α using a linesearch-like approach (e.g. see the sup- 83

port information where we add a single conditional statement 84

to recursively halve α until exp(αf(y)/δ) > ε for a tolerance 85

ε. Small α makes the variance large and more samples may 86

be required to accurately estimate the expectations, i.e. a 87

trade-off may be observed between numerical stability and 88

accuracy of estimations. Another possible mitigation is to 89

adaptively rescale f based on the number of recursive steps 90

taken in HJ-Prox. Note large δ can smooth approximations 91

and mitigate the stochastic characteristics of HJ-Prox. 92
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f(x) = ‖x‖1, proxtf (x) = shrink(x; t)
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Fig. 2. (a1, a2, a3): Plots for function f , exact Moreau envelope u, and HJ-based Moreau envelope uδ . (b1, b2, b3): Plots for true proximal and approximate HJ-based
proximal operators. (c1, c2, c3): Proximal approximations across different dimensions and samples. (d1, d2, d3): HJ-based Moreau envelopes uδ obtained from noisy function
samples. Here, we use δ = δ1 = 10−1 and δ2 = 10−2. As expected, higher δ values have a stronger smoothing property. The HJ-proximals are good approximations of the
true proximal operators (seen through the Moreau envelopes) and can even be applied when only (potentially noisy) samples are available. For the noisy case, we obtain a
C∞ approximation of the underlying function f . For these experiments, we use t = 0.1, 0.5, 2.0 for rows 1, 2, and 3, respectively.

Convergence Analysis93

The arguments above give intuition for a proximal approxima-94

tion. However, having now the formula [15c], we may formalize95

its utility without reference to differential equations. Below96

we define a standard class of functions used in optimization.97

Definition 1 (Weakly Convex). For ρ > 0, a function98

f : Rn → R is ρ-weakly convex if f(x) + ρ
2‖x‖

2 is convex∗.99

Our main result shows HJ-Prox converges to the proximal.100

Theorem 1 (Proximal Approximation). If f : Rn → R is101

ρ-weakly convex, for some ρ > 0, and either L-Lipschitz or is102

differentiable with L-Lipschitz gradient, then, for all x ∈ Rn103

and t ∈ (0, 1/ρ), the proximal proxtf (x) is unique and104

lim
δ→0+

Ey∼N (x,δt) [y· exp (−f(y)/δ)]
Ey∼N (x,δt) [exp (−f(y)/δ)] = proxtf (x). [17]105

A proof of Theorem 1 is in the supporting information (SI),106

and we note HJ-Prox may fail when f is discontinuous.107

Remark 1 (Smoothing Property). In practice, we must pick108

positive δ. Thankfully, increasing δ comes with the benefit of109

smoothing estimates (due to the Laplacian in the viscous HJ110

equation), as shown in Figure 1 and Figure 2 (right column).111

∗Weakly convex functions are also referred to as semi-convex functions (20)

Related Works 112

Our proposal closely relates to zeroth-order optimization al- 113

gorithms, which do not require gradients. In fact, HJ-Prox 114

does not require differentiability of f . Related methods in- 115

clude Random Gradients (21–24), sparsity-based methods (25– 116

27), derivative-free quasi-Newton methods (28–30), finite- 117

difference-based methods (31, 32), numerical quadrature-based 118

methods (33, 34), Bayesian methods (29), and comparison 119

methods (35). As proximals closely relate to gradient of 120

Moreau envelopes, our work relates to methods that minimize 121

Moreau envelopes (or their approximations) (16, 19, 36–40). 122

The theoretical result in our work is closely related to the 123

study of asymptotics as δ → 0 of integrals containing ex- 124

pressions of the form exp(−f/δ), i.e. Laplace’s method (2). 125

Moreover, the idea of adding artificial diffusion to Burgers’ 126

equation and then applying Cole-Hopf transformation to ap- 127

proximate the gradient of the solution to the HJ equation 128

has been largely developed in (2) in the context of obtain- 129

ing solutions to conservation laws in 1D. The connections 130

between Hopf-Lax and Cole-Hopf was first introduced in the 131

context of machine learning in (16) and in the context of global 132

optimization in (19). 133
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Moreau Envelope for Nonconvex Functions
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Fig. 3. HJ-based Moreau envelope for nonconvex functions with t = 0.1 and t = 0.2 in the left and right figures, respectively.

Proximal Comparisons for Functions with Unknown Proximals
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Fig. 4. (a): Plots for function f , exact Moreau envelope u, and HJ-based Moreau envelope uδ . (b): Plots for true proximal and approximate HJ-based proximal operators. (c):
HJ-based Moreau envelopes uδ obtained from noisy function samples. (d): HJ-based proximal computed using noisy function samples. Since there is no analytic proximal
formula, we obtain the “true” proximal by solving the optimization Eq. (1) using gradient descent. The HJ-based proximal is a good approximation of the true proximal operators
and can even be applied when only (potentially noisy) samples are available. As in the analytic case, we obtain a C∞ approximation of the underlying function f in the noisy
case. Here, δ = 0.1 for the noiseless case, and δ1 = 0.5 and δ2 = 0.1 for the noisy case.

Numerical Experiments134

Examples herein show HJ-Prox (Algorithm 1) can135

I approximate proximals and smooth noisy samples,136

I converge comparably to existing algorithms, and137

I solve a new class of zeroth-order optimization problems.138

Each item is addressed by a set of experiments. Regarding the139

last item, to our knowledge, HJ-Prox is the first tool to enable140

faithful solution estimation for constrained problems where141

the objective is only accessible via noisy blackbox samples.142

Proximal and Moreau Envelope Estimation. Herein we com-143

pare HJ-Prox to known proximal operators. Figure 2 shows144

HJ-Prox for three functions (absolute value, quadratic, and log145

barrier) whose proximals are known. In the leftmost column146

(a), we show the Moreau envelope u(x, t) given by [2] and147

an estimate of Moreau envelope using the HJ-Prox uδ(x, t).148

Given the close connection between proximals and Moreau149

envelopes, we believe this visual is a natural and intuitive way150

to gauge whether the proximal operator is accurate. Column151

(b) juxtaposes the true proximal and HJ-Prox. Column (c)152

shows the accuracy of HJ-Prox across different dimensions and153

numbers of samples. In the rightmost column (d), we estimate154

Moreau envelopes using HJ-Prox using noisy function values.155

The resulting envelopes are smooth since uδ is a smooth (i.e.156

C∞(Rn)) approximation of u. Thus, HJ-Prox can be used to157

obtain smooth estimates from noisy observations.158

Figure 3 shows Moreau envelopes for nonconvex functions 159

f . As in the other example, here HJ-based Moreau envelope 160

estimates also accurately approximate Moreau envelopes. Note 161

these proximals may be well-defined only for small time t (as 162

the proximal operator objective in [1] is strongly convex for 163

small t). Lastly, we apply HJ-Prox with a function that has 164

no analytic formula for its proximal or Moreau envelope in 165

Figure 4. In this experiment, we obtain a “true” Moreau 166

envelope and proximal operator by solving the minimization 167

problem [1] iteratively via gradient descent. Faithful recovery 168

is shown in Figures 4a and 4b, and smoothing in Figure 4c. 169

Optimization with Proximable Function. This experiment jux- 170

taposes HJ-prox and an analytic proximal formula in an opti- 171

mization algorithm. Consider the Lasso problem (41, 42) 172

min
x∈R1000

1
2‖Ax− b‖

2
2 + ‖x‖1, [18] 173

where entries of A ∈ R500×1000 and b ∈ R500 are i.i.d. Gaussian 174

samples. The iterative soft thresholding algorithm (ISTA) (43) 175

defines a sequence of solution estimates {xk} for all k ∈ N via 176

xk+1 = shrink
(
xk − βA>(Axk − b); β

)
, [19] 177

where the shrink operator defined element-wise by 178

shrink(x; t) , sign(x) max(0, |x| − t). [20] 179

Figure 5 compares the convergence of ISTA using the shrink 180

operator in [20] and HJ-Prox estimates of the shrink. To ensure 181

convergence, we choose β = 1/‖A>A‖2. Our experiments show 182

HJ-based ISTA can solve Lasso, up to an error tolerance. 183

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Osher et al.
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HJ-ISTA Comparison
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(a) Varying Smoothing δ, Fixed # Samples N = 1000 (b) Varying # Samples N , Fixed Smoothing δ = 1.0

Fig. 5. Convergence plots showing function value for solution estimates {xk} when solving the LASSO problem [18] with ISTA, juxtaposing use of an analytic proximal formula,
gradient descent (i.e. ignoring the proximal), and the approximate HJ-prox (Algorithm 1). Plots with HJ-prox show averaged results from 30 trials with distinct random seeds. To
ensure the proximal is playing a role in the optimization process, we also show a function value history of gradient descent applied to the unregularized least squares problem
in [18] (i.e. , with no `1 norm term).

Relative Errors for HJ-MM using noisy f
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Fig. 6. Convergence plots showing relative errors for solution estimates {xk} when solving the minimization problem [21] with linearized method of multipliers and HJ-prox
(Algorithm 1). Each plot shows averaged results from 30 trials with distinct random seeds. Due to the noise , we observe in (a) that a larger δ = 10 leads to a better
approximation, but too large (δ = 100) leads to oversmoothing and reduces accuracy. We find δ = 10 to be most optimal, and (b) shows that more samples lead to more
accurate approximations (as expected). To ensure the proximal is playing a role in the optimization process, we also show the relative error when gradient decent is applied to
the constraint residual in [21] (i.e. , we only minimize constraint residual). Indeed, gradient descent performs poorly by comparison. Finally, we note one recursive iteration (thus
doubling the samples) occurs in the first few hundred iterations of HJ-MM. See the algorithm in the Supporting Information for this recursive scheme.

Optimization with Noisy Objective Oracles. Consider a con-184

strained minimization problem where objective values f can185

only be accessed via a noisy oracle† O. Our task is to solve186

min
x∈R1000

E[O(x)] s.t. Ax = b, [21]187

where A and b are as in the prior experiment and the expecta-188

tion E is over oracle noise. To model “difficult” settings (e.g.189

when a singular value decomposition of A is unavailable), we190

do not use any projections onto the feasible set. As knowledge191

of the structure of O is unknown to the solver, we emphasize192

schemes for solving [21] must use zeroth-order optimization193

schemes (29). Here, each oracle call returns194

O(x) = (1 + ε) · ‖Wx‖1, where ε ∼ N (0, σ2), [22]195

with a new noise sample ε ∈ R used in each oracle evaluation,
σ = 0.005, and W ∈ R1000×1000 a fixed Gaussian matrix. In
words, the noise has magnitude 0.5% of ‖Wx‖1. Although
the oracle structure is shown by [22], our task is to solve
[21] without such knowledge. We do this with the linearized
method of multipliers (e.g. see Section 3.5 in (9)). Specifically,
for each index k ∈ N, the update formulas for the solution
estimates {xk} and corresponding dual variables {uk} are

xk+1 = proxtO
(
xk − tA>(uk + λ(Axk − b))

)
[23a]

uk+1 = uk + λ(Axk+1 − b), [23b]

with step sizes t = 1/‖A>A‖2 and λ = 1/2. Without noise ε,196

convergence occurs if tλ‖A>A‖2 < 1 (9), justifying our choices197

for t and λ. The proximal proxtO is estimated by HJ-prox.198

†HereO is a noisy function, not to be confused with “Big O” often used to describe limit behaviors.

We separately solve the optimization problem using full 199

knowledge of the objective ‖Wx‖1 without noise; doing this 200

enables us to plot the relative error of the sequence {xk} in 201

Figure 6. All the plots show {xk} converges to the optimal 202

x?, up to an error threshold, regardless of the choice of δ 203

and number of samples N . Notice Figure 6a shows “small” 204

values of δ give comparable accuracy, but that oversmoothing 205

with “large” δ = 100 degrades performance of the algorithm. 206

These plots also illustrate the HJ-prox formula is efficient with 207

respect to calls to the oracle O. Indeed, note the plots in 208

Figure 6b that decrease relative error use, at each iteration, 209

respectively use 0.1, 1, and 10 oracle calls per dimension of the 210

problem! We hypothesize the smoothing effect of the viscous 211

uδ and averaging effect of Monte Carlo sampling contribute 212

to the observed convergence. In this experiment, HJ-prox 213

converges to within an error tolerance, is efficient with respect 214

to oracle calls, and smooths Gaussian noise. 215

Conclusion 216

We propose a novel algorithm, HJ-prox, for efficiently approx- 217

imating proximal operators. This is derived from approxi- 218

mating Moreau envelopes via viscocity solutions to Hamilton- 219

Jacobi (HJ) equations, as given via the Hopf-Lax formula. 220

Upon rewriting this approximation in terms of expectations, 221

we use Monte Carlo sampling to avoid discretizing the integrals, 222

thereby mitigating the curse of dimensionality. Our numerical 223

examples show HJ-Prox is effective for a collection of functions, 224

both with and without known proximal formulas. Moreover, 225

HJ-prox can be effectively used in constrained optimization 226

problems even when only noisy objective values are available. 227
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HJ-Prox Implementation

Below we provide a more numerically stable HJ-Prox
implementation that avoids underflow.

Algorithm 1 HJ-Prox – IncludesUnderflow Check
1: HJ-Prox(x, t; f, δ, N, α, ε) :
2: for i ∈ [N ]:
3: Sample yi ∼ N (x, δt/α)
4: zi ← f(yi)
5: if exp (−αzi/δ) ≤ ε:
6: return HJ-Prox(x, t; f, δ, N, α/2, ε)
7: prox ← softmax(−αz/δ)>[y1 · · · yN ]
8: return prox

Proofs

We fix the point x ∈ Rn for the following calculations.
For concise expression below, for t > 0 and δ > 0, define

φt(z) , f(z) + 1
2t‖z − x‖

2, [1]

φ?t , inf{φt(y) : y ∈ Rn}, ξ? , proxtf (x) = argminφt
(n.b. existence and uniqueness of the minimizer ξ? are
shown below), and

σδ(z) , exp (−φt(z)/δ)
‖ exp(−φt/δ)‖L1(Rn)

= e−
φt(z)
δ

‖e−
φt
δ ‖L1(Rn)

. [2]

Lemma 1. If the conditions of Theorem 1 hold, then∫
Rn
σδ(y) dy = 1, σδ(y) ≥ 0, for all y ∈ Rn, [3]

and, for all r ∈ (0, 1) and polynomials p of positive degree,

lim
δ→0+

∫
Rn−B(ξ?,r)

σδ(y)p(‖y − proxtf (x)‖) dy = 0, [4]

where proxtf (x) is the unique minimizer of φt.

Proof. Since integration is linear and the limit of a sum
is the sum of the limits, it suffices to verify [4] for any
p(x) = xk with k ≥ 1. First we show σδ satisfies properties
to be a probability density (Step 1). We also show various
Lp norm limits hold for the denominator (Step 2) and
numerator(Step 3) of the integrand in [4]. Combining
these limits gives [4] (Step 4).

Step 1 The numerator and denominator in the definition
[2] for σδ are nonnegative, making σδ ≥ 0 everywhere. By
the choice of t, φt is θ , 1/t− ρ strongly convex, and so
it admits a unique minimizer ξ? = proxtf (x) and satisfies

φt(y) ≥ φ?t +〈0, y − ξ?〉+ θ

2‖y−ξ
?‖2, for all y ∈ Rn. [5]

Consequently,

0 < e−
φt(y)
δ ≤ e−

φ?
t

+ θ
2 ‖y−ξ

?‖2

δ , for all y ∈ Rn. [6]

Since the upper bound above is an exponential that decays
quadratically (i.e. a Gaussian), the middle term in [6]
is integrable over Rn, and so the denominator in the
definition of σδ is positive and finite. Thus, [3] readily
follows as the integral of the numerator of σδ equals the
denominator of σδ.

Step 2 A classic result in analysis (e.g. see (1, Exercise
3.4)) states Lp norms converge to the L∞ norm as p→∞,
and so

lim
δ→0+

∥∥e−φt∥∥
L

1
δ (Rn)

= ‖e−φt‖L∞(Rn) = e−φ
?
t , [7]

where, for all δ > 0, the L 1
δ norm is finite by Step 1 and

the final equality holds since φ?t is the infimum of φt.

Step 3 Integrating the numerator of [4] (i.e. not includ-
ing division by the L1 norm in the definition of σδ) for
p(x) = xk gives∫

Rn−B(ξ?,r)
e−

φt(y)
δ ‖y − ξ?‖k dy [8a]

≤
∫ ∞
r

e−
φ?
t

+ θτ2
2

δ τk · n|B(ξ?, 1)|τn−1 dτ [8b]

=n|B(ξ?, 1)| ·
∫ ∞
r

e−
φ?
t

+ θτ2
2 −(n+k−1) ln(τδ)

δ dτ, [8c]

where the first inequality holds by a change of variables
to polar coordinates and using the strong convexity of φt
in [5], and the final line holds by properties of logarithms.

Now define

ε ,
θ

4(n+ k − 1) > 0, [9]

1



where the denominator is positive since n ≥ 1 and p has
positive degree (i.e. k ≥ 1). For all 0 < δ < ε, observe

τ > 1 =⇒ τ δ < τε and τ ≤ 1 =⇒ τ δ ≤ 1ε, [10]

i.e.
τ δ ≤ max(τ, 1)ε, for all δ ∈ (0, ε). [11]

Whence, rewriting [8], we deduce, for all δ ∈ (0, ε),

1
n|B(ξ?, 1)| ·

∫
Rn−B(ξ?,r)

e−
φt(y)
δ ‖y − ξ?‖k dy [12a]

≤
∫ ∞
r

e−
φ?
t

+ θτ2
2 −ε(n+k−1) ln(max(τ,1))

δ dτ. [12b]

Let q(τ) be the numerator inside the exponential in the
integrand of [12b]. Taking the limit yields

lim
δ→0+

‖e−q‖
L

1
δ ([r,∞))

=
∥∥e−q∥∥

L∞([r,∞))
. [13]

Let τ? be the minimizer of q over [r,∞). If τ? > 1, then
the first order necessary condition and [9] together imply

0 = θτ? − ε(n+ k − 1)
τ?

[14]

and so

τ? =

√
ε(n+ k − 1)

θ
= 1

2 , [15]

a contradiction (n.b. the second equality holds by choice
of ε in [9]). Consequently, τ? ≤ 1. Since q is quadratic
in τ and strictly increasing on [r, 1), we deduce τ? = r.
Thus,

‖e−q‖L∞([r,∞)) = e−φ
?
t−

θr2
2 . [16]

Furthermore, note

lim
δ→0+

[n|B(ξ?, 1)|]δ = 1. [17]

Together [12], [16], and [17] imply

lim
δ→0+

[∫
Rn−B(ξ?,r)

e−
φt(y)
δ ‖y − ξ?‖k dy

]δ
≤ e−φ

?
t−

θr2
2 . [18]

Step 4 Define

γ ,
e−φ

?
t−

θr2
2

e−φ
?
t
∈ (0, 1). [19]

By [7] and [18] and the definition of σδ,

lim
δ→0+

[∫
Rn−B(ξ?,r)

σδ(y)‖y − ξ?‖k dy
]δ
≤ γ < 1. [20]

Consequently, there is δ > 0 such that, for all δ ∈ (0, δ],[∫
Rn−B(ξ?,r)

σδ(y)‖y − ξ?‖k dy
]δ
≤ γ + 1

2 , [21]

where we note (γ + 1)/2 ∈ (γ, 1), and so

lim
δ→0+

∫
S
σδ(y)‖y − ξ?‖k dy ≤ lim

δ→0+

(
γ + 1

2

)1/δ
[22a]

= 0, [22b]

as desired.

Lemma 2. If the conditions of Theorem 1 hold, then
there are constants a > 0 and b ≥ 0 such that φt has an
upper bound of the form, for all y ∈ Rn,

φt(y) ≤ a‖y−proxtf (x)‖2 + b‖y−proxtf (x)‖+φ?t , [23]

where proxtf (x) is the unique minimizer of φt.

Proof. For notational compactness, set ξ? = proxtf (x),
and note ξ? exists and is unique by Lemma 1. We first
verify the statement for L-Lipschitz f (Step 1) and then
for when the gradient of f is L-Lipschitz (Step 2).

Step 1 Suppose f is L-Lipschitz for some L > 0, i.e.

‖f(y)− f(z)‖ ≤ L‖y − z‖, for all y, z ∈ Rn. [24]

Next note, for all y ∈ Rn,

‖y − x‖2 − ‖ξ? − x‖2 [25a]
= ‖y‖2 − ‖ξ?‖2 − 2 〈y − ξ?, x〉 [25b]
≤ (‖ξ?‖+ ‖y − ξ?‖)2 − ‖ξ?‖2 + 2‖y − ξ?‖‖x‖ [25c]
= ‖y − ξ?‖2 + 2‖y − ξ?‖(‖ξ?‖+ ‖x‖). [25d]

Consequently, [24] and [25] together imply, for all y ∈ Rn,

φt(y)− φ?t [26a]

=f(y)− f(ξ?) + 1
2t
[
‖y − x‖2 − ‖ξ? − x‖2] [26b]

≤L‖y − ξ?‖ [26c]

+ 1
2t
[
‖y − ξ?‖2 + 2‖y − ξ?‖(‖ξ?‖+ ‖x‖)

]
. [26d]

Thus, the upper bound in [23] holds with

a = 1
2t and b = ‖ξ

?‖+ ‖x‖
t

+ L. [27]

Step 2 Consider when f has an L-Lipschitz gradient for
some L > 0. By (2, Lemma 5.7), for all y ∈ Rn,

f(y) ≤ f(ξ?) + 〈∇f(ξ?), y − ξ?〉+ L

2 ‖y − ξ
?‖2 [28a]

≤ f(ξ?) + L‖y − ξ?‖+ L

2 ‖y − ξ
?‖2. [28b]

Rearranging and again using [25] implies

φt(y)− φ?t [29a]

≤L‖y − ξ?‖+ L

2 ‖y − ξ
?‖2 [29b]

+ 1
2t
[
‖y − ξ?‖2 + 2‖y − ξ?‖(‖ξ?‖+ ‖x‖)

]
[29c]

Thus, the upper bound in [23] holds with

a = 1
2

(1
t

+ L
)

and b = L+ ‖ξ
?‖+ ‖x‖
t

. [30]

This completes both cases of the proof.
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Below we restate and prove the main theorem, which
is an extension of a lemma in Section 4.5.2 of (3).
Theorem 1 (Proximal Approximation). If f : Rn →
R is ρ-weakly convex, for some ρ > 0, and either L-
Lipschitz or is differentiable with L-Lipschitz gradient,
then, for all x ∈ Rn and t ∈ (0, 1/ρ), the proximal
proxtf (x) is unique and

lim
δ→0+

Ey∼N (x,δt) [y· exp (−f(y)/δ)]
Ey∼N (x,δt) [exp (−f(y)/δ)] = proxtf (x). [31]

Proof. Let x ∈ Rn and t > 0 be given. For notational
compactness, denote the HJ-prox formula by

ξδ ,
Ey∼N (x,δt) [y· exp (−f(y)/δ)]
Ey∼N (x,δt) [exp (−f(y)/δ)] , for all δ > 0, [32]

denote the proximal by ξ? , proxtf (x), and note φ?t =
φt(ξ?). As argued in Lemma 1, ξ? is well-defined. We first
bound φt−φ?t using Jensen’s inequality (Step 1). Second,
we show φt(ξδ)→ φt(ξ?) (Step 2). The strong convexity
of φt enables us to establish the desired limit (Step 3).

Step 1 Note ξδ can be rewritten via

ξδ =
[∫

Rn
e−

φt(y)
δ dy

]−1 ∫
Rn
y · e−

φt(y)
δ dy. [33]

Using σδ, the estimate can be more concisely written via

ξδ =
∫
Rn
σδ(y)y dy = Ey∼Pσδ [y] , [34]

where the expectation holds by utilizing the fact [3] shows
σδ defines a probability density. Thus, Jensen’s inequality
may be applied to deduce

φ?t ≤ φt(ξδ) = φt (Ey∼σδ [y]) ≤ Ey∼σδ [φt(y)] . [35]

In integral form, we may subtract φ?t to write

0 ≤ φt(ξδ)− φ?t ≤
∫
Rn
σδ(y)[φt(y)− φ?t ] dy. [36]

Step 2 Let ε > 0 be given. To deduce φt(ξδ)→ φ?t , we
verify there is δ? > 0 such that

|φt(ξδ)− φ?t | ≤ ε, for all δ ∈ (0, δ?]. [37]

By [36], the relation [37] holds if there is such a δ? that∫
Rn
σδ(y)[φt(y)− φ?t ] dy ≤ ε, for all δ ∈ (0, δ?]. [38]

We verify this by splitting the integral into two parts. By
Lemma 2, the fact f is either L-Lipschitz or L-smooth
implies there is a > 0 and b ≥ 0 such that, for all y ∈ Rn,

φt(y)− φ?t ≤ a‖y − ξ?‖2 + b‖y − ξ?‖. [39]

Fix r ∈ (0, 1) sufficiently small to ensure

r(ar + b) = ar2 + br ≤ ε

2 . [40]

This implies

φt(y)− φ?t ≤ a‖y − ξ?‖2 + b‖y − ξ?‖ [41a]

≤ ε

2 , for all y ∈ B(ξ?, r). [41b]

Thus, integrating over the ball B(ξ, r) reveals

A ,

∫
B(ξ?,r)

σδ(y)[φt(y)− φ?t ] dy [42a]

≤
∫
B(ξ,r)

σδ(y) · ε2 dy [42b]

≤ ε

2 ·
∫
Rn
σδ(y) dy [42c]

= ε

2 , [42d]

where the second inequality follows from [3]. Next we
integrate over the rest of Rn. Define

Bδ ,

∫
Rn−B(ξ?,r)

σδ(y)[φt(y)− φ?t ] dy [43a]

≤
∫
Rn−B(ξ?,r)

σδ(y) · p(‖y − ξ?‖) dy. [43b]

By Lemma 1, there is ω > 0 such that

Bδ ≤
ε

2 , for all δ ∈ (0, ω]. [44]

Consequently, [42] and [44] together imply∫
Rn
σδ(y)[φt(y)− φ?t ] dy = A+Bδ [45a]

≤ ε

2 + ε

2 [45b]

≤ ε, for all δ ∈ (0, ω]. [45c]

Hence [38] holds, taking δ? = ω. That is, we obtain the
convergence φt(ξδ)→ φ?t as δ → 0+.

Step 3 Let ε > 0. It suffices to show there is δ > 0 such
that

‖ξδ − ξ?‖ ≤ ε, for all δ ∈ (0, δ]. [46]
Define

S , {z : ‖z − ξ?‖ ≥ ε} [47]
and note, by the strong convexity of φt (e.g. see [5]),

φt(z) ≥ φ?t + θε2

2 , for all z ∈ S. [48]

By Step 2, there is µ > 0 such that

φt(ξδ) ≤ φ?t + θε2

4 , for all δ ∈ (0, µ]. [49]

Thus, ξδ /∈ S, for all δ ∈ (0, µ], i.e. (46) holds, taking
δ = µ. This completes the proof.
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