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Abstract

Mean-field games (MFGs) have shown strong modeling capabilities for large
systems in various fields, driving growth in computational methods for mean-
field game problems. However, high order methods have not been thoroughly
investigated. In this work, we explore applying general high-order numerical
schemes with finite element methods in the space-time domain for computing
the optimal transport (OT), mean-field planning (MFP), and MFG problems.
We conduct several experiments to validate the convergence rate of the high
order method numerically. Those numerical experiments also demonstrate
the efficiency and effectiveness of our approach.
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1. Introduction

Proposed by Lasry and Lions [29] and independently by Caines, Huang,
and Malhamé [25], the mean-field game models an infinite number of identical
agents’ interactions in a mean-field manner, characterizing the equilibrium
state of the system. Thanks to its substantial descriptive ability, the MFG
becomes an important approach to studying complex systems with large pop-
ulations of interacting agents, such as crowd dynamics, financial markets,
power systems, pandemics, etc.[17, 18, 28, 6, 7, 27, 34, 33]. The mean-field
planning is a class of MFGs where the distribution of agents at terminal time
is imposed [41]. On the other hand, the Benamou-Brenier dynamic formu-
lation [10] of the optimal transport problem connects with the variational
form of the potential mean-field games. It can be treated as a special case
of the mean-field planning problem, which aims to find an efficient way of
moving one probability distribution to another. Along with the empirical
success of MFG and OT in modeling and real-world applications, the study
of mean-field game is also expanding. From the PDE view, the mean-field
game model can be described by a system of coupled partial differential equa-
tions: a forward-in-time Fokker-Planck (FP) equation governs the evolution
of the population and a backward-in-time Hamilton-Jacobi-Bellman (HJB)
equation for the value function that characterizes the control problem. For
a review of MFG theory, we refer to[30, 22, 14, 21].

With such a wide range of applications, computational methods play a
crucial role since most MFG and OT problems do not have analytical solu-
tions. While some recent computational approaches take advantage of ma-
chine learning methods and game theories [42, 38, 4, 19, 32, 23, 15, 24], clas-
sical numerical methods are mostly developed discretization using finite dif-
ference schemes or semi-Lagrangian schemes. In [1], the MFG system is dis-
cretized using finite difference scheme and then solved by Newton’s method.
Semi-Lagrangian methods are studied in [16]. As for MFGs and OTs that can
be written in a variational form, optimization methods, such as augmented
Lagrangian, Primal-dual Hybrid Gradient, Alternating Direction Method of
Multipliers, are applied to solve the discretized system[10, 11, 2, 8, 12, 39].
Recently, computation of MFGs on mainfolds has been investigated in [45].
For the survey of the numerical methods, we refer to [3, 31]. Within the aug-
mented Lagrangian framework, the (low-order) finite element discretization
has been used frequently; see, e.g., [10, 11, 5, 26].

Pioneering works on computational OT/MFG focus on first or second or-
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der methods; the general high order method is not well studied. Yet, high or-
der methods generally have faster convergence rates in numerical analysis and
provide more accurate solutions on a much coarse computational mesh than
low order methods. Therefore, exploring high order computational methods
for mean-field games and optimal transport problems is vital.

In this work, we propose a general high order numerical method for solving
the optimal transportation problem and mean-field game (control) problems
using the finite element method. More precisely,

1. We discretize the augmented Lagrangian formulations of the MFP and
MFG systems using high-order space-time finite elements. Consider-
ing derivation information used in the saddle point formulation, we
approximate the value function (dual variable) φ using high order H1-
conforming finite elements, while the density and momentum (primal
variables) ρ,m are approximated via a high-order (discontinuous) inte-
gration rule space which only records values on the high-order (space-
time) integration points. Our discrete saddle-point problem is then
solved via the ALG2 algorithm, following [11]. To the best of our
knowledge, this is the first time high-order schemes with more than
second order accuracy being applied.

2. We present a series of comprehensive experiments to showcase the ef-
ficacy and efficiency of the proposed numerical algorithms. These ex-
periments numerically validate the convergence rate of the algorithms
as a function of mesh size and polynomial degree. In particular, we
show a high-order method on a coarse mesh is more accurate than a
low order method on a fine mesh with the same number of degrees of
freedom. Furthermore, we apply the finite element scheme to a set of
mean-field planning and mean-field game problems on non-rectangular
domains (with obstacles) and computational graphics, demonstrating
the validity and practicality of our method.

This paper is organized as follows. Section 2 review the dynamic formu-
lation of optimal transportation, mean-field planning, and mean-field games.
Section 3 presents the high-order schemes we designed for computing the
above problems and the companion algorithm. Section 4 demonstrates the
effectiveness of the high-order method with numerical experiments. Finally,
we make some conclusions and remarks in Section 5.
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2. OT, MFP, and MFG

In this section, we briefly review dynamic MFP and MFG problems.

2.1. Dynamic MFP

Consider the model on time interval [0, 1] and space region Ω ⊂ RD. Let
ρ be the density of agents through t ∈ [0, 1], m be the flux of the density
which models strategies (control) of the agents, and (ρ,m) ∈ C:

C :=

(ρ,m) :ρ : [0, 1]× Ω→ R+, ‖ρ‖L1 < +∞,
∫

Ω

ρ(t,x)dx = 1,∀t ∈ [0, 1],

m : [0, 1]× Ω→ RD is Lebesgue measurable,

 .

(2.1)
We are interested in ρ with given initial and terminal density ρ0, ρ1 and (ρ,m)
satisfying zero boundary flux and mass conservation law, which satisfies the
constraint set C(ρ0, ρ1):

C(ρ0, ρ1) := C ∩

{
(ρ,m) :∂tρ+ divxm = 0,

m · n = 0 for x ∈ ∂Ω, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1,

}
.

(2.2)
where the equation hold in the sense of distribution.

We denote L : R+ × RD → R := R ∪ {∞} as the dynamic cost function
and A : R→ R as a function modeling interaction cost. The goal of MFP is
to minimize the total cost among all feasible (ρ,m) ∈ C(ρ0, ρ1). Therefore,
the problem can be formulated as

inf
(ρ,m)∈C(ρ0,ρ1)

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x)) + A(ρ(t,x))dxdt. (2.3)

It is clear to see C(ρ0, ρ1) is convex and compact. In addition, the mass
conservation law ∂tρ+divxm = 0 and zero flux boundary condition m ·n =
0,x ∈ ∂Ω imply that C(ρ0, ρ1) 6= ∅ if and only if

∫
Ω
ρ0 =

∫
Ω
ρ1. Once C(ρ0, ρ1)

is non-empty, the existence and uniqueness of the optimizer depends on L
and F . In this paper, we consider a typical dynamic cost function L by

L(β0,β1) :=


‖β1‖2
2β0

if β0 > 0

0 if β0 = 0,β1 = 0

+∞ if β0 = 0,β1 6= 0.

. (2.4)
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Various choices of the interaction function will be given in the numerics
section.

If the interaction cost function A = 0, the MFP becomes the dynamic
formulation of optimal transport problem:

(OT) min
ρ,m∈C(ρ0,ρ1)

∫ 1

0

∫
Ω

L(ρ(t,x),m(t,x))dxdt. (2.5)

Since m = ρv, this definition of L makes sure that m = 0 wherever ρ = 0.
OT can be viewed as a special case of MFP where masses move freely in Ω
through t ∈ [0, 1].

To simplify notation, we denote an element in the set C as α := (α0,α1) ∈
C. Introducing the Lagrangian multiplier φ : [0, 1]×Ω for the constraint (2.2),
the MFP problem (2.3) can be reformulated as the following saddle-point
problem:

inf
α

sup
φ
F (α)−G(φ)− 〈α,∇t,xφ〉, (2.6a)

where

F (α) :=

∫ 1

0

∫
Ω

L(α0(t,x),α1(t,x)) + A(α0(t,x))dxdt, (2.6b)

G(φ) :=

∫
Ω

−φ(1,x)ρ1(x) + φ(0,x)ρ0(x)dx, (2.6c)

∇t,x = (∂t, gradx) is the space-time gradient operator, and 〈α,β〉 :=
∫ 1

0

∫
Ω
α·

β dxdt is the space-time integral. The KKT system for this saddle-point
system (with cost function L in (2.4)) is the following PDE system on the
space-time domain [0, 1]× Ω

∂tρ+ divxm = 0, (2.7a)
m

ρ
− gradxφ = 0, (2.7b)

∂tφ+
|m|2

2ρ2
= A′(ρ), (2.7c)

with boundary conditions

m · n = 0, on [0, 1]× ∂Ω, (2.7d)

ρ(0,x) = ρ0(x), ρ(1,x) = ρ1(x) on Ω. (2.7e)
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Denoting [L+A]∗(α∗) as the convex conjugate (Legendre transformation)
of L(α0,α1) + A(α0) with L given in (2.4), i.e.,

[L+ A]∗(α∗) = sup
α
α ·α∗ − L(α0,α1)− λA(α0)

= sup
α0

α0 · (α∗0 + |α∗1|2)− L(α0, α0α
∗
1)︸ ︷︷ ︸

= 1
2
α0|α∗

1|2

−A(α0)

= sup
α0

α0 · (α∗0 +
1

2
|α∗1|2)− A(α0)

= A∗(α∗0 +
1

2
|α∗1|2),

where in the second equality we used the optimality condition α1 = α0α
∗
1.

By duality, we have

L(α0,α1) + A(α0) = sup
α∗
α ·α∗ − A∗(α∗0 +

1

2
|α∗1|2). (2.8)

Using the above relation, we have the following dual formulation of the
saddle-point problem (2.6a):

sup
α

inf
φ,α∗

F ∗(α∗) +G(φ) + 〈α,∇t,xφ−α∗〉, (2.9)

where

F ∗(α∗) =

∫ 1

0

∫
Ω

A∗(α∗0 +
1

2
|α∗1|2) dxdt.

Introducing the augmented Lagrangian

Lr(φ,α,α
∗) := F ∗(α∗)+G(φ)+〈α,∇t,xφ−α∗〉+

r

2
〈∇t,xφ−α∗,∇t,xφ−α∗〉,

where r is a positive parameter, it is clear that the corresponding saddle-point
problem

sup
α

inf
φ,α∗

Lr(φ,α,α
∗) (2.10)

has the same solution as (2.9).
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2.2. Dynamic MFG

For MFG, the terminal density ρ1 is not explicitly provided but it satisfies
a given preference. The goal of MFG is to minimize the total cost among all
feasible (ρ,m) ∈ C(ρ0):

inf
(ρ,m)∈C(ρ0)

F ((ρ,m)) +

∫
Ω

Γ(ρ(1,x))dx︸ ︷︷ ︸
:=R(ρ(1,·))

, (2.11)

where Γ : R→ R is the terminal cost, and the constraint set C(ρ0) is similar
to C(ρ0, ρ1) :

C(ρ0) := C ∩

{
(ρ,m) :∂tρ+ divxm = 0,

m · n = 0 for x ∈ ∂Ω, ρ(0, ·) = ρ0,

}
. (2.12)

Similar to MFP, we reformulate the problem (2.11) into a saddle-point
problem:

inf
α,ρ1

sup
φ
F (α) +R(ρ1) + (ρ1, φ(1, ·))− (ρ0, φ(0, ·))− 〈α,∇t,xφ〉, (2.13)

in which (α, β) :=
∫

Ω
αβ dx is the spatial integration. Here the KKT system

of the saddle-point problem (2.13) is simply the MFP system (2.7) with
boundary condition (2.7e) replaced by the following:

ρ(0,x) = ρ0(x), φ(1,x) = −Γ′(ρ1(x)) on Ω.

Introducing the dual variables α∗ and ρ∗1 for α and ρ1, respectively, we
get the following equivalent saddle-point problem:

sup
α,ρ1

inf
φ,α∗,ρ∗1

F ∗(α∗) + 〈α,∇t,xφ−α∗〉

+R∗(ρ∗1)− (ρ1, φ(1, ·) + ρ∗1) + (ρ0, φ(0, ·)), (2.14)

where R∗(ρ∗1) :=
∫

Ω
Γ∗(ρ1(x))dx, with Γ∗ being the convex conjugate of Γ.

The augmented Lagrangian reformulation of (2.14) is the following:

sup
α,ρ1

inf
φ,α∗,ρ∗1

F ∗(α∗) +R∗(ρ∗1) + (ρ0, φ(0, ·))

+ 〈α,∇t,xφ−α∗〉+
r1

2
〈∇t,xφ−α∗,∇t,xφ−α∗〉

− (ρ1, φ(1, ·) + ρ∗1) +
r2

2
(φ(1, ·) + ρ∗1, φ(1, ·) + ρ∗1), (2.15)

where r1, r2 are two positive parameters.
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Remark 2.1. Following the seminal works in [9, 11], we propose our high-
order schemes for MFP and MFG based on the augmented Lagrangian formu-
lations (2.10). and (2.15). The discrete saddle-point problem is then solved
using the ALG2 algorithm [20]. The major novelty of our scheme is the use
of high-order space-time finite elements for the discretization of the variables
in (2.10) and (2.15). This is the first time high-order schemes with more
than second order accuracy being applied to such problems.

3. High-order schemes for OT, MFP and MFG

In this section, we discretize the augmented Lagrangian problems (2.10)
and (2.15) using high-order space-time finite element spaces. We start with
notation including the mesh and definition of finite element spaces to be
used. We then formulate the discrete saddle-point problems using these
finite element spaces, which is solved iteratively using the ALG2 algorithm
[20]. Throughout this section, we restrict the discussion to D = 2 spatial
dimensions.

Since space/time derivative information is needed for φ, we approximate
it using (high-order) H1-conforming finite elements. On the other hand, since
no derivative information appear for α, α∗, (and ρ1 and ρ∗1 for MFG), it is
natural to approximate these variables only on the (high-order) integration
points.

3.1. The finite element spaces and notation

Let Ih = {Ij}Nj=1 be a triangulation of the time domain [0, 1] with Ij =
[xj−1, xj], and 0 = x0 < x1 < · · · < xN = 1. Let Th = {T`}M`=1 be a con-
forming triangulation of the spatial domain Ω, where we assume the element
T` := ΦT`(T̂ ) is obtained from a polynomial mapping ΦT` from the reference

element T̂ , which, is a unit triangle or unit square. We obtain the space-time
mesh for ΩT := [0, 1] × Ω using tensor product of the spatial and temporal
meshes:

Ih ⊗ Th := {Ij ⊗ T` : ∀j ∈ {1, · · · , N}, and ` ∈ {1, · · · ,M}}.

We denote Pk(I) as the polynomial space of degree no greater than k on

the interval I, and Pk(T̂ ) as the polynomial space of degree no greater than

k if T̂ is a unit triangle, or the tensor-product polynomial space of degree no
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greater than k in each direction if T̂ is a unit square, for k ≥ 1. The mapped
polynomial space on a spatial physical element T ∈ Th is denoted as

Pk(T ) := {v̂ ◦ (ΦT )−1 : ∀v̂ ∈ Pk(T̂ ))}.

We denote {ξ̂i}Nk
i=1 as a set of quadrature points with positive weights

{ω̂i}Nk
i=1 that is accurate for polynomials of degree up to 2k+1 on the reference

element T̂ , i.e., ∫
T̂

f̂ dx =

Nk∑
i=1

ω̂if̂(ξ̂i), ∀f̂ ∈ P2k+1(T̂ ). (3.1)

Note that when T̂ is a reference square, we simply use the Gauss-Legendre
quadrature rule with Nk = (k + 1)2, which is optimal. On the other hand,

when T̂ is a reference triangle, the optimal choice of quadrature rule is more
complicated; see, e.g., [46, 44] and references cited therein. For example,
the number Nk for 0 ≤ k ≤ 6 of the symmetric quadrature rules on a
triangle provided in [46] are given in Table 1. The integration points and

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Nk on Triangle 1 6 7 15 19 28 37

Table 1: Number of quadrature points Nk for the quadrature rule on a triangle that is
accurate up to degree 2k + 1 for 0 ≤ k ≤ 6.

weights on a physical element T` are simply obtained via mapping: {ξ`i :=

ΦT`(ξ̂i)}
Nk
i=1, and {ω`i := |gradxΦT`(ξ̂i)|ω̂i}

Nk
i=1. Moreover, we denote {ηji }k+1

i=1

as the set of (k+1) Gauss-Legendre quadrature points on the interval Ij with
corresponding weights {ζji }k+1

i=1 . To simplify the notation, we denote the set
of physical integration points and weights

Ξk
h := {ξ`i : 1 ≤ i ≤ Nk, 1 ≤ ` ≤M}, (3.2a)

Ωk
h := {ω`i : 1 ≤ i ≤ Nk, 1 ≤ ` ≤M}, (3.2b)

Hk
h := {ηji : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ N}, (3.2c)

Zk
h := {ζji : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ N}. (3.2d)

Moreover, we denote (·, ·)h as the discrete inner-product on the mesh Th using
the quadrature points Ξk

h and weights Ωk
h:

(α, β)h :=
M∑
`=1

Nk∑
i=1

α(ξ`i )β(ξ`i )ω
`
i ,
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and 〈·, ·〉h as the discrete inner-product on the space-time mesh Ih⊗Th using
the quadrature points Ξk

h, H
k
h and weights Ωk

h, Z
k
h :

〈α, β〉h :=
M∑
`=1

Nk∑
is=1

N∑
j=1

k+1∑
it=1

α(ηjit , ξ
`
is)β(ηjit , ξ

`
is)ω

`
isζ

`
it .

We are now ready to present our finite element spaces:

V k
h := {v ∈ H1(ΩT ) : v|Ij×T` ∈ Pk(Ij)⊗ Pk(T`) ∀j, `}, (3.3)

W k
h := {w ∈ L2(ΩT ) : w|Ij×T` ∈ Pk(Ij)⊗W k(T`) ∀j, `}, (3.4)

Mk
h := {µ ∈ L2(Ω) : µ|T` ∈ W k(T`) ∀`}, (3.5)

where V k
h is an H1-conforming space on the space-time mesh Ih ⊗ Th, W k

h

is an L2-conforming space on the space-time mesh Ih ⊗ Th, and Mk
h is an

L2-conforming space on the spacial mesh Th, in which the local space

W k(T`) := Pk(T`)⊕ δWk(T`),

is associated with the integration rule in (3.1) such that dimW k(T`) = Nk,
and the nodal conditions

ϕ`i(ξ
`
j) = δij, ∀1 ≤ j ≤ Nk, (3.6)

in which δij is the Kronecker delta function determines a unique solution
ϕ`i ∈ W k(T`). This implies that {ϕ`i}

Nk
i=1 is a set of nodal bases for the space

W k(T`), i.e.,

W k(T`) = span1≤i≤Nk
{ϕ`i}. (3.7)

When T ` is mapped from a reference square, we have Nk = (k + 1)2, hence
W k(T`) is simply the (mapped) tensor product polynomial space Pk(T`).
Moreover, we emphasize that the explicit expression of the basis function φ`i
does not matter in our construction, as only their nodal degrees of freedom
(DOFs) on the quadrature nodes will enter into the numerical integration.
Furthermore, let {ψji (t)}k+1

i=1 be the set of basis functions for Pk(Ij) corre-
sponding to the Gauss-Legendre quadrature nodes {ηji }k+1

i=1 , i.e., ψji ∈ Pk(Ij)
satisfies

ψji (η
j
l ) = δil, ∀1 ≤ l ≤ k + 1.
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With this notation by hand, we have

W k
h = span

{
ψjit(t)ϕ

`
is(x) :

1 ≤ it ≤ k + 1, 1 ≤ is ≤ Nk,
1 ≤ j ≤ N , 1 ≤ ` ≤M

}
(3.8)

and

Mk
h = span

{
ϕ`is(x) : 1 ≤ is ≤ Nk, 1 ≤ ` ≤M

}
(3.9)

We approximate the dual variable φ using the H1-conforming finite ele-
ment space V k+1

h , each components of α and α∗ using the integration rule
space W k

h , and the variables ρ1 and ρ∗1 (for MFG) using the integration rule
space Mk

h .

3.2. High-order FEM for MFP and MFG

The discrete scheme for MFP (2.10) reads as follows: given a space-time
mesh Ih ⊗ Th and a polynomial degree k ≥ 0, find αh,α

∗
h ∈ [W k

h ]3, and
φh ∈ V k+1

h such that

sup
αh∈[Wk

h ]3
inf

φh∈V k+1
h ,α∗

h∈[Wk
h ]3
Lr,h(φh,αh,α

∗
h), (3.10)

where the discrete augmented Lagrangian is

Lr,h := F ∗h (α∗h) +Gh(φh) + 〈αh,∇t,xφh −α∗h〉h
+
r

2
〈∇t,xφh,∇t,xφh〉 − r〈∇t,xφh,α

∗
h〉h +

r

2
〈α∗h,α∗h〉h, (3.11)

in which

F ∗h (α∗h) := 〈A∗(α∗0,h +
1

2
|α∗1,h|2), 1〉h, (3.12)

G∗h(φh) := − (φh(1,x), ρ1(x))h + (φh(0,x), ρ0(x))h. (3.13)

Note that all terms in the discrete augmented Lagrangian (3.11) are in-
tegrated using numerical integration (·, ·)h or 〈·, ·〉h, except the space-time
Laplacian term in the second row of (3.11), which is integrated using exact
integration 〈·, ·〉 to avoid a singular matrix for the Laplacian.

Similarly, the discrete scheme for MFG (2.15) reads as follows: given a
space-time mesh Ih⊗Th and a polynomial degree k ≥ 0, find αh,α

∗
h ∈ [W k

h ]3,
ρ1,h, ρ

∗
1,h ∈Mk

h , and φh ∈ V k+1
h such that

sup
αh∈[Wk

h ]3,ρ1,h∈Mk
h

inf
φh∈V k+1

h ,α∗
h∈[Wk

h ]3,ρ∗1,h∈M
k
h

LMFG
r,h (φh,αh, ρ1,h,α

∗
h, ρ
∗
1,h), (3.14)
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where the discrete augmented Lagrangian is

LMFG
r,h =F ∗h (α∗h) +R∗h(ρ

∗
1,h) + (ρ0, φh(0, ·))h

+ 〈αh,∇t,xφ−α∗h〉h − (ρ1,h, φh(1, ·) + ρ∗1,h)h

+
r1

2
〈∇t,xφh,∇t,xφh〉 − r1〈∇t,xφh,α

∗
h〉h +

r1

2
〈α∗h,α∗h〉h

+
r2

2
(φh(1, ·), φh(1, ·)) + r2(φh(1, ·), ρ∗1,h)h +

r2

2
(ρ∗1,h, ρ

∗
1,h)h, (3.15)

in which

R∗h(ρ
∗
1,h) := (Γ∗(ρ∗1,h), 1)h. (3.16)

3.3. The ALG2 algorithm

The discrete saddle-point problems (3.10) and (3.14) can be solved effi-
ciently using the ALG2 algorithm [20], where minimization of φh, α

∗
h, and

ρ∗1,h are decoupled. For simplicity, we only illustrate the main steps for the
discrete MFG problem (3.14); see also [9, 11]. One iteration of ALG2 contains
the following three steps.

Step A: update φh
Minimize LMFG

r,h with respect to the first component by solving the elliptic

problem: Find φm+1
h ∈ V k+1

h such that it is the solution to

inf
φh∈V k+1

h

LMFG
r,h (φh,α

m
h , ρ

m
1,h,α

∗,m
h , ρ∗,m1,h ).

This is simply a linear, constant-coefficient, space-time diffusion problem:
Find φm+1

h ∈ V k+1
h such that

r1〈∇t,xφ
m+1
h ,∇t,xψh〉+ r2(φm+1

h (1, ·), ψh(1, ·)) (3.17)

= 〈r1α
∗,m
h −αmh ,∇t,xψh〉h − (r2ρ

∗,m
1,h − ρ

m
1,h, ψh(1, ·))h − (ρ0, ψh(0, ·))h,

for all ψh ∈ V k+1
h .

Step B: update α∗h and ρ∗1,h
Minimize LMFG

r,h with respect to the last two components by solving the

nonlinear problem: Find α∗,m+1
h ∈ [W k

h ]3 and ρ∗,m+1
1,h ∈ Mk

h such that they
are the solutions to

inf
α∗

h∈[Wk
h ]3,ρ∗1,h∈M

k
h

LMFG
r,h (φm+1

h ,αmh , ρ
m
1,h,α

∗
h, ρ
∗
1,h).
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Using the basis functions in (3.8) and (3.9), we write

αh =
M∑
`=1

Nk∑
is=1

N∑
j=1

k+1∑
it=1

a`,is,j,itψ
j
it

(t)ϕ`is(x), ρ1,h =
M∑
`=1

Nk∑
is=1

r`,isϕ
`
is(x),

α∗h =
M∑
`=1

Nk∑
is=1

N∑
j=1

k+1∑
it=1

a∗`,is,j,itψ
j
it

(t)ϕ`is(x), ρ∗1,h =
M∑
`=1

Nk∑
is=1

r`,isϕ
`
is(x),

with a`,is,j,it , a
∗
`,is,j,it

, r`,is and r∗`,is .

By the choice of the numerical integration and the nodal bases for W k
h

and Mk
h , we observe that this optimization problem is decoupled for each

DOF of α∗,m+1
h and ρ∗1,h, hence can be efficiently solved pointwisely: for each

`, is, j, it, find a∗,m+1
`,is,j,it

∈ R3 such that it solves

inf
a∗=(a∗0 ,a

∗
1 )∈R3

A∗(a∗0 +
1

2
|a∗1|2) +

r1

2
|a∗|2

− (am`,is,j,it + r1∇t,xφ
m+1
h (ηjit , ξ

`
is)) · a

∗, (3.18)

and find r∗,m+1
`,is

∈ R such that it solves

inf
r∗∈R+

Γ∗(r∗) +
r2

2
|r∗|2 − (rm`,is − r2φ

m+1
h (1, ξ`is)) · r

∗. (3.19)

Both optimization problems can be efficiently solved in parallel using the
Newton’s method.

Step C: update αh and ρ1,h

This is a simple pointwise update for the DOFs of the Lagrange multi-
pliers αh and ρ1,h:

am+1
`,is,j,it

= am`,is,j,it + r1(∇t,xφ
m+1
h (ηjit , ξ

`
is))− am+1

`,is,j,it
), (3.20)

rm+1
`,is

= rm`,is − r2(φm+1
h (1, ξ`is)) + rm+1

`,is
). (3.21)

We use the `∞-errors in the Lagrange multipliers

erram := max
`,is,j,it

|am+1
`,is,j,it

− am`,is,j,it |, (3.22)

errrm := max
`,is
|rm+1
`,is
− rm`,is|, (3.23)

to monitor the convergence of the ALG2 algorithm.
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Remark 3.1. We specifically note that the use of the integration rule space
W k
h and numerical integration is crucial for the efficient implementation of

Step B in the ALG2 algorithm, which leads to a pointwise update per integra-
tion point. If this space and numerical integration were not chosen carefully,
additional unnecessary degrees of freedom coupling maybe introduced, which
slows down the overall algorithm.

4. Numerical experiments

In this section, we conduct comprehensive experiments to show the effi-
ciency and effectiveness of the proposed numerical algorithms. We restrict
ourself to structured (hyper-)rectangular meshes. The case with unstruc-
tured meshes will be considered elsewhere. We first numerical verify the
convergence of rate of the algorithm related to the mesh size and polyno-
mial degree. Throughout, we take the augmented Lagrangian parameters to
be r = r1 = r2 = 1. Our numerical simulations are performed using the
open-source finite-element software NGSolve [43], https://ngsolve.org/.

4.1. Convergence rates

We first consider OT problems with known exact solutions. Specifically,
we take the domain Ω = Rd with d = 1 or d = 2, cost A(ρ) = 0 in (2.3) with
initial and terminal densities:

ρ0(x) = exp(−50|x− x0|2), ρ1(x) = exp(−50|x− x1|2),

where x0 = 0.25,x1 = 0.75 when spatial dimension d = 1, and x0 =
(0.25, 0.25),x1 = (0.75, 0.75) when spatial dimension d = 2. The exact
solution is simply a traveling wave solution:

ρex(t,x) = exp(−50|x− (1 + 2t)x0|2),

mex,i(t,x) = 0.5 exp(−50|x− (1 + 2t)x0|2), ∀1 ≤ i ≤ d,

where mex = (mex,1, · · · .,mex,d). We truncate the domain Ω to be a unit
box [0, 1]d, and replace the homogeneous boundary condition (2.7d) with a
boundary source term

m · n = mex · n, on [0, 1]× ∂Ω.

14
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With this modification, the G-term in (2.6a) contains an additional boundary
source term:

G(φ) :=

∫
Ω

−φ(1,x)ρ1(x) + φ(0,x)ρ0(x) dx+

∫ 1

0

∫
∂Ω

φ(t,x)mex · n dsdt.

We apply the scheme (3.10) with polynomial degree k = 0, 1, 3 on a se-
quence of uniform hypercubic meshes with 2s+2/(k+1) cells in each direction
for s = 0, 1, 2, 3. The total number of DOFs on the s-level meshes is the same
for each polynomial degree, which is 2(s+2)(d+1) for W k

h , and (2(s+2) + 1)d+1

for V k+1
h . So their computational costs are similar. We apply the ALG2

algorithm to (3.10) with a stopping tolerance erram < 10−10 where erram is
given in (3.22). We take the parameter r = 1. The DOFs on the coarsest
meshes for d = 1 are shown in Figure 1.

(a) k = 0: 4×4 grid (b) k = 1: 2×2 grid (c) k = 3: 1×1 grid

Figure 1: Coarse mesh DOFs. Circles: DOFs for V k+1
h ; Squares: DOFs for W k

h . The
coarse mesh is 4× 4 for k = 0, 2× 2 for k = 1, and 1× 1 for k = 3.

We record the L2(ΩT )-convergence rates of ρh and mh, along with the
convergence rate of the distance

W 2
2 =

∫ 1

0

∫
Ω

|m|2

2ρ
dxdt

in Table 2 for d = 1, and Table 3 for d = 2. We find that the convergence
behavior for d = 1 and d = 2 are similar, in particular, (nearly) optimal
L2-convergence rates of k + 1 are observed on the finest mesh for each case,
and the average convergence rates for the distance W 2

2 is between 2k+ 2 and
2k + 4. Moreover, the advantage of higher order scheme is clearly observed
on the fine meshes where the k = 3 case on the 8d+1 mesh produces L2-errors

15



Table 2: Convergence rates of scheme 3.10 applied to 1D OT problem.

k mesh L2-err in ρ order L2-err in m order W 2
2 error order

0 42 2.068E-01 1.097E-01 2.834E-03
0 82 1.159E-01 0.84 5.985E-02 0.87 5.472E-04 2.37
0 162 6.007E-02 0.95 2.970E-02 1.01 5.788E-05 3.24
0 322 3.002E-02 1.00 1.497E-02 0.99 4.196E-06 3.79

1 22 1.868E-01 1.110E-01 1.127E-02
1 42 7.496E-02 1.32 3.863E-02 1.52 4.625E-04 4.61
1 82 2.169E-02 1.78 1.077E-02 1.84 9.523E-06 5.60
1 162 5.683E-03 1.93 2.844E-03 1.92 1.611E-07 5.89

3 12 2.148E-01 1.301E-01 3.337E-02
3 22 6.602E-02 1.70 3.548E-02 1.87 5.390E-04 5.95
3 42 7.234E-03 3.19 3.595E-03 3.30 5.044E-07 10.1
3 82 5.079E-04 3.83 2.542E-04 3.82 4.521E-09 6.80

that are 50 times smaller, and W 2
2 error that is three orders of magnitude

smaller than the k = 0 case on the 32d+1 mesh, although the same number
of DOFs are used.

4.2. MFP with obstacles

We consider a similar MFP problem used in [13], in which the spatial
domain is a square excluding some obstacles that mass can not cross:

Ω = [−1, 1]2\{Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4},

where the obstacles Ω1 = [−0.2, 0.2] × [−1.0,−0.7], Ω2 = [−0.2, 0.2] ×
[−0.5,−0.1], Ω3 = [−0.2, 0.2] × [0.1, 0.5], Ω4 = [−0.2, 0.2] × [0.7, 1.0]. We
take initial and terminal densities as two Gaussians

ρ0(x) =
1

2πσ2
exp(− 1

2σ2
|x− x0|2), ρ1(x) =

1

2πσ2
exp(− 1

2σ2
|x− x1|2),

where the standard deviation σ = 0.1, and x0 = (−0.65, 0), x1 = (0.65, 0).
We take the following 5 choices of interaction cost functions in the MFP
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Table 3: Convergence rates of scheme 3.10 applied to 2D OT problem.

k mesh L2-err in ρ order L2-err in m order W 2
2 error order

0 43 1.172E-01 8.385E-02 1.602E-03
0 83 6.832E-02 0.78 4.879E-02 0.78 1.646E-04 3.28
0 163 3.559E-02 0.94 2.505E-02 0.96 2.693E-05 2.61
0 323 1.787E-02 0.99 1.262E-02 0.99 2.391E-06 3.49

1 23 1.113E-01 8.196E-02 7.008E-03
1 43 4.540E-02 1.29 3.260E-02 1.33 3.882E-05 7.50
1 82 1.326E-02 1.78 9.354E-03 1.80 3.563E-06 3.45
1 162 3.474E-03 1.93 2.457E-03 1.93 3.854E-08 6.53

3 12 1.432E-01 1.109E-01 2.278E-02
3 22 3.873E-02 1.89 2.804E-02 1.98 2.795E-04 6.35
3 42 4.353E-03 3.15 3.072E-03 3.19 2.004e-07 10.4
3 82 3.068E-04 3.83 2.170E-04 3.82 3.977E-09 5.65

problem (2.3), whose convex conjugate are also recorded for completeness:

Case 1 : A(ρ) = 0, A∗(ρ∗) =

{
0 if ρ∗ ≤ 0,

+∞ if ρ∗ > 0.
,

Case 2 : A(ρ) = cρ2, A∗(ρ∗) =

{
0 if ρ∗ ≤ 0,

(ρ∗)2/(4c) if ρ∗ > 0.
,

Case 3 : A(ρ) = cρ log(ρ), A∗(ρ∗) = exp(ρ∗/c− 1),

Case 4 : A(ρ) = c/ρ, A∗(ρ∗) =

{
−2
√
−cρ∗ if ρ∗ ≤ 0,

+∞ if ρ∗ > 0.

Case 5 : A(ρ) =

{
0 if 0 ≤ ρ ≤ ρmax,

+∞ else.
A∗(ρ∗) = ρmax(ρ∗)+

where we take the scaling constant c = 0.1 in Cases 2–4, and maximum
density ρmax = 1

2πσ2 in Case 5.
We apply the scheme (3.10) with polynomial degree k = 3 on a struc-

tured hexahedral mesh obtained from tensor product of a uniform spatial
rectangular mesh with mesh size ∆x = 0.1 and uniform temporal mesh with
∆t = 0.1. The spatial mesh for Ω is shown in Figure 2. We terminate the
ALG2 algorithm when the error erram is less than 0.01. The number of iter-
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Figure 2: A uniform rectangular mesh with ∆t = 0.1 for the spatial domain Ω.

ations needed for convergence for the 5 cases are recorded in Table 4, where
we find Case 2 has the smallest number of iterations.

Case 1 Case 2 Case 3 Case 4 Case 5
iterations 780 72 245 503 552

Table 4: Example 4.2. Number of ALG2 iterations for each case.

Snapshots of the density contour at different times are shown in Figure 3.
The effects of different interaction cost functions on the density profile are
clearly observed.

4.3. MFG with obstacles

We consider a similar setting as in Example 4.2, where we consider a
MFG problem with terminal cost

Γ(ρ) :=

{
1
2
(ρ− ρT )2 if ρ ≥ 0,

+∞ otherwise,

where the target density

ρT :=
1

2πσ2

(
exp(− 1

2σ2
|x− (0.65, 0.3)|2) + exp(− 1

2σ2
|x− (0.65,−0.3)|2)

)
with σ = 0.1. Note that we allow ρT and ρ0 to have different total masses
here.

We apply the scheme (3.14) with polynomial degree k = 3 on the same
mesh as in Example 4.2, and use the same stopping criterion. The number
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Case 1 Case 2 Case 3 Case 4 Case 5
iterations 3510 82 476 503 798

Table 5: Example 4.3. Number of ALG2 iterations for each case.

of iterations needed for convergence for the 5 cases are recorded in Table 5,
where again we find Case 2 has the smallest number of iterations.

Snapshots of the density contour at different times are shown in Figure 4.
The results are similar to those in Example 4.2, where different interaction
cost function leads to different density evolution.

4.4. MFP between mascot images

Our last example concerns with OT and MFP (2.3) between images. The
initial or terminal densities are normalized images of athletics mascots from
University of Notre Dame (Leprechaun), UCLA (Brunins), and University
of South Carilina (Gamecocks); see Figure 5. The spatial domain is a unit
square Ω = [0, 1]× [0, 1], and the initial/terminal densities are normalized to
have unit mass.

We apply the scheme (3.10) with polynomial degree k = 3 on a structured
hexahedral mesh of size 64 × 64 × 16, where the time step size is ∆t =
1/16. Three set of initial/terminal density pairs are considered: (i) ND→
UCLA where initial density is the ND image and terminal density is the
UCLA image, (ii) UCLA→ USC where initial density is the UCLA image
and terminal density is the USC image, and (iii) USC→ ND where initial
density is the USC image and terminal density is the ND image. For each
pair of data, we consider three choices of interaction cost, namely, Case 1:
A(ρ) = 0 (OT), Case 2: A(ρ) = 0.01ρ log(ρ), and Case 3: A(ρ) = 0.01/ρ.
The ALG2 algorithm is terminated when erram is less than 0.001. The number
of iterations needed for convergence are recorded in Table 6.

Case 1 Case 2 Case 3
ND→UCLA 2440 471 892
UCLA→USC 1511 211 244
USC→ND 3577 496 907

Table 6: Example 4.4. Number of ALG2 iterations for each case.

Snapshots of the density contour at different times are shown in Figure 6
for (i) ND→ UCLA, in Figure 7 for (ii) UCLA→ USC, and in Figure 8 for
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(iii) USC→ ND. We observe in these figures that Case 1 (OT) produce the
most sharp results for the density evolution, and that both interaction costs
in Case 2/3 have a strong smoothing effect which blur the density profile,
where Case 3 with A(ρ) = 0.01/ρ also leads to an everywhere positive density.

5. Conclusion

This paper applies high-order accurate finite element methods to compute
optimal transport (OT) and mean field games (MFG). To our best knowledge,
it is the first time to apply high order numerical methods in OT and MFGs.
We verify the accuracy of algorithms through numerical examples. In future
works, we shall investigate the numerical property of high-order accuracy
FEM methods in OT and MFG-related dynamics. We expect they will have
vast applications in computational physics, social science, biology modeling,
pandemics control, and computer vision. We also expect to apply high order
FEM in generalized mean field control formalisms to compute implicit-in-
time fluid dynamics [35, 36, 37, 40].

References

[1] Yves Achdou and Italo Capuzzo-Dolcetta, Mean field games: numerical
methods, SIAM Journal on Numerical Analysis 48 (2010), no. 3, 1136–
1162.

[2] Yves Achdou and Mathieu Laurière, Mean field type control with con-
gestion (ii): An augmented lagrangian method, Applied Mathematics &
Optimization 74 (2016), no. 3, 535–578.

[3] , Mean field games and applications: Numerical aspects, arXiv
preprint arXiv:2003.04444 (2020).

[4] Sudhanshu Agrawal, Wonjun Lee, Samy Wu Fung, and Levon
Nurbekyan, Random features for high-dimensional nonlocal mean-field
games, Journal of Computational Physics 459 (2022), 111136.

[5] Roman Andreev, Preconditioning the augmented Lagrangian method for
instationary mean field games with diffusion, SIAM J. Sci. Comput. 39
(2017), no. 6, A2763–A2783. MR 3731033

20



[6] Alexander Aurell and Boualem Djehiche, Mean-field type modeling of
nonlocal crowd aversion in pedestrian crowd dynamics, SIAM Journal
on Control and Optimization 56 (2018), no. 1, 434–455.

[7] Fabio Bagagiolo and Dario Bauso, Mean-field games and dynamic de-
mand management in power grids, Dynamic Games and Applications 4
(2014), 155–176.

[8] J.-D. Benamou, G. Carlier, and F. Santambrogio, Variational mean field
games, Active particles. Vol. 1. Advances in theory, models, and appli-
cations, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham,
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(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

(e) Case 5

Figure 3: Example 4.2. Snapshots of ρ at t = 0.1, 0.3, 0.5, 0.7, 0.9 (left to right).
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(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

(e) Case 5

Figure 4: Example 4.3. Snapshots of ρ at t = 0.1, 0.3, 0.5, 0.7, 0.9 (left to right).
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(a) ND (Leprechaun) (b) UCLA (Bruins) (c) USC (Gamecocks)

Figure 5: Example 4.4. Initial/final densities.

(a) Case 1: A(ρ) = 0. ND → UCLA

(b) Case 2: A(ρ) = 0.01ρ log(ρ). ND → UCLA

(c) Case 3: A(ρ) = 0.01/ρ. ND → UCLA

Figure 6: Example 4.4. Initial density: ND. Terminal density: UCLA. Snapshots of ρ at
t = 0.1,0.3,0.5,0.7,0.9 (left to right).
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(a) Case 1: A(ρ) = 0. UCLA → USC

(b) Case 2: A(ρ) = 0.01ρ log(ρ). UCLA → USC

(c) Case 3: A(ρ) = 0.01/ρ. UCLA → USC

Figure 7: Example 4.4. Initial density: UCLA. Terminal density: USC. Snapshots of ρ at
t = 0.1,0.3,0.5,0.7,0.9 (left to right).
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(a) Case 1: A(ρ) = 0. USC → ND

(b) Case 2: A(ρ) = 0.01ρ log(ρ). USC → ND

(c) Case 3: A(ρ) = 0.01/ρ. USC → ND

Figure 8: Example 4.4. Initial density: USC. Terminal density: ND. Snapshots of ρ at
t = 0.1,0.3,0.5,0.7,0.9 (left to right).
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