Algebra Qualifying Exam

September 2022

You need to complete 8 out of 10 questions
If you write something for more than 8 questions, please indicate
which 8 questions should be graded.

Problem 1. Find all subfields of the field $F = \mathbb{Q}(2^{1/3}, 3^{1/3})$.

Problem 2. Let $P(X) = X^6 + 3$.
 (a) Determine the splitting field of $P(X)$ over \mathbb{Q}.
 (b) Determine the isomorphism type of the Galois group of $P(X)$
 over \mathbb{Q}.

Problem 3. Let G be a finite group, p a prime number and H a
 subgroup of G with $[G : H] = p$. Assume that no prime number smaller
 than p divides the order of G.
 Show that H is normal in G.

Problem 4. Let p be a prime number at least 3. Find a set of
 representatives up to conjugation for the group $\text{GL}(2, \mathbb{Z}/p)$ of 2×2
 invertible matrices.

Problem 5. Let G be the group presented by
 $$G = \langle a, b | a^4 = 1, b^2 = a^2, bab^{-1} = a^{-1} \rangle.$$
 You may use that G has order 8. Compute the character table of G.

Problem 6. Let G be a finite group, let V be a finite-dimensional
 complex vector space and let $\pi : G \to \text{GL}(V)$ an irreducible represen-
 tation. Let H be an abelian subgroup of G.
 Show that $\dim(V) \leq [G : H]$.

Problem 7. Let S be a multiplicatively closed subset of a com-
 mutative ring R. Show that for a prime ideal \mathfrak{p} in R disjoint from S,
 the ideal $\mathfrak{p} \cdot R[S^{-1}]$ in the localization $R[S^{-1}]$ is prime. Show that this
gives a one-to-one correspondence between prime ideals in R that are
disjoint from S and prime ideals in $R[S^{-1}]$. (A correct proof should
make it clear that you know when two elements of $R[S^{-1}]$ are equal.)
Problem 8. Let A be a commutative ring. Show that the following two statements are equivalent:

(a) every prime ideal of A is equal to an intersection of maximal ideals of A

(b) given any ideal I of A, the intersection of the prime ideals of A/I is equal to the intersection of the maximal ideals of A/I.

Problem 9. Let $\varphi: Ab \to Grp$ be the functor that takes an abelian group A to A in the category of groups. Show that φ has a left adjoint α. Does φ have a right adjoint? Does α have a left adjoint? Justify your answers.

Problem 10. Compute the Jacobson radical $J(R)$ for the following rings R. Justify your answers.

(a) Let $R = \text{End}_R(V)$, for a real vector space V of countably infinite dimension. Compute $J(R)$.

(b) For any finite extension field F of \mathbb{Q}, let R be the integral closure of \mathbb{Z} in F. Compute $J(R)$.