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Abstract

In this work, we investigate applications of no-collision transportation
maps introduced in [Nurbekyan et. al., 2020] in manifold learning for
image data. Recently, there has been a surge in applying transportation-
based distances and features for data representing motion-like or deformation-
like phenomena. Indeed, comparing intensities at fixed locations often
does not reveal the data structure. No-collision maps and distances devel-
oped in [Nurbekyan et. al., 2020] are sensitive to geometric features similar
to optimal transportation (OT) maps but much cheaper to compute due
to the absence of optimization. In this work, we prove that no-collision
distances provide an isometry between translations (respectively dilations)
of a single probability measure and the translation (respectively dilation)
vectors equipped with a Euclidean distance. Furthermore, we prove that
no-collision transportation maps, as well as OT and linearized OT maps,
do not in general provide an isometry for rotations. The numerical experi-
ments confirm our theoretical findings and show that no-collision distances
achieve similar or better performance on several manifold learning tasks
compared to other OT and Euclidean-based methods at a fraction of a
computational cost.

1 Introduction

High-dimensional datasets can be very difficult to visualize and may contain
redundant information. In particular, while two- or three-dimensional data can
be plotted to show its inherent structure, equivalent high-dimensional plots are
much less intuitive. One of the fundamental observations in data science is that
high-dimensional data often exhibits low-dimensional structure. In fact, a com-
mon assumption in machine learning, known as the manifold hypothesis, is that
observed data lie on a low-dimensional manifold embedded in a high-dimensional
space [28, 21, 11, 16]. Manifold learning is a machine learning approach to non-
linear dimension reduction based on the manifold hypothesis. Many manifold
learning algorithms have been proposed in recent years including Isomap [38],
Diffusion Maps [13], Multidimensional Scaling [27], and Laplacian Eigenmaps
[6]. These methods have numerous applications in machine learning, neural
networks, pattern recognition, image processing, and computer vision [30].
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While extremely successful for some applications, most nonlinear dimension
reduction methods embed data in Euclidean spaces implicitly assuming that
Euclidean distances between data points are semantically meaningful. This
assumption, however, may not be valid in general. Indeed, in many cases com-
paring intensities at fixed locations may not reveal the data structure. For in-
stance, in image classification translated copies of a single image can have large
Euclidean distance even though they are semantically identical and should be
assigned the same label.

Recent works demonstrate that optimal transportation (OT) and related dis-
tances are effective in capturing data structure in various applications yielding
somewhat more “semantically meaningful” features and distances. In particu-
lar, data corresponding to some physical or material displacement, where data
points can be modeled as probability distributions, seem to be more amenable
to transportation type methods [25, 32, 20, 23, 12].

In this work, we pursue this previous line of research interpreting images
as probability distributions on the pixel grid and performing manifold learning
on image data using no-collision distances. The latter are transportation-type
distances introduced in [33]. We show that no-collision distances achieve similar
or better performance compared to other types of OT distances at a fraction
of computational cost. More specifically, we study theoretically and numeri-
cally the performance of the Multidimensional Scaling (MDS) [27] algorithm
on several examples of manifolds in the space of probability measures when
the pairwise distance matrix is computed using no-collision distances. Such
analysis has been carried out in [20, 12] with Wasserstein (OT) and linearized
Wasserstein distances (LOT), respectively.

We demonstrate that no-collision maps faithfully capture spatial displace-
ments similar to OT maps. At the same time, unlike OT distances, no optimiza-
tion is required for computing no-collision maps. More precisely, we prove that
no-collision transportation maps accurately capture translations and dilations
of a given probability measure; that is, the no-collision transportation map be-
tween a measure and its translation coincides with the translation map, and the
no-collision transportation map between a measure and its dilation coincides
with the dilation map.

Consequently, no-collision distances provide an isometry between transla-
tions of a single probability measure and the translation vectors equipped with
a Euclidean distance. Similarly, no-collision distances provide an isometry be-
tween dilations of a single probability measure and dilation vectors equipped
with an anisotropic Euclidean distance. Since MDS provides an isometric em-
bedding of data in a Euclidean space, these previous results guarantee that MDS
with no-collision distances recovers translations and suitably scaled dilations of
a single probability measure up to rigid transformations. These results are anal-
ogous to the ones proven for OT distances in [20]. In contrast, LOT distances
do not generally provide an isometry for dilations unless the reference measure
is itself a dilation.

Furthermore, we prove that no-collision transportation maps do not in gen-
eral provide an isometry for rotations. More precisely, we provide an explicit
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example of a curve in the space of probability measures generated by rotating a
single measure that does not admit an isometric image lying in a planar circle
when equipped with no-collision distances. Interestingly, we prove that OT and
LOT do not generally provide isometries for rotations either. The possibility
of these distances recovering rotations via MDS was empirically investigated
in [20, 32] with some experiments suggesting otherwise.

As mentioned above, the computation of no-collision distances does not re-
quire optimization [33], and one expects faster algorithms when utilizing them
instead of optimization-based distances. In our numerical experiments, we com-
pare the performance of no-collision maps with those of OT [20] and LOT [32].
We observe that no-collision distances perform similarly or better in terms of
accurately recovering OT distances and manifold structures but are faster to
compute.

The rest of the paper is organized as follows. Sections 2 and 3 discuss prior
work and background on optimal and no-collision transportation maps, respec-
tively. Next, in Section 4, we prove that no-collision maps recover translations
and suitably scaled dilations of a single measure up to rigid transformations.
Furthermore, in Section 5, we prove that no-collision, OT, and LOT maps do
not generally provide isometries for rotations. We present our numerical exper-
iments in Section 6.

2 Prior work

Manifold learning is a non-linear dimension reduction technique based on the
assumption that observed data lie on a low-dimensional manifold embedded
in a higher-dimensional space. More specifically, assume (Y, dY ) is a (possibly
high dimensional) metric space where we observe data {y1, · · · , ym} ⊂ Y . The
goal is to find a metric space (Θ, dΘ) such that, for some {θ1, · · · , θm} ⊂ Θ
we have dY (yi, yj) ≈ dΘ(θi, θj) for all i, j. A common choice is to look for
(Θ, dΘ) = (Rk, ‖ · ‖2) with small k.

Common dimension reduction techniques include Multidimensional Scaling
(MDS) [27], Isomap [38], and Diffusion Maps [13]. MDS aims to embed data
in a low-dimensional space so that pairwise Euclidean distances between data
points are preserved. Isomap builds on MDS but instead of Euclidean distances
between data points it preserves pairwise graph-geodesic distances revealing the
geometric structure of the data. Finally, Diffusion Maps embed data in a lower-
dimensional space through the spectral decomposition of the diffusion operator
on the data. With a few exceptions [23], these methods assume data features in a
Euclidean space with underlying Euclidean distance generating graph-geodesics
and differential operators.

A more recent idea of using optimal transportation distances in machine
learning and data science proved successful in many instances such as auto-
matic translation, shape reconstruction, multi-label classification, brain decod-
ing, manifold learning and more (see for instance [15, 26, 25, 3, 20, 32]). More-
over, optimal transportation framework provides a powerful theoretical frame-
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work due to the substantial work on optimal transportation related to PDEs
and other fields [41, 36, 35, 40].

Recall that the square Wasserstein distance between probability measures µ
and ν is given by

W 2
2 (µ, ν) := min

T : ν=T]µ

∫
Rd
‖x− T (x)‖22dµ(x) (1)

where ν = T]µ means that T transports µ into ν; that is, ν(B) = µ(T−1(B))
for all Borel subsets B. The solution of (1) is called an optimal transportation
map.

In [20], the authors propose a variant of the Isomap [38], called Wassmap,
which uses Wasserstein distances instead of Euclidean distances when comput-
ing parwise distance matrix for data. The authors prove that for manifolds
generated by translations or dilations of a fixed probability measure, Wassmap
recovers the translation set or a scaled version of the dilation set up to a rigid
transformation. While very effective, Wassmap relies on the computation of
Wasserstein distance which can be computationally expensive. Indeed, for each
distance computation one has to solve an optimization problem (1). Hence,
computing pairwise distances between m distributions amounts to solving

(
m
2

)
optimization problems. In [20] the authors propose to trade off accuracy of the
embedding with speed of computation by utilizing approximations of the true
Wasserstein distance.

Numerous modifications and approximation methods for W2 distances ap-
peared recently including Linearized Optimal Transportation (LOT) [42, 22, 32],
Cumulative Distribution Transform (CDT) [34], Radon-CDT [24], Sinkhorn dis-
tances [14, 2, 8, 29], multiscale methods [37, 19], and no-collision transportation
maps [33]. The primary goal of these methods is to mitigate the computational
cost imposed by computing OT distance while retaining some of the appealing
geometric features of OT maps.

LOT embeds the space of probability distributions in L2(µ;Rd), where µ is
the reference measure for building LOT maps. More specifically, we associate
ν ∈ P(Rd) with the solution of (1) denoted by T νµ and define

W 2
2,µ(ν1, ν2) =

∫
Rd
|T ν1µ (x)− T ν2µ (x)|2dν(x).

In [12], the authors use W2,µ instead of W2 in the MDS to speed up com-
putations which still require solving m Wasserstein distance computations to
compare m distributions. Moreover, the result is dependent on the choice of the
reference measure, ν.

CDT is the LOT framework for 1D probability measures. In contrast to
the higher-dimensional LOT, the Euclidean distance between two transformed
(embedded) signals is the exact square Wasserstein distance. Radon-CDT is
an extension of the CDT framework to 2D density functions based on sliced
Wasserstein distance [9]. The idea of sliced Wasserstein distance is to com-
pute infinitely many linear projections of the high-dimensional distribution to

4



one-dimensional distributions and then compute the average of the Wasserstein
distance between these one-dimensional representations.

In this work, we use no-collision maps introduced in [33]. These maps pre-
serve geometric properties of OT maps, such as no-collision, but are much faster
to compute since they do not require optimization. More specifically, the method
is based on a partition of probability measures into parts with equal masses via
slicing in a sequence of directions chosen beforehand. While not optimal in
general, the suboptimality of no-collision maps is often not severe as can be
seen in Section 6 and [33, Section 4]. Additionally, we prove in Section 4 that
these maps are optimal if the two measures are a translation or dilation of one
another.

Partitions with equal masses were also used in [1, 39] for proving optimal
rates of convergence of empirical measures in OT distances. One difference is
that no-collision maps operate on the continuum level and match points in the
supports of two absolutely continuous measures. Additionally, the existence of
these maps is guaranteed beyond domains with Lipschitz boundary: see Theo-
rem 2 and [33, Theorem 3].

3 Preliminaries on optimal and no-collision trans-
portation maps

Here we present key definitions and results about optimal transportation and
no-collision maps that we use.

3.1 Optimal transportation

We denote by P(Rd) the set of Borel probability measures on Rd. Furthermore,
we denote by

P2(Rd) =

{
µ ∈ P(Rd) :

∫
Rd
|x|2dµ(x) <∞

}
.

Finally, Pac(Rd) denotes the set of Borel probability measures over Rd that are
absolutely continuous with respect to the d-dimenional Lebesgue measure.

Definition 1. Let µ ∈ P(Rd) and T : Rd → Rd is a Borel measurable map.
The pushforward of µ via T , denoted by T]µ, is defined as

T]µ(B) := µ(T−1(B)) ∀B ⊂ Rd Borel.

For probability measures µ, ν ∈ P(Rd) we say that T transports µ into ν if
T]µ = ν

Assume that c : Rd × Rd → R is a Borel measurable nonnegative function
so that c(x, y) is the cost of transporting a unit mass from x to y. Then the
problem of optimally transporting µ to ν can be written as

min
T : ν=T]µ

∫
Rd
c(x, T (x))dµ(x). (2)
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Minimizers of this problem are called optimal transportation maps. In this
paper, we consider the quadratic cost c(x, y) = |x− y|2 that yields

W 2
2 (µ, ν) := min

T : ν=T]µ

∫
Rd
|x− T (x)|2dµ(x). (3)

W2(µ, ν) is called the square Wasserstein distance between the measures µ, ν.
Since among OT distances we only consider W2 we refer to it simply as the
Wasserstein distance.

In general, (2) and (3) might not have solutions or solutions might not be
unique. The following theorem by Brenier provides conditions under which (3)
has a unique solution.

Theorem 1 (Brenier [10]). Let µ, ν ∈ P2(Rd). If µ ∈ Pac(Rd) then (3) admits
a µ a.e. unique solution. Moreover, there exists a convex function φ such that
T (x) = ∇φ(x) µ a.e..

Generalizations of this theorem to Riemannian manifolds and with more
general cost functions can be found for example in [31, 4, 41].

3.2 No-collision transportation maps

Assume that µ ∈ Pac(Rd) and consider

Cµ0 = {Ωµ0} ,

where we denote by Ωµ0 = Rd. Next, put b1 = 0, and let s1 ∈ Sd−1. Since
µ ∈ Pac(Rd) there exists h1 ∈ R such that

µ (x · s1 ≤ h1) = µ (x · s1 > h1) =
1

2
.

Then we set

Ωµ00 = {x · s1 ≤ h1} , Ωµ01 = {x · s1 > h1} , Cµ1 = {Ωµ00,Ω
µ
01}.

Next, we choose b2 ∈ {00, 01}, and s2 ∈ Sd−1. There exists h2 ∈ R such that

µ
(
x · s2 ≤ h2 | Ωµb2

)
= µ

(
x · s2 > h2 | Ωµb2

)
=

1

2
.

Then we set

Ωµb20 = {x · s2 ≤ h2} ∩ Ωµb2 , Ωµb21 = {x · s2 > h2} ∩ Ωµb2 ,

and
Cµ2 = Cµ1 \ Ωµb2 ∪ {Ω

µ
b20,Ω

µ
b21}.

Going forward, at step k + 1 we choose bk+1 such that Ωµbk+1
∈ Cµk , and sk+1 ∈

Sd−1. Then there exists hk+1 ∈ R such that

µ
(
x · sk+1 ≤ hk+1 | Ωµbk+1

)
= µ

(
x · sk+1 > hk+1 | Ωµbk+1

)
=

1

2
.
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Then we set

Ωµbk+10 = {x · sk+1 ≤ hk+1} ∩ Ωµbk+1
, Ωµbk+11 = {x · sk+1 > hk+1} ∩ Ωµbk+1

,

and
Cµk+1 = Cµk \ Ωµbk+1

∪ {Ωµbk+10,Ω
µ
bk+11}.

We call the sequence S = ((bk, sk))
∞
k=1 a slicing schedule.

To introduce no-collision distances and maps, we fix a slicing schedule S
and we slice all µ ∈ Pac(Rd) according S. Loosely speaking, given µ, ν and
their partitions

⋃∞
k=1 C

µ
k and

⋃∞
k=1 Cµν we then seek to construct a map tνµ such

that tνµ(Ωµb ) = Ωνb (modulo sets of measure 0) for all Ωµb ∈
⋃∞
k=1 C

µ
k and Ωνb ∈⋃∞

k=1 Cνk . Once such tνµ is found, we put

WS,p(µ, ν) =

(∫
Rd
|tνµ(x)− x|pdµ(x)

) 1
p

.

The rigorous construction of tνµ is carried out in [33] as follows. Let S =

((bk, sk))
∞
k=1 be an arbitrary slicing schedule. For µ ∈ Pac(Rd) denote by⋃∞

k=1 C
µ
k the partition of µ according to S. Furthermore, we introduce `µk :

Rd → R as follows

`µk(x) =

m∑
α=0

iα
3α
, x ∈ Ωµi0i1···im ,

for all Ωµi0i1···im ∈ C
µ
k , where iα ∈ {0, 1}. According to [33, Lemma 1], (`µk)∞k=0

is a bounded uniformly convergent sequence of measurable functions yielding a
Borel measurable limit

`µ(x) = lim
k→∞

`µk(x), x ∈ Rd.

Denote by K the set of all dµ = f(x)dx ∈ Pac(Rd) such that

µ (∂(supp(µ))) = 0,

and
c ≤ f(x) ≤ C, µ a.e..

Main theoretical results about the existence of no-collision transportation
maps in [33] can be summarized in the following theorem.

Theorem 2 ([33]). Suppose that S = ((bk, sk))
∞
k=1 is a slicing schedule such

that
{sk}∞k=1 ⊂ {ei}di=1,

where {ei}di=1 is an arbitrary basis in Rd. Moreover, suppose that S is such
that each set appearing during the partition gets partitioned in each of {ei}di=1

directions infinitely many times.
Then for every µ, ν ∈ K we have that
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1. there exists Eµ ⊂ int(supp(µ)) such that µ(Eµ) = 1, and for every x ∈ Eµ
there exits a unique y ∈ int(supp(ν)) such that `µ(x) = `ν(y),

2. tνµ(x) = (`ν)−1(`µ(x)), x ∈ Eµ is measurable, and tνµ]µ = ν,

3. (tνµ)−1(Ωνb ) = Eµ ∩ Ωµb for all Ωµb ∈
⋃∞
k=1 C

µ
k and Ωνb ∈

⋃∞
k=1 Cνk ,

4. if t̃ : Ẽ → Rd is such that Ẽ ∩ Ωµb ⊂ t̃−1(Ωνb ) for all Ωµb ∈
⋃∞
k=1 C

µ
k and

Ωνb ∈
⋃∞
k=1 Cνk , and µ(Ẽ) = 1 then tνµ = t̃ µ a.e..

We use this theorem for computing no-collision transportation maps between
translated and dilated measures.

3.3 Discretizing no-collision maps

For discretizing no-collision maps we choose a finite slicing schedule SN =
((bk, sk))

N
k=1 and partition given µ ∈ K according to SN obtaining sets CµN =

{Ωµb }. Then we build no-collision features by taking either mass or geometric
centers of Ωµb ; that is,

xmb (µ) =
1

µ(Ωµb )

∫
Ωµb

xdµ(x), xgb(µ) =
1

|Ωµb |

∫
Ωµb

xdx, ∀Ωµb ∈ C
µ
N .

Hence, discrete no-collision maps map no-collision features; that is, for µ, ν ∈ K
we define t̂m : {xmb (µ)} → {xmb (ν)} and t̂g : {xgb(µ)} → {xgb(ν)} as

t̂m(xmb (µ)) = xmb (ν), t̂g(xgb(µ)) = xgb(ν), ∀b.

Furthermore, no-collision distances can be discretized as

Ŵm
SN ,p(µ, ν) =

(∑
b

µ(Ωµb ) |xmb (µ)− xmb (ν)|p
) 1
p

,

and

Ŵ g
SN ,p(µ, ν) =

(∑
b

µ(Ωµb ) |xgb(µ)− xgb(ν)|p
) 1
p

.

In practice, choose SN so that all Ωµb have the same mass and drop the factors
µ(Ωµb ) thus computing lp distances between no-collision features. The algorithm
for building no-collision features is as follows.

4 Translation and dilation manifolds

Here, we show that translation and dilation manifolds can be learned by no-
collision maps just as with OT maps.
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Algorithm 1 Computing no-collision features

Input: N ≥ 1, SN = ((bk, sk))
N
k=1, µ ∈ P(Ω).

k ← 1
Ωµ0 ← Ω
Cµ ← {Ωµ0}
while k < N do

Find hk s.t µ
(
x · sk ≤ hk | Ωµbk

)
= µ

(
x · sk > hk | Ωµbk

)
Ωµbk0 = {x · sk ≤ hk} ∩ Ωµbk
Ωµbk1 = {x · sk > hk} ∩ Ωµbk
Cµ ← Cµ \ Ωµbk ∪

{
Ωµbk0,Ω

µ
bk1

}
k ← k + 1

end while
for Ωµb ∈ Cµ do

xmb (µ) = 1
µ(Ωµb )

∫
Ωµb
xdµ(x)

xgb(µ) = 1
|Ωµb |

∫
Ωµb
xdx

end for

4.1 Translation manifolds

Theorem 3. Assume that µ0 ∈ K, and let µθ = (x + θ)]µ0 for θ ∈ Rd. Then
for every slicing schedule S such as in Theorem 2 we have that

WS,p(µθ, µθ′) = |θ − θ′|, ∀θ, θ′ ∈ Rd, p ≥ 1.

Proof. Firstly, note that it is enough to prove the identity for θ′ = 0. Indeed,
µθ = (x+ (θ − θ′))]µθ′ .

Next, let S = ((bk, sk))
∞
k=1 be a slicing schedule as in Theorem 2. Our goal

is to compute `µθ , and show that

`µθ (x) = `µ0(x− θ), ∀x ∈ Rd.

We have that Cµ0

0 = {Ω0}, where Ωµ0

0 = Rd, and so

`µθ0 (x) = 0, ∀x ∈ Rd.

Next, let h1 be such that

µ0 ({x · s1 ≤ h1}) = µ0 ({x · s1 > h1}) =
1

2
.

Then we have that

Ωµ0

00 = {x · s1 ≤ h1}, Ωµ0

01 = {x · s1 > h1}.

Note that

µθ ({x · s1 ≤ h1 + θ · s1}) =µ0 ({(x+ θ) · s1 ≤ h1 + θ · s1})

=µ0 ({x · s1 ≤ h1}) =
1

2
,
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and so

µθ ({x · s1 ≤ h1 + θ · s1}) = µθ ({x · s1 > h1 + θ · s1}) =
1

2
.

This means that the first two slices for µθ are

Ωµθ00 = {x · s1 ≤ h1 + θ · s1}, Ωµθ01 = {x · s1 > h1 + θ · s1}.

But this means that

Ωµθ00 = Ωµ0

00 + θ, Ωµθ01 = Ωµ0

01 + θ.

The arguments above apply to all partitions, and we obtain

Ωµθb = Ωµ0

b + θ

for all Ωµθb ∈
⋃∞
k=1 C

µθ
k and Ωµ0

b ∈
⋃∞
k=1 C

µ0

k . Hence x ∈ Ωµθb if and only if
x− θ ∈ Ωµ0

b . Since `µθk (x) depends only on b for x ∈ Ωµθb we obtain that

`µθk (x) = `µ0

k (x− θ), ∀x ∈ Ωµθb ,

and so
`µθk (x) = `µ0

k (x− θ), ∀x ∈ Rd.

Passing to the limit in k we find that

`µθ (x) = `µ0(x− θ), ∀x ∈ Rd.

Taking into account Theorem 2 we obtain that

tµθµ0
(x) = x+ θ, µ0 a.e.,

and so

WS,p(µθ, µ0) =

(∫
Rd
|tµθµ0

(x)− x|pdµ0(x)

) 1
p

= |θ|.

Corollary 1. Assume that µ0 ∈ K, Θ ⊂ Rd, p ≥ 1, and S is a slicing schedule
such as in Theorem 2. Then ({µθ},WS,p) is isometric to (Θ, | · |).

4.2 Dilation manifolds

Recall that the Hadamard product of x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd)
is defined as

x� y = (x1y1, x2y2, · · · , xdyd).
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Theorem 4. Assume that µ0 ∈ K, and let µθ = (θ � x) ]µ0 for θ ∈ Rd+. Then
for every slicing schedule S such as in Theorem 2 containing only directions
parallel to coordinate axes we have that

WS,2(µθ, µθ′) = |c� θ − c� θ′|, ∀θ, θ′ ∈ Rd,

where

c2j =

∫
Rd
x2
jdµ0(x), 1 ≤ j ≤ d.

Proof. Let S = ((bk, sk))∞k=1 be a slicing such as in Theorem 2 with {sk} parallel
to coordinate axes, and θ, θ′ ∈ Rd+. Our goal is to show that

tµθ′µθ
(x) =

(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · ,

θ′d
θd
xd

)
, µθ a.e..

We have that
`µθ0 (x) = `

µθ′
0 (x) = 0, ∀x ∈ Rd.

Without loss of generality, assume that s1 = (1, 0, · · · , 0). Let h1 be such that

µθ ({x1 ≤ h1}) = µθ ({x1 > h1}) =
1

2
.

But then we have that µθ′ =
(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · . θ

′
d

θd
xd

)
]µθ, and so

µθ′

({
x1 ≤

θ′1
θ1
h1

})
=µθ

({
θ′1
θ1
x1 ≤

θ′1
θ1
h1

})
=µθ ({x1 ≤ h1}) =

1

2
.

Hence,

µθ′

({
x1 ≤

θ′1
θ1
h1

})
= µθ′

({
x1 >

θ′1
θ1
h1

})
=

1

2
.

This means that

Ωµθ00 = {x1 ≤ h1}, Ωµθ01 = {x1 > h1},

and

Ω
µθ′
00 =

{
x1 ≤

θ′1
θ1
h1

}
, Ω

µ′
θ

01 =

{
x1 >

θ′1
θ1
h1

}
.

So the dilation map

(x1, x2, · · · , xd) 7→
(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · ,

θ′d
θd
xd

)
maps Ωµθ00 to Ω

µθ′
00 and Ωµθ01 to Ω

µθ′
01 . Similarly, we obtain that this dilation map

maps Ωµθb to Ω
µθ′
b for all Ωµθb ∈

⋃∞
k=1 C

µθ
k and Ωµ0

b ∈
⋃∞
k=1 C

µ0

k . Again, since
`µθk (x) depends only on b for x ∈ Ωµθb we obtain that

`µθk (x) = `
µθ′
k

(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · ,

θ′d
θd
xd

)
, ∀x ∈ Ωµθb ,
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and so

`µθk (x) = `
µθ′
k

(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · ,

θ′d
θd
xd

)
, ∀x ∈ Rd.

Passing to the limit in k we find that

`µθ (x) = `µθ′
(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · ,

θ′d
θd
xd

)
, ∀x ∈ Rd.

Taking into account Theorem 2 we obtain that

tµθ′µθ
(x) =

(
θ′1
θ1
x1,

θ′2
θ2
x2, · · · ,

θ′d
θd
xd

)
, µθ a.e.,

and so

W 2
S,2(µθ, µθ′) =

∫
Rd

∣∣tµθ′µθ
(x)− x

∣∣2 dµθ(x) =

∫
Rd

d∑
j=1

(
θ′j
θj
xj − xj

)2

dµθ(x)

=

∫
Rd

d∑
j=1

(
θ′jxj − θjxj

)2
dµ0(x) =

d∑
j=1

c2j (θ
′
j − θj)2.

Corollary 2. Assume that µ0 ∈ K, Θ ⊂ Rd+, and S is an arbitrary schedule
with only slicing directions parallel to coordinate axes. Then ({µθ},WS,2) is
isometric to (c�Θ, | · |), where

c2j =

∫
Rd
x2
jdµ0(x), 1 ≤ j ≤ d.

5 Rotation manifolds

In [20] the authors investigated whether some structural information can be
learned from pairwise distances of the subset

{(Rx)]µ0 : R ∈ SO(d)} ⊂ P2(Rd).

For example, can one find an isometry between this subset and some representa-
tion of SO(d) in a Euclidean space? One particular question considered in [20]
is as follows. Denote by Rt the counter-clockwise rotation by angle t around
the origin; that is,

Rtx = (x1 cos t− x2 sin t, x1 sin t+ x2 cos t).

Then the question is whether one generically has that {(Rtx)]µ0 : t ∈ [0, 2π]}
with W2 distance is isometric to (∂Br, | · |2) for some r > 0, where ∂Br ={
x ∈ R2 : |x|2 = r

}
. In [20], the authors perform a numerical experiment that

recovers what looks like a circle when µ0 is the uniform measure over an ellipse.
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Similar question is considered in [12], where the W2 is replaced by a W2,ν – the
linearized W2 distance with a reference measure ν.

Here we show that generically neither metric makes the set

{(Rtx)]µ0 : t ∈ [0, 2π]}

isometric to a planar circle.
We achieve this by analytically computing the W2 and W2,ν distances be-

tween rotations of uniform probability measures over ellipses in plane as con-
sidered in a numerical experiments in [20] and between rotations of Gaussians
as considered in numerical experiments in [12]. In fact, these examples are
somewhat identical in terms of pairwise distances since OT maps and distances
between two uniform measures over ellipses match, up to scaling, with OT maps
and distances of corresponding Gaussian measures [18] and [35, Remarks 2.31-
32].

Finally, we show that no-collision maps do not resolve the isometry problem
either.

5.1 Wasserstein distances

We start with preliminary lemmas.

Lemma 1. Assume that µ0 ∈ P2(R2), and µt = (Rtx)]µ0. Then we have that

W2(µs, µt) = W2(µ0, µt−s), 0 ≤ s < t ≤ 2π.

Proof. Recall that for µ, ν ∈ P2(Rd) we denote by Π(µ, ν) the set of all trans-
portation plans with marginals µ, ν. Additionally, we denote by Π0(µ, ν) the
set of all optimal transportation plans from µ to ν.

Let π ∈ P2(R2 × R2). Then we define π̂ = (Rsx,Rsy)]π. It is straight-
forward to check that π = (R−sx,R−sy)]π̂, and π̂ ∈ Π(µs, µt) if and only if
π ∈ Π(µ0, µt−s). Furthermore, we have that∫

R2×R2

|x− y|2dπ̂(x, y) =

∫
R2×R2

|Rsx−Rsy|2dπ(x, y)

=

∫
R2×R2

|x− y|2dπ(x, y)

Choosing π ∈ Π0(µ0, µt−s) we obtain that W2(µs, µt) ≤ W2(µ0, µt−s). Next,
choosing π̂ ∈ Π0(µs, µt) we obtain that W2(µs, µt) ≥ W2(µ0, µt−s). Hence
W2(µs, µt) = W2(µ0, µt−s), and π ∈ Π0(µ0, µt−s) if and only if π̂ ∈ Π0(µs, µt).

Lemma 2. Assume that µ0 ∈ P2(R2), and µt = (Rtx)]µ0. Then {µt : t ∈
[0, 2π]} is an absolutely continuous curve with constant metric derivative.

13



Proof. Let 0 ≤ s < t ≤ 2π. We have that (Rt−sx)]µ0 = µt−s, and so

W 2
2 (µ0, µt−s) ≤

∫
R2

|Rt−sx− x|2dµ0(x) = 4 sin2 t− s
2

∫
R2

|x|2µ0(x)

≤c|t− s|2.

Invoking Lemma 1 we obtain

W2(µs, µt) ≤ c|t− s|, 0 ≤ s < t ≤ 2π.

So {µt : t ∈ [0, 2π]} is Lipschitz and therefore absolutely continuous. Applying
[5, Theorem 1.1.2] we obtain that there exists

|µ′t| = lim
h→0

W2(µt, µt+h)

|h|

for Lebesgue a.e. t ∈ [0, 2π]. Invoking Lemma 1 again, we have that

W2(µt, µt+h) = W2(µt′ , µt′+h), ∀t, t′ ∈ [0, 2π],

and so if the metric derivative exists at one point it exists everywhere, and it is
constant; that is,

|µ′t| = lim
h→0

W2(µ0, µh)

|h|
= c, ∀t ∈ [0, 2π].

Proposition 1. Assume that a, b > 0, and µ0 is the uniform probability measure
over the elliptical domain

E =

{
(x1, x2) ∈ R2 :

(x1 − u1)2

a2
+

(x2 − u2)2

b2
≤ 1

}
.

Furthermore, assume that µt = (Rtx)]µ0. Then we have that

W 2
2 (µs, µt)

=4|u|2 sin2 t− s
2

+
1

2

(
a2 + b2 −

√
(a2 + b2)2 cos2(t− s) + 4a2b2 sin2(t− s)

)
,

(4)

for all s, t ∈ [0, 2π], where u = (u1, u2).

Proof. Taking into account Lemma 1 we only need to prove (4) for s = 0.
From [18] (see also [35, Remarks 2.31-32]) we have that

W 2
2 (µ0, µt) = |m0 −mt|2 + tr

(
Σ0 + Σt − 2

(
Σ

1/2
0 ΣtΣ

1/2
0

)1/2
)
,

14



where mt and Σt are the mean and covariance of µt, respectively. A direct
computation yields

m0 = u, Σ0 =

(
a2

4 0

0 b2

4

)
.

Furthermore, we have that

mt = Rtm0 = Rtu,

and

Σt = RtΣ0R−t =

(
a2 cos2 t+b2 sin2 t

4
(a2−b2) cos t sin t

4
(a2−b2) cos t sin t

4
a2 sin2 t+b2 cos2 t

4

)
.

To conclude the proof, we need to calculate tr
(

Σ
1/2
0 ΣtΣ

1/2
0

)1/2

. Denoting

by M = Σ
1/2
0 ΣtΣ

1/2
0 we have that

tr(M1/2) =
(

tr(M) + 2
√

det(M)
)1/2

since M is a 2× 2 positive-definite matrix. Next, we have that

detM = det(Σ
1/2
0 ) det(Σt) det(Σ

1/2
0 ) = det Σ0 · det Σt = (det Σ0)2 =

a4b4

256
,

where we used the similarity of Σt and Σ0. Furthermore, using the cyclical
invariance of the trace we have that

trM = tr
(

Σ
1/2
0 ΣtΣ

1/2
0

)
= tr

(
ΣtΣ

1/2
0 Σ

1/2
0

)
= tr(ΣtΣ0)

= tr

[(
a2 cos2 t+b2 sin2 t

4
(a2−b2) cos t sin t

4
(a2−b2) cos t sin t

4
a2 sin2 t+b2 cos2 t

4

)
·

(
a2

4 0

0 b2

4

)]

=
(a4 + b4) cos2 t+ 2a2b2 sin2 t

16
.

Hence,

tr(M1/2) =
(

tr(M) + 2
√

det(M)
)1/2

=

(
(a4 + b4) cos2 t+ 2a2b2 sin2 t

16
+ 2

√
a4b4

256

)1/2

=

(
(a4 + b4) cos2 t+ 2a2b2 sin2 t+ 2a2b2

16

)1/2

=

√
(a2 + b2)2 cos2 t+ 4a2b2 sin2 t

4
.
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Finally, applying the similarity of Σt and Σ0 again we have that

tr Σt = tr Σ0 =
a2 + b2

4
,

and so

W 2
2 (µ0, µt) =|m0 −mt|2 + tr

(
Σ0 + Σt − 2

(
Σ

1/2
0 ΣtΣ

1/2
0

)1/2
)

=|u−Rtu|2 + 2 tr Σ0 − 2 tr(M1/2)

=4|u|2 sin2 t

2
+
a2 + b2 −

√
(a2 + b2)2 cos2 t+ 4a2b2 sin2 t

2
.

We are now in a position to prove that rotation manifolds are not isometric
to circles in general.

Theorem 5. Assume that a, b > 0, and µ0 is the uniform probability measure
over the elliptical domain

E0 =

{
(x1, x2) ∈ R2 :

x2
1

a2
+
x2

2

b2
≤ 1

}
.

Furthermore, assume that µt = (Rtx)]µ0. Then
(
{µt}t∈[0,2π],W2

)
is isometric

to a circle if and only if a = b.

Proof. When a = b we have that µt = µ0 for all t ∈ [0, 2π], so
(
{µt}t∈[0,2π],W2

)
is isometric to a (degenerate) circle.

Now assume that a 6= b and suppose by contradiction that there exists
γ : [0, 2π]→ ∂Br for some r > 0 such that

W 2
2 (µs, µt) = |γ(s)− γ(t)|2, ∀s, t ∈ [0, 2π].

From Proposition 1 we have that

|γ(0)− γ(π/4)| = |γ(π/4)− γ(π/2)| = |γ(π/2)− γ(3π/4)| = |γ(3π/4)− γ(π)|.

Additionally, we have that |γ(0) − γ(π)| = 0, and so γ(0) = γ(π). This means
that the quadrilateral with vertices γ(0), γ(π/4), γ(π/2), γ(3π/2) is a rhombus.
Since the only rhombus that can be inscribed in a circle is the square, we obtain
that γ(0), γ(π/4), γ(π/2), γ(3π/2) form a square. The latter means that

|γ(π/2)− γ(0)|2 = 2|γ(π/4)− γ(0)|2.

From Proposition 1 we have that

|γ(π/2)− γ(0)|2 =
(a− b)2

2
,

|γ(π/4)− γ(0)|2 =
a2 + b2 −

√
(a2+b2)2

2 + 2a2b2

2
,
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and so we obtain

(a− b)2

2
= a2 + b2 −

√
(a2 + b2)2

2
+ 2a2b2.

Simplifying the latter yields
(a− b)4 = 0,

which is a contradiction.

We can also prove a more general version of Theorem 5 with elliptical do-
mains not necessarily centered at the origin.

Theorem 6. Assume that a, b > 0, and µ0 is the uniform probability measure
over the elliptical domain

E =

{
(x1, x2) ∈ R2 :

(x1 − u1)2

a2
+

(x2 − u2)2

b2
≤ 1

}
.

Furthermore, assume that µt = (Rtx)]µ0. Then
(
{µt}t∈[0,2π],W2

)
is isometric

to a circle if and only if a = b.

Proof. Denote by u = (u1, u2). Assume that u 6= 0 for otherwise Theorem 5
applies. If a = b then from (4) we have that

W 2
2 (µs, µt) = 4|u|2 sin2 t− s

2
= |Rsu−Rtu|2,

which means that µt 7→ Rtu is an isometry; that is,
(
{µt}t∈[0,2π],W2

)
is isomet-

ric to the circle of radius |u|.
Now assume that a 6= b, and suppose by contradiction that there exists

γ : [0, 2π]→ ∂Br for some r > 0 such that

W 2
2 (µs, µt) = |γ(s)− γ(t)|2, ∀s, t ∈ [0, 2π].

Similar to the proof of Theorem 5 we have that γ(0), γ(π/2), γ(π), γ(3π/2) are
vertices of a square. Indeed, the only difference is that u 6= 0 implies that {µt}
and {γ(t)} are 2π-periodic instead of π-periodic. Hence, we must have

|γ(π)− γ(0)|2 = 2|γ(π/2)− γ(0)|2.

Invoking Proposition 1 we find that

|γ(π)− γ(0)|2 =4|u|2,

|γ(π/2)− γ(0)|2 =2|u|2 +
(a− b)2

2
,

and so we obtain
4|u|2 = 4|u|2 + (a− b)2,

which is a contradiction.
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Remark 1. Proposition 1 and Theorems 5, 6 can be of course extended to
uniform measures over general elliptical domains

E =
{
x ∈ R2 : (x− u)>Π−1(x− u) ≤ 1

}
,

where u ∈ R2, and Π is symmetric and positive definite. Indeed, if µ0 is the
uniform probability measure over E, then µt0 = (Rt0x)]µ0 is the uniform prob-
ability measure over

E′ =

{
(x1, x2) ∈ R2 :

(x1 − (Rt0u)1)2

λ1
+

(x2 − (Rt0u)2)2

λ2
≤ 1

}
,

where λ1, λ2 > 0 are the eigenvalues of Π. Hence, we have that

W 2
2 (µs, µt)

=W 2
2 (µt0 , µt0+t−s) = W 2

2 (µt0 , (Rt−sx)]µt0)

=4|Rt0u|2 sin2 t− s
2

+
λ1 + λ2 −

√
(λ1 + λ2)2 cos2(t− s) + 4λ1λ2 sin2(t− s)

2

=4|u|2 sin2 t− s
2

+
tr Π−

√
(tr Π)2 cos2(t− s) + 4 det Π sin2(t− s)

2
.

5.2 Linearized Wasserstein distances

Let ν ∈ P2,ac(R2). Recall that for µ1, µ2 ∈ P2(R2) we define the linearized
Wasserstein distance with a reference measure ν as

W2,ν(µ1, µ2) =

(∫
R2

|T2(x)− T1(x)|2dν(x)

) 1
2

,

where T1, T2 are optimal transportation maps pushing ν forward to µ1, µ2, re-
spectively.

Lemma 3. Assume that ν ∈ Pac,2(R2) is rotationally symmetric; that is,
(Rtx)]ν = ν for all t ∈ R. Furthermore, assume that µt = (Rtx)]µ0 for some
µ0 ∈ P2(R2), and denote by Tt the optimal transportation map that pushes ν
forward to µt. Then we have that

Tt(x) = RtT0(R−tx), a.e. in R2, 0 ≤ t ≤ 2π,

and
W2,ν(µs, µt) = W2,ν(µ0, µt−s), 0 ≤ s < t ≤ 2π.

Proof. Since T0 is the optimal transportation map between ν and µ0 we have
that π0 = (x, T0(x))]ν is the optimal transportation plan between ν and µ0.
Applying the arguments in Lemma 1 we have that πt = (Rtx,Rty)]π0 is the
optimal transportation plan between (Rtx)]ν = ν and (Rtx)]µ0 = µt. Note
that

πt = (Rtx,Rty)]π0 = πt = (Rtx,RtT0(x))]ν.
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Furthermore, taking into account that ν = (R−tx)]ν we obtain that

πt = (Rtx,RtT0(x))]ν = (x,RtT0(R−tx))]ν,

and so πt is generated by a necessarily optimal transportation map x 7→ RtT0(R−tx).
But optimal transportation map from ν to µt is unique by Brenier’s theorem,
and so

Tt(x) = RtT0(R−tx), a.e. in R2.

Next, we have that

W 2
2,ν(µs, µt)

=

∫
R2

|Tt(x)− Ts(x)|2dν(x) =

∫
R2

|RtT0(R−tx)−RsT0(R−sx)|2dν(x)

=

∫
R2

|Rt−sT0(R−tx)− T0(R−sx)|2dν(x)

=

∫
R2

|Rt−sT0(Rs−tx)− T0(x)|2dν(x) =

∫
R2

|Tt−s(x)− T0(x)|2dν(x)

= W 2
2,ν(µ0, µt−s).

Proposition 2. Assume that ν is a standard normal distribution, and µ0 is a

Gaussian with mean u ∈ R2 and covariance matrix Σ0 =

(
a2 0
0 b2

)
for some

a, b > 0. Furthermore, let µt = (Rtx)]µ0. Then we have that

W 2
2,ν(µs, µt) = 4|u|2 sin2 t− s

2
+ 2(a− b)2 sin2(t− s), 0 ≤ s < t ≤ 2π. (5)

Proof. Taking into account Lemma 3 it is enough to prove (5) for s = 0. Further-
more, we have that µt = (Rtx)]µ0 is a Gaussian with mean Rtu and covariance
matrix Σt = RtΣ0R−t. Hence, from [18] (see also [35, Remarks 2.31-32]) we
have that

Tt(x) = Rtu+ Σ
1
2
t x, x ∈ R2.

Furthermore, recalling that∫
R2

|m+Mx|2dν(x) = tr(M>M) + |m|2,

we obtain

W 2
2,ν(µ0, µt)

=

∫
R2

|Tt(x)− T0(x)|2dν(x) =

∫
R2

∣∣∣Rt(u)− u+ (Σ
1
2
t − Σ

1
2
0 x)

∣∣∣2 dν(x)

=|Rtu− u|2 + tr(Σ
1
2
t − Σ

1
2
0 )2 = 4|u|2 sin2 t

2
+ tr

(
Σt + Σ0 − Σ

1
2
t Σ

1
2
0 − Σ

1
2
0 Σ

1
2
t

)
=4|u|2 sin2 t

2
+ tr Σt + tr Σ0 − 2 tr

(
Σ

1
2
t Σ

1
2
0

)
=4|u|2 sin2 t

2
+ 2 tr Σ0 − 2 tr

(
Σ

1
2
t Σ

1
2
0

)
,

19



where we used the similarity of Σt and Σ0, and the cyclic invariance of the trace.
Next, we have that

Σ
1
2
t = (RtΣ0R−t)

1
2 = RtΣ

1
2
0 R−t =

(
a cos2 t+ b sin2 t (a− b) sin t cos t
(a− b) sin t cos t a sin2 t+ b cos2 t

)
,

and so

tr
(

Σ
1
2
t Σ

1
2
0

)
= tr

[(
a cos2 t+ b sin2 t (a− b) sin t cos t
(a− b) sin t cos t a sin2 t+ b cos2 t

)
·
(
a 0
0 b

)]
=(a2 + b2) cos2 t+ 2ab sin2 t.

Therefore we have that

W 2
2,ν(µ0, µt) =4|u|2 sin2 t

2
+ 2(a2 + b2)− 2(a2 + b2) cos2 t− 4ab sin2 t

=4|u|2 sin2 t

2
+ 2(a− b)2 sin2 t.

Theorem 7. Assume that ν is a standard normal distribution, and µ0 is a

Gaussian with mean u ∈ R2 and covariance matrix Σ0 =

(
a2 0
0 b2

)
for some

a, b > 0. Furthermore, let µt = (Rtx)]µ0. Then
(
{µt}t∈[0,2π] ,W2,ν

)
is isomet-

ric to a circle if and only if u = 0 or a = b.

Proof. If u = 0 then (5) yields that

W2,ν(µs, µt) = 2(a− b)2 sin2(t− s) =
(a− b)2

2
|R2se1 −R2te1|2,

which means that µt 7→ |a−b|√
2
R2te1 is an isometry, where e1 = (1, 0).

If a = b then (5) yields that

W2,ν(µs, µt) = 4|u|2 sin2 t− s
2

= |Rsu−Rtu|2,

which means that µt 7→ Rtu is an isometry.
Now assume that u 6= 0, a 6= b, and suppose by contradiction that there

exists γ : [0, 2π]→ ∂Br for some r > 0 such that

W 2
2,ν(µs, µt) = |γ(s)− γ(t)|2, ∀s, t ∈ [0, 2π].

Similar to Theorems 5 and 6 we have that γ(0), γ(π/2), γ(π), γ(3π/2) are vertices
of a square, and so

|γ(π)− γ(0)|2 = 2|γ(π/2)− γ(0)|2.
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From (5) we have that

|γ(π)− γ(0)|2 =4|u|2,
|γ(π/2)− γ(0)|2 =2|u|2 + 2(a− b)2,

and so we obtain
4|u|2 = 4|u|2 + 4(a− b)2,

which is a contradiction.

Remark 2. As in Remark 1, we note that Proposition 2 and Theorem 7 natu-
rally extend to Gaussians µ0 with a generic covariance matrix Σ0. Indeed, for
a suitable angle t0 we have that µt0 is a Gaussian with mean mt0 = Rt0u and

covariance Σt0 =

(
λ1 0
0 λ2

)
, where λ1, λ2 > 0 are the eigenvalues of Σ0. But

then we have that

W 2
2,ν(µs, µt) =W 2

2,ν(µt0 , µt0+t−s) = W 2
2,ν(µt0 , (Rt−sx)]µt0)

=4|Rt0u|2 sin
t− s

2
+ 2(λ1 − λ2)2 sin2(t− s)

=4|u|2 sin
t− s

2
+ 2((λ1 + λ2)2 − 4λ1λ2) sin2(t− s)

=4|u|2 sin
t− s

2
+ 2((tr Σ0)2 − 4 det Σ0) sin2(t− s).

5.3 No-collision distances

Here, we show that no-collision distances in general do not provide an isometry
between rotated measures and planar circles either.

Theorem 8. Assume that µ0 is a uniform measure over an elliptical domain

E =

{
(x1, x2) ∈ R2 :

(x1 − u1)2

a2
+

(x2 − u2)2

b2
≤ 1

}
,

where u = (u1, u2) 6= 0, and a, b > 0. Furthermore, assume that µt = (Rtx)]µ0,
and S is a slicing schedule such as in Theorem 4. Then

(
{µt}t∈[0,2π],WS,2

)
is

isometric to a circle if and only if a = b.

Proof. When a = b we have that µt is the uniform measure over the disk of
radius a centered at Rtu. Therefore, µt = (Rtu− u+ x)]µ0, and by Theorem 3
we have that

WS,2(µs, µt) = |Rsu−Rtu|, ∀s, t,

which means that µt 7→ Rtu is an isometry.
Now assume that a 6= b, and suppose by contradiction that there exists

γ : [0, 2π]→ ∂Br for some r > 0 such that

W 2
S,2(µs, µt) = |γ(s)− γ(t)|2, ∀s, t ∈ [0, 2π].
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We have that µπ/2 is the uniform measure over the elliptical domain

E ′ =

{
(x1, x2) ∈ R2 :

(x1 + u2)2

b2
+

(x2 − u1)2

a2
≤ 1

}
.

Furthermore, denote by ν, ν′ uniform measures over elliptical domains

E0 =

{
(x1, x2) ∈ R2 :

x2
1

a2
+
x2

2

b2
≤ 1

}
,

E ′0 =

{
(x1, x2) ∈ R2 :

x2
1

b2
+
x2

2

a2
≤ 1

}
,

respectively. From Theorems 3 and 4 we have the following no-collision trans-
portation maps

tνµ0
(x1, x2) =(x1 − u1, x2 − u2),

tν
′

ν (x1, x2) =

(
b

a
x1,

a

b
x2

)
,

t
µπ/2
ν′ (x1, x2) =(x1 − u2, x2 + u1).

Hence, by [33, Proposition 2], which follows from Part 1 in Theorem 2, we have
that

t
µπ/2
µ0 (x1, x2) = t

µπ/2
ν′ ◦ tν

′

ν ◦ tνµ0
(x1, x2) =

(
b

a
(x1 − u1)− u2,

a

b
(x2 − u2) + u1

)
is the no-collision map pushing forward µ0 to µπ/2. Note that t

µπ/2
µ0 = ∇φ,

where

φ(x1, x2) =
b(x1 − u1)2

2a
− u2x1 +

a(x2 − u2)2

2b
+ u1x2.

Since φ is convex, Brenier’s theorem yields that t
µπ/2
µ0 is the optimal transporta-

tion map pushing µ0 optimally to µπ/2, and so

WS,2(µ0, µπ/2) = W2(µ0, µπ/2).

Similarly, we can prove that

WS,2(µπk/2, µπl/2) = W2(µπk/2, µπl/2), ∀k, l ∈ Z.

From Proposition 1 we have that

W2(µ0, µπ/2) = W2(µπ/2, µπ) = W2(µπ, µ3π/2) = W2(µ3π/2, µ0),

and so

WS,2(µ0, µπ/2) = WS,2(µπ/2, µπ) = WS,2(µπ, µ3π/2) = WS,2(µ3π/2, µ0).

The latter yields

|γ(0)− γ(π/2)| = |γ(π/2)− γ(π)| = |γ(π)− γ(3π/2)| = |γ(3π/2)− γ(0)|,
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by the isometry assumption. Thus, γ(0), γ(π/2), γ(π), γ(3π/2) are vertices of a
rhombus that must necessarily be a square since {γ(t)} ⊂ ∂Br. Therefore we
have that

|γ(0)− γ(π)|2 = 2|γ(0)− γ(π/2)|2.

But

|γ(0)− γ(π)|2 =W 2
S,2(µ0, µπ) = W 2

2 (µ0, µπ),

|γ(0)− γ(π/2)|2 =W 2
S,2(µ0, µπ/2) = W 2

2 (µ0, µπ/2),

and we arrive at a contradiction by repeating the calculation in Theorem 6.

6 Experimental results

In this section, we provide several experiments 1 that demonstrate our the-
oretical results. In particular we perform manifold learning on synthetically
generated 2-dimensional images using no-collision distances and compare our
results with other manifold learning techniques.

For our experiments we generate synthetic data as follows. We fix µ0 ∈
Pac(Rd) and consider

M(µ0,Θ) = {Fθ]µ0 : θ ∈ Θ} ,

where Fθ is a parametric mapping. In particular, we have

• Fθ(x) = x− θ for translations,

• Fθ(x) = θ � x for dilations,

• Fθ(x) = Rθx for for rotations.

We then sample {θ1, · · · , θm} ⊂ Θ and consider

{µ1, µ2, · · · , µm} = {Fθ1]µ0, Fθ2]µ0, · · · , Fθm]µ} .

In practice, we work with discrete versions of these distributions: we represent
them discretely as an n×n pixel image. Each point in the support of the image
has a pixel value which (after normalization) is the mass associated with the
density µi.

Once the data is generated, the embedding is performed as follows: given
the set of observed transformed distributions, we compute the distance matrix
containing all the pairwise distances. We then perform MDS on the distance
matrix to find a 2-dimensional embedding. In each example we compute the
Euclidean distance matrix, Wasserstein distance matrix, LOT distance matrix
(using the Python Optimal Transport (POT) package [17]), and no-collision
distance matrices.

1Code for this work is available at https://github.com/enegrini/

Applications-of-No-Collision-Transportation-Maps-in-Manifold-Learning.git.
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Specifically, we compute the no-collision distance matrix applying Algo-
rithm 1 to each of the observed distributions for generating corresponding no-
collision features (geometric centers or centers of mass) and computing pairwise
Euclidean distances between these features. For each example, we assume that
images have the same size and we choose the number of cuts, N , that gives
the best visual results. In particular, we start with N = 2 and increase the
number of cuts until the result start decreasing in accuracy. For large enough
N the problem reduces to performing MDS on the original pixel images, and
experiments show that this case provides inaccurate manifold reconstructions.

We compare our results for manifold learning with MDS, Isomap, and Diffu-
sion Maps on the original pixel images using Euclidean distances; with Wassmap;
and with MDS on LOT features. For Wassmap and LOT, we generate point-
cloud data from the images as done in the original papers. For LOT, we pick the
reference distribution to be a Gaussian with given mean and covariance matrix.
For Isomap, the k-NN graph is used to estimate geodesics and k is picked to
give the best visual results. Finally, for Diffusion maps we use a Gaussian kernel
and select the parameter epsilon according to the algorithm proposed in [7].

6.1 Translation Manifold

We fix a base measure µ0 to be the indicator function of a disc of radius 1
centered at the origin. For a given translation set Θ = {θ = (θ1, θ2)} ⊂ R2 the
corresponding translation manifold is given by:

Mtrans(µ0,Θ) := {(x− θ)]µ0; θ ∈ Θ}

In this example, we consider three translation sets: Θ1 = [−1, 1]2, sampled on a
uniform 4×4 grid, Θ2 = [−5,−1]×[−2, 2]∪[1, 5]×[−2, 2] where [−5,−1]×[−2, 2]
is sampled on a 4× 4 grid while [1, 5]× [−2, 2] is sampled on a 6× 6 grid, and
Θ3 representing a triangular translation grid.

6.1.1 Translation with parameter set Θ1

Since both no-collision maps and LOT give an approximation of the true Wasser-
stein distance, the first question we address is how good these approximations
are. In Figure 1 we compare the distance matrices obtained for the two transla-
tion examples. In the first row, from left to right we represent the true Wasser-
stein distance, LOT distance and no-collision distances; in the second row we
represent the L2 error in the approximation of the Wasserstein distance. In this
case for no-collision maps we use N = 2 cuts since this was the choice that
gave the best results both for center of mass and geometric center features. As
reference for LOT in this case we picked one Gaussian centered at (0, 0) with
covariance matrix 25I. Picking more than one references gives similar results
in this case but requires more computational time. In Table 1 we report the
relative error in Frobenius norm for each distance. From these experiments we
can see in this case LOT and no-collision provide an accurate approximation of
the Wasserstein distance with relative errors that are less than 2%. However,
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the no-collision distance approximation using center of mass is the one that
provides the best accuracy with relative error less than 1%.

Figure 1: Distance matrix comparison for translation example with parameter
set Θ1. Top: Distance matrices. Bottom: Squared Error between approximate
distance matrices and Wasserstein distance.

Distance LOT
No-Collision

Center or Mass
No-Collision

Geometric Center
Relative Error 1.17% 0.96% 1.31%

Table 1: Relative error in Frobenius norm of Wasserstein distance approximation
using LOT and no-collision distances for translation example with parameter
set Θ1.

Not only no-collision distances give good approximations of the true Wasser-
stein distance, but they are also much faster to compute than the LOT and true
Wasserstein distance since they do not require any optimization. Specifically, in
the example with parameter set Θ1 with 16 translation samples true Wasserstein
distance computation took 15.2 seconds, LOT computation took 0.76 seconds
while no-collision maps with N = 2 cuts took 0.056 seconds which is 13.5 times
faster than LOT and 270 times faster than Wassmap. To explore the compu-
tational time aspect more in depth we compared in Figure 2 the time (in log
scale) needed to obtain the distance matrix for Wassmap, LOT and no-collision
for an increasing number of translation points for the two parameter sets. For
no-collision N = 2 already gave accurate results for all amounts of translation
points, but for completeness we also report the time required for larger N that
also provided accurate distance approximations. We see that the computational
time for Wassserstein distance is always larger than the one needed for LOT and
no-collision (for less than 8 cuts) and it also increases faster as the number of
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translation points increases. Comparing LOT and no-collision we see that LOT
computational time is larger than no-collision when N ≤ 4, however no-collision
already provides the best approximation for N = 2.

Figure 2: Computational time Wassmap, LOT and no-collision for multiple
choices of N and increasing number of translation points for parameter set Θ1.

Finally, In Figures 3 we show the translation grid obtained by MDS em-
bedding in a 2-dimensional space using the distance matrices provided by the
different methods. The results below are in line with our theoretical results in
Section 4.1: no-collision maps are able to recover translation manifolds up to
rigid transformation and a scaling. The scaling is due to the fact that no-collision
maps give only an approximation of the true Wasserstein distance. Wassmap
and LOT also produce an accurate embedding up to rigid transformation and
a scaling, while Isomap, Diffusion Maps and MDS on the original pixel features
using Euclidean distances show significant skewing and overlapping points.

From this example we see that while all methods relying on Wasserstein
distance or its approximation provide very accurate embeddings, no-collision
map require only a fraction of the computational time but still give very accurate
distance approximations and embeddings.
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Figure 3: Translation manifold generated by the characteristic function of the
unit disk with parameter set Θ1 sampled on a 4× 4 grid. We show the original
translation grid (circled in red), and the embeddings obtained by MDS, Diffusion
Maps, Isomap on pixel features, Wassmap, MDS on LOT features and MDS on
no-collision features.

6.1.2 Translation with parameter set Θ2

A similar analysis can be done for parameter set Θ2. In Figure 4 and Table 2 we
compare the distance matrices. As in the previous example we use N = 2 cuts
for no-collision maps. From this example we see that again both LOT and no-
collision provide accurate approximations of the Wasserstein distance matrix,
with no-collision with center or mass giving the best approximation with error
less than 0.4%. As noted before, not only no-collision gives accurate results but
it is also very fast to compute. In this example with 52 translation samples true
Wasserstein distance computation took 163.1 seconds, LOT computation took
1.07 seconds while no-collision maps with N = 2 cuts took 0.211 seconds which
is 5.1 times faster than LOT and 773 times faster than Wassmap. A similar
plot as the once before of computational time v.s. translation points can be
obtained in this case. We omit this plot for brevity.
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Figure 4: Distance matrix comparison for translation example with parameter
set Θ2. Top: Distance matrices. Bottom: Squared Error between approximate
distance matrices and Wasserstein distance.

Distance LOT
No-Collision

Center or Mass
No-Collision

Geometric Center
Relative Error 1.58% 0.36% 0.73%

Table 2: Relative error in Frobenius norm of Wasserstein distance approximation
using LOT and no-collision distances for translation example with parameter
set Θ2.

Finally, as expected from the theoretical analysis, we can see from Figure
5 that also in this case methods based on Wasserstein distance (or approxi-
mations of it) are able to correctly reconstruct the translation grid up to rigid
transformation and a scaling, while the other methods cannot.
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Figure 5: Translation manifold generated by the characteristic function of the
unit disk with parameter set Θ2 sampled on a 4 × 4 and a 6 × 6 grid. We
show the original translation grid (circled in red), and the embeddings obtained
by MDS, Diffusion Maps, Isomap on pixel features, Wassmap, MDS on LOT
features and MDS on no-collision features.

6.1.3 Translation with parameter set Θ3

A similar analysis can be done for parameter set Θ3. In Figure 6 and Table
3 we compare the distance matrices. Here we use N = 4 and N = 2 cuts
for no-collision maps respectively with center of mass and geometric center.
In this case LOT and no-collision provide comparable approximations of the
Wasserstein distance matrix, with no-collision with geometric center giving the
best approximation with error less than 4.6%. In terms of computational time
in this case with 24 translation samples no-collision maps with N = 2 cuts was
6.7 times faster than LOT and 424 times faster than Wassmap.
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Figure 6: Distance matrix comparison for translation example with parameter
set Θ3. Top: Distance matrices. Bottom: Squared Error between approximate
distance matrices and Wasserstein distance.

Distance LOT
No-Collision

Center or Mass
No-Collision

Geometric Center
Relative Error 4.76% 4.62% 4.56%

Table 3: Relative error in Frobenius norm of Wasserstein distance approximation
using LOT and no-collision distances for translation example with parameter
set Θ3.

Figure 7 confirms once again out theoretical findings showing that methods
based on Wasserstein distance (or approximations of it) are able to correctly re-
construct the triangular translation grid up to rigid transformation and scaling,
while the other methods cannot.
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Figure 7: Translation manifold generated by the characteristic function of the
unit disk with parameter set Θ3. We show the original translation grid (circled
in red), and the embeddings obtained by MDS, Diffusion Maps, Isomap on pixel
features, Wassmap, MDS on LOT features and MDS on no-collision features.

6.2 Dilation Manifold

We fix a base measure µ0 to be the indicator function of a disc of radius 1
centered at the origin. For a given dilation set Θ = {θ = (θ1, θ2)} ⊂ R2 the
corresponding dilation manifold is given by:

Mdil(µ0,Θ) := {(θ � x)]µ0; θ ∈ Θ}

In this example we consider Θ = [0.5, 2] × [0.5, 4] and sample it on a uniform
6× 6 grid.

As before, in Figure 8 we compare the distance matrices obtained for the
dilation case. In the first row, from left to right we represent the true Wasser-
stein distance, LOT distance and no-collision distances; in the second row we
represent the L2 error in the approximation of the Wasserstein distance. For
no-collision maps we use N = 3 cuts for center of mass and N = 6 cuts for
geometric center since these were the choices that gave the best results. As
reference for LOT in this case we picked one Gaussian centered at (0, 0) with
covariance matrix 25I. In Table 4 we report the relative error in Frobenius norm
for each distance. From these experiments we can see that LOT and no-collision
provide an accurate approximation of the Wasserstein distance with relative er-
rors that are less than 7%. However, the no-collision distance approximation
using center of mass is the one that provides the best accuracy with relative
errors that are less than 1.5%.
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Figure 8: Distance matrix comparison for dilation example. Top: Distance
matrices. Bottom: Squared Error between approximate distance matrices and
Wasserstein distance.

Distance LOT
No-Collision

Center or Mass
No-Collision

Geometric Center
Relative Error 6.30% 1.40% 3.32%

Table 4: Relative error in Frobenius norm of Wasserstein distance approximation
using LOT and no-collision distances for dilation example with parameter set
Θ.

As in the previous example we can compare the computational time needed
for the different methods to compute the Wasserstein distance. In this case,
with 36 dilation points Wasserstein distance computation took 72.4 seconds,
LOT embedding took 1.51 seconds while no-collision maps took 0.135 seconds
which is 11 times faster than LOT and 536 times faster than Wassmap. In Figure
9 we compare the computational time needed to produce the distance matrix for
an increasing number of dilation points for Wassmap, LOT with one Gaussian
reference and no-collision maps with center of mass for multiple N . As before
we observe an faster increase in time for Wassmap as the number of dilation
points increase when compared with LOT and no-collision, with no-collision for
N = 3 being the fastest method for all amounts of dilation points.
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Figure 9: Computational time comparison for Wassmap and no-collision for
multiple cuts and increasing number of dilation points

In Figure 10 we show the dilation grids obtained by MDS embedding in a 2-
dimensional space using the distance matrices provided by the different methods.
Again, in line with out theoretical results in Section 4.2, no-collision maps are
able to reconstruct the dilation manifold correctly modulo a rigid transformation
and a scaling. Wassmap also produces an accurate embedding while LOT is
able to capture the correct form of the manifold, but shows some skewing at
the boundary of the grid. On the contrary MDS, Isomap and Diffusion Maps
on pixel features are not able to reconstruct the underlying dilation manifold.
Again this example shows that the advantage of no-collision maps over Wassmap
and LOT is that they require only a fraction of the computational time while
still producing accurate distance approximation and embeddings.
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Figure 10: Dilation manifold generated by the characteristic function of the
unit disk with parameter set Θ sampled on a 6× 6 grid. We show the original
dilation grid (circled in red), and the embeddings obtained by MDS, Diffusion
Maps, Isomap on pixel features, Wassmap, MDS on LOT features and MDS on
no-collision features.

6.3 Rotation Manifold

As proved in Section 5, in general the rotation manifold

Mrot(µ0,S1) = {(Rtx)]µ0 : t ∈ [0, 2π]}

is not isometric to a circle. Specifically, in Section 5 we showed that if a, b > 0,
a 6= b, and µ0 is the uniform probability measure over the elliptical domain

E0 =

{
(x1, x2) ∈ R2 :

x2
1

a2
+
x2

2

b2
≤ 1

}
.

and µt = (Rtx)]µ0, then
(
{µt}t∈[0,2π],W2

)
is not isometric to a circle. On the

other hand, if a = b then the two spaces are isometric.
In this section we show two rotation examples. In the first one we define

µ0 to be the uniform probability measure over the ellipse of center (0, 1) with
a = b = 2. In this case the isometry is satisfied and we show that all methods are
able to reconstruct the rotation grid correctly in Euclidean space. In the second
example we define µ0 to be the uniform probability measure over the ellipse
of center (0, 1) with a = 5, b = 2 and in this case, since there is no isometry
between

(
{µt}t∈[0,2π],W2

)
and a circle, we will see that the methods fail to

reconstruct the ellipse correctly in Euclidean space. Note that this consideration
only concerns the accuracy of the embedding in Euclidean space.
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6.3.1 Rotation of ellipse centered at (0, 1) with a = b = 2

As in the previous example we start by examining the approximation of the
Wasserstein distance matrix given by LOT and no-collision maps. As shown in
Section 5, in the case of the rotation of an ellipse we can compute the Wasser-
stein distance analytically (4). In Figure 11 we compare the distance matrices
obtained in this case. In the first row, from left to right we represent the true
analytical Wasserstein distance, the computational Wasserstein distance (com-
puted using the POT package in Python), the LOT distance, and no-collision
distances; in the second row we represent the L2 error in the approximation of
the Wasserstein distance. For no-collision maps we use N = 2 cuts for center of
mass and N = 4 cuts for geometric center since these were the choices that gave
the best results. In Table 5 we report the relative error in Frobenius norm for
each distance. From these experiments we can see that, as expected, the most
accurate approximation of the true analytical Wasserstein distance is given by
the Wasserstein distance computed in Python. However, LOT and no-collision
also provide an accurate approximation of the Wasserstein distance with relative
errors that are less than 4.5%. In particular, the no-collision distance approx-
imation using center of mass is the one that provides the best accuracy with
relative errors that are less than 1.6%.

Figure 11: Distance matrix comparison for rotation example with a = 2, b =
2. Top: Distance matrices. Bottom: Squared Error between approximate
distance matrices and True analytical Wasserstein distance.

Distance
POT computed

Wasserstein
LOT

No-Collision
Center or Mass

No-Collision
Geometric Center

Relative Error 0.143% 4.62% 1.58% 2.27%

Table 5: Relative error in Frobenius norm of Wasserstein distance approximation
using Python, LOT and no-collision distances for rotation of ellipse with a =
b = 2.

Not only no-collision distances provide accurate Wassertein distance approx-
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imation in this case, but they are also computationally very fast. In this ex-
ample, with 16 rotation points Wasserstein distance computation with Python
took 14.5 seconds, LOT embedding took 0.39 seconds while no-collision maps
took 0.064 seconds which is 6 times faster than LOT and 226 times faster than
Wassmap. In Figure 12 we compare the computational time to compute the
distance matrix for an increasing number of rotation points for Wassmap, LOT
with one Gaussian reference and no-collision maps with center of mass for mul-
tiple N . The computational time comparison is similar to the previous cases,
with no-collision for N = 2 being the fastest method for all amounts of rotation
points.

Figure 12: Computational time comparison for Wassmap and no-collision for
multiple cuts and increasing number of rotation points a = 2, b = 2

In Figure 13 we show the rotation grids obtained by MDS embedding in
a 2 dimensional space using the distance matrices provided by the different
methods. Since in this example we selected a = b = 2 and the isometry is
satisfied all methods based on Wasserstein distance (or an approximation of it)
are able to reconstruct the rotation grid exactly. However, note that in this case
MDS on pixel features did not provide a good approximation.
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Figure 13: Rotation manifold generated an ellipse centered at (0, 1) with axis
a = b = 2. We show the original rotation grid (circled in red), and the embed-
dings obtained by MDS, Diffusion Maps, Isomap on pixel features, Wassmap,
MDS on LOT features and MDS on no-collision features.

6.3.2 Rotation of ellipse centered at (0, 1) with a = 5, b = 2

As in the previous example we start by examining the approximation of the
Wasserstein distance matrix given by LOT and no-collision maps. In Figure 14
we compare the distance matrices obtained when rotating an ellipse centered
at (0, 1) with a = 5, b = 2. For no-collision maps we use N = 3 cuts for
center of mass and N = 8 cuts for geometric center since these were the choices
that gave the best results. In Table 6 we report the relative error in Frobenius
norm for each distance. We can see that like in the previous case the most
accurate approximation of the true analytical Wasserstein distance is given by
the Wasserstein distance computed in Python. We notice, however, that the
approximation of the Wasserstein distance given by LOT and no-collision map
is much less accurate than in the previous case with LOT error being less than
10% and no-collision error with center of mass being less than 16%.

We omit here the comparison of the computational time since they are the
same as in the previous case.
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Figure 14: Distance matrix comparison for rotation example with a = 5, b =
2. Top: Distance matrices. Bottom: Squared Error between approximate
distance matrices and True Wasserstein distance.

Distance
POT computed

Wasserstein
LOT

No-Collision
Center or Mass

No-Collision
Geometric Center

Relative Error 0.301% 9.77% 15.2% 16.4%

Table 6: Relative error in Frobenius norm of Wasserstein distance approximation
using Python, LOT and no-collision distances for rotation of ellipse with a =
5, b = 2.

Finally, in Figure 15 we report the 2 dimensional MDS embedding of the
rotation. As expected, since in this example we selected a = 5, b = 2 and
the isometry is not satisfied, all methods based on Wasserstein distance (or an
approximation of it) are unable to reconstruct the rotation grid exactly. Note
however that in this case Diffusion Maps are able to reconstruct the rotation
manifold correctly.
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Figure 15: Rotation manifold generated an ellipse centered at (0, 1) with axis
a = 5, b = 2. We show the original rotation grid (circled in red), and the embed-
dings obtained by MDS, Diffusion Maps, Isomap on pixel features, Wassmap,
MDS on LOT features and MDS on no-collision features.
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