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Abstract

We design and compute first-order implicit-in-time variational schemes with
high-order spatial discretization for initial value gradient flows in generalized
optimal transport metric spaces. We first review some examples of gradient
flows in generalized optimal transport spaces from the Onsager principle. We
then use a one-step time relaxation optimization problem for time-implicit
schemes, namely generalized Jordan-Kinderlehrer-Otto schemes. Their mini-
mizing systems satisfy implicit-in-time schemes for initial value gradient flows
with first-order time accuracy. We adopt the first-order optimization scheme
ALG2 (Augmented Lagrangian method) and high-order finite element meth-
ods in spatial discretization to compute the one-step optimization problem.
This allows us to derive the implicit-in-time update of initial value gradient
flows iteratively. We remark that the iteration in ALG2 has a simple-to-
implement point-wise update based on optimal transport and Onsager’s ac-
tivation functions. The proposed method is unconditionally stable for convex
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cases. Numerical examples are presented to demonstrate the effectiveness of
the methods in two-dimensional PDEs, including Wasserstein gradient flows,
Fisher–Kolmogorov-Petrovskii-Piskunov equation, and two and four species
reversible reaction-diffusion systems.

Keywords: High order computation; Entropy dissipation; Metric spaces;
Generalized Jordan–Kinderlehrer–Otto schemes; Wasserstein gradient flows;
Reversible reaction-diffusion systems.

1. Introduction

Dissipative dynamics (gradient flows) are essential models in thermody-
namics, chemistry, materials science, biological swarming, robotics path pan-
ning, and social sciences [19, 60]. Nowadays, they also find vast applications
in designing machine learning optimization algorithms and Markov-Chain-
Monte-Carlo sampling algorithms [2, 15, 20, 27, 28, 43, 46, 70]. In physics,
dissipative dynamics describe that the systems have maximum efficiency,
in which dynamics follow from the direction in which the (negative) en-
tropy/Lyapunov functional dissipates most rapidly. It turns out that the
dissipative dynamics are gradient flows in suitable metric spaces. Fast, effi-
cient, and accurate dissipative dynamics simulations are one of the central
problems in computational fluid dynamics.

A particular type of gradient flow has been widely studied in optimal
transport, where the metric is known as the Wasserstein-2 metric [3, 69].
Typical examples include gradient drift Fokker-Planck equations, porous me-
dia equations, aggregation-diffusion equations, etc. One property of simulat-
ing gradient flows is that one can design a proximal method for computing
a variational implicit time algorithm. This algorithm is first proposed by
Jordan-Kinderlehrer-Otto (JKO scheme) to compute Wasserstein gradient
flows [33]. Moreover, general gradient flows have been widely studied. They
follow the Onsager principle to design optimal transport-type metric spaces
[27, 39, 55]. Similarly, one can develop variational proximal methods to com-
pute and simulate gradient flow dynamics.

This paper designs high-order spatial discretization in simulating gradi-
ent flow dynamics using variational proximal schemes in generalized opti-
mal transport metric spaces. We formally illustrate the main computational
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framework. Consider a reaction-diffusion type equation:

∂tρ = ∇ · (V1(ρ)∇ δ

δρ
E(ρ))− V2(ρ)

δ

δρ
E(ρ). (1.1)

where ρ : Ω × R+ → R+ is a scalar density function, Ω ⊂ Rd, d = 1, 2, is a
spatial domain with periodic or Neumann boundary conditions, V1, V2 : Ω×
R+ → R+ are positive mobility functions (Onsager activation functions), and
E(ρ) ∈ R is a Lyapunov functional (energy). We design a variational implicit
time scheme, the linearized JKO scheme [9, 42], to update equation (1.1) as
below:

ρn = arg min
ρ

inf
(ρ,m)

1

2∆t

∫
Ω

[ |m|2
V1(ρ)

+
|s|2

V2(ρ)

]
dx+ E(ρ), (1.2a)

where ∆t ≥ 0 is a stepsize and the minimization is over all functions ρ : Ω→
R+, m : Ω→ Rd, and s : Ω→ R, subject to the constraint

ρ− ρn−1 +∇ ·m = s, on Ω. (1.2b)

We use time rescaling of (m, s) in the constraint (1.2b). We then compute
variational problem (1.2) iteratively to find the sequence ρn, n = 1, 2, · · · .
This sequence forms an implicit update for gradient flow dynamic (1.1), which
is first-order in time:

ρn − ρn−1

∆t
= ∇ · (V1(ρn)∇ δ

δρ
E(ρn))− V2(ρn)

δ

δρ
E(ρn) +O(∆t).

When V1, V2 is concave in term of ρ, and E is a convex functional, then the
proposed method is unconditionally stable, meaning that we can take large
time steps.

Our framework also works for reversible reaction-diffusion systems with
detailed balance [55, 30, 48]. We illustrate the main idea for a simple 2-
component reversible reaction-diffusion system: Let X1, X2 be two species

with a single reversible reaction X1

k+−⇀↽−
k−

X2, with k−, k+ > 0. Let ρ1 and ρ2

be the respective densities of X1 and X2. This leads to the following PDE
system [55, 61]:

∂tρ1 − γ1∆ρ1 = − (k+ρ1 − k−ρ2),

∂tρ2 − γ2∆ρ2 = (k+ρ1 − k−ρ2),
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with positive diffusion rates γ1, γ2 > 0. By introducing the following mobility
functions,

V1,1(ρ1) = γ1ρ1, V1,2(ρ2) = γ2ρ2, V2(ρ1, ρ2) =
k+ρ1 − k−ρ2

log(k+ρ1)− log(k−ρ2)

and the energies

E1(ρ1) =

∫
Ω

ρ1(log(k+ρ1)− 1) dx, E2(ρ2) =

∫
Ω

ρ2(log(k−ρ2)− 1) dx,

the above PDE system can be recast into the following system version of the
form (1.1):

∂tρ1 = ∇ ·
(
V1,1(ρ1)∇δE1

δρ
(ρ1)

)
− V2(ρ1, ρ2)

(
δE1

δρ
(ρ1)− δE2

δρ
(ρ2)

)
, (1.3a)

∂tρ2 = ∇ ·
(
V1,2(ρ2)∇δE2

δρ
(ρ2)

)
+ V2(ρ1, ρ2)

(
δE1

δρ
(ρ1)− δE2

δρ
(ρ2)

)
, (1.3b)

which can then be discretized using a similar variational time implicit scheme
as (1.2). Here the system is called a strongly reversible reaction-diffusion
system when k+ = k− > 0, is called a reversible reaction-diffusion system
with detailed balance when we allow the two positive reaction rates to be
different k+ 6= k− > 0, and is called an irreversible reaction-diffusion sys-
tem when the backward reaction rate is zero k− = 0; see more detailed in
[30, 48, 55]. Our framework does not directly work for irreversible reaction-
diffusion systems as they do not satisfy an energy dissipation law and can
not be formulated back to the form (1.3). However, we can approximate an
irreversible reaction-diffusion system using a reversible one by using a very
small backward reaction rate (see, e.g., [44]), and then solve the reversible
system using our formulation.

This paper adopts the augmented Lagrangian (ALG2) optimization method
with high-order spatial finite element discretizations to solve the variational
problem (1.2). Using finite element spatial discretization, we also develop a
point-wise update in the optimization step of computing variational problem
(1.2). In this sense, we obtain a high-order spatial discretization scheme in
finding the ground state, which is the minimizer of functional E . In this
iterative procedure, assuming that the optimization step finds a global min-
imizer, the Lyapunov functional E is guaranteed to decay for any large time
step sizes.
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Computational optimal transport and mean field control/games have
been widely investigated in [1, 4, 6, 52, 58, 63, 66]. For example, generalized
JKO schemes of Wasserstein gradient flows with first-order time accuracy
have been studied in [9, 12, 26, 42, 48]. Semi-discretizations of JKO-type
schemes have been used in [16]. The Lagrangian type JKO schemes have
been investigated in [13, 14, 51]. It is also worth mentioning that there are
methods for high-order time discretizations of gradient flows [31]. Meanwhile,
generalized optimal transport metric spaces have recently been introduced
in [11, 18, 22, 54, 55]. Study of conservative and dissipative operators in
non-equilibrium thermodynamics [56, 57, 72] is an active research area. How-
ever, there are limited JKO-type computational results for reaction-diffusion
systems. We specifically mention the recently introduced variational oper-
ator splitting schemes [48, 49, 50] for reversible reaction diffusion systems
using the energetic variational framework [29, 47]. We note that gener-
alized JKO schemes are examples of mean field control (MFC) problems
[6, 35], which design optimal control/optimization problems for general ini-
tial value evolutionary equations not limited to gradient flows. Computation
and modeling studies of MFCs have been conducted in controlling reaction-
diffusion equations [39] and conservation laws [40, 41] with applications in
pandemics modeling [37, 38]. Compared to the above approaches, we apply
high-order spatial schemes in computing generalized JKO schemes towards
initial value gradient flows. We adopt the first-order optimization method,
the augmented Lagrangian method (ALG2), to implement the variational
time implicit schemes for two and four species-reversible reaction-diffusion
systems.

This paper is organized as follows. We review some concepts of gradi-
ent flows, time implicit schemes, and their first-order optimization methods
ALG2 in section 2. Several examples of dynamics, including Wasserstein gra-
dient flows, Fisher–Kolmogorov-Petrovskii-Piskunov (KPP) equation, and
reversible reaction-diffusion systems, are presented in section 3. We then
present a high-order finite element method and derive all implementation
details of the optimization algorithm ALG2 in section 4. Numerical exam-
ples are presented for two-dimensional Wasserstein gradient flows of linear,
interaction, and potential energies, Fisher-KPP equation, and reversible two
and four-species reaction-diffusion systems in section 5.
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2. Optimal transport type gradient flows, generalized time implicit
schemes, and first-order optimization methods

This section reviews generalized gradient flows and their variational im-
plicit schemes in metric spaces. We also discuss a one-step time discretization
relaxation of variational implicit schemes for generalized gradient flows. En-
tropy dissipation properties of variational implicit schemes are introduced.
We then present the augmented Lagrangian method (ALG2) as the optimiza-
tion solver to compute the variational implicit schemes.

2.1. Optimal transport type gradient flows

In this subsection, we formally review generalized optimal transport gra-
dient flows [14, 22, 55]. This is known as the Onsager gradient flow [19].
We next discuss a class of variational schemes to compute implicit-in-time
solutions of gradient flows.

2.1.1. Gradient flows and entropy dissipations

Consider an initial value equation

∂tρ(x, t) = ∇ · (V1(ρ(x, t))∇ δ

δρ
E(ρ)(x, t))− V2(ρ(x, t))

δ

δρ
E(ρ)(x, t), t ∈ [0,∞)

ρ(x, 0) = ρ0(x).

(2.1)

Here x ∈ Ω ⊂ Rd, Ω is a spatial domain with periodic boundary condition or
Neumann boundary condition (detailed in later sections), ρ : Ω×R+ → R is
a scalar non-negative density function satisfying

ρ(·, t) ∈M =
{
ρ : Ω→ R : ρ(x, t) ≥ 0

}
,

for any time t, E : M → R is an energy functional, V1, V2 : R → R+ are
positive mobility functions, δ

δρ
is the first variation operator in L2 space, and

ρ0 ∈ M is an initial condition. Equation (2.1) forms a class of equations,
including Wasserstein gradient flows and the Fisher–KPP equation [64, 23,
34]. Detailed examples of V1, V2, and E are provided in the next section,
where we also discuss the extension of (2.1) to reaction-diffusion systems.

Equation (2.1) is purely dissipative. Denote ρ(·, t) as the solution of the
PDE (2.1), then the energy functional E is a Lyapunov functional. In other
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words, the first-time derivative of the energy functional E is nonnegative,
satisfying

d

dt
E(ρ(·, t))

=−
∫

Ω

[
‖∇ δ

δρ
E(ρ)(x, t)‖2V1(ρ(x, t)) + | δ

δρ
E(ρ)(x, t)|2V2(ρ(x, t))

]
dx ≤ 0,

(2.2)

where we use the fact that V1(ρ) ≥ 0, and V2(ρ) ≥ 0 in the above inequality.

2.1.2. Metric operators and Distances

The dissipation of the energy functional also induces a metric function in
space M, which further defines distances between two densities ρ0, ρ1 ∈ M.
This distance designs an implicit time variational problem for computing the
gradient flow in metric spaces. See details among optimal transport type
gradient flows, distances, and mean-field control problems in [3, 39, 55].

We directly present generalized optimal transport type distances and the
time implicit schemes below for simplicity of discussion.
Definition: Distance functional. Define a distance functional DistV1,V2 : M×
M→ R+ as below. Consider the following optimal control problem:

DistV1,V2(ρ0, ρ1)2

:= inf
ρ,v1,v2

∫ 1

0

∫
Ω

[
‖v1(x, τ)‖2V1(ρ(x, τ)) + |v2(x, τ)|2V2(ρ(x, τ))

]
dxdτ,

(2.3a)

where the infimum is taken among ρ : Ω× [0, 1]→ R+, v1, v2 : Ω× [0, 1]→ Rd,
such that ρ satisfies a reaction-diffusion type equation with drift vector field
v1, drift mobility V1, reaction rate v2, reaction mobility V2, connecting initial
and terminal densities ρ0, ρ1:{

∂τρ(x, τ) +∇ · (V1(ρ(x, τ))v1(x, τ)) = V2(ρ(x, τ))v2(x, τ), τ ∈ [0, 1],

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x).

(2.3b)
Variational problem (2.3) is a generalized Benamou-Brenier formula [5],

where they consider V1(ρ) = ρ, V2(ρ) = 0. One common practice is the
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following change of variable formula, which leads to a linear constraint op-
timization problem. Denote a moment vector function m : Ω × [0, 1] → Rd

and a source function s : Ω× [0, 1]→ R, such that

m(x, τ) = V1(ρ(x, τ))v1(x, τ), s(x, τ) = V2(ρ(x, τ))v2(x, τ).

Using variables m, s, variational problem (2.3) satisfies

DistV1,V2(ρ0, ρ1)2 := inf
ρ,m,s

∫ 1

0

∫
Ω

[‖m(x, τ)‖2

V1(ρ(x, τ))
+
|s(x, τ)|2

V2(ρ(x, τ))

]
dxdτ,

such that

∂τρ(x, τ) +∇ ·m(x, τ) = s(x, τ), ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x).

2.1.3. Variational time implicit schemes and properties

We next design a variational implicit-in-time scheme to update gradient
flow (2.1) iteratively.
Definition: Variational time implicit scheme. Denote ∆t > 0 as a time step
size. Consider the scheme below:

ρn = arg min
ρ∈M

1

2∆t
DistV1,V2(ρn−1, ρ)2 + E(ρ), (2.4)

where DistV1,V2(ρn−1, ρ)2 is the distance functional defined in (2.3) between
current density ρ and previous step density ρn−1. After suitable time rescal-
ing, one can show that the minimization scheme (2.4) requires solving the
following optimal control problem:

inf
ρ∆t,ρ,m,s

1

2

∫ ∆t

0

[ ∫
Ω

‖m(x, τ)‖2

V1(ρ(x, τ))
+
|s(x, τ)|2

V2(ρ(x, τ))

]
dxdτ︸ ︷︷ ︸

= 1
2∆t

DistV1,V2
(ρn−1,ρ)2

+E(ρ∆t),
(2.5a)

such that

∂τρ(x, τ) +∇ ·m(x, τ) = s(x, τ), τ ∈ [0,∆t], (2.5b)

ρ(x, 0) = ρn−1(x), ρ(x,∆t) = ρ∆t(x). (2.5c)

The next step solution ρn is the density minimizer of (2.5):

ρn(x) = ρ∆t(x).
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We demonstrate that the variational scheme (2.4) is a first-order accurate
implicit in time scheme, i.e.,

ρn − ρn−1

∆t
= ∇ · (V1(ρn)

δ

δρ
E(ρn))− V2(ρn)

δ

δρ
E(ρn) +O(∆t).

Proof. We write the minimization system of variational problem (2.5). De-
note Φ(x, τ) ∈ R, τ ∈ [0,∆t], as the Lagrange multiplier. The optimal
condition of variational problem (2.5) satisfies the following saddle point
problem:

inf
ρ∆t,ρ,m,s

sup
Φ
L(ρ∆t, ρ,m, s,Φ), (2.6)

where

L(ρ∆t, ρ,m, s,Φ) :=
1

2

∫ ∆t

0

∫
Ω

[‖m(x, τ)‖2

V1(ρ(x, τ))
+
|s(x, τ)|2

V2(ρ(x, τ))

]
dxdτ + E(ρ∆t)

+

∫ ∆t

0

∫
Ω

Φ(x, τ)
(
∂τρ(x, τ) +∇ ·m(x, τ)− s(x, τ)

)
dxdτ

We note that from integration by parts,∫ ∆t

0

∫
Ω

Φ(x, τ)∂τρ(x, τ)dxdτ = −
∫ ∆t

0

∫
Ω

∂τΦ(x, τ)ρ(x, τ)dxdτ

+

∫
Ω

Φ(x,∆t)ρ∆t(x)dx−
∫

Ω

Φ(x, 0)ρn−1(x)dx.

By computing the saddle point of (2.6), we derive

δ

δρ
L = 0, if ρ > 0,

δ

δm
L = 0,

δ

δs
L = 0,

δ

δΦ
L = 0,

δ

δρ∆t

L = 0,

⇒



− ‖m‖2

2V1(ρ)2
V ′1(ρ)− |s|2

2V2(ρ)2
V ′2(ρ)− ∂τΦ = 0, if ρ > 0,

m

V1(ρ)
−∇Φ = 0,

s

V2(ρ)
− Φ = 0,

∂τρ+∇ ·m = s,

Φ(x,∆t) +
δ

δρ∆t

E(ρ∆t) = 0.
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Thus we obtain a minimization system:
∂τρ(x, τ) +∇ · (V1(ρ(x, τ))∇Φ(x, τ)) = V2(ρ(x, τ))Φ(x, τ),

ρ(0, x) = ρn−1(x), Φ(x,∆t) = − δ

δρ
E(ρ)(x),

where Φ satisfies the Hamilton-Jacobi-type equation when ρ(x, τ) > 0, such
that

∂τΦ(x, τ) +
1

2
‖∇Φ(x, τ)‖2V ′1(ρ(x, τ)) + |Φ(x, τ)|2V ′2(ρ(x, τ)) = 0.

We approximate the equation of ρ(x, τ) at τ = ∆t:

ρ(x,∆t) =ρ(x, 0)−∆t
[
∇ · (V1(ρ(x, τ))∇Φ(x, τ))− V2(ρ(x, τ))Φ(x, τ)

]
|τ=∆t + o(∆t)

=ρ(x, 0) + ∆t
[
∇ · (V1(ρn(x))

δ

δρ
E(ρn)(x))− V2(ρn(x))

δ

δρ
E(ρn)(x)

]
+ o(∆t),

where we denote ρn(x) = ρ(x,∆t). This finishes the proof.

In fact, for first-order implicit time accuracy, one can use the one-step
approximated minimization scheme. In other words, we only use a local time
approximation of distance functional to compute the implicit time scheme.
Definition: One-step relaxation of variational time implicit scheme. Con-
sider

inf
ρ,m,s

1

2∆t

∫
Ω

[‖m(x)‖2

V1(ρ(x))
+
|s(x)|2

V2(ρ(x))

]
dx︸ ︷︷ ︸

≈ 1
2∆t

DistV1,V2
(ρ,ρn−1)2

+E(ρ), (2.7a)

where the minimization is over all functions m : Ω → Rd, s : Ω → R, and
ρ : Ω→ R+, such that

ρ(x)− ρn−1(x) +∇ ·m(x) = s(x). (2.7b)

Denote the next step solution ρn as the density minimizer of (2.7).
We also demonstrate that the variational scheme (2.7) forms a first-order

implicit time scheme for the PDE (2.1).

Proof. The proof is similar to the one in (2.5). Denote Φ(x) as the Lagrange
multiplier. The optimal condition of the variational problem (2.7) satisfies
the following saddle point problem:

inf
ρ,m,s

sup
Φ

L(ρ,m, s,Φ),
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where

L(ρ,m, s,Φ) :=
1

2

∫
Ω

[‖m(x)‖2

V1(ρ(x))
+
|s(x)|2

V2(ρ(x))

]
dx+ ∆tE(ρ)

+

∫
Ω

Φ(x)
(
ρ(x)− ρn−1(x) +∇ ·m(x)− s(x)

)
dx.

By computing saddle point of the above system, we derive

δ

δρ
L = 0,

δ

δm
L = 0,

δ

δs
L = 0,

δ

δΦ
L = 0,

⇒



−
[ ‖m‖2

2V1(ρ)2
V ′1(ρ) +

|s|2

2V2(ρ)2
V ′2(ρ)

]
+ ∆t

δ

δρ
E(ρ) + Φ = 0,

m

V1(ρ)
−∇Φ = 0,

s

V2(ρ)
− Φ = 0,

ρ− ρn−1 +∇ ·m = s.

One can check that Φ = −∆t δ
δρ
E(ρ) + o(∆t). Thus

ρn − ρn−1

∆t
= ∇ · (V1(ρn)

δ

δρ
E(ρn))− V2(ρn)

δ

δρ
E(ρn) +O(∆t).

Here ρn = ρ is the density minimizer. This finishes the proof.

We remark that solving the variational problem (2.7) is simpler than op-
timizing (2.5), since (2.7) only involves a local time distance approximation;
see [42, 9]. We also present some properties of the implicit variational scheme
(2.7). The algorithm satisfies the entropy dissipation property for any step
size ∆t ≥ 0.

Proposition 2.1 (Time implicit scheme entropy dissipation). Denote the so-
lution {ρn}n∈N solving the variational implicit scheme (2.7). For any stepsize
∆t ≥ 0, we have

E(ρn) ≤ E(ρn−1), for n ∈ N+.

Proof. Denote the objective functional (2.7a) as

F(ρ,m, s) =
1

2∆t

∫
Ω

[‖m(x)‖2

V1(ρ(x))
+
|s(x)|2

V2(ρ(x))

]
dx+ E(ρ). (2.8)
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Since (ρn−1,m = 0, s = 0) is a feasible point satisfying the constraint (2.7b),
and (ρn,m∗, s∗) is an optimal solution of (2.7), we have

E(ρn) ≤ F(ρn,m∗, s∗) ≤ F(ρn−1, 0, 0) = E(ρn−1),

where we use the fact that

F(ρn,m∗, s∗) = E(ρn) +
1

2∆t

∫
Ω

[‖m∗(x)‖2

V1(ρn(x))
+
|s∗(x)|2

V2(ρn(x))

]
dx ≥ E(ρn).

We finish the proof.

We also remark that there are issues of convexity in computing minimizers
of the variational problem (2.7). If V1 and V2 are concave w.r.t. ρ, then
the minimization problem (2.7) is always convex for any positive step size
∆t. In general, this fact may be lost for general mobility functions V1 and
V2. In computations, we still apply the first-order optimization algorithm to
compute the variational problem (2.7), where we suggest a small stepsize ∆t
in the iterative update.

2.2. The abstract ALG2 algorithm

In this subsection, we formulate saddle point problems to calculate the
variational time implicit schemes (2.7); see also [24, 5].

We present the general form of the augmented Lagrangian (ALG2) algo-
rithm [24] for the following saddle point system:

inf
u

sup
Φ
F (u)−G(Φ)− (u,DΦ)Ω, (2.9)

where D(Φ) is a linear differential operator for Φ, and (·, ·)Ω stands for the
L2-inner product on the domain Ω. For the problem (2.7), we choose

u = (ρ,m, s),

with

F (u) =
1

2

∫
Ω

[‖m‖2

V1(ρ)
+
|s|2

V2(ρ)

]
dx+ ∆tE(ρ), G(Φ) =

∫
Ω

ρn−1Φ dx,

and
DΦ = (−Φ,∇Φ,Φ).

12



The algorithm starts with the dual formulation of the saddle-point prob-
lem (2.9):

sup
u

inf
Φ,u∗

F ∗(u∗) +G(Φ) + (u,DΦ− u∗)Ω, (2.10)

where F ∗(u∗) = supu(u,u∗)Ω−F (u) is the Legendre transform. The saddle
point of the above system is equivalent to the saddle point of the following
augmented Lagrangian form:

sup
u

inf
Φ,u∗

Lr(Φ,u,u
∗), (2.11)

where the augmented Lagrangian

Lr(Φ,u,u
∗) := F ∗(u∗) +G(Φ) + (u,DΦ− u∗)Ω +

r

2
(DΦ− u∗,DΦ− u∗)Ω,

in which r is a positive parameter.
The ALG2 solves the optimization problem (2.11) in a splitting fashion.

One iteration contains the following three steps.

Algorithm 1 One iteration of ALG2 algorithm for variational implicit
scheme (2.11).

• Step A: update Φ. Minimize Lr(Φ,u,u
∗) with respect to the first argu-

ment by solving the elliptic problem: Find Φ` such that it solves

inf
Φ
Lr(Φ,u

`−1,u∗,`−1).

• Step B: update u∗. Minimize Lr(Φ,u,u
∗) with respect to the last argu-

ment by solving the nonlinear problem: Find u∗,` such that it solves

inf
u∗
Lr(Φ

`,u`−1,u∗).

• Step C: update u. This is a simple pointwise update for the Lagrange
multiplier u :

u` = u`−1 + r(DΦ` − u∗,`). (2.12)

We note that the key success of the ALG2 algorithm 1 is that Step A
is a simple linear reaction-diffusion equation solve, while the nonlinear Step
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B can be efficiently solved in a point-wise fashion, provided a good spatial
discretization is used for the discretization variables; see Algorithm 2 below.
We note that for the system case, further splitting in Step A/B for each
component calculation will be applied to further save the computational cost;
see Algorithm 3 below. We will present details of the implementation in
Section 4 where the high-order spatial discretization is introduced. The error
in the Lagrange multipliers in two consecutive iterations u` − u`−1 can be
used to monitor the convergence of the ALG2 algorithm. Typically, a couple
of hundred ALG iterations is sufficient for time accuracy. We take 200 ALG
iterations in all our numerical results reported in Section 5.

3. Examples: Wasserstein gradient flow, reaction-diffusion equa-
tions, and reversible reaction-diffusion systems

This section presents examples of dissipative dynamic systems that fit
in the framework of the previous section: Wasserstein gradient flows, scalar
reaction-diffusion equations, and reversible reaction-diffusion systems.

3.1. Wasserestein gradient flow

We consider the following L2-Wasserstein gradient flow for a time-dependent
probability density ρ : Ω× R+ → R+ on a domain Ω ⊂ Rd,

∂tρ = ∇ ·
(
ρ∇ δ

δρ
E(ρ)

)
, (3.1)

subject to Neumann boundary conditions. Typically, the energy functional
E(ρ) takes the following form

E(ρ) :=

∫
Ω

[
αUm(ρ(x)) + ρ(x)V (x) +

1

2
(W ∗ ρ)(x)ρ(x)

]
dx, (3.2)

where α ≥ 0 is the diffusion coefficient, Um(ρ) is the diffusion term with

Um(ρ) =

{
ρ log(ρ) if m = 1,
ρm

m−1
if m > 1,

ρV is the drift term with drift potential V , and 1
2
(W ∗ ρ)ρ is the aggregation

term with the convolution

(W ∗ ρ)(x) :=

∫
Ω

W (x− y)ρ(y) dy,

14



in which W (·) is the symmetric interaction kernel. Its variational derivative
is

δ

δρ
E = αU ′m(ρ) + V +W ∗ ρ. (3.3)

The equation (3.1) is mass conserving, positivity preserving, and satisfies the
energy dissipation law (2.2) with V1(ρ) = ρ and V2(ρ) = 0.

This model is a special case of (2.1) with V1(ρ) = ρ, V2(ρ) = 0, and energy
functional E in (3.2). The corresponding one-step variational time implicit
scheme (2.7) is

inf
ρ,m

1

2∆t

∫
Ω

‖m(x)‖2

ρ(x)
dx+ E(ρ), (3.4a)

where the minimization is over all functions m : Ω → Rd, and ρ : Ω → R+,
such that

ρ(x)− ρn−1(x) +∇ ·m(x) = 0. (3.4b)

The next step solution ρn is the density minimizer of (2.7), i.e., ρn(x) = ρ(x).
Here the first term in (3.4a) is the one-step relaxation approximation of the
classical Wasserstein distance in Benamou-Brenier’s dynamic formulation [5],
i.e., the distance in (2.3) with V1(ρ) = ρ and V2(ρ) = 0. We note that such
approximation was originally used in [42, 9].

This problem is equivalent to finding the saddle point of (2.9) in which
u = (ρ,m),

F (u) =

∫
Ω

‖m‖2

2ρ
dx+ ∆tE(ρ), G(Φ) =

∫
Ω

ρn−1Φ dx,

and DΦ = (−Φ,∇Φ), which can be solved using ALG2 Algorithm 1 after a
spatial discretization is used; see Section 4.

3.2. Dissipative reaction-diffusion equation

Adding a reaction term of form −V2(ρ) δ
δρ
E with a non-negative mobility

function V2(ρ) ≥ 0 to the PDE (3.1), we get the following reaction-diffusion
equation:

∂tρ = ∇ ·
(
ρ∇ δ

δρ
E
)
− V2(ρ)

δE
δρ
, (3.5)
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which is again a special case of (2.1), with V1(ρ) = ρ, and a general non-
negative function V2(ρ). Hence, the corresponding one-step variational time
implicit scheme (2.7) is

inf
ρ,m,s

1

2∆t

∫
Ω

[‖m(x)‖2

ρ(x)
+
|s(x)|2

V2(ρ(x))

]
dx+ E(ρ), (3.6a)

where the minimization is over all functions m : Ω → Rd, s : Ω → R, and
ρ : Ω→ R+, such that

ρ(x)− ρn−1(x) +∇ ·m(x) = s(x). (3.6b)

This is the saddle point of (2.9) in which u = (ρ,m, s),

F (u) =

∫
Ω

[‖m‖2

2ρ
+
|s|2

2V2(ρ)

]
dx+ ∆tE(ρ), G(Φ) =

∫
Ω

ρn−1Φ dx,

and DΦ = (−Φ,∇Φ,Φ).
We will postpone the introduction of a model with a more general V1(ρ) 6=

ρ to Section 3.4.1, where a two-component reversible reaction-diffusion sys-
tem with detailed balance is discussed.

Below we list three choices of V2(ρ) along with their corresponding ener-
gies that will be used in our numerical experiments:

(i) V2(ρ) = c ργ where c ≥ 0 and γ ∈ R, with a general E(ρ) given in
(3.2). Here γ = 1 corresponds to the Wasserstein-Fisher-Rao metrics
used in [17, 45], and γ = 0 is related to unnormalized optimal transport
[36]. Both cases lead to a convex optimization problem (3.6) when the
energy is convex; see Remark 4.3 below.

(ii) V2(ρ) = c ρ−1
log(ρ)

where c ≥ 0 with a general E(ρ) given in (3.2). This
choice also leads to a convex optimization problem for a convex energy.

(iii) V2(ρ) = ρ(ρ−1)
α log(ρ)

, with energy E(ρ) :=
∫

Ω
αρ(x)(log(ρ) − 1)dx, where

α > 0. This model is the following Fisher–KPP equation; see [39,
Example 7]:

∂ρ

∂t
−∇ · (α∇ρ) = ρ(1− ρ). (3.7)

It, however, does not lead to a convex optimization problem.
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3.3. Strongly reversible reaction-diffusion systems

Our next model deals with the system of strongly reversible reaction-
diffusion equations [55]. We considerM different chemical speciesX1, . . . , XM

reacting according to R mass-action laws:

αp1X1 + · · ·+ αpMXM

kp+−⇀↽−
kp−

βp1X1 + · · ·+ βpMXM , (3.8)

where p = 1, · · · , R is the number of possible reactions, αp = (αp1, · · · , α
p
M),βp =

(βp1 , · · · , β
p
M) ∈ NM

0 are the vectors of the stoichiometric coefficients, and
kp+, k

p
− are the positive forward and backward reaction rates. For simplicity,

we restrict ourselves to the strongly reversible case where kp+ = kp− = kp > 0
in this subsection. The more general case of reversible reaction-diffusion sys-
tems with detailed balance that allows kp+ 6= kp− > 0 will be discussed in the
next subsection.

Combining the mass-action laws (3.8) with (independent) isotropic linear
diffusion with energy Ei(ρi) =

∫
Ω
ρi(log(ρi) − 1) dx for each density ρi of

species Xi, we get the following reaction-diffusion system:

∂tρi −∇ ·
(
γiρi∇

δ

δρ
Ei(ρi)

)
= −

R∑
p=1

kp(αpi − β
p
i )(ρ

αp − ρβp

), (3.9)

for 1 ≤ i ≤ M , where ρ = (ρ1, · · · , ρM) and the multi-index notation

ρα
p

:=
∏M

i=1 ρ
αp
i
i is used. Here the potential δ

δρ
Ei(ρi) = log(ρi) is simply

the logarithm.
Next, we recast the above system (3.9) back to a system version of the

general dissipative form (2.1) using appropriate mobility functions. We in-
troduce the following function; see [55]:

`(x, y) =


x−y

log(x)−log(y)
for x 6= y,

y for x = y,
(3.10)

and denote the following mobility functions:

V1,i(ρi) = γiρi, ∀1 ≤ i ≤M, (3.11a)

V2,p(ρ) = kp `
(
ρα

p

,ρβ
p)
, ∀1 ≤ p ≤ R. (3.11b)
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Using these notations, it can be shown that (3.9) is equivalent to

∂tρi = ∇ ·
(
V1,i(ρi)∇

δ

δρ
Ei(ρi)

)
−

R∑
p=1

V2,p(ρ)(αpi − β
p
i )

M∑
j=1

(αpj − β
p
j )
δ

δρ
Ei(ρi). (3.12)

It is now clear that the above system is purely dissipative as for the scalar
case (2.1). That is, the first-time derivative of the total energy functional is
nonnegative and satisfies

d

dt

M∑
i=1

Ei(ρi(·, t)) = −
M∑
i=1

∫
Ω

‖∇ δ

δρ
Ei(ρ)i(x, t)‖2V1,i(ρi) dx

−
R∑
p=1

∫
Ω

∣∣∣∣∣
M∑
j=1

(αpj − β
p
j )
δ

δρ
Ei(ρi)

∣∣∣∣∣
2

V2,p(ρ) dx.

(3.13)

As in the scalar case in Definition 2.3, we consider an optimal transport
type distance:

DistV1,V2(ρ0,ρ1)2 = inf
ρ,m,s

{∫ 1

0

∫
Ω

(
M∑
i=1

|mi|2

V1,i(ρi)
+

R∑
p=1

|sp|2

V2,p(ρ)

)
dxdτ :

∂τρi +∇ ·mi =
∑R

p=1(αpi − β
p
i )sp,∀1 ≤ i ≤M

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1.

}
,

where m = (m1, · · · ,mM) is the collection of fluxes, and s = (s1, · · · , sR) is
the collection of sources. Using this distance, the variational time implicit
scheme is defined as follows (compare Definition (2.4) for the scalar case).
Definition: Variational time implicit scheme for system (3.12). Denote
∆t > 0 as a time step size. Consider the scheme below:

ρn = arg min
ρ∈[M]M

1

2∆t
DistV1,V2(ρn−1,ρ)2 +

M∑
i=1

Ei(ρi). (3.14)

Its one-step relaxation is given as follows, which is the starting point of
our spatial discretization to be discussed in the next section.
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Definition: One-step relaxation of variational time implicit schemes for
system (3.12). Consider

inf
ρ,m,s

1

2∆t

(
M∑
i=1

∫
Ω

‖mi‖2

V1,i(ρi)
dx+

R∑
p=1

∫
Ω

‖sp‖2

V2,p(ρ)
dx

)
+

M∑
i=1

Ei(ρi), (3.15a)

where the minimization is over all functions m : Ω → [Rd]M , s : Ω → [R]R,
and ρ : Ω→ [R+]M , such that

ρi(x)− ρn−1
i (x) +∇ ·mi(x) =

R∑
p=1

(αpi − β
p
i )sp(x), ∀1 ≤ i ≤M. (3.15b)

The next step solution ρn is the density minimizer of (3.15). It is the saddle
point of (2.9) in which

u = (ρ1, · · · , ρM ,m1, · · · ,mM , s1, · · · , sR),Φ = (Φ1, · · · ,ΦM),

F (u) =
1

2∆t

(
M∑
i=1

∫
Ω

‖mi‖2

V1,i(ρi)
dx+

R∑
p=1

∫
Ω

‖sp‖2

V2,p(ρ)
dx

)
, G(Φ) =

M∑
i=1

∫
Ω

ρn−1
i Φi dx,

and

DΦ = (−Φ1, · · · ,−ΦM ,∇Φ1, · · · ,∇ΦM ,

M∑
i=1

(α1
i − β1

i )Φi, , · · · ,
M∑
i=1

(αRi − βRi )Φi).

3.4. Reversible reaction-diffusion system with detailed balance

Note that the strongly reversible reaction-diffusion system (3.12) uses the
same energy Ei(ρi) =

∫
Ω
ρi(log(ρi)− 1) dx for all species. By simply relaxing

this requirement and rescale the energy as

Ei(ρi) =

∫
Ω

ρi(log(κiρi)− 1) dx, (3.16)

with κi > 0 being a positive constant to be determined by the reaction
rates kp±, we will recover reversible reaction-diffusion systems with detailed
balance; see [30, 48, 49, 50]. For the above choice of energy, there holds

δ

δρ
Ei(ρi) = log(κiρi).

Below we give two specific examples that will be used in the numerical results
section.
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3.4.1. A two species model

We consider two species X1, X2 with a single reversible reaction

X1 + 2X2

k+−⇀↽−
k−

3X2,

with k−, k+ > 0. Denoting the following coefficients and mobility functions,

κ1 = k+, κ2 = k− (3.17a)

V1,1(ρ1) = γ1(ρ1)m, V1,2(ρ2) = γ2ρ2, (3.17b)

V2(ρ1, ρ2) = `(κ1ρ1ρ
2
2, κ2ρ

3
2), (3.17c)

with `(·, ·) given in (3.10), γ1, γ2 > 0, m ≥ 1, and using the energy (3.16),
the system (3.12) written in component-wise notation is given as follows:

∂tρ1 = ∇ ·
(
V1,1(ρ1)∇δE1

δρ
(ρ1)

)
− V2(ρ1, ρ2)

(
δE1

δρ
(ρ1)− δE2

δρ
(ρ2)

)
, (3.18a)

∂tρ2 = ∇ ·
(
V1,2(ρ2)∇δE2

δρ
(ρ2)

)
+ V2(ρ1, ρ2)

(
δE1

δρ
(ρ1)− δE2

δρ
(ρ2)

)
. (3.18b)

This is the following two-component reversible reaction-diffusion system stud-
ied in [48, 49], which has potential applications in modeling tumor growth
(see [53, 62]):

∂tρ1 −
γ1

m
∆ρm1 = − (k+ρ1ρ

2
2 − k−ρ3

2),

∂tρ2 − γ2∆ρ2 = (k+ρ1ρ
2
2 − k−ρ3

2).

3.4.2. A reversible four-component Gray-Scott model

Our final example is the reversible four-component Gray-Scott model orig-
inally proposed in [44] and numerically studied in [49]. We consider four
species X1, X2, X3, X4 with three reversible reactions

X1 + 2X2

k1
+−⇀↽−
k1
−

3X2, X2

k2
+−⇀↽−
k2
−

X3, X1

k3
+−⇀↽−
k3
−

X4.

The reaction-diffusion system that combines these reactions with linear diffu-
sion (with M = 4, R = 3) can be written into the form (3.12) by the following
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specific choices of κ-values, and mobility functions V1,i and V2,p:

κ1 = 1, κ2 =
k1
−

k1
+

, κ3 =
k1
−

k1
+

k2
−

k2
+

, κ4 =
k3
−

k3
+

, (3.19a)

V1,1(ρ1) = γ1ρ1, V1,2(ρ2) = γ2ρ2, V1,3(ρ3) = V1,4(ρ4) = 0, (3.19b)

V2,1(ρ) = `(k1
+ρ

α1

, k1
−ρ

β1

) =
k1

+ρ1ρ
2
2 − k1

−ρ
3
2

log(κ1ρ1)− log(κ2ρ2)
, (3.19c)

V2,2(ρ) = `(k2
+ρ

α2

, k2
−ρ

β2

) =
k2

+ρ2 − k2
−ρ3

log(κ2ρ2)− log(κ3ρ3)
, (3.19d)

V2,3(ρ) = `(k2
+ρ

α3

, k3
−ρ

β3

) =
k3

+ρ1 − k3
−ρ4

log(κ1ρ1)− log(κ4ρ4)
. (3.19e)

For completeness, we write down the PDE system (3.12) with the above
choice of parameters using a standard component-wise notation in the fol-
lowing:

∂tρ1 = γ1∆ρ1 − (k1
+ρ1ρ

2
2 − k1

−ρ
3
2)− (k3

+ρ1 − k3
−ρ4), (3.20a)

∂tρ2 = γ2∆ρ2 + (k1
+ρ1ρ

2
2 − k1

−ρ
3
2)− (k2

+ρ2 − k2
−ρ3), (3.20b)

∂tρ3 = (k2
+ρ2 − k2

−ρ3), (3.20c)

∂tρ4 = (k3
+ρ1 − k3

−ρ4). (3.20d)

This is the reversible Gray-Scott model proposed in [44] to approximate the
following two-component irreversible Gray-Scott model [32]:

∂tρ1 = γ1∆ρ1 − k1
+ρ1ρ

2
2 − k3

+(ρ1 − 1), (3.21a)

∂tρ2 = γ2∆ρ2 + k1
+ρ1ρ

2
2 − k2

+ρ2, (3.21b)

which can form spatially complex patterns [59], and is widely used to study
pattern formations. We comment that by requiring

κ1
−ρ

3
2 ≈ 0, k3

−ρ4 ≈ k3
+, and κ2

−ρ3 ≈ 0, (3.22)

the reversible Gray-Scott model (3.20) formally converges to the irreversible
Gray-Scott model (3.21). We refer interested readers to [44] for a theoretical
study. Formally, the conditions (3.22) can be achieved by taking very small
backward reaction rates κ1

−, κ
2
−, κ

3
− � 1, and using initial value for ρ4 such

that ρ4 =
κ3

+

κ3
−
� 1. As a side note, we mention that spatially complex
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patterns were not observed in the numerical results [49, Example 4.3], which
uses a second-order operator splitting scheme via an energetic variational
formulation. We found that the reason for no pattern formation in the test
case in [49] was due to inappropriate choices of a too large backward reaction
rate k3

− and the initial condition. With a more careful choice of diffusion
coefficients, reaction rates, and initial conditions, we numerically observe
complex pattern formations in both 1D and 2D reversible Gray-Scott models;
see our simulation results in Section 5.6.

4. High-order spatial discretization for generalized time implicit
schemes

In this section, we first apply high-order spatial discretization to the time
implicit schemes (3.4), (3.6) and their system version (3.15), and then discuss
the practical implementation of each step of the ALG2 Algorithm 1. We
restrict ourselves to the two-dimensional setting with a rectangular domain
Ω, which is triangulated using a uniform rectangular mesh Th = {T}. While
our method can work on general unstructured triangular meshes, see [25], the
restriction to uniform rectangular meshes has a huge advantage in computing
the convolution term in the energy (3.2), where the Fast Fourier transform
can be applied.

4.1. The finite element spaces and notation

The spatial discretization is adopted from our previous work on high-
order schemes for optimal transport and mean field games [25]. Specifically,
the high-order H1-conforming finite element space

V k
h := {v ∈ H1(Ω) : v|T ∈ Qk(T ) ∀T ∈ Th}, (4.1)

is used to approximate the Φ variable, and the high-order L2-conforming
discontinuous polynomial space,

W k
h := {w ∈ L2(Ω) : w|T ∈ Qk(T ) ∀T ∈ Th}, (4.2)

is used to approximate the other variables where derivative information is
not needed. Here Qk(T ) is the space of tensor-product polynomial spaces of
degree no greater than k ≥ 1 in each direction. We equip the space W k

h with
a set of nodal basis {ϕi}NW

i=1 ⊂ W k
h that satisfies

ϕi(ξj) = δij, ∀1 ≤ j ≤ NW , (4.3)
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where NW is the dimension of the space W k
h , δij is the Kronecker delta

function, and {ξi}NW
i=i is the collection of NW Gauss-Legendre integration

points with corresponding weights {ωi}NW
i=1 on the mesh Th. For the current

work, only evaluation on quadrature points for functions in W k
h is needed

in the algorithm, not their derivatives. Hence, given a function uh ∈ W k
h

expressed as uh =
∑NW

i=1 uiϕi(x), we simply need to store and update its
coefficient vector [ui, · · · , uNW

]T , which makes its practical implementation
extremely simple. Moreover, we denote the discrete L2(Ω)-inner product
(·, ·)h as

(u, v)h :=

NW∑
i=1

u(ξi)v(ξi)ωi, (4.4)

we have (uh, vh)h =
∑NW

i=1 uiviωi. for any function uh =
∑NW

i=1 uiϕi(x) ∈ W k
h

and vh =
∑NW

i=1 viϕi(x) ∈ W k
h .

4.2. High-order FEM for the reaction diffusion equation
Since the variation time implicit scheme for the Wasserstein gradient flow

problem (3.4) is a special case for the reaction-diffusion problem (3.6) with
no reaction V2(ρ) = 0. We only present the high-order spatial discretization
for (3.6). We first write the discrete saddle point problem in its augmented
Lagrangian form (2.11): given mesh Th, polynomial degree k ≥ 1, time step
size ∆t > 0 and density approximation ρold

h at the previous time step, find
uh,u

∗
h ∈ [W k

h ]4, and Φh ∈ V k
h , such that

inf
u∈[Wk

h ]4
sup

Φh∈V k
h ,u

∗
h∈[Wk

h ]4
Lr,h(Φh,uh,u

∗
h), (4.5)

where uh = (ρh,m
0
h,m

1
h, sh) is the collection of density ρh, (two-dimensional)

flux mh = (m0
h,m

1
h), and source term sh, u

∗
h = (ρ∗h,m

0,∗
h ,m1,∗

h , s∗h) is its dual,
and the discrete augmented Lagrangian is

Lr,h(Φh,uh,u
∗
h) := F ∗h (u∗h) +Gh(Φh) + (uh,DΦh − u∗h)h

+
r

2
(DΦh − u∗h,DΦh − u∗h)h. (4.6)

Here (·, ·)h is the volume integration rule given in (4.4), the operators

DΦh := (−Φh, ∂x0Φh, ∂x1Φh,Φh), (4.7)

Gh(Φh) := (ρold
h ,Φh)h, (4.8)

F ∗h (u∗h) := sup
uh∈[Wk

h ]4
(u∗h,uh)h − Fh(uh), (4.9)
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where (∂x0 , ∂x1) = ∇ is the gradient, and Fh is given as

Fh(uh) :=

(
|m0

h|2 + |m1
h|2

2ρh
+

s2
h

2V2(ρh)
, 1

)
h

+ ∆t Eh(ρh), (4.10)

in which the discrete total energy

Eh(ρh) := (αUm(ρh) + ρhV (x), 1)h +
1

2
(W ∗ ρh, ρh)h (4.11)

for energy of the form (3.2). We note that when the interaction kernelW (x) is
smooth, the convolution term W ∗ ρh in the above expression can be simply
evaluated using the same integration rule (4.4). On the other hand, for
singular kernels with W (0) = ±∞, we shall use alternative integration rules
to avoid the evaluation of W (0) when evaluating this convolution term.

Note that a similar formulation can be used for the more general case
(2.7) for the equation (2.1) where the denominator in the first term in (4.10)
is replaced by a general mobility function V1(ρh).

Remark 4.1 (On polynomial degree for Φh and uh). We note that in our
previous work [25], the polynomial degree for the discontinuous functions uh
associated with the integration rule space W k

h is taken to be one order lower
than that for the the continuous function Φh. Here we find that increasing
the integration rule space order to be the same as the continuous space V k

h

leads to a more accurate result. Hence we use equal order approximations for
all our numerical results.

We next provide a practical implementation of each step of the ALG2
Algorithm 1 for solving the saddle point problem.

4.2.1. Step A: scalar case

Taking infinium of Lr,h with respect to Φh, we arrive at a constant coef-
ficient reaction-diffusion equation: find Φ`

h ∈ V k
h such that

(DΦ`
h,DΨh)h = (u∗,`−1

h − 1

r
u`−1
h ,DΨh)h −

1

r
(ρold
h ,Ψh)h, ∀Ψh ∈ V k

h .

(4.12)

Using the definition in (4.7), we write the above equation using physical
variables:

2(Φ`
h,Ψh)h + (∇Φ`

h,∇Ψh)h = (s∗,`−1
h − ρ∗,`−1

h +
ρ`−1
h − s`−1

h − ρold
h

r
,Ψh)h

+ (m∗,`−1
h − m

`−1
h

r
,∇Ψh)h.
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This symmetric positive definite linear system can be efficiently solved using,
e.g., a multigrid algorithm [8, 71].

4.2.2. Step B/C: scalar case

The next step is to take infinium of Lr,h with respect to u∗h. Find u∗,`h ∈
[W k

h ]4, such that it solves

argmin
u∗
h∈[Wk

h ]4
F ∗h (u∗h)− (u`−1

h ,u∗h)h +
r

2
(DΦ`

h − u∗h,DΦ`
h − u∗h)h.

Without loss of generality, we abuse the notation and denote DΦ`
h as its

interpolation onto the space [W k
h ]4. We further denote

uh := DΦ`
h +

1

r
u`−1
h ∈ [W k

h ]4. (4.13)

Then the above minimization problem is equivalent to

argmin
u∗
h∈[Wk

h ]4
F ∗h (u∗h) +

r

2
(u∗h − uh,u∗h − uh)h. (4.14)

After this minimizer is computed, the last step is to update the Lagrangian
multiplier u`h according to (2.12):

u`h = u`−1
h + r(DΦ`

h − u
∗,`
h ) = r(uh − u∗,`h ) ∈ [W k

h ]4, (4.15)

where we used the definition (4.13) in the last step.
Due to the complicated form of the energy (3.2), it might be challenging

to compute an explicit expression of the convex conjugate F ∗h (u∗h). Here we
present a practical way to solve the minimization problem (4.14) without
explicitly computing this convex conjugate using duality. The main idea is
presented in the next result.

Proposition 4.1. Let u∗,`h ∈ [W k
h ]4 be the minimizer to the problem (4.14),

and let u`h be given according to (4.15). Then, u`h is the minimizer to the
following problem

u`h = argmin
uh∈[Wk

h ]4
Fh(uh) +

1

2r
(uh − ruh,uh − ruh)h, (4.16)

which we refer to as the dual problem of (4.14). Furthermore, there holds

u∗,`h = uh − u`h/r. (4.17)
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Proof. The equation (4.17) is a simple rewriting of (4.15). Let us now prove
(4.16). By definition (4.9), we have u∗,`h is part of the saddle point solution

inf
u∗
h∈[Wk

h ]4
sup

uh∈[Wk
h ]4

(uh,u
∗
h)h − Fh(uh) +

r

2
(u∗h − uh,u∗h − uh)h. (4.18)

Taking the derivative with respect to u∗h in the above expression, we get

u∗h = uh − uh/r.

Plugging this expression back to (4.18), we easily see that the primal variable
uh is the minimizer to the dual problem (4.16). By (4.15), it is clear that
this optimizer is nothing but the solution u`h. This completes the proof.

Proposition 4.1 suggests to first solve for the primal variable u`h using
the minimization problem (4.16), then update u∗,`h using (4.17), which is the
approach we adopt in our implementation. It is in general more convenient
than the (equivalent) original ALG2 algorithm that first solve for the dual
variable u∗,`h using (4.14) then update u`h using (4.15), which requires the
computation of the dual functional (4.9).

Next, using the particular form of Fh in (4.10), we show that the mini-
mization problem (4.16) can be efficiently solved by first locally expressing
flux m0

h,m
1
h and source sh in terms of density ρh and then solving a nonlinear

optimization problem for ρh alone. We record this procedure in the following
result.

Proposition 4.2. Let u`h be the solution to (4.16). Then there holds

m0,`
h =

rρ`h
r + ρ`h

m0
h, m1,`

h =
rρ`h
r + ρ`h

m1
h, s`h =

rV2(ρ`h)

r + V2(ρ`h)
sh, (4.19)

where
uh = (ρh,m

0
h,m

1
h, sh),

and ρ`h is the minimizer to the following reduced problem:

argmin
ρh∈Wk

h

1

2r

(
|ρh − rρh|2, 1

)
h

+

(
r2(|m0

h|2 + |m1
h|2)

2(r + ρh)
, 1

)
h

+

(
r2 |sh|2

2(r + V2(ρh))
, 1

)
h

+ ∆t Eh(ρh). (4.20)
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Proof. The derivatives of the functional in (4.16) at the saddle point van-
ishes. Taking derivatives with respect to m0

h,m
1
h and sh, we get the relations

(4.19). Plugging these relations back to (4.16) and simplifying, we get the
optimziation problem (4.20) for ρ`h.

Remark 4.2 (On pointwise update for (4.20)). The problem (4.20) can be
solved by computing its critical point. Taking the variation of the function in
(4.20) with respect to ρh, we have

1

r
(ρh − rρh)−

r2(|m0
h|2 + |m1

h|2)

2(r + ρh)2
− r2V ′2(ρh)s

2
h

2(r + V2(ρh))2
+ ∆t

δEh
δρ

(ρh) = 0.

(4.21)

By the choice of the function space (4.2), it is clear that (4.21) is satisfied
on all quadrature points ξi for 1 ≤ i ≤ NW . Using definition of the energy
(4.11), we have

δEh
δρ

(ρh) = αU ′m(ρh) + V (x) +W ∗ ρh.

In the absence of interaction kernel where W (x) = 0, the equation (4.21) can
be solved in a pointwise fashion per quadrature point thanks to the particu-
lar choice of the nodal basis (4.3) for the space (4.2), using, e.g., Newton’s
method.

On the other hand, when aggregation effects are included, the term W ∗ρh
prohibits such pointwise update due to the nonlocal effect of this convolution.
In this case, we treat the convolution term W ∗ ρh explicitly in (4.21) by
evaluating it at the previous time step, i.e.,

W ∗ ρh ≈ W ∗ ρoldh ,

and then solve the modified pointwise local problem (4.21) using the New-
ton’s method. This is the choice we use in all our simulation results with
aggregation effects. Similar treatment was used in, e.g., [10, 7].

Remark 4.3 (On convexity). Let us briefly comment on convexity of the
problem (4.20). When aggregation effects are included, we extrapolate the
nonlocal convolution term according to Remark 4.2. The problem (4.20) is
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a pointwise minimization problem per quadrature point. Taking its second-
order variation, we obtain

1

r
+
r2(|m0

h|2 + |m1
h|2)

(r + ρh)3
+
r2|sh|2 (2V ′2(ρh)

2 − (r + V2(ρh))V
′′

2 (ρh))

2(r + V2(ρh))3
+ α∆tU ′′m(ρh)

(4.22)

It is clear that the first, second, and last term of the above expression are
always nonnegative as long as ρh ≥ 0. Moreover, if

2V ′2(ρh)
2 − (r + V2(ρh))V

′′
2 (ρh) ≥ 0, (4.23)

then the third term is also nonnegative. For such a choice of mobility V2, the
minimization problem is convex, and uniqueness of the solution is guaranteed
unconditionally for any time step size ∆t. In the absence of aggregation ef-
fects, the overall ALG2 algorithm with V2 satisfying (4.23) can also be shown
to be unconditionally convergent; see, e.g., [21].

We note that the convexity condition (4.23) is ensured if we take V2(ρ) =
cργ for c > 0 and 0 ≤ γ ≤ 1, or V2(ρ) = ρ−ρ̄

log(ρ)−log(ρ̄)
for any ρ̄ > 0. The

latter choice will be used in the system case. On the other hand, the mobility
V2(ρ) = ρ(1−ρ)

log(ρ)
for the Fisher-KPP equation (3.7) does not satisfy the con-

vexity condition (4.23). For this case, we may use a small time step size ∆t
to get a stable simulation.

We finally note that small time step size ∆t may also be needed for the
general case with an interaction potential W , where extrapolation is used to
approximate the problem (4.20) as mentioned in Remark (4.2).

For completeness, we collect one iteration of this algorithm as follows.

Algorithm 2 One iteration of ALG2 algorithm for (4.5).

• Step A: update Φ`
h. Find Φ`

h ∈ V k
h such that the equation (4.12) holds.

• Step B/C: update u`h,u
∗,`
h . First, find ρ`h such that it is the minimizer

to (4.20). Then update m0,`
h ,m

1,`
h , s

`
h according to (4.19). Finally, update

u∗,`h according to (4.17).

We note that positivity of density approximation ρh can be easily enforced
in the pointwise optimization problem (4.20).
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4.3. High-order FEM for strongly reversible reaction diffusion systems

We now present the high-order FEM discretization of the variational time
implicit scheme (3.15) and discuss its practical (modified) ALG2 implemen-
tation. Given time step size ∆t > 0 and density approximations

ρold
h = (ρold

1,h, · · · , ρold
M,h) ∈ [W k

h ]M

at the previous time step, find uh,u
∗
h ∈ [W k

h ]3M+R, and Φh ∈ [V k
h ]M , such

that

inf
uh∈[Wk

h ]3M+R
sup

Φh∈[V k
h ]M ,u∗

h∈[Wk
h ]3M+R

Lr,h(Φh,uh,u
∗
h), (4.24)

where

uh = (ρ1,h,m
0
1,h,m

1
1,h, · · · , ρM,h,m

0
M,h,m

1
M,h, s1,h, · · · , sR,h)

is the collection of densities ρh, fluxes

mh = (m0
1,h,m

1
1,h, · · · ,m0

M,h,m
1
M,h),

and source terms sh = (s1,h, · · · , sR,h), u∗h is its dual, Φh = (Φ1,h, . . . ,ΦM,h),
and the discrete augmented Lagrangian is

Lr,h(Φh,uh,u
∗
h) := Fh

∗(u∗h) +Gh(Φh) + (uh,DΦh − u∗h)h

+
r

2
(DΦh − u∗h,DΦh − u∗h)h. (4.25)

Here the operators

DΦh :=
(
− Φ1,h, ∂x0Φ1,h, ∂x1Φ1,h, · · · ,−Φ1,h, ∂x0Φ1,h, ∂x1Φ1,h,

M∑
i=1

(α1
i − β1

i )Φi,h, · · · ,
M∑
i=1

(αRi − βRi )Φi,h

)
, (4.26)

Gh(Φh) :=
M∑
i=1

(ρold
i,h ,Φi,h)h, (4.27)

Fh
∗(u∗h) := sup

uh∈[Wk
h ]3M+R

(u∗h,uh)h − Fh(uh), (4.28)
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and Fh is given as

Fh(uh) :=

(
M∑
i=1

|m0
i,h|2 + |m1

i,h|2

2V1,i(ρi,h)
+

R∑
p=1

|sp,h|2

2V2,p(ρh)
, 1

)
h

+ ∆t
M∑
i=1

Ei,h(ρi,h), (4.29)

where the mobility functions are given in (3.11) and the discrete energy

Ei,h(ρi,h) = (ρi,h(log(ρi,h)− 1), 1)h.

We now discuss a modified implementation of the ALG2 algorithm 1
for the saddle point system (4.24), where further componentwise splitting is
introduced to drive down the overall computational cost.

4.3.1. Step A: system case

Taking infinium of Lr,h with respect to Φh, we arrive at a coupled system

of constant coefficient reaction-diffusion equations: find Φ`
h ∈ [V k

h ]M such
that

(DΦ`
h,DΨh)h = (u∗,`−1

h − 1

r
u`−1
h ,DΨh)h −

1

r
(ρold

h ,Ψh)h, (4.30)

for all Ψh ∈ [V k
h ]M . Using the definition in (4.26), we write the above system

back using the physical variables:

(Φ`
i,h,Ψi,h)h + (∇Φ`

i,h,∇Ψi,h)h +
R∑
p=1

M∑
j=1

(
(αpj − β

p
j )Φ

`
j,h, (α

p
i − β

p
i )Ψi,h

)
h

= (−ρ∗,`−1
i,h +

ρ`−1
i,h − ρold

i,h

r
,Ψi,h)h + (m∗,`−1

i,h −
m`−1

i,h

r
,∇Ψi,h)h

+
R∑
p=1

(
s∗,`−1
r,h − 1

r
s`−1
r,h , (α

p
i − β

p
i )Ψi,h

)
h

,

for all 1 ≤ i ≤ M . This coupled linear system might be expensive to solve.
Here we propose to solve these M equations in parallel by treating the cou-
pling term on the left hand side of the above equation explicitly. Specifically,
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for each 1 ≤ i ≤ M , we compute Φi,h ∈ V k
h such that it solves the following

scalar linear reaction-diffusion equation:

(Φ`
i,h,Ψi,h)h + (∇Φ`

i,h,∇Ψi,h)h +
R∑
p=1

(
(αpi − β

p
i )Φ

`
i,h, (α

p
i − β

p
i )Ψi,h

)
h

= (−ρ∗,`−1
i,h +

ρ`−1
i,h − ρold

i,h

r
,Ψi,h)h + (m∗,`−1

i,h −
m`−1

i,h

r
,∇Ψi,h)h

+
R∑
p=1

(
s∗,`−1
r,h − 1

r
s`−1
r,h , (α

p
i − β

p
i )Ψi,h

)
h

−
R∑
p=1

M∑
j=1

j 6=i

(
(αpj − β

p
j )Φ

`−1
j,h , (α

p
i − β

p
i )Ψi,h

)
h
, (4.31)

for all Φi,h ∈ V k
h . These are M decoupled scalar constant-coefficient linear

reaction-diffusion equations, which are easy to solve.
One may also solve the equation (4.31) sequentially (in a Gauss-Seidel

manner), which uses the updated Φ`
j,h for j < i when computing the variable

Φ`
i,h.

4.3.2. Step B/C: system case

Similar to the scalar case in Subsection 4.2.2, we first compute the solu-
tions u`h according to the following system version of (4.16):

u`h = argmin
uh∈[Wk

h ]3M+R

Fh(uh) +
1

2r
(uh − ruh,uh − ruh)h, (4.32)

where

uh := DΦ`
h +

1

r
u`−1
h ,

with the understanding thatDΦ`
h is its interpolation onto the space [W k

h ]3M+R,
and then update u∗,`h according to

u∗,`h = uh − u`h/r. (4.33)

Again, we solve the problem (4.32) by first locally expressing all other
variables in terms of the densities, and then solve pointwise optimization
problems for these densities on each quadrature point.
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Proposition 4.3. Let u`h be the solution to (4.32). Then there holds

mk,`
i,h =

rV1,i(ρ
`
i,h)

r + V1,i(ρ`i,h)
mi,h,∀k = 0, 1, and 1 ≤ i ≤M, (4.34)

s`p,h =
rV2,p(ρ

`
h)

r + V2,p(ρ`h)
sp,h, ∀1 ≤ p ≤ R, (4.35)

and the collection of densities ρ`h is the minimizer of the following reduced
problem:

argmin
ρh∈[Wk

h ]M

M∑
i=1

1

2r

(
|ρi,h − rρi,h|2, 1

)
h

+
M∑
i=1

(
r2(|m0

i,h|2 +m0
i,h|2)

2(r + V1,i(ρi,h))
, 1

)
h

+
R∑
p=1

(
r2|sp,h|2

2(r + V2,p(ρh))
, 1

)
h

+ ∆t
M∑
i=1

Ei,h(ρi,h). (4.36)

By the choice of the integration rule space (4.2) and its nodal basis (4.3),
it is clear that the minimization problem (4.36) can be solved in a point-
wise fashion per quadrature point. On each quadrature point, it is an M -
dimensional minimization problem, where the coupling is introduced in the
reaction term in the second row of (4.36). Again, we propose to solve M inde-
pendent single-variable minimization problems in parallel by treating the re-
action term semi-implicitly. Specifically, the solution ρ`i,h for each 1 ≤ i ≤M
is obtained by solving the following problems in parallel:

argmin
ρi,h∈Wk

h

1

2r

(
|ρi,h − rρi,h|2, 1

)
h

+

(
r2(|m0

i,h|2 +m0
i,h|2)

2(r + V1,i(ρi,h))
, 1

)
h

+
R∑
p=1

(
r2|sp,h|2

2(r + V2,p(ρ̃h))
, 1

)
h

+ ∆tEi,h(ρi,h). (4.37)

Here
ρ̃ih = (ρ`−1

1,h , · · · , ρ
`−1
i−1,h, ρi,h, ρ

`−1
i+1,h, · · · , ρ

`−1
M,h),

i.e., all other densities are evaluated explicitly at level ` − 1. By the choice
of mobility functions in (3.11), it is easy to show that the problem (4.37) is
convex and hence has a unique global minimizer. We collect this modified
ALG2 implementation in the following algorithm.
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Algorithm 3 One iteration of modified ALG2 algorithm for (4.24).

• Step A: update Φ`
h. Find Φ`

i,h ∈ V k
h such that the equation (4.31) holds

for each 1 ≤ i ≤M .
• Step B/C: update u`h,u

∗,`
h . First, find ρ`i,h such that it is the minimizer

to (4.37) for each 1 ≤ i ≤ M . Then update mk,`
i,h for k = 0, 1 according to

(4.34) and update s`p,h for 1 ≤ p ≤ R according to (4.35). Finally, update

u∗,`h according to (4.33).

4.4. High-order FEM for reversible reaction-diffusion systems with detailed
balance

For a reversible reaction-diffusion system with detailed balance, the spa-
tial discretization and the corresponding practical ALG2 implementation are
the same as the one in a strongly reversible case, with the only change that
the discrete energy now takes the following form:

Ei,h(ρ) = (ρ(log(κiρ)− 1), 1)h,

where κi > 0 depends on the reaction rates.
Here a small modification (with a reduced cost) is need to simulate the

reversible Gray-Scott model in Example 3.4.2 since it does not include diffu-
sion for the last two species. Specifically, we do not need flux approximations
for the last two species, and the variables and operators in the fully discrete
algorithm (4.24) for the system (3.20) is recorded below for completeness:

uh = (ρ1,h,m
0
1,h,m

1
1,h, ρ2,h,m

0
2,h,m

1
2,h, ρ3,h, ρ4,h, s1,h, s2,h, s3,h), (4.38a)

Φh = (Φ1,h,Φ2,h,Φ3,h,Φ4,h), (4.38b)

DΦh :=
(
− Φ1,h, ∂x0Φ1,h, ∂x1Φ1,h,−Φ2,h, ∂x0Φ2,h, ∂x1Φ2,h,

− Φ3,h,−Φ4,h,Φ1,h − Φ2,h,Φ2,h − Φ3,h,Φ1,h − Φ4,h

)
, (4.38c)

Gh(Φh) :=
4∑
i=1

(ρold
i,h ,Φi,h)h, (4.38d)

Fh(uh) :=

(
2∑
i=1

|m0
i,h|2 + |m1

i,h|2

2V1,i(ρi,h)
+

3∑
p=1

|sp,h|2

2V2,p(ρh)
, 1

)
h

+ ∆t
4∑
i=1

Ei,h(ρi,h), (4.38e)
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where the parameters and mobility functions are given in (3.19). Note that
Step A of Algorithm 3 now becomes two scalar linear reaction-diffusion equa-
tion updates for Φ`

1,h and Φ`
2,h, and two simple mass matrix updates for Φ`

3,h

and Φ`
4,h.

5. Numerical experiments

In this section, we conduct comprehensive 2D experiments to show the
efficiency and effectiveness of the proposed numerical algorithms. Through-
out, we take the augmented Lagrangian parameter to be r = 1, and perform
200 ALG iterations in each time step for all test cases. Our numerical simu-
lations are performed using the open-source finite-element software NGSolve
[65], https://ngsolve.org/.

5.1. Spatial convergence rates

We first consider the nonlinear Fokker-Plank equation

∂tρ−4ρ3 = ∇ · (ρ x),

on the domain Ω = [−1, 1]× [−1, 1] with homogeneous Neumann boundary
conditions. It is a Wasserestein gradient flow of the form (3.1) with energy

E(ρ) :=

∫
Ω

(
1

2
ρ(x)3 +

1

2
(x2

0 + x2
1)ρ(x)

)
dx,

where x = (x0, x1). This problem reaches a steady state solution

ρsteady(x1, x2) =

√
(2C − (x2

0 + x2
1))+

3
,

that satisfies either

δE
δρ

=
3

2
ρ2 +

1

2
(x2

0 + x2
1) = C,

or ρ = 0. Here the constant C depends on the total mass of the initial
condition, which we set to be C = 2 so that the solution on Ω is positive and
smooth.

We perform a mesh convergence study for the scheme (4.5) using Algo-
rithm 2 with polynomial degree k = 1, 2, 4 on a sequence of uniformly refined
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Table 1: Convergence rates of scheme 4.5 with different polynomial degree k applied to a
2D steady Fokker Plank equation.

dim(V k
h ) k = 1 k = 2 k = 4

81 2.362e-03 – 2.409e-04 – 2.628e-05 –
289 5.923e-04 2.00 3.298e-05 2.87 1.424e-06 4.21
1089 1.482e-04 2.00 4.232e-06 2.96 5.589e-08 4.67
4225 3.705e-05 2.00 5.326e-07 2.99 1.884e-09 4.89

Table 2: Example 5.2. Five choices of energies, domain size, and initial condition.

Case αUm(ρ) V (x) W (x) L I.C.

1 0 0 |x|4
4
− |x|

2

2
1 25

2π
exp(−25

2
|x|2)

2 0 0 |x|2
2
− log(|x|) 1.5 25

8π
exp(−25

8
|x|2)

3 0 −1
4

log(|x|) |x|2
2
− log(|x|) 1.5 25

8π
exp(−25

8
|x|2)

4 0.1ρ2 −1
4

log(|x|) |x|2
2
− log(|x|) 1.5 25

8π
exp(−25

8
|x|2)

5 0.1ρ3 0 − exp(−|x|2)/π 4 0.25χ[−3,3]×[−3,3]

meshes. The coarse mesh is of size 8 × 8 for k = 1, 4 × 4 for k = 2, and
2 × 2 for k = 4, so that the total number of degrees of freedom for Φ is
the same on each mesh level for different polynomial degrees. We take large
time step size with ∆t = 1, and perform 10 time steps of simulation where
the numerical solution reaches the steady state. The L2-convergence in the
density ρ is recorded in Table 1. We clearly observe the k + 1-th order of
convergence for each case. In particular, the higher order method leads to a
smaller error when a same number of total degrees of freedom is used.

5.2. Aggregation-drift-diffusion equations

We consider Wasserstein gradient flow (3.1) with five choices of energies
(3.2) that include aggregation effects. The specific form of the energy, along
with the domain size L where the computational domain Ω = [−L,L] ×
[−L,L], and the initial conditions are given in Table 2. Here χ[−3,3]×[−3,3]

is the characteristic function on [−3, 3] × [−3, 3] for Case 5. All cases were
considered in [12], except Case 4 which adds an additional diffusion to the
energy in Case 3.
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Note that the interaction kernel W (x) for Cases 2/3/4 is singular at
zero. Here we use a higher-order numerical integration rule, which avoids
the evaluation of W (x) at zero to compute the convolution

W ∗ ρ(ξi), ∀1 ≤ i ≤ NW ,

at the quadrature points {ξi}NW
i=1 . Fast Fourier transform is used to evaluate

these convolutions all together.
For all cases, we take the computational mesh to be a 32 × 32 uniform

square mesh, and use polynomial degree k = 4 in the scheme (4.5). We take
time step size ∆t = 0.05 for the first four cases, and ∆t = 0.5 for the last
case. The final time of simulation is T = 10 for Case 1, T = 3 for Cases
2/3/4, and T = 15 for Case 5. Snapshots of the density contours at different
times are shown in Figure 1. We find the results for Cases 1/2/3 and 5
are qualitatively similar to the results reported in [12]. In particular, Case
1 converges to a steady Dirac ring solution; Case 2 converges to a steady
constant solution with a circular shape; Case 3 converges to a characteristic
function for the torus due to the drift effects that pushes away the density
from the origin; and the competition between median range aggregation with
short/long range diffusion are observed for Case 5. Moreover, the diffusion
effects of Case 4 comparing with Case 3 are also clearly seen.

5.3. Scalar reaction-diffusion equation

We take the Case 4 energy in Table 2, but consider the reaction-diffusion
equation (3.5). Three choices of mobility coefficient V2(ρ) are used in this
example, namely, 

Type 1: V2(ρ) = 0.1,

Type 2: V2(ρ) = 0.1ρ,

Type 3: V2(ρ) = 0.1 ρ−1
log(ρ)

.

(5.1)

The same discretization setup as in the previous example is used, i.e., using
polynomial degree k = 4 on a 32 × 32 uniform mesh with time step size
∆t = 0.05, and final time T = 3.

Snapshots of the density contours for each case at different times are
shown in Figure 2. It is clear from the color range of these plots that reaction
effects leads to mass loss, with the Type 1 reaction has the most mass loss,
followed by Type 3 reaction.
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5.4. Fisher-KPP equation

Our next example deals with the Fisher-KPP equation (3.7). Here we
slightly modify the PDE (3.7) to allow for anisotropic diffusion:

∂tρ− λ1∂x0x0ρ− λ2∂x1x1ρ = µρ(1− ρ).

We use a similar setup as in [68, Secion 3.1], where the diffusion parameters
are taken to be λ1 = 0.1, λ2 = 0.01, and µ > 0 is the reaction coefficient to
be specified. Initial condition is a flat top Gaussian:

ρ0(x0, x1) =

{
1, if x2

0 + 4x2
1 ≤ 0.25

exp(−10(x2
0 + 4x2

1 − 0.25)), otherwise

The computational domain is a rectangle Ω = [−2, 2] × [−1, 1], which is
discretized with a 32× 16 square mesh. We use polynomial degree k = 4 for
the scheme (4.5), in which the functional Fh in (4.10) is adjusted as follows
to allow for anisotropic diffusion:

Fh(uh) :=

(
|m0

h|2

2V1,0(ρh)
+
|m1

h|2

2V1,1(ρh)
+
|sh|2

2V2(ρh)
, 1

)
h

+ ∆t Eh(u0,h),

where V1,0(ρ) := λ1ρ, V1,1(ρ) := λ2ρ, V2(ρ) := µρ(ρ−1)
log(ρ)

, and the energy satisfies

Eh(ρ) = (ρ(log(ρ)− 1), 1)h .

We take time step size ∆t = 0.1, and the final time is T = 4.
Snapshots of the density contours for µ = 0.1 (weak reaction) µ = 0.5

(medium reaction), and µ = 1.0 (strong reaction) at different times are shown
in Figure 3. We further plot the evolution of energy Eh(ρh) and total mass∫

Ω
ρh dx over time for the three cases in Figure 4. It is clear that the energy is

monotonically decreasing for all three cases and the total mass is monotoni-
cally increasing, where a faster decay of energy is observed when the reaction
coefficient µ is larger.

5.5. Two-component reversible reaction-diffusion system with detailed bal-
ance

We consider the two-species model discussed in Section 3.4. In particular,
we consider the system (3.18) with parameters k+ = 1 and k− = 0.1, γ1 =
0.2, γ2 = 0.1, and V1,1(ρ) = γ1ρ

m and V1,2(ρ) = γ2ρ with four choices of
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m ∈ {1, 2, 3, 4}. Here porous medium type diffusion is used for the first
species with density ρ1 and linear diffusion is used for the second species
with density ρ2. Similar model was used in [48, 49]. The problems are solved
on the domain Ω = [−1, 1]× [−1, 1] with the following initial data

ρ1(x, 0) =
1

2

(
1− tanh(10(

√
x2

0 + x2
1 − 0.2))

)
,

ρ2(x, 0) =
1

2

(
1 + tanh(10(

√
x2

0 + x2
1 − 0.2)).

)
.

Final time is taken to be T = 2.
We use the scheme (4.24) with polynomial degree k = 4 on a 16×16 mesh

with time step size ∆t = 0.05. We apply Algorithm 3 to solve the resulting
saddle point problem. Snapshots of the density contours at different times
are shown in Figure 5 for the first component, and in Figure 6 for the second
component. It is clear that increasing the power m leads to a slower diffusion
for the first species.

We further plot the time evolution of the total energy Etotal = E1,h(ρ1,h)+
E2,h(ρ2,h) and total mass

∫
Ω

(ρ1,h + ρ2,h) dx for the four cases in Figure 7.
Moreover, the total mass conservation is kept well within an error of 10−4

for all cases.

5.6. Reversible Gray-Scott model

In our last example, we simulate the 4-component reversible Gray-Scott
model (3.20) using the Algorithm 3 for the fully discrete scheme (4.24) with
variables/operators (4.38). The physical parameters are chosen to be the
following:

γ1 = 1, γ2 = 0.01,

k1
+ = 1, k1

− = 10−3,

k2
+ = 8.4× 10−2, k2

− = 8.4× 10−5,

k3
+ = 2.4× 10−2, k3

− = 2.4× 10−5,

where the backward reaction rates are taken to be 1000 times smaller than
the forward reaction rates. This provides a good approximation to the irre-
versible Gray-Scott model (3.21). We consider both 1D and 2D simulations
for this problem. The initial conditions for the second component density ρ2
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is taken to be

ρ2(x, 0) =


0.15 + 1

4
x2(x+ 1)2 if − 1 ≤ x ≤ 0,

0.15 + 1
4
x2(1− x)2 if 0 ≤ x ≤ 1,

0.15 elsewhere,

in one dimension, and

ρ2(x, 0) =



0.15 + 4x2(x+ 1)2y2(y + 1)2 if − 1 ≤ x ≤ 0 and − 1 ≤ y ≤ 0,

0.15 + 4x2(x+ 1)2y2(1− y)2 if − 1 ≤ x ≤ 0 and 0 ≤ y ≤ 1,

0.15 + 4x2(1− x)2y2(y + 1)2 if 0 ≤ x ≤ 1 and − 1 ≤ y ≤ 0,

0.15 + 4x2(1− x)2y2(1− y)2 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

0.15 elsewhere,

in two dimensions. The initial conditions for the other densities are taken to
be

ρ1(x, 0) = 1− 2ρ2(x, 0), ρ3(x, 0) = 1, ρ4(x, 0) = k3
+/k

3
− = 1000.

For the 1D simulation, we take the computation domain to be Ω1D = [−16, 16]
and set the final time of simulation to be T = 1600. For the 2D simulation,
we take a smaller computational domain with Ω2D = [−8, 8]× [−8, 8] and set
the final time of simulation to be T = 500.

We apply the scheme (4.24) with k = 4 on a uniform mesh with mesh size
h = 1 (32 elements in 1D, and 16 × 16 elements in 2D) for both problems.
Here we gradually increase the time step size from ∆t = 0.01 to ∆t = 0.1 as
initially taking ∆t = 0.1 leads to numerical instability. This may be caused
by our splitting version of the ALG2 implementation in Algorithm 3.

We record the snapshots of the second-component density at various times
in Figure 8. For both cases, we observe pattern formations and the solution
reaches a nontrivial steady state at large time. Finally, we plot the evolution
of total energy for both cases in Figure 9, where we observe the expected
monotone energy decay.

6. Conclusion

This paper applies high-order accurate finite element methods in space to
compute first-order accuracy implicit-in-time gradient flows. Our formula-
tion applies a one-step time discretization of the generalized JKO scheme and
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then uses the ALG2 to calculate optimization problems in each generalized
JKO time step. The method is unconditionally stable when the optimiza-
tion problem is convex. Numerical experiments in two-dimensional gradient
flow dynamics, such as Wasserstein gradient flows, Fisher–KPP dynamics,
and reversible reaction-diffusion systems, demonstrate the effectiveness of
the proposed method with high-order spatial accuracy.

We note that for dissipative dynamics, such as strongly reversible reaction-
diffusion systems, different entropies E , and optimal transport-type metrics
V1, V2, could produce the same evolutionary equation. In simulations, we
suggest selecting a suitable class of entropies and metrics to develop simple
and efficient optimization procedures. Some limitations exist for computing
implicit-in-time gradient flows in generalized optimal transport metric spaces.
The constructed functions V1 and V2 should be nonnegative for entropy dissi-
pation schemes. Our generalized JKO scheme is unstable for many reaction-
diffusion equations, e.g., the Allen-Cahn-type equations [67]. We also remark
that the current computations are limited to the first–order time accuracy
variational-implicit schemes of gradient flows. In future work, we shall design
and compute generalized optimal transport and mean field control problems
for implicit-in-time fluid dynamics with general conservative-dissipative for-
mulations. Typical examples include regularized conservation laws [40, 41].
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(a) Case 1. Left to right time: t = 0.5, 1.5, 3.0, 6.0, 10

(b) Case 2. Left to right time: t = 0.2, 0.5, 1.5, 2.0, 3.0

(c) Case 3. Left to right time: t = 0.2, 0.5, 1.5, 2.0, 3.0

(d) Case 4. Left to right time: t = 0.2, 0.5, 1.5, 2.0, 3.0

(e) Case 5. Left to right time: t = 2, 4, 6, 10, 15

Figure 1: Example 5.2. Snapshots of density contours at different times for different test
cases.
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(a) Case 4 energy, Type 1 reaction. Left to right time: t = 0.2, 0.5, 1.5, 2.0, 3.0

(b) Case 4 energy, Type 2 reaction. Left to right time: t = 0.2, 0.5, 1.5, 2.0, 3.0

(c) Case 4 energy, Type 3 reaction. Left to right time: t = 0.2, 0.5, 1.5, 2.0, 3.0

Figure 2: Example 5.3. Snapshots of density contours at different times for different
reaction mobility functions.
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(a) Reaction coefficient µ = 0.1. Left to right time: t = 1, 2, 3, 4

(b) Reaction coefficient µ = 0.5. Left to right time: t = 1, 2, 3, 4

(c) Reaction coefficient µ = 1.0. Left to right time: t = 1, 2, 3, 4

Figure 3: Example 5.3. Snapshots of density contours at different times for different
reaction coefficients.

Figure 4: Example 5.3. Evolution of total energy (left) and total mass (right) over time.
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(a) V1,1(ρ) = γ1ρ. Left to right time: t = 0, 0.5, 1, 1.5, 2

(b) V1,1(ρ) = γ1ρ
2. Left to right time: t = 0, 0.5, 1, 1.5, 2

(c) V1,1(ρ) = γ1ρ
3. Left to right time: t = 0, 0.5, 1, 1.5, 2

(d) V1,1(ρ) = γ1ρ
4. Left to right time: t = 0, 0.5, 1, 1.5, 2

Figure 5: Example 5.5. Snapshots of first-component density contours at different times
for different V1,1(ρ).
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(a) V1,1(ρ) = ρ. Left to right time: t = 0, 0.5, 1, 1.5, 2

(b) V1,1(ρ) = ρ2. Left to right time: t = 0, 0.5, 1, 1.5, 2

(c) V1,1(ρ) = ρ3. Left to right time: t = 0, 0.5, 1, 1.5, 2

(d) V1,1(ρ) = ρ4. Left to right time: t = 0, 0.5, 1, 1.5, 2

Figure 6: Example 5.5. Snapshots of second-component density contours at different times
for different V1,1(ρ).
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Figure 7: Example 5.5. Evolution of total energy (left) and total mass (right) over time
with V1,1(ρ) = γ1ρ

m.

(a) 1D results. Left to right time: t = 200, 400, 800, 1600.

(b) 2D results. Left to right time: t = 100, 200, 300, 400, 500

Figure 8: Example 5.6. Snapshots of second-component density contours at different times
for 1D (top) and 2D (bottom) simulations.

Figure 9: Example 5.6. Evolution of total energy in 1D (left) and 2D (right).
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