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Abstract. We study an optimal transportation approach for recovering parameters in dynamical
systems with a single smoothly varying attractor. We assume that the data is not sufficient for
estimating time derivatives of state variables but enough to approximate the long-time behavior
of the system through an approximation of its physical measure. Thus, we fit physical measures
by taking the Wasserstein distance from optimal transportation as a misfit function between two
probability distributions. In particular, we analyze the regularity of the resulting loss function for
general transportation costs and derive gradient formulas. Physical measures are approximated as
fixed points of suitable PDE-based Perron–Frobenius operators. Test cases discussed in the paper
include common low-dimensional dynamical systems.
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1. Introduction. The problem of parameter identification in dynamical systems
is common in many areas of science and engineering, such as signal processing [30],
optimal control [34, 58], secure communications [66, 30], as well as and biology [65, 36],
to mention a few. The main idea of parameter identification for a dynamical system
is to identify a mathematical model of the real-world system and adapt its parameters
until the simulations obtained with the mathematical model are close to experimental
data. The models usually represent time-dependent processes with numerous state
variables and many interactions between variables. In many applications, one can
derive the form of the mathematical model from some knowledge about the process
under investigation, but in general, the parameters of such a model must be inferred
from empirical observations of time series data. The initial parameter values are
usually based on, for instance, some preliminary knowledge of the real-world system.
The type of mathematical model and the parameter identification algorithm chosen
strongly influence the accuracy of the estimates.

More formally, suppose that we have noisy observations

X∗ = (x∗(t0) + η0,x
∗(t1) + η1, · · · ,x∗(tn) + ηn) ,

where {t0, t1, · · · , tn} are sampling times, x∗ is the solution of the autonomous dynam-
ical system ẋ = v(x, θ∗), and {η0, η1, · · · , ηn} are measurement errors or uncertainties.
The goal is to find θ∗ from X∗.

Most common parameter estimation techniques estimate θ by integrating ẋ =
v(x, θ) and fitting the resulting trajectory X(θ) = (x(t0),x(t1), · · · ,x(tn)) to data
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2 Y. YANG, L. NURBEKYAN, E. NEGRINI, R. MARTIN, M. PASHA

X∗ via optimization
inf
θ∈Θ
‖X(θ)−X∗‖2

for a suitably chosen norm ‖ · ‖. For a linear map θ 7→ v(x, θ) and a quadratic
norm, the problem above reduces to the least-squares problem that tends to overfit
measurement errors [49, 46]. For a nonlinear map θ 7→ v(x, θ), this approach leads to
a so-called single shooting method [57] that uses a single initial condition to produce
a trajectory. However, relying only on one trajectory may not result in meaningful
approximations of the desired solution for chaotic systems due to their sensitivity to
initial data. The multiple shooting algorithm deals with this issue by using multiple
trajectories to estimate parameters [7]. For a more complete review we refer to [1]
and [54]. Because of their universal approximation properties, neural networks and
combinations of the above methods with neural networks have also been used recently
for parameter identification of dynamical systems [8, 52, 60, 59].

An alternative approach is to fit the time derivatives of the state. More precisely,
assume that ẋ∗ is either measured directly or estimated from X∗ yielding

V∗ = (ẋ∗(t0) + ξ0, ẋ
∗(t1) + ξ1, · · · , ẋ∗(tn) + ξn) ,

where {ξ0, ξ1, · · · , ξn} are measurement or estimation errors. The parameter estima-
tion is then performed via an optimization problem

inf
θ∈Θ
‖V∗ − v(X∗, θ)‖2 +R(θ)

for a suitably chosen norm ‖·‖ and a regularization R(θ), where we denote v(X∗, θ) =
(v(x∗(t0), θ), v(x∗(t1), θ), · · · , v(x∗(tn), θ)) by slightly abusing the notation. Sparse
identification of nonlinear dynamics (SINDy) [15] is one such notable method, where
one has a linear model v(x, θ) =

∑
i θiψi(x) with a suitably chosen dictionary of basis

functions {ψi} and a sparsity enforcing regularization term R(θ) = ‖θ‖1.
We are interested in parameter estimation problems where trajectories are sen-

sitive to initial conditions and estimation parameters. In particular, we consider the
case where the time derivatives V∗ cannot be estimated due to the lack of observa-
tional data, slow sampling, discontinuous or inconsistent time trajectories, and noisy
measurements [11]. The methods described above incur many challenges or are inap-
plicable in such settings. Hence, following [41], we “suppress” the time variable and
consider the state-space distribution of data

ρ∗ =
1

n+ 1

n∑
i=0

δx∗(ti).

We say that a dynamical system ẋ = v(x, θ) admits a physical measure ρ(θ) [76,
Definition 2.3],[55, Section 9.3], if for a Lebesgue positive set of initial conditions
x(0) = x, one has that

ρ(θ) = lim
T→∞

1

T

∫ T

0

δx(t)dt.

Therefore, as an alternative, we can fit physical measures instead of trajectories for
systems admitting such measures. In this work, we focus on dynamical systems with
a unique physical measure. More precisely, the parameter estimation problem reduces
to the optimization problem

(1.1) inf
θ∈Θ

f(θ) := d(ρε(θ), ρ
∗),
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 3

where ρε(θ) is an approximation of ρ(θ) with an approximation (regularization) pa-
rameter ε > 0, and d is a suitable metric in the space of probability measures.

Note that the definition of physical measures reflects their stability with respect to
perturbations of initial conditions. Additionally, ρ∗ can provide an accurate estimate
of ρ(θ∗) even if we perform slow sampling; that is, when the time derivatives V∗

cannot be estimated (Subsection 6.2.4).
The difficulty and efficiency of the parameter estimation problem (1.1) depend

significantly on the choice of the approximation method ρε and the metric d. The
Wasserstein metric from optimal transportation (OT) [75] has recently gained popu-
larity as a metric of choice in numerous fields such as image processing [43], machine
learning [5], large-scale inverse problems [28], and statistical inference [9], only to
mention a few. Interested readers may further refer to [62]. The Wasserstein metric
is beneficial for several reasons. First, it is well-defined for singular measures and,
unlike the Kullback–Leibler divergence, reflects both the local intensity differences
and the global geometry mismatches [28]. Additionally, the Lp and total variation
(TV) norms lead to weakly pronounced minima with small basins of attraction when
the supports are disjoint or only partially intersect. Second, recent works in both
deterministic and Bayesian inverse problems have demonstrated that the Wasserstein
metric is robust to noise [27, 24], a preferred property to help avoid overfitting when
we have noisy time trajectories, modeling error, and numerical errors.

Our first main goal of this work is to study OT distances as the objective func-
tion for parameter identification problems in dynamical systems building on insights
from [41]. An important element of the method (1.1) is the surrogate model ρε(θ).
In [41], the authors build a histogram from a single long-time trajectory, where ε is
the bin width. Although effective, one drawback of this approximation method is the
inability of differentiating ρε(θ) with respect to θ. Consequently, it relies on a poten-
tially slow derivative-free optimization method to solve (1.1). Our second main goal
is to explore an alternative scheme for the approximation ρε(θ) that is differentiable
in θ, and rigorously study the regularity of f(θ) in (1.1). One can then devise more
efficient gradient-based optimization algorithms to solve (1.1).

In this work, we propose a partial differential equation (PDE)-based approxima-
tion method for ρ(θ). Note that ρ(θ) is a distributional solution of the stationary
continuity PDE

(1.2) −∇ · (v(x, θ)ρ(x)) = 0.

Hence, we consider a regularized solution ρε(θ) of (1.2) and turn (1.1) into a PDE-
constrained optimization problem. We choose the teleportation regularization from
Google’s PageRank algorithm [39] because of its simplicity in implementation and
other favorable properties such as the uniqueness, absolute continuity, and differen-
tiability (with respect to θ) of ρε(θ). The numerical method for computing ρε(θ) is
based on its representation as a fixed point of a suitable Perron–Frobenius operator.

Approximating physical measures by PDE and fixed points of Perron–Frobenius
operators instead of directly simulating single long-time trajectories is not new [23, 3].
Some of these methods come with rigorous convergence guarantees, especially for uni-
formly hyperbolic systems [23, Theorem 4.14], and are more computationally efficient
because of considering ρε(θ) that are supported on tight covers of supp(ρ) [23, Section
4]. However, the differentiability of the resulting approximations with respect to the
parameters is unclear and warrants separate careful analyses. Here, we do not ana-
lyze the convergence of ρε(θ) to ρ(θ), but the numerical evidence in Subsection 6.2.5
and the discussion in Section 3 suggest that this convergence occurs for a suitable

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA Clearance AFRL-2021-1303



4 Y. YANG, L. NURBEKYAN, E. NEGRINI, R. MARTIN, M. PASHA

class of dynamical systems. Instead, we focus on studying the properties of OT-
based distances and the viability of the overall approach at the expense of employing
a less accurate yet more straightforward approximation method for the differentia-
bility analysis. Thus, our work serves as a foundation for possibly other OT-based
techniques with different but differentiable approximation methods for the physical
measures. Formally, we assume that (1) the dynamical system of interest, ẋ = v(x, θ)
where θ ∈ Θ, has one unique physical invariant measure, and (2) the distributional
solution to (1.2) with the same v(x, θ) is unique and recovers the physical invariant
measure to the dynamical system. We refer to Section 3 for more details.

The discussion above leads to our next essential contribution: the regularity analy-
sis of the optimal transport cost with respect to the inference parameter for generic
cost functions; see Section 4. Although the gradient formula is well known in the
literature, its validity analysis seems to be missing except in special cases where the
optimal transport cost can be calculated explicitly [63, Lemma 2.4]. In the non-
parametric setting, such analysis can be found in [71, Theorem 2.4] for probability
measures on finite spaces and [67, Proposition 7.17] for probability measures on Rd.
For probability measures modeled by push-forward maps, see [5].

Similar to related results in the literature, we rely on Kantorovich’s formulation
of the OT problem and the regularity theory of optimal value functions [12]. Under
rather mild conditions, we prove that the transportation cost is directionally differ-
entiable everywhere. In general, the directional derivative is nonlinear and depends
on the structure of Kantorovich potentials. To this end, we find a sufficient condition
in terms of the geometry of the optimal transport plans that guarantees the linearity
of the directional derivative providing a descent direction for the optimal transport
cost. To the best of our knowledge, this condition is new in the literature.

The paper is arranged as follows. In Section 2, we review challenges of the chaotic
dynamics, the advantages provided by the PDE perspective (1.2), and a short intro-
duction to optimal transport. In Section 3, we describe a regularized forward problem
based on the PDE perspective and discuss the numerical scheme that enforces posi-
tivity and strict mass conservation. The solution to the forward problem is computed
as finding the dominant eigenvector of a Markov matrix. In Section 4, we present
theoretical regularity analysis for evaluating gradients of optimal transport costs with
respect to the model parameters. In Section 5, we introduce two different ways to
compute gradients for our PDE-constrained optimization problem using the implicit
function theorem and the adjoint-state method. Numerical results for the Lorenz,
Rössler, and Chen systems are presented in Section 6. In Section 7, we summarize
our results and describe several future research directions.

2. Background. In this section, we present the essential background of dynam-
ical systems and optimal transportation theory.

2.1. Dynamical Systems. This section reviews some basic terminologies in the
field of dynamical systems that will appear throughout the paper.

2.1.1. Chaotic Dynamical Systems. A continuous-time dynamical system
represents the behavior of a system in which the time-dependent flow of a point in a
geometrical state space, x, is governed by a function of that state, v(x), such that

(2.1)
dx

dt
= ẋ = v(x).

This first-order ordinary differential equation (ODE) can be viewed as the trajec-
tory of a point in Lagrangian coordinates. While linear first-order dynamical systems,
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 5

ẋ = Ax, admit only stable, unstable, and periodic solutions, the more general class of
nonlinear dynamical systems can exhibit a range of more complex long time behaviors
due to locally bounded regions of instability. It is this local region of instability that
enables the emergence of chaotic behavior.

While a formal definition of chaos remains elusive, it is generally characterized
by bifurcation and sequences of period doubling, transitivity and dense orbit, sensi-
tive dependence to initial conditions, and expansivity; see [25] for more details. In
particular, it is this sensitive dependence on initial conditions that results in the ap-
parent randomness characteristic of chaotic systems. This randomness results from a
combination of local instability causing exponential divergence of nearby trajectories
and state-space mixing that occurs when this exponential divergence is re-stabilized
such that a nontrivial attractor forms. This combination makes long-time predic-
tions impossible despite the purely causal nature of the governing system. It is also
this sensitivity that makes the classical trajectory-based parameter inference problem
challenging when the observed dynamics are obscured by noise, slow sampling, and
other corruption, as described in Section 1.

2.1.2. From Trajectory Samples to the Physical Measure. We shift from
the trajectory-based to distribution-based perspective to remedy the aforementioned
stability and data availability issues. Mathematically, statistical properties of (2.1)
can be characterized by the occupation measure ρx,T defined as

(2.2) ρx,T (B) =
1

T

∫ T

0

1B(x(s))ds =

∫ T
0
1B(x(s))ds∫ T

0
1Rd(x(s))ds

,

where T > 0, 1 is the indicator function, B is any Borel measurable set, and x(·) is the
time-dependent trajectory starting at x. System (2.1) has robust statistical properties
if there exists a set of positive Lebesgue measure U and an invariant probability
measure ρ such that ρx,T converges weakly to ρ for all initial conditions x ∈ U . Such
ρ are called physical [76, Definition 2.3], [55, Section 9.3]. For suitable classes of
dynamical systems, such as Axiom A, physical measures reduce to so called Sinai-
Ruelle-Bowen (SRB) measures [23, 76, 55].

In general, the existence and properties of such measures are rather intricate and
require careful analysis. For a more detailed account on these topics, we refer to [76]
for general systems, and [74, 73] for the Lorenz system. Furthermore, in some cases,
one can recover ρ as the zero-noise limit of stationary measures of the corresponding
stochastic dynamical systems [17, 44, 48, 23].

As we will show in Section 3, direct simulation of ρ for parameter identification
faces the difficulty of not having access to the gradients of the loss function. Conse-
quently, one has to rely on gradient-free space-search methods. Motivated by these
challenges, we take a PDE perspective on ρ and formulate the parameter inference
problem as a PDE-constrained optimization.

2.2. Optimal Transportation. In this subsection, we give a brief overview of
the topic of optimal transportation (OT), first brought up by Monge in 1781.

We first introduce the original Monge’s problem. Let Ω ⊂ Rd be an arbitrary
domain, and µ, ν ∈P(Ω) arbitrary probability measures supported in Ω. A transport
map T : Ω→ Ω is mass-preserving if for any measurable set B ⊆ Ω

µ(T−1(B)) = ν(B).
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6 Y. YANG, L. NURBEKYAN, E. NEGRINI, R. MARTIN, M. PASHA

If this condition is satisfied, ν is said to be the push-forward of µ by T , and we
write ν = T]µ. In case µ, ν are absolutely continuous; that is, dµ(x) = f(x)dx and
dν(y) = g(y)dy, we have that T is a mass-preserving map if

f(x) = g(T (x)) · | det (∇T (x)) |, x ∈ Ω.

The transport cost function c(x, y) maps pairs (x, y) ∈ Ω × Ω to R ∪ {+∞}, which
denotes the cost of transporting one unit mass from location x to y. The most common
choice of c(x, y) is |x−y|p, p ∈ N, where |x−y| denotes the Euclidean distance between
vectors x and y. Given a mass-preserving map T , the total transport cost is∫

Ω

c(x, T (x))f(x) dx.

While there are many maps T that can perform the relocation, we are interested in
finding the optimal map that minimizes the total cost. So far, we have informally de-
fined the optimal transport problem, which induces the so-called Wasserstein distance
defined below, associated to cost function c(x, y) = |x− y|p.

Definition 2.1 (The Wasserstein distance). We denote by Pp(Ω) the set of prob-
ability measures with finite moments of order p. For all p ∈ [1,∞),

(2.3) Wp(µ, ν) =

(
inf

Tµ,ν∈M

∫
Ω

|x− Tµ,ν(x)|p dµ(x)

) 1
p

, µ, ν ∈Pp(Ω),

where M is the set of all maps that push forward µ into ν.

The definition (2.3) is the original static formulation of the optimal transport
problem with a specific cost function. In mid 20th century, Kantorovich relaxed the
constraints, turning it into a linear programming problem, and also formulated the
dual problem [67]. Instead of searching for a map T , a transport plan π is considered,
which is a measure supported in the product space Ω×Ω. The Kantorovich problem
is to find an optimal transport plan as follows:

(2.4) Tc(µ, ν) = inf
π

{∫
Ω×Ω

c(x, y)dπ | π ≥ 0 and π ∈ Π(µ, ν)

}
,

where Π(µ, ν) = {π ∈ P(Ω× Ω) | (P1)]π = µ, (P2)]π = ν}. Here, P(Ω× Ω) stands
for the set of all the probability measures on Ω × Ω, functions P1(x, y) = x and
P2(x, y) = y denote projections over the two coordinates, and (P1)]π and (P2)]π are
two measures obtained by pushing forward π with these two projections.

Since every transport map determines a transport plan of the same cost, Kan-
torovich’s problem is weaker than the original Monge’s problem. If the cost function
c(x, y) is of the form |x−y|p and µ and ν are absolutely continuous with respect to the
Lebesgue measure, solutions to the Kantorovich and Monge problems coincide under
certain conditions. When p > 1, the strict convexity of |x− y|p guarantees that there
is a unique solution to Kantorovich’s problem (2.4) which is also the unique solution
to Monge’s problem (2.3).

3. The Forward Model. While matching shadow state-space density in [41]
provided a potential route to resolve issues related to the chaotic divergence of state-
space trajectories and data availability, the direct estimation of state-space density
from trajectory data still retained two major challenges. One significant issue was the
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 7

inability to efficiently calculate a gradient of the Wasserstein metric with respect to
the parameters, forcing the reliance on evolutionary or other gradient-free optimiza-
tion methods. Another major issue was related to the time required to converge to
the density estimate asymptotically, as particularly highlighted in [41, Fig. 7], where
the self-self Wasserstein metric is observed to oscillate as it converges with more ODE
time steps. This slow convergence is related to the long and intermittent switching
times between lobes of the butterfly attractor. While the invariant measure of the
Lorenz system is known to exist [73], the long measurement times with respect to the
switching times complicate the parameter inference problem. The problem is exacer-
bated in more expensive and complicated dynamics such as the thruster model [41].

To address these challenges, we instead directly solve for the solution of the sta-
tionary continuity equation (1.2). This choice not only removes the issue of slow
convergence with respect to the slowest system processes but also provides a forward
model that can be differentiated for building the required gradients needed to tackle
the parameter inference problem directly. This alternative forward model follows the
approach described in [10] in converting from the trajectory samples to the probability
measure for the Bayesian estimation problem, as detailed in Subsection 3.1, but then
recasts this forward Perron–Frobenius operator as a Markov process for determining
the steady-state solution as described in Subsection 3.3.

Our approach is close in spirit to other cell-based or grid-based frameworks that
introduce a suitable Perron–Frobenius operator and compute its fixed points [23, Sec-
tion 4]. Some of these methods, such as the software package GAIO proposed in
[21, 22] by Dellnitz and Junge, represent the attractors via a hierarchy of covers by
cells: cells that do not intersect the support of the invariant measure are ignored so
that the data structures and computational requirements for this method are smaller
than the ones required for our grid-based approach. In some cases, such as uniformly
hyperbolic systems, these methods come with convergence guarantees [23, Theorem
4.14]. Many other subdivision methods have been successfully applied to the numer-
ical analysis of complex dynamical behavior, see for instance [20, 26, 70]. A more
comprehensive list of examples can be found in [19, 38].

We regularize our Perron–Frobenius operator via teleportation regularization from
Google’s PageRank method [39], which ensures the uniqueness and regularity of the
fixed point. This step is similar to stochastic perturbation techniques for approximat-
ing physical measures [17, 44, 48, 23]. Intuitively, teleportation amounts to stopping
the dynamics at a random time and restarting it from a randomly chosen initial
point. The regularization parameter ε controls the restarting frequency: the smaller
ε, the rarer we restart. This regularization is somewhat similar to “snapshot attrac-
tors” described in [64] where attractors are estimated by following the dynamics from
randomly chosen initial conditions for a fixed time. Here, we do not analyze the con-
vergence of ρε(θ) to the physical invariant measure, but the numerical evidence in
Section 6.2.5 suggest that this convergence does take place for the tested examples.
Intuitively, if we restart the dynamics from the basin of attraction and do so very
rarely, we should approximate the physical measure. Additionally, general results
in [48] hint at a convergence result similar to [23, Theorem 4.14] for uniformly hyper-
bolic attractors. Analyzing the convergence of our model and the differentiability of
other forward models described here is an exciting future research direction that we
plan to pursue. For additional methods based on Markov partitions and chains we
refer to [13, 35, 32]. Formally, we assume that (1) the dynamical system of interest,
ẋ = v(x, θ) where θ ∈ Θ, has one unique physical invariant measure, and (2) the dis-
tributional solution to (1.2) with the same v(x, θ) is unique and recovers the physical
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8 Y. YANG, L. NURBEKYAN, E. NEGRINI, R. MARTIN, M. PASHA

invariant measure to the dynamical system.

3.1. From Linear Advection to Stationary Eigenvectors. In converting
the dynamical system from the trajectory samples to the probability measure, the
governing equation is converted from a nonlinear ODE for the system state “point”,
x, to a linear PDE (1.2) for the state space density ρ(x).

Note that a causal dynamical system includes no diffusion. It then corresponds
to (1.2), a linear advection of probability density in state space. Subsection 3.2
describes a particular simple low-order discretization of this linear advection problem.
While adding physical diffusion is a relatively simple modification of the numerical
method, the more significant issue with this approach relates to excess diffusion.
Although the zero diffusion case can be relaxed for stochastic dynamical systems
where Dij 6= 0, the upwinding scheme required to stabilize the advection introduces
an artificial diffusion, which is the predominant numerical error as described in [10].
This numerical diffusion is expected to dominate physical diffusion for the moderate
spatial resolution that is tractable for the forward model unless the dynamics of
the system are highly stochastic. As this numerical diffusion is irreducible at finite
computational cost, the addition of finite diffusion to the ODE model is explored
in Subsection 6.2 when attempting to understand the class of problems for which
inference with respect to the binned direct ODE solution is viable.

3.2. Finite Volume Discretization. A finite volume discretization of the re-
sulting continuity equation defined on the domain Ω, as described in [10], is then
obtained. The finite volume discretization combined with a zero-flux boundary con-
dition, v = 0 on the boundaries ∂Ω, enforces strict mass conservation whenever the
discrete integration by parts formulation is used [31]. Only the first-order operator
split upwind discretization is used in this work to enforce positivity of the probability
density, as will be shown to be a consequence of the form of the discrete operator.

We first discretize (1.2) on a d−dimensional uniform mesh in space and time
with no added diffusion, which gives us the following equation for the explicit time
evolution of the probability density,

ρ(l+1)(xi)− ρ(l)(xi)

∆t
= −

d∑
id=1

F
(l)
(id)(xi + ∆x(id)/2)− F (l)

(id)(xi −∆x(id)/2)

∆x(id)
.

Here, the point xi refers to the ith cell center vector and ∆x(id) refers to the mesh
spacing in the id-th direction, id = 1, . . . , d. The upwind id−direction flux at the l-th

time step, F
(l)
(id), is then approximated using face center velocity assuming uniform

density within the cell centered at xi as follows:

F
(l)
(id)

(
xi −

∆x(id)

2

)
= v+

(id− 1
2 )
ρ(l)(xi −∆x(id)) + v−

(id− 1
2 )
ρ(l)(xi),

where the upwind velocities v+
(id) = max(v(id), 0) and v−(id) = min(v(id), 0) refer to the

id-th component of the velocity vector split between positive and negative values, and

v+
(id− 1

2 )
:= v+

(id)

(
xi −

∆x(id)

2

)
, v−

(id− 1
2 )

:= v−(id)

(
xi −

∆x(id)

2

)
.

Inserting these fluxes into the discrete equation yields the following expression for the
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 9

future time density, ρ(l+1).

ρ
(l+1)
0 = ρ

(l)
0 + ∆t

d∑
id=1

(
v+

(id− 1
2 )
ρ

(l)
− + v−

(id− 1
2 )
ρ

(l)
0

)
−
(
v+

(id+ 1
2 )
ρ

(l)
0 + v−

(id+ 1
2 )
ρ

(l)
+

)
∆x(id)

,

where ρ
(l)
0 = ρ(l)(xi), ρ

(l)
− = ρ(l)(xi−∆x(id)) and ρ

(l)
+ = ρ(l)(xi+∆x(id)). The equation

above can be rewritten as a matrix-vector format:

ρ(l+1) = ρ(l) +Kmatρ
(l) = (I +Kmat)ρ

(l).

For steady state distributions, ρ(l+1) = ρ(l) = ρeq. This corresponds to finding a
nonzero solution ρ(eq) to the following linear system

Kmatρ
(eq) =

[
d∑

id=1

∆t

∆x(id)
K(id)

]
ρ(eq) = 0

where for id = 1, . . . , d we have

(3.1) K(id) =



. . .

−v−
(id− 3

2 )

. . .
...

v−
(id− 3

2 )
− v+

(id− 1
2 )

−v−
(id− 1

2 )

. . .
...

...
+v+

(id− 1
2 )

v−
(id− 1

2 )
− v+

(id+ 1
2 )

−v−
(id+ 1

2 )

...
...

. . .

+v+
(id+ 1

2 )
v−

(id+ 1
2 )
− v+

(id+ 3
2 )

...
. . .

+v+
(id+ 3

2 )

. . .



.

We remark that each K(id), id = 1, . . . , d, is a tridiagonal matrix, while the offsets
for the three diagonals vary for different id. For example, consider the case that
Ω ⊆ R3 is a cuboid, discretized with grid size nx, ny, nz in the x, y, z dimension,
respectively. Then, K(1) is nonzero at the first lower diagonal, the main diagonal,
and the first upper diagonal; K(2) is nonzero at the nx-th lower diagonal, the main
diagonal, and the nx-th upper diagonal; K(3) is nonzero at the (nx × ny)-th lower
diagonal, the main diagonal, and the (nx × ny)-th upper diagonal.

We highlight that the solution ρ(l) at any l-th time step satisfies the mass conser-
vation property. That is,

ρ(l) · 1 = ρ(l+1) · 1 = ρ(eq) · 1, where 1 = [1, 1, . . . , 1]>.

It is a direct consequence of the fact that columns of Kmat sum to zero. Note also
that the off-diagonal terms are all positive or zero while the diagonal terms are all
negative or zero by construction. One can construct a column-stochastic matrix M

M = I + cKmat.
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M can be positive definite if we ensure that c is small enough.
Since the main focus of this paper is parameter identification, the velocity field v

is parameter-dependent. Thus, we will highlight the dependency on the parameter θ
by using notation v(θ), Kmat(θ), K(id)(θ), and ρ(eq)(θ) hereafter.

The upper bound on c unsurprisingly also depends on θ. Nevertheless, if we
assume that v depends continuously on θ and we operate in a bounded domain Ω, we
can choose c small enough to serve all θ-s of interest. For instance, we can choose

(3.2) 0 < c < min
id

∆x(id)

2∆t max
x∈Ω,θ∈Θ

|v(id)(x, θ)|
.

3.3. Finding the Stationary Distribution of a Markov Chain. From the
previous section, we learned that ρ(θ) is the solution of

(3.3) M(θ)ρ = ρ, ρ · 1 = 1,

where

M(θ) = I + cKmat(θ), Kmat(θ) =

d∑
id=1

∆t

∆x(id)
K(id)(θ),

with K(id)(θ) given in (3.1), and c is chosen to satisfy (3.2). While the matrix,
M , was built from a finite volume causal flow model, it was noted that this flux
also approximates a discrete cell-to-cell transition probability for a point randomly
sampled from the volume of one cell to its neighbor cells, which mirrors the propagator
of a Markov chain as described in [47].

A priori we have that the off-diagonal entries of M(θ) = I + cKmat(θ) are non-
negative. Additionally, we know that M(θ) is column stochastic. Thus, by Gersh-
gorin’s theorem [40] we have that the spectral radius of M is not greater than one.
On the other hand, we know 1 = [1, 1, · · · , 1]> is an eigenvector for M> which is
a row-stochastic matrix, and so λ = 1 is an eigenvalue for both M and M>. The
spectral radius of M has to be equal to 1. Furthermore, by a limiting argument, we
can show that the eigenspace of M corresponding to the eigenvalue λ = 1 contains
vectors with non-negative entries.

However, the dimension of this eigenspace may be bigger than one, which compli-
cates our analysis. Thus, we regularize M via the so-called teleportation trick, which
is well-known from Google’s PageRank method [39]. That is, given a small positive
constant ε, we consider

(3.4) Mε(θ) = (1− ε)M + εn−11 1> = (1− ε)(I + cKmat(θ)) +
ε

n
1 1>.

Note that the off-diagonal entries of Mε are at least ε
n > 0. The regularization also

connects all cells, achieving similar regularizing effects by having a diffusion term.
Moreover, Mε is still column-stochastic. Based on the following Perron–Frobenius
Theorem, the spectral radius of Mε must be 1.

Theorem 3.1 (Perron–Frobenius Theorem [56]). If all entries of a Markov ma-
trix A are positive, then A has a unique equilibrium: there is only one eigenvalue
equal to 1. All other eigenvalues are strictly smaller than 1.

Consequently, the eigenspace {ρ : Mε(θ)ρ = ρ} is one-dimensional and has a
generator with all positive entries. Hence, the equation

(3.5) Mε(θ)ρ = ρ, ρ · 1 = 1, ρ > 0,
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has a unique solution that converges to a solution of (3.3) as ε→ 0. We can analyze
the error between ρ0 and ρε where

Mρ0 = ρ0, Mερε = ρε, ρ0 · 1 = ρε · 1 = 1.

The error analysis traces back to the classical root-finding problem. We define ∆ρε =
ρε − ρ0. Using the forward error analysis, we obtain that

(M − I)∆ρε = (M − I)ρε = ε
(
M − n−11 1>

)
ρε, ∆ρε · 1 = 0.

Solving for ∆ρε from the linear system above can improve the current “root” ρε, which
is precisely the principle behind Newton’s method. Using backward error analysis,
starting from Mερε = ρε, we obtain that(

(1− ε)M + εn−11 1> − I
)

(ρ0 + ∆ρε) = 0.

Up to the first-order terms, we have

(M − I)∆ρε = ε
(
M − n−11 1>

)
ρ0, ∆ρε · 1 = 0.

The above equation implies that ‖∆ρε‖ is O(ε), showing the convergence ρε → ρ0 as
we decrease ε. This is further verified by our numerical examples in Subsection 6.2.5.

Numerically, the problem (3.5) can be solved by mature tools from numerical
linear algebra such as the power method and the Richardson iteration [39]. We present
one direct solve method in Appendix B.1 using the sparsity of Kmat.

4. Optimal Transport for Parameter Inference. Here, we discuss gradient
evaluation of optimal transport-based costs with respect to the inference parameters.
Assume that Ω ⊂ Rd is a compact set, and c : Ω2 → R is a continuous cost function.
The main goal of this section is to discuss the differentiability of the objective function

f(θ) = Tc
(
ρ(·, θ), ρ∗

)
, θ ∈ Θ,

where {ρ(·, θ)}θ∈Θ is a family of parameter-dependent probability measures on Ω, and
Tc is the optimal transport cost defined in (2.4). Throughout the paper, we assume
that Ω ⊂ Rd is compact, ρ∗ ∈P(Ω) is an arbitrary probability measure, and

A1. Θ ⊂ Rm is an open set, and {ρ(·, θ)}θ∈Θ ⊂ P(Ω) is a family of absolutely
continuous probability measures.

A2. For a.e. x ∈ Ω the mapping θ 7→ ρ(x, θ) is differentiable, and |∇θρ(x, θ)| ≤
η(x), θ ∈ Θ, for some η ∈ L1(Ω). Note that by slightly abusing the notation,
we use the same notation for probability measures and their densities.

A3. c : Ω2 → R is continuous and nonnegative.
Occasionally, we need the following hypothesis.

A4. For a.e. x ∈ Ω the mapping θ 7→ ρ(x, θ) is locally semiconvex, and∇2
θρ(x, θ) ≥

−h(x), θ ∈ Θ, for some h ∈ L1(Ω).
Proofs for results of this section can be found in Appendix A.

4.1. Preliminaries. First, we recall preliminary results from the optimal trans-
portation (OT) theory that can be found in [75, 4, 67]. A key tool in OT is the
Kantorovich duality [75, Theorem 1.3] that states

(4.1) Tc(µ, ν) = sup
(φ,ψ)∈Φc(µ,ν)

∫
Ω

φ(x)dµ(x) +

∫
Ω

ψ(y)dν(y), µ, ν ∈P(Ω),
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12 Y. YANG, L. NURBEKYAN, E. NEGRINI, R. MARTIN, M. PASHA

where Φc(µ, ν) ⊂ C(Ω)×C(Ω) is the set of pairs (φ, ψ) such that φ(x)+ψ(y) ≤ c(x, y)
for all (x, y) ∈ Ω2. The maximizing pairs (φ, ψ) in (4.1) are called Kantorovich
potentials. The c-transform of a function x 7→ φ(x) is defined as

φc(y) = inf
x∈Ω
{c(x, y)− φ(x)} .

Similarly, the c-transform of a function y 7→ ψ(y) is defined as

ψc(x) = inf
y∈Ω
{c(x, y)− ψ(y)} .

A function x 7→ φ(x) (resp. y 7→ ψ(y)) is called c-concave if there exists a function ψ
(resp. φ) such that φ = ψc (resp. ψ = φc).

Since Ω is compact and c is continuous, we obtain that c is bounded. Thus, the
set Φc(µ, ν) in (4.1) can be further restricted to uniformly bounded pairs of conjugate
c-concave functions; that is, pairs of (φ, φc) ∈ Φc(µ, ν), where φ = φcc, and 0 ≤ φ ≤
‖c‖∞, −‖c‖∞ ≤ φc ≤ 0 [75, Remarks 1.12-13]. We denote this set by Kc.

Since the modulus of continuity of y 7→ c(x, y)− φ(x) (resp. x 7→ c(x, y)− φc(y))
is bounded by that of c for all x (resp. y), Kc is uniformly equicontinuous, uni-
formly bounded, and, consequently, precompact in C(Ω)×C(Ω) by the Arzelà–Ascoli
theorem [67, Section 1.2]. Additionally, since c-transform is continuous under the uni-
form convergence, Kc is compact in C(Ω) × C(Ω), and the existence of Kantorovich
potentials in Kc is guaranteed [67, Proposition 1.11].

4.2. The Differentibility of the Transport Cost in the Parameter Space.
Here, we heavily rely on the Kantorovich duality (4.1) and the regularity theory of
optimal value functions [12, Chapter 4]. Recall that f is directionally differentiable
at θ0 ∈ Θ if

lim
t→0+

f(θ0 + t∆θ)− f(θ0)

t
= f ′(θ0,∆θ)

for all ∆θ ∈ Rm [12, Section 2.2]. Furthermore, if ∆θ 7→ f ′(θ0,∆θ) is linear, we say
that f is Gâteaux differentiable at θ0 and denote by ∇f(θ0) the generator of this
linear map.

Next, denote by S(θ) ⊂ Kc the set of Kantorovoch potentials for the optimal
transportation from ρ(·, θ) to ρ∗.

Proposition 4.1. Assume that A1-A3 hold.
(i) f is everywhere directionally differentiable, and

(4.2) f ′(θ0,∆θ) = sup
(φ,φc)∈S(θ0)

∫
Ω

φ(x)∇θρ(x, θ0)dx ·∆θ

for all θ0 ∈ Θ, and ∆θ ∈ Rm.
(ii) f is Gâteaux differentiable at θ0 ∈ Θ if and only if

(4.3)

∫
Ω

φ1(x)∇θρ(x, θ0)dx =

∫
Ω

φ2(x)∇θρ(x, θ0)dx

for all (φ1, φ
c
1), (φ2, φ

c
2) ∈ S(θ0). In this case, we have that

(4.4) ∇f(θ0) =

∫
Ω

φ(x)∇θρ(x, θ0)dx

for an arbitrary pair of Kantorovich potentials (φ, ψ) ∈ Φc(ρ(·, θ0), ρ∗).
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The proof is in Appendix A.1.
Proposition 4.1 asserts that f is directionally differentiable at all points and that

its directional derivative is a one-homogeneous closed convex function. Since we are
interested in descent directions of f , we focus on cases when the directional derivative
is a linear function and thus provides a descent direction in the form of the negative
gradient. In what follows, we prove that f is generically differentiable even without
(4.3). Furthermore, we find sufficient structural conditions on the optimal transport
plans between ρ(·, θ0) and ρ∗ to guarantee (4.3).

Theorem 4.2. Assume that A1-A3 hold. Then f is locally Lipschitz continuous,
and (4.4) holds a.e.. Additionally, if A4 holds, then f is locally semiconvex, and (4.4)
holds up to a set of Hausdorff dimension d− 1.

The proof can be found in Appendix A.2.
There is a natural degree of freedom for Kantorovich potentials given by the

addition of constants; that is, (φ, φc) is a pair of Kantorovich potentials if and only if
(φ+λ, φc−λ) is such for an arbitrary constant λ. As a corollary of Proposition 4.1 we
obtain that the Gâteaux differentiability of f is guaranteed if the addition of constants
is the only degree of freedom for Kantorovich potentials.

Corollary 4.3. Assume that A1-A3 hold, and θ0 ∈ Θ is such that φ2 − φ1 is
constant ρ(·, θ0) a.e. for all pairs of Kantorovich potentials (φ1, ψ1), (φ2, ψ2). Then
f is Gâteaux differentiable at θ0, and (4.4) holds.

In general, Kantorovich potentials are not unique up to constants. In what follows,
we provide a sufficient condition for such uniqueness. Essentially, the optimal trans-
portation should not amount to transportation between disjoint parts of supp(ρ(·, θ0))
and supp(ρ∗).

More formally, assume that ρ, ρ∗ ∈ P(Ω) are such that int(supp(ρ)) 6= ∅. Fur-
thermore, denote by Γ0(ρ, ρ∗) the set of optimal transport plans; that is, minimizers
in (2.4). We have that

(4.5) int(supp(ρ)) = ∪kOk,

where Ok are disjoint open and connected sets. Next, denote by

Ek = cl ({y : (x, y) ∈ supp(π) for some x ∈ cl(Ok), π ∈ Γ0(ρ, ρ∗)}) .(4.6)

In other words, Ek is the set where the mass from cl(Ok) is transported to.

Definition 4.4. We say that cl(Ok) and cl(Ol) are linked in the optimal trans-
portation from ρ to ρ∗ with a transport cost c, if there exist {ij}mj=1 such that k =
i1, l = im, and Eij ∩ Eij+1 6= ∅, 1 ≤ j ≤ m.

Theorem 4.5. Assume that c ∈ C1(Ω2), ρ, ρ∗ ∈P(Ω), and

(4.7) supp(ρ) = cl(int(supp(ρ))).

Furthermore, suppose that {Ok} and {Ek} are defined as in (4.5) and (4.6), respec-
tively. Assume that all {cl(Ok)} are mutually linked. Then φ2 − φ1 is constant ρ-a.e.
for all pairs of Kantorovich potentials (φ1, ψ1), (φ2, ψ2).

The proof is presented in Appendix A.3. Theorem 4.5 and Corollary 4.3 yield the
following corollary.
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Corollary 4.6. Assume that A1-A3 hold, and ρ = ρ(·, θ0) satisfies the hy-
potheses in Theorem 4.5. Then f is Gâteaux differentiable at θ0.

In particular, if ρ(·, θ0) is supported on a closure of an open connected set, then
f is Gâteaux differentiable at θ0.

The following proposition illustrates the sharpness of Corollary 4.6. Incidentally,
the same example illustrates that a smooth dependence on θ with respect to the flat
L2 metric does not guarantee smooth dependence on θ with respect to the Wasserstein
metric.

Proposition 4.7. Assume that Ω = [0, 4] and c(x, y) = |x − y|p for some p > 1
(so that Tc = W p

p ). Consider

ρ(x, θ) = (0.5 + θ)χ[0,1](x) + (0.5− θ)χ[2,3](x), |θ| < 0.5,

ρ∗(y) =0.5χ[1,2](y) + 0.5χ[3,4](y),

where χA is the characteristic function of set A ⊂ R. Then we have that
1. {ρ(·, θ)} satisfies A1-A3.
2. {ρ(·, θ)} is not absolutely continuous in Pp(Ω).
3. ρ 7→W p

p (ρ, ρ∗) is not Gâteaux differentiable at ρ(·, θ) for all |θ| < 0.5.
4. [0, 1] and [2, 3] are linked in the optimal transportation from ρ(·, θ) to ρ∗ for

all |θ| < 0.5 except θ = 0.
5. θ 7→W p

p (ρ(·, θ), ρ∗) is differentiable for all |θ| < 0.5 except θ = 0.

The proof can be found in Appendix A.4.

4.3. Qualitative Error Analysis for the Gradient. In this subsection, we
prove that the almost-optimal solutions of Kantorovich’s dual problem would provide
accurate approximations of ∇f .

Proposition 4.8. Assume that A1-A3 hold, and f is Gâteaux differentiable at
θ0 ∈ Θ. For every ε > 0 there exists a δ > 0 such that for all (φ, ψ) ∈ Φc(ρ(·, θ0), ρ∗)
satisfying I(φ, ψ, θ0) > f(θ0)− δ one has that∣∣∣∣∇θf(θ0)−

∫
Ω

φcc(x)∇θρ(x, θ0)dx

∣∣∣∣ < ε.

The proof is presented in Appendix A.5.

Remark 4.9. Proposition 4.8 asserts that one needs to calculate c-transforms of
suboptimal φ for accurate gradients. This can be done very efficiently for costs of the
form c(x, y) =

∑d
i=1 hi(xi − yi), where hi are even and strictly convex functions [45,

Section 4.1]. For OT algorithms that produce c-concave iterates, such as in [45], no
further considerations are necessary.

5. Gradient Calculation. Our parameter-dependent synthetic data obtained
through the forward model is given by a finite-volume approximation

(5.1) ρ(x, θ) =

n∑
i=1

ρi(θ)
χCi(x)

|Ci|
,

where n = nxnynz is the total grid size, each Ci is the finite volume cell, the parameter
θ ∈ Θ ⊂ Rm, and ρ(θ) = (ρi(θ))

n
i=1 is the solution to (3.5) for some fixed c, ε > 0.

Furthermore, after discretization, our reference data is given by

ρ∗(y) =

n∑
i=1

ρ∗i
χCi(y)

|Ci|
.
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By slightly abusing the notation we denote by ρ∗ = (ρ∗i )
n
i=1. Our goal is to solve

(5.2) min
θ
f(θ) = Tc(ρ(·, θ), ρ∗)

by gradient-based algorithms, where Tc is the optimal transport cost defined in (2.4).
To apply Corollary 4.6, which will guarantee the differentiability of f , we need to verify
A2 for (5.1) and that the connected components of supp ρ(·, θ) are linked according
to Definition 4.4. Since in all our experiments in Section 6, supp ρ(·, θ) = ∪i:ρi(θ)>0Ci
is connected, the latter condition is satisfied. Therefore, we just need to verify A2,
which is equivalent to the differentiability of θ 7→ ρ(θ). This verification is part
of Subsection 5.1.

Once all assumptions are verified, we have that

∇θρ(x, θ) =

n∑
i=1

∇θρi(θ)
χCi(x)

|Ci|
.

Therefore,

(5.3) ∇f(θ) =

n∑
i=1

∇θρi(θ)φi(θ), where φi(θ) =

∫
Ci
φ(x, θ)dx

|Ci|
.

Here, φ(·, θ) is a Kantorovich potential for an OT from ρ(·, θ) to ρ∗. Kantorovich
potentials can be calculated by one of many available OT solvers such as [45, 33].
Hence, we focus on calculating ∇θρi(θ).

5.1. Gradient Descent via Implicit Function Theorem. First, we verify
A2; that is, the differentiability of θ 7→ ρ(θ).

Lemma 5.1. Assume that θ 7→ A(θ), θ ∈ Θ is a C1 matrix valued function such
that A(θ) is column stochastic with strictly positive entries for all θ ∈ Θ. Then the
system of equations

(5.4) A(θ)ρ = ρ, ρ · 1 = 1,

has a unique solution ρ = ρ(θ) for all θ ∈ Θ. Moreover, θ 7→ ρ(θ) is continuously
differentiable with ζk(θ) = ∂θkρ(θ) being the unique solution of

(5.5) (A(θ)− I)ζk = −∂θkA(θ)ρ(θ), ζk · 1 = 0,

where θ = (θ1, θ2, · · · , θm).

Proof. The existence and uniqueness of ρ(θ) is a consequence of the Perron–
Frobenius Theorem as explained in Subsection 3.3. Denote by B(θ) the matrix ob-
tained from A(θ) − I by adding a (n + 1)-st row vector 1>. Then we have that
ker(B(θ)) = {0}, and so rank(B(θ)) = n, and n rows of B(θ) are linearly indepen-
dent. Moreover, since ker(A(θ)−I) = span{ρ(θ)}, we have that rank(A(θ)−I) = n−1.
Thus, the first n rows of B(θ) are linearly dependent, and any list of n independent
rows must contain the last row 1>. Since θ 7→ A(θ) is continuous, linearly indepen-
dent vectors stay so in a neighborhood of each θ. Hence, we fix θ and without loss of
generality assume that the rows of B(θ) from 2 to n + 1 are linearly independent in
a neighborhood of θ.

Denote by

F (θ, ρ) = B̃(θ)ρ− en,
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where B̃(θ) is the matrix obtained from B(θ) by dropping the first row and en is the
n-th standard basis vector. Then we have that ρ(θ) is the unique solution of F (θ, ρ) =

0, and DρF (θ, ρ) = B̃(θ) is non-degenerate. Thus, the Implicit Function Theorem
applies and we obtain that θ 7→ ρ(θ) is continuously differentiable. Therefore, we
can differentiate (5.4) and obtain (5.5). Moreover, ker(B(θ)) = {0} yields that the
solution of (5.5) is unique.

Applying Lemma 5.1 to A(θ) = Mε(θ) we obtain that the solution of (3.5) is
differentiable and (5.3) holds. Thus, we can devise a gradient descent algorithm as
follows:

(5.6)



Mε(θ
l)ρl = ρl, ρl · 1 = 1,

(Mε(θ
l)− I)ζlk = −∂θkMε(θ

l)ρl, ζlk · 1 = 0, 1 ≤ k ≤ m,

(φl, ψl) ∈ argmax
φi+ψj≤c(xi,xj)

[φ · ρl + ψ · ρ∗],

θl+1
k = θlk − τ l φl · ζlk, 1 ≤ k ≤ m.

where τ l > 0 is a proper step size to for the gradient descent algorithm.

5.2. Gradient Descent via Adjoint Method. Here we discuss an alternative
approach to calculate the gradient (5.3) via the adjoint-state method.

Lemma 5.2. Assume that θ 7→ A(θ) satisfies the hypotheses in Lemma 5.1, ρ(θ)
is the solution of (5.4), and φ ∈ Rn is an arbitrary vector. Then the linear system

(5.7) (A(θ)> − I)λ = −φ+ φ · ρ(θ) 1

is consistent with a one-dimensional solution set. Moreover, for any solution λ one
has that

∂θk(φ · ρ(θ)) = λ · ∂θkA(θ)ρ(θ).

Proof. Since im(A(θ)> − I) = ker(A(θ)− I)⊥, we have to show that

−φ+ φ · ρ(θ) 1 ∈ ker(A(θ)− I)⊥ = span{ρ(θ)}⊥.

A simple calculation yields the result:

(−φ+ φ · ρ(θ) 1) · ρ(θ) = −φ · ρ(θ) + φ · ρ(θ) 1 · ρ(θ) = 0.

Furthermore, since ker(A(θ)> − I) = span{1}, the solution set of (5.7) is a one-
dimensional coset of span{1}.

Finally, assume that λ is an arbitrary solution of (5.7). Then applying (5.5) we
obtain that

∂θk(φ · ρ(θ)) =φ · ζk = (φ · ρ(θ) 1− (A(θ)> − I)λ) · ζk
=φ · ρ(θ) 1 · ζk − λ · (A(θ)− I)ζk = λ · ∂θkA(θ)ρ(θ)
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Applying Lemma 5.2 to A(θ) = Mε(θ), we obtain an alternative, but equivalent,
gradient descent algorithm:

(5.8)



Mε(θ
l)ρl = ρl, ρl · 1 = 1,

(φl, ψl) ∈ argmax
φi+ψj≤c(xi,xj)

[φ · ρl + ψ · ρ∗],

(Mε(θ
l)> − I)λl = −φl + φl · ρl 1, λl · 1 = 0,

θl+1
k = θlk − τ l λl · ∂θkMε(θ

l)ρl, 1 ≤ k ≤ m.

Here, τ l > 0 is a chosen step size to guarantee enough decrease in the objective
function. Note that we add a condition λl · 1 to ensure the uniqueness of λl.

We present a numerical scheme for efficiently solving systems of equations (5.6)
and (5.8) in Appendix B.1.

5.3. The Gradient of the Mε(θ). For both algorithms (5.6) and (5.8) we need

to evaluate ∂θiMε(θ). Denote by H(x) = dx+

dx the Heaviside function. We then have

∂θiv
+ = H(v)∂θiv, ∂θiv

− = (1−H(v))∂θiv.

We can also consider smoothed versions of H such as

Hk(x) =
d

dx
k log(1 + e

x
k ) =

e
x
k

1 + e
x
k
.

It is not hard to show that Hk is smooth and limk→0+ Hk(x) = H(x). Based on (3.4),
we derive that

∂θiMε = (1− ε)c · ∂θiKmat = (1− ε)c ·
d∑

id=1

∆t

∆x(id)
∂θiK(id)(θ)

where each matrix ∂θiK(id)(θ) has three nonzero diagonals for each pair of (i, id)
where 1 ≤ i ≤ m, 1 ≤ id ≤ d, while the offsets of the diagonals depend on id, as we
have discussed earlier regarding (3.1). We emphasize that ∂θiK(id)(θ) shares the same
tridiagonal structure with K(id)(θ) for each id as illustrated below.

∂θiK(id)(θ) =



. . .

. . .

. . . −
(

1−Hk(v
(id−

1
2
)
)

)
∂θiv(id−

1
2
)

. . .
.
.
.

. . .

. . .

(
1−Hk(v

(id−
1
2
)
)

)
∂θiv(id−

1
2
)
−Hk(v

(id+
1
2
)
)∂θiv(id+

1
2
)

. . .

. . .
.
.
.

. . .

Hk(v
(id+

1
2
)
)∂θiv(id+

1
2
)

. . .

. . .

. . .



.

One can also compute ∂θiK(id)(θ) through automatic differentiation; see Appendix B.2
for details of implementation and performance comparison.
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Fig. 1: From left to right: the Lorenz, Rössler, Chen, and Arctan Lorenz attractors.

6. Numerical Results. In this section, we show several numerical results on
dynamical system parameter identification, following the methodology described in
the earlier sections. The forward problem is to solve for the steady state of the
corresponding PDE (1.2) rather than the ODE system (2.1). The objective function
that compares the observed and the synthetic invariant measures is the quadratic
Wasserstein metric (W2) from optimal transportation. The optimization algorithm
implemented for all inversion tests is the gradient descent method with backtracking
line search to control the step size [61].

6.1. Chaotic System Examples. We test our proposed method on three clas-
sic chaotic systems: the Lorenz, Rössler, and Chen systems. These models are widely
used benchmarks that illustrate typical features of dynamical systems with instabil-
ities and nonlinearities that give rise to deterministic chaos. We also perform an
inversion test on a modified Arctan Lorenz system in which the unknown parameters
are nonlinear with respect to the flow velocity in terms of monomial basis. The true
parameters are selected such that the dynamical systems exhibit chaotic behaviors;
see the illustration through the time trajectories in Figure 1.

6.1.1. Lorenz System. Consider the following Lorenz system.

(6.1)


ẋ = σ(y − x),

ẏ = x(ρ− z)− y,
ż = xy − βz.

The equations form a simplified mathematical model for atmospheric convection,
where x, y, z denote variables proportional to convective intensity, horizontal and ver-
tical temperature differences. The parameters σ, β, ρ are proportional to the Prandtl
number, Rayleigh number, and a geometric factor. The true parameter values that
we will try to infer are σ = 10, β = 8/3, ρ = 28. These are well-known parameter
values for which Lorenz system shows a chaotic behaviour.

6.1.2. Rössler System. Consider the following Rössler System.

(6.2)


ẋ = −y − z,
ẏ = x+ ay,

ż = b+ z(x− c).

Here x, y, z denote variables, while a, b, c are the parameters we want to infer. The
system exhibits continuous-time chaos and is described by the above three coupled
ODEs. The Rössler attractor behaves similarly to the Lorenz attractor, but it is
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easier to analyze qualitatively since it generates a chaotic attractor having a single lobe
rather than two. The true parameters that we try to infer are a = 0.1, b = 0.1, c = 14.

6.1.3. Chen System. Consider the following Chen System [16].

(6.3)


ẋ = a(y − x),

ẏ = (c− a)x− xz + cy,

ż = xy − bz.

Again, x, y, z are variables and a, b, c are parameters we will infer. The system has
a double-scroll chaotic attractor, which is often observed from a physical, electronic
chaotic circuit. The true parameters that we will infer are a = 40, b = 3, c = 28.

6.1.4. Arctan Lorenz System. The parameters in the earlier examples are all
coefficients of the monomial basis. Here, we modify the right-hand side of the Lorenz
system (6.1) to create a new dynamical system such that the particle flow velocity is
nonlinear with respect to the monomial basis.

(6.4)


ẋ = 50 arctan (σ(y − x)/50) ,

ẏ = 50 arctan (x(ρ− z)/50− y/50) ,

ż = 50 arctan ((xy − βz)/50) .

Again, x, y, z are variables, and σ, ρ, β are parameters we want to infer. The reference
values are set to be (10, 28, 8/3), the same as the original Lorenz system.

6.2. The Invariant Measures. Here, we follow the numerical scheme described
in Subsection 3.3 and approximate the invariant measure through the regularized
PDE surrogate model, represented by the corresponding probability density function
(PDF), for the three dynamical systems at the given sets of parameters.

We compare PDFs obtained through the steady-state solution to (1.2) with the
histogram accumulated from long-time trajectories from Direct Numerical Simulation
(DNS). That is, we solve systems (6.1)–(6.3) forward in time using the explicit Euler
scheme with time step ∆t from t = 0 to its final time t = T . We then compute the
physical invariant measure following (2.2). Moreover, we use time trajectories that
are enforced with either the intrinsic or the extrinsic noises.

6.2.1. Numerical Illustrations. Comparisons for the Lorenz system (6.1) are
displayed in Figure 2. The three plots in the top row show the x–y, x–z, and y–z
projections of the dominant eigenvector of the Markov matrixMε. The grid size for the
finite volume discretization of (1.2) is 93 × 153 × 143. The teleportation parameter
is ε = 10−6. In the second row, we see the corresponding three projections of the
physical invariant measure from noise-free time trajectory for total time T = 2× 106.
The third row and the bottom row show three projections of the physical invariant
measure from time trajectories of the same total time T but with intrinsic noise
ω ∼ N (0, I) (the noise occurs on the right-hand side of the dynamical system as
ẋ = v(x) + ω) and extrinsic noise γ ∼ N (0, I) (the observation of the time trajectory
suffers from noise as xγ = x + γ), respectively. The bin size for all three histograms
is a cube of volume 0.53.

Similar plots for the Rössler system (6.2) are presented in Figure 3. Top row
shows the steady-state solution to (1.2) computed on a grid size is 94× 87× 106. The
teleportation parameter is ε = 10−6. For the bottom row, the Rössler system time
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(a) Steady-state solution to (1.2)
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(b) Histogram accumulated from noise-free Lorenz system time trajectory
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(c) Histogram accumulated from Lorenz system time trajectory with intrinsic noise
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(d) Histogram accumulated from Lorenz system time trajectory with extrinsic noise

Fig. 2: Lorenz system. Top row: the steady state on the grid size 93 × 153 × 143
by solving (1.2). The teleportation parameter is ε = 10−6. Second row: projections
of physical invariant measure from noise-free time trajectory for T = 2× 106. Third
row: projections of physical invariant measure from time trajectory with intrinsic
noise ω ∼ N (0, I). Last row: projections of physical invariant measure from time
trajectory with extrinsic noise γ ∼ N (0, I).

trajectory runs for a total time T = 1 × 106 with an intrinsic noise ω ∼ N (0, 0.2I).
The bin size for the histogram is a cube of volume 0.63.

Figure 4 shows the comparisons for the Chen system (6.3). The first row displays
the three projections of the steady-state solution to (1.2) on a 104 × 104 × 69 grid.
The teleportation parameter is ε = 10−6. The bottom row shows the projections of
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(b) Histogram accumulated from Rössler system time trajectory with intrinsic noise

Fig. 3: Rössler system. Top row: the steady-state solution to (1.2) on the grid size
94× 87× 106. The teleportation parameter is ε = 10−6. Bottom row: the histogram
accumulated from Rössler system time trajectory for total time T = 1 × 106 with
intrinsic noise ω ∼ N (0, 0.2I).

the physical invariant measure accumulated from time trajectory with intrinsic noise
for a total time T = 5× 105. The bin size for the histogram is a cube of volume 0.53.
The intrinsic noise ω ∼ N (0, 0.2I).

6.2.2. The Effect of Noise. It is important to understand the fundamental
limitations and challenges of converging the low-order solver for (1.2), particularly
the role that the addition of the extrinsic and intrinsic noises play here as an approx-
imation of the diffusive errors expected in the PDE solver.

After the ODE is solved, the extrinsic noise applied to the trajectory corresponds
to an effective Gaussian blur of the DNS results. In the limit of long time DNS
simulation, the true density is the result of taking every point on the invariant measure,
represented by a delta function in state space based on the DNS solution, and then
replacing it with a Gaussian ball of equal integral mass with width defined by the
standard deviation of the noise. This process is equivalent to the Gaussian blur
common in image processing.

The intrinsic noise case is more complicated. Since the three examples we have all
admit non-trivial basins of attraction, the accumulation of energy resulting from the
addition of noise is balanced by the dissipation inherent to the dynamics for directions
that are orthogonal to the attractor manifold. While the extrinsic noise corresponds
to a spatially uniform low pass filter, the blurring resulting from the intrinsic noise
depends more on the local stability of the attractor in state space.

6.2.3. The Effect of Mesh Size and Numerical Diffusion. While of a form
dominated by diffusion, numerical errors of the PDE solver have a dependence on the
flow velocity ∝ v2∆t, as described in [10]. This is the well-known numerical diffu-
sion that motivates running computational fluid dynamics solvers with a Courant–
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(a) Steady-state solution to (1.2)
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(b) Histogram accumulated from Chen system time trajectory with intrinsic noise

Fig. 4: Chen system. Top row: the steady-state solution to (1.2) on the grid size
125× 125× 83. The teleportation parameter is ε = 10−6. Bottom row: the histogram
accumulated from Chen system time trajectory with T = 5× 105 and intrinsic noise
ω ∼ N (0, 0.2I).

Freidrich–Lewy (CFL) condition number as close to 1 as possible for low-order meth-
ods to minimize the numerical diffusivity. While in this work, we seek a steady-state
solution, the time step of the forward operator has effectively been selected to comply
with this CFL restriction in the act of ensuring that the forward operator is at least
positive semi-definite in (3.2). Substituting the CFL restriction, ∆t = ∆x/vmax, into
the expression for the numerical diffusivity, it can be seen that numerical diffusion in
the PDE solver is effectively ∝ v2∆x/vmax, which is bounded by vmax∆x, suggesting
first-order convergence with ∆x if vmax is bounded. More detailed numerical analysis
for the convergence and numerical errors can be found in [50]. The linear convergence
is also seen in Figure 5, where we compare the differences between the PDF accu-
mulated from the Lorenz system DNS with again T = 2 × 106 and the steady-state
solution to (1.2), both evaluated at the true parameters for the Lorenz system. The
histogram bin size changes as we use different ∆x in the finite volume discretization.

However, as a steady-state problem, the error due to this numerical diffusion,
similar to the intrinsic noise added to the DNS solution, accumulates until balanced
by the dissipation of the attractor dynamics is balanced. This, too, depends on how
dissipative the basin is.

We remark that all the inversion tests in this paper use ∆x = 3. It is for demon-
stration only and thus far from being optimal. The size of the Markov matrix M grows
∝ ∆x−3 as ∆x decreases, making it very expensive to compute the steady state at a
fine mesh. Mesh-refinement strategies could help provide better parameter estimates
while saving computational costs of the forward solve. This, along with more efficient
numerical implementations, will be left to future work.

6.2.4. The Effect of Random Samples. One main advantage of the proposed
framework is that we allow the trajectory data to be “slowly” sampled, in which case
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Fig. 5: The W2 metric and the L2 difference between the PDF accumulated from DNS
with bin volume (∆x)3 and the PDF solved as the steady-state solution to (1.2) with
spatial spacing ∆x. The PDFs are for the Lorenz system at the true parameters.

we do not have access to the state-space velocity or velocity estimates, i.e., the ẋ.
In Figure 6a, we illustrate the total samples of the trajectory that will be used in the
parameter inference, while Figure 6b displays the relationship of the first 10 samples in
the time series with the continuous trajectory in the corresponding time window. One
can observe that our random samples of state-space positions are “sparse” and could
not accurately estimate the state-space velocity. Later in Subsection 6.3.3, we use the
reference measure constructed from such slowly sampled and completely randomized
state measurements to perform parameter identification.

In Figure 7, we numerically investigate the relationship between the amount of
state-space position samples and the approximation error for the invariant measure.
In Figure 7a, we set the reference density to be the histogram accumulated from 108

samples and compare it with the histogram accumulated from much fewer samples.
We observe the classical Monte Carlo error, O(1/

√
N), where N is the number of

samples. In Figure 7b, we change the reference density to the steady-state solution
from the FPE solver. The error plateaus for large N since the modeling error, mainly
due to the numerical diffusion discussed in Subsection 6.2.3, becomes the dominant
factor of the mismatch when N is large enough. It also indicates that we do not need
too many trajectory samples to perform parameter identification.

6.2.5. The Effect of Teleportation Parameter. To obtain the steady-state
solution, we used the so-called teleportation trick to regularize the Markov matrix;
see Subsection 3.2 for details. Here, we numerically investigate the impact of the
teleportation parameter ε on the obtained steady-state solution.

In Figure 8a, we use the steady-state density in which the teleportation parameter
ε = 0 as the reference data. We then compare it with those generated with a nonzero
ε in terms of the L2 norm and W2 metric. The misfit monotonically decreases to
zero as ε→ 0. When the reference density is replaced by the histogram accumulated
from trajectory samples, the misfit again plateaued when ε becomes small since the
modeling error, mainly the numerical diffusion from the finite volume solver, becomes
the dominant factor of their difference. As discussed in Subsection 6.2.3, the error from
numerical diffusion could be effectively reduced as the mesh is refined, i.e., ∆x→ 0.

6.3. Parameter Inference. One main goal of this work is to perform parameter
identification using the invariant measure, a macroscopic statistical quantity, as the
data, rather than inferring the parameter directly through the time trajectories. All
steady-state distributions in this section are solved on a mesh with spacing ∆x = 3.
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Fig. 6: Left: 104 random samples of the Lorenz trajectory; Right: illustration of the
first 10 samples of Figure 6a compared with the continuous trajectory.
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Fig. 7: Left: the misfit between the density accumulated from sub-sampled data and
the one from the entire trajectory; Right: the misfit between the density accumulated
from sub-sampled data and the steady-state solution from the FPE solver.

6.3.1. Single Parameter Inference. We first focus on the single-parameter
reconstruction by assuming that the other parameters in the dynamical systems are
accurately known. Figure 9a shows the single-parameter inversions of the Lorenz
system where the ones for the Rössler and Chen systems can be found in Appendix C.1.
All experiments use the squared W2 metric as the objective function; see (5.2). One
can see that both the objective function that measures the data mismatch and the
relative error of the reconstructed parameters decay to zero rapidly.

We remark that in these tests, the target invariant measure (our reference data) is
simulated as the steady-state solution to (1.2) at the true parameters, using the same
PDE solver that produces the synthetic data. Later, to mimic the realistic scenarios,
we will show numerical inversion tests where the reference data directly comes from
time trajectories and thus contains both noise and model discrepancy.

6.3.2. Multi-Parameter Inference via Coordinate Gradient Descent.
For numerical tests we consider here, all dynamical systems have three parameters,
while our observation is the invariant measure ρ(θ1, θ2, θ3). Under certain assumptions
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Fig. 8: The L2 norm and W2 metric when the steady-state solution of various tele-
portation parameters is compared with the steady state without teleportation (left),
and with a fixed invariant measure obtained from the trajectory samples (right).
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(a) Single-parameter inversion
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(b) Multi-parameter inversion

Fig. 9: Top row: Lorenz system single-parameter inference starting with σ = 5 (left),
ρ = 20 (middle), β = 1 (right), respectively. Bottom row: multi-parameter inference
by updating three parameters simultaneously (bottom left) and using coordinate gra-
dient descent (bottom right) with initial guess (σ, ρ, β) = (5, 20, 1). The reference
PDF is generated through the same numerical solver producing the synthetic PDF.

for the continuous dependency on the parameters, the first-order variation gives

δρ = ρθ1δθ1 + ρθ2δθ2 + ρθ3δθ3,

which discloses the issue of multi-parameter inversion. In the forward problem, a small
perturbation in each parameter causes a corresponding perturbation in the data ρ,
but in the inverse problem, the observed misfit in ρ could be contributed from any of
the parameters, causing nonzero and possibly wrong gradient updates.

Numerical strategies exist to reduce the inter-parameter trade-off. One may mit-
igate the inter-parameter dependency either from the formulation of the optimization
problem or through the optimization algorithm. Here, we take the second pathway:
separate the parameters in the optimization algorithm by using the coordinate gradi-
ent descent by only updating one parameter at one iteration.
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Figure 9b shows the Lorenz system multi-parameter inversion. We remark again
that the reference data in these tests are produced by the same PDE solver that
produces the synthetic data and thus contains no modeling discrepancy. The left
plot in Figure 9b shows the convergence history of simultaneously updating all three
parameters, but the iterates get stuck at an incorrect set of values with no feasible
descent direction. On the other hand, the right plot shows the convergence result using
coordinate gradient descent. The gradient descent algorithm quickly converges to the
true value (σ, ρ, β) = (10, 28, 8/3) starting from (5, 20, 1). The different convergence
behaviors of the two plots in Figure 9b demonstrate that the reconstruction process
is affected by the inter-parameter interaction.

6.3.3. Parameter Inference for Chaotic Systems with Noise. In this
work, we formulate an inverse problem into a nonlinear regression problem, usu-
ally subject to at least three sources of errors: model discrepancy, data noise, and
optimization error. As discussed earlier, the almost perfect reconstructions in the
previous section are achieved under the so-called “inverse crime” regime and thus are
immune to the first two types of errors. Here, we set up tests to avoid the “inverse
crime” regime. We first solve the dynamical system forward in time with a fixed time
step ∆t from t = 0 to T = 2 × 106, achieving the DNS solution. We then randomly
subsample 104 state-space positions; see Figure 6 for their illustrations. The reference
data, i.e., the target estimated invariant measure, is obtained from the histogram
that results from binning the subsampled data into cubic boxes in R3. Moreover, we
also use time trajectories affected by intrinsic and extrinsic noises. Starting from the
initial guess (5, 20, 1), the multi-parameter inversion for the Lorenz system (6.1) with
the extrinsic noise converges to (σ, ρ, β) = (10.63, 28.82, 3.04), and the test with the
intrinsic noise converges to (10.50, 28.41, 2.89). For the Arctan Lorenz system (6.4),
the reconstruction converges to (11.37, 27.64, 2.35) starting from (5, 20, 2), where the
reference data is polluted by the intrinsic noise. We demonstrate the reconstructed
dynamics in Figure 10. Plot for the convergence history of the Lorenz example is
shown in Figure 11. More numerical results can be found in Appendix C.2.

Earlier in Subsection 6.2.3, we have analyzed the numerical error between the
synthetic steady-state solution using the first-order finite volume method. It is shown
both in Figure 5 and by numerical analysis that the error grows linearly with ∆x.
It is also a good characterization of the model discrepancy and could be utilized to
design specific stopping criteria to avoid parameter overfitting. For example, Figure 5
could serve as the baseline: whenever the objective function (W2 metric in our case)
is minimized to a value smaller than the model discrepancy, one should execute early
stopping: terminate the iterative parameter reconstruction to avoid overfitting the
noise. In machine learning, early stopping is designed to monitor the generalization
error of one model and stop training when generalization error begins to degrade,
which is quite similar to the situation we encounter here.

6.4. Discussions and Future Directions. We presented several preliminary
numerical results to illustrate the feasibility of our proposed method. There are quite
a few future directions that we wish to pursue to improve efficiency and accuracy.

6.4.1. The Choice of the Objective Function. We used the squared W2

metric as the objective function to measure the discrepancy between the reference
data and the synthetic stationary distribution. We were motivated by the advan-
tageous properties of the W2 metric, such as the differentiability (see Section 4),
the geometric feature, and the robustness to noises and small perturbations [27, 24].
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Fig. 10: Comparison among the dynamics produced by the initial parameter (red);
true parameter (green); reconstructed parameters (blue) for two examples.
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Fig. 11: Lorenz system (6.1): Multi-parameter inference using coordinate gradient
descent with initial guess (σ, ρ, β) = (5, 20, 1). The reference PDF is the histogram
from the time trajectory with extrinsic noise.

Nevertheless, it would be interesting to investigate further other choices of objective
functions, including the commonly used 1-Wasserstein metric as well as many other
families of probability metrics [37]. Intuitively, we know that the TV and Hellinger
distances will not reflect the geometric differences between two delta functions as
dTV(δx, δy) = dHell(δx, δy) = 1, ∀x, y ∈ R3, which potentially causes local minima
trapping. Moreover, the χ2 and Kullback–Leibler divergences are not suitable to
compare measures with compact and singular supports. Note that the supports of
the synthetic and reference measures in our application may not overlap and are on
the low-dimensional manifolds, which inevitably causes ρ = 0 in the denominator of
such divergences. A complete study is needed along this direction.

6.4.2. The Computational Cost and the Modeling Discrepancy. Similar
to all computational inverse problems solved as PDE-constrained optimization prob-
lems, the major bottleneck in memory and computational cost is solving the forward
problem repetitively throughout the gradient- or Hessian-based optimization algo-
rithms. It takes from a few hours to a few days on a single computer to produce the
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stationary distribution once on a fine grid as in Figure 2a, Figure 3a and Figure 4a,
which is unrealistic for solving inverse problems. In the tests for parameter estimation,
we use a much more coarse grid for the PDE solver, which gives us a much smaller
Markov matrix so that it is feasible to compute the stationary distribution repeti-
tively. The corresponding histograms of the time trajectory are also accumulated on
the coarsened grid. It is essential to understand the error incurred in parameter esti-
mation by producing the synthetic data on a coarsened grid. One may expect some
balance between the computation time of solving the inverse problem and the error
contributed by the numerical solver.

Besides a proper choice of the grid size, we only use a first-order finite volume dis-
cretization for (1.2) in this paper. It directly affects the resulting Markov matrix and
the computed steady-state solution to (1.2). It also directly contributes to the model
discrepancy, a major source of error in the parameter inversion, as discussed earlier.
A more accurate discretization of (1.2), such as those including the corner transport
and second-order terms [10, 50], could reduce the model discrepancy and mitigate
the overfitting phenomenon. Beyond higher-order discretizations, exploring differ-
ent approaches such as adaptive cell-based approximations or “SRB”-based methods
(see Section 3 for more literature review) to approximate the invariant measure and
exploit the inherent sparsity of the problem will be particularly advantageous or even
necessary for higher-dimensional state spaces.

However, these numerical issues highlight a particular challenge associated with
the PDE framework with respect to the applicability of this approach to even moder-
ately high-dimensional state spaces. This has been a perennial challenge for solving
problems involving high dimensional flows in state space as encountered in the so-
lutions to Vlasov, Fokker–Planck, and Boltzmann equations. While solutions that
exploit natural sparsity [10] offer the potential to reduce the complexity from that of
the dimension of the ambient state-space down to that of the attractor, adaptive mod-
els such as moving meshes and arbitrary Lagrangian-Eulerian (ALE) methods [53, 72]
and hierarchically adaptive methods [6] will likely be necessary to extend this approach
beyond very low dimensional state-space. However, extending this approach to very
high-dimensional problems will likely require significantly larger modifications using
recently developed approaches to high-dimensional problems such as rank adaptive
tensor [18] or machine learning methods [51].

6.4.3. The Data Requirements. The approach, as explored here, assumes
access to a parameterized and differentiable representation of the state-space dynamics
valid near and especially on the invariant measure of the system. Access to fully
resolved state-space trajectory data in the model state-space coordinates, transformed
here into a reference measure ρ∗, could be challenging for realistic problems. When
both these conditions are met, existing methods such as SINDy [69, 15, 68] and
related sparse regression frameworks are likely to be considerably more data-efficient
than the proposed approach. However, an advantage to this approach is that it does
not require that the reference data be sampled at timescales commensurate with the
inherent dynamics of the autonomous system. Assuming that the observed states are
simply samples from some invariant measure, data sampled slowly with respect to
timescales for which prediction would be well-posed due to the chaotic divergence of
individual trajectories is still well suited for use as reference data.

The longer-term goal is to connect this framework to the fully black-box parameter
estimation problem of matching the invariant measure in the time-delay-embedded
coordinates that can be constructed from available observable data as investigated
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in [41]. This will instead require differentiable surrogate models of the flow in time-
delay observable coordinates. While this poses a different set of challenges left to
future investigations, the purpose of this work has been to explore mathematical
foundations for the empirically motivated parameter estimation problem described in
the prior work [41] related to the conditions under which the steady-state distribution
can be expected to exist and the differentiability of the Wasserstein metric in the
parameter space (see Section 4). Exploration of the extension of these topics to black-
box parameter estimation based on the system’s flow as observed in delay-embedded
coordinates is left to future work.

7. Conclusion. In this paper, we propose a data-driven approach for parameter
estimation of chaotic dynamical systems. There are two significant contributions.
First, we shift from an ODE forward model to the related PDE forward model through
the tool of physical measure. Instead of using pure time trajectories as the inference
data, we treat statistics accumulated from the direct numerical simulation as the
observable, whose continuous analog is the steady-state solution to (1.2). As a result,
the original parameter identification problem is translated into a data-fitting, PDE-
constrained optimization problem. We then use an upwind scheme based on the
finite volume method to discretize and solve the forward problem. Second, we use
the quadratic Wasserstein metric from optimal transportation as the data fidelity
term measuring the difference between the synthetic and the reference datasets. We
first provide a rigorous analysis of the differentiability regarding the Wasserstein-based
parameter estimation and then derive two ways of calculating the Wasserstein gradient
following the discretize-then-optimize approach. In particular, the adjoint approach is
efficient as the computational cost of gradient evaluation is independent of the size of
the unknown parameters, making the method scalable for large-scale parameterization
of the velocity fields. Finally, we show several numerical results to demonstrate the
promises of this new approach for chaotic dynamical system parameter identification.

For this method, sufficient data is required to converge the histogram estimate
of the reference distribution. As in any non-parametric density estimate, the amount
of data is therefore dependent on the coarseness of the approximation and level of
stochastic error tolerated. In this work, knowledge of the full state is also presumed.
The approximated invariant measure from the time trajectories as our reference data
might be a singular probability measure with highly complex support that has frac-
tional fractal dimension. Thus, we use the regularized forward PDE model as a surro-
gate in solving this inverse problem. We approximate the steady-state solution to the
PDE model with first-order accuracy based on the finite-volume upwind discretiza-
tion. Due to the sparsity of the Markov matrix and a coarse grid, we can evaluate
the gradient of the resulting PDE-constrained optimization problem quite efficiently
in terms of both memory and computation complexity. The Wasserstein metric from
optimal transportation is our objective function, which can compare measures with
singular and compact support and handle the fractional fractal dimension of the ref-
erence invariant measure. Future works along the lines discussed in Subsection 6.4
would generalize and help improve the proposed method.
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Appendix A. Proofs From Section 4.

A.1. Proof of Proposition 4.1.

Proof. We fix θ0 ∈ Θ and firstly prove that (i) implies (ii). Note that (4.3)
follows immediately from (4.2). Furthermore, assume that (φ, ψ) ∈ Φc(ρ(·, θ0), ρ∗) is
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an arbitrary pair of Kantorovich potentials. Note that (φ, ψ) are not necessarily from
S(θ0). Since

∫
Ω
∇θρ(x, θ0)dx = 0, we can add an arbitrary constant to φ and assume

that supφ = ‖c‖∞. In that case, we obtain that (φcc, φc) ∈ S(θ0), and

φcc(x) = φ(x), x ∈ supp(ρ(·, θ0)), and φc(y) = ψ(y), y ∈ supp(ρ∗).

Next, we have that supp(∇θρ(·, θ0)) ⊂ supp(ρ(·, θ0)). Therefore, we have that∫
Ω

φ(x)∇θρ(x, θ0)dx =

∫
Ω

φcc(x)∇θρ(x, θ0)dx,

and (4.4) follows from (4.2) and (4.3).
Next, we prove (i). We apply [12, Proposition 4.12] with U = Θ, X = C(Ω) ×

C(Ω), Φ = C = Kc, and an objective function given by

I(φ, ψ, θ) =

∫
Ω

φ(x)ρ(x, θ)dx+

∫
Ω

ψ(y)ρ∗(y)dy.

For θ1, θ2 ∈ Θ such that [θ1, θ2] ⊂ Θ, we have that

(A.1) |I(φ2, ψ2, θ2)−I(φ1, ψ1, θ1)| ≤ ‖φ2−φ1‖∞+‖ψ2−ψ1‖∞+‖φ1‖∞‖η‖1|θ2−θ1|,

and so I is continuous. Since Kc is compact, the sup-compactness condition holds.
Furthermore, A2 and the dominated convergence theorem yield the directional dif-
ferentiability of I(φ, ψ, ·) with

I ′(φ, ψ, θ0,∆θ) =

∫
Ω

φ(x)∇θρ(x, θ0)dx ·∆θ.

Finally, assume that tn → 0+, (φn, ψn) ∈ Kc, ∆θ ∈ Rm, and (φn, ψn)→ (φ, ψ) ∈ Kc.
Then by the dominated convergence theorem we have that

lim
n→∞

I(φn, ψn, θ0 + tn∆θ)− I(φn, ψn, θ0θ)

tn

= lim
n→∞

∫
Ω

φn(x)
ρ(x, θ0 + tn∆θ)− ρ(x, θ0)

tn
dx = I ′(φ, ψ, θ0,∆θ).

Thus, all conditions in [12, Proposition 4.12] are satisfied and (4.2) follows.

A.2. Proof of Theorem 4.2.

Proof. Assume that A1-A3 hold. Then (A.1) yields that θ 7→ I(φ, ψ, θ) is locally
Lipschitz for all (φ, ψ) ∈ C(Ω) × C(Ω). Invoking (4.1), we conclude that f is locally
Lipschitz and a.e. differentiable by Rademacher’s theorem [29, Section 3.1].

Next, assume that A4 also holds and denote by C0 = ‖c‖∞‖h‖1. For arbitrary
(φ, φc) ∈ Kc we have that

I(φ, φc, θ) +
C0|θ|2

2
=

∫
Ω

φ(x)

(
ρ(x, θ) +

h(x)|θ|2

2

)
dx+

∫
Ω

φc(y)ρ∗(y)dy

+

(
‖c‖∞‖h‖1 −

∫
Ω

φ(x)h(x)dx

)
|θ|2

2
.

Since 0 ≤ φ ≤ ‖c‖∞, and θ 7→ ρ(x, θ)+ h(x)|θ|2
2 is convex for a.e. x, we obtain that

θ 7→ I(φ, φc, θ) + C0|θ|2
2 is convex. Invoking Kantorovich duality again, we obtain that

f(θ) +
C0|θ|2

2
= sup

(φ,φc)∈Kc
I(φ, φc, θ) +

C0|θ|2

2
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is convex. Thus, by a theorem of Anderson and Klee [2] f is differentiable up to a set
of Hausdorff dimension d− 1.

A.3. Proof of Theorem 4.5.

Proof. Fix an arbitrary pair of Kantorovich potentials (φ1, ψ1), (φ2, ψ2). Note
that (4.7) guarantees that int(supp(ρ)) 6= ∅, and {Ok}, {Ek} are well defined.

First, we prove that φ2 − φ1 is constant on cl(Ok) for all k. Fix an optimal plan
π0 ∈ Γ0(ρ, ρ∗). For all x ∈ supp(ρ) there exists y ∈ Ω such that (x, y) ∈ supp(π0).
Therefore φi(x)+ψi(y) = c(x, y), and so φi(x) = ψci (x) for x ∈ supp(ρ). Furthermore,
since c ∈ C1(Ω2) is locally Lipschitz continuous, φi are locally Lipschitz continuous
in Ok. Thus, by Rademacher’s theorem we have that φi are a.e. differentiable in Ok,
and by [67, Proposition 1.15] we obtain that ∇φ2 = ∇φ1 a.e. in Ok. Since Ok are
connected and φi are continuous, we obtain that φ2 − φ1 = λk in cl(Ok) for some
constants λk.

Next, we show that λk = λl for all k, l. We start with a claim that

(A.2) ψi(y) = inf
x∈cl(Ok)

{c(x, y)− φi(x)}, y ∈ Ek.

Indeed, we have that y = limn→∞ yn where yn are such that (xn, yn) ∈ supp(πn) for
some πn ∈ Γ0(ρ, ρ∗), and xn ∈ cl(Ok). Therefore, for all n we have that φi(xn) +
ψi(yn) = c(xn, yn), and so

ψi(yn) = inf
x∈cl(Ok)

{c(x, yn)− φi(x)}.

Since both ψi and y 7→ infx∈cl(Ok){c(x, y) − φi(x)} are continuous, we deduce (A.2).
Next, φ2 − φ1 = λk in cl(Ok), and (A.2) yields that ψ2 − ψ1 = −λk in Ek.

Now fix arbitrary k, l. Since cl(Ok), cl(Ol) are linked, there exist {ij}mj=1 such
that k = i1, l = im, and Eij ∩Eij+1

6= ∅, 1 ≤ j ≤ m. Since ψ2−ψ1 = −λij in Eij , and
ψ2 − ψ1 = −λij+1

in Eij+1
, we obtain that λij = λij+1

for all j. Thus, λk = λl, and,
consequently, φ2 − φ1 = λ in int(supp(ρ)) = ∪kOk. Finally, (4.7) and the continuity
of φi yield that φ2 − φ1 = λ in supp(ρ).

A.4. Proof of Proposition 4.7.

Proof. The proof is based on the following points.
1. We have that |∂θρ(x, θ)| = |χ[0,1](x)− χ[2,3](x)| ≤ 1, for all x ∈ Ω.
2. Assume that −0.5 < θ1 < θ2 < 0.5. In R, OT maps are precisely the order-

preserving ones [75, Section 2.2]. The total mass of [0, 1] with respect to
ρ(·, θ1) and ρ(·, θ2) is 0.5+θ1 and 0.5+θ2, respectively. Since 0.5+θ1 < 0.5+θ2,
all of the mass of ρ(·, θ1) from [0, 1] has to be transported to [0, 1] with a linear
transport map T (x) = 0.5+θ1

0.5+θ2
x. Meanwhile, the excess mass of ρ(·, θ2) in [0, 1],

supported on
[

0.5+θ1
0.5+θ2

, 1
]
, has to be transported from [2, 3], and therefore has

to travel a distance ≥ 1. Since the excess mass of ρ(·, θ2) left in [0, 1] is equal
to 0.5 + θ2− (0.5 + θ1) = θ2− θ1, we obtain that the transport cost is at least
(θ2 − θ1) · 1p. Thus,

Wp(ρ(·, θ1), ρ(·, θ2)) ≥ |θ2 − θ1|
1
p , ∀θ1, θ2 ∈ (−0.5, 0.5),

which means that θ 7→ ρ(·, θ) is not absolutely continuous with respect to Wp

metric.
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3. Fix an arbitrary |θ| < 0.5. We only use the fact that supp(ρ(·, θ)) ( [0, 4].
Assume by contradiction that ρ 7→ W p

p (ρ, ρ∗) is Gâteaux differentiable at
ρ(·, θ) in the sense of [67, Definition 7.12]; that is, there exists a measurable
function g such that

d

dε
W p
p (ρ(·, θ) + ε(ρ̃− ρ(·, θ)), ρ∗)

∣∣
ε=0+

=

∫ 4

0

g(x)(ρ̃(x)− ρ(x, θ))dx

for all ρ̃ ∈ P(Ω) ∩ L∞(Ω). Let φ ∈ C([0, 4]) be an arbitrary Kantorovich
potential. From [67, Proposition 7.17] we have that φ is in the subdifferential
of ρ 7→W p

p (ρ, ρ∗) at ρ(·, θ), and so

d

dε
W p
p (ρ(·, θ) + ε(ρ̃− ρ(·, θ)), ρ∗)

∣∣
ε=0+

≥
∫ 4

0

φ(x)(ρ̃(x)− ρ(x, θ))dx

Combining this inequality with the preceding equality, we obtain∫ 4

0

(φ(x)− g(x))ρ(x, θ)dx ≥
∫ 4

0

(φ(x)− g(x))ρ̃(x)dx

for all ρ̃ ∈ P(Ω) ∩ L∞(Ω) and Kantorovich potentials φ. Fix an arbitrary
potential φ0 and take ρ̃(x) = χ(1,2)(x). Furthermore, for every λ ∈ R consider

φλ(x) = φ0(x) + λ(x− 1)(2− x)χ(1,2)(x)

Note that φλ is continuous and φλ = φ0 in supp ρ(·, θ). Thus, if (φ0, ψ0) is
a pair of Kantorovich potentials, then (φλ, ψ0) is also a pair of Kantorovich
potentials. Plugging in φ = φλ in the inequality above we obtain∫ 4

0

(φ0(x)− g(x))ρ(x, θ)dx ≥
∫ 2

1

(φ0(x)− g(x))dx+ λ

∫ 2

1

(x− 1)(2− x)dx

=

∫ 2

1

(φ0(x)− g(x))dx+
λ

6

for all λ ∈ R, which is a contradiction.
4. For this and the following item, we need an explicit characterization of the

OT map, Tθ, from ρ(·, θ) to ρ∗. For θ = 0, we have that ρ∗ is a translation of
ρ(·, 0). Thus, we have that

T0(x) = x+ 1, W p
p (ρ(·, 0), ρ∗) = 1.

Next, for θ > 0 we have that ρ([0, 1], θ) = 0.5+θ > 0.5 = ρ∗([1, 2]). Therefore,

(A.3) Tθ(x) =


1 + 0.5+θ

0.5 x, x ∈ [0, 0.5
0.5+θ ]

3 + 0.5+θ
0.5 (x− 0.5

0.5+θ ), x ∈ [ 0.5
0.5+θ , 1]

3 + θ
0.5 + 0.5−θ

0.5 (x− 2), x ∈ [2, 3]

For θ < 0 we have that ρ([0, 1], θ) = 0.5 + θ < 0.5 = ρ∗([1, 2]). Therefore,

(A.4) Tθ(x) =


1 + 0.5+θ

0.5 x, x ∈ [0, 1]

1 + 0.5+θ
0.5 + 0.5−θ

0.5 (x− 2), x ∈ [2, 2− θ
0.5−θ ]

3 + 0.5−θ
0.5 (x− 2 + θ

0.5−θ ), x ∈ [2− θ
0.5−θ , 3]
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For all θ, the connected components of int(supp(ρ(·, θ))) are

O1 = (0, 1), O2 = (2, 3)

Furthermore, using the definition (4.6) and invoking (A.3), (A.4) we obtain

E1 =


[1, 2], θ = 0

[1, 2] ∪ [3, 3 + θ
0.5 ], θ > 0

[1, 1 + 0.5+θ
0.5 ], θ < 0

, E2 =


[3, 4], θ = 0

[3 + θ
0.5 , 4], θ > 0

[1 + 0.5+θ
0.5 , 2] ∪ [3, 4], θ < 0

.

Thus, we have that

E1 ∩ E2 =


∅, θ = 0

{3 + θ
0.5}, θ > 0

{1 + 0.5+θ
0.5 }, θ < 0

which means that cl(O1), cl(O2) are linked for all |θ| < 0.5 except θ = 0.
5. The differentiability of θ 7→W p

p (ρ(·, θ), ρ∗) at θ 6= 0 follows from Corollary 4.6,
and Item 4 above.
Recall that W p

p (ρ(·, 0), ρ∗) = 1. Next, assume that θ > 0. From (A.3),

(A.5) W p
p (ρ(·, θ), ρ∗) =

3∑
k=1

∫
Ik

|Tθ(x)− x|pρ(x, θ)dx,

where I1 = [0,
0.5

0.5 + θ
], I2 = [

0.5

0.5 + θ
, 1], I3 = [2, 3].

For x ∈ I1 ∪ I3 we use the elementary inequality

|Tθ(x)− x|p ≥ 1 + p(Tθ(x)− x− 1)

For x ∈ I2, we have that
|Tθ(x)− x|p ≥ 2p

Plugging these inequalities in (A.5) and using (A.3) for evaluating elementary
integrals, we obtain

W p
p (ρ(·, θ), ρ∗) ≥ 1 + (2p + p− 1)θ − pθ2, 0 < θ < 0.5,

and so

lim inf
θ→0+

W p
p (ρ(·, θ), ρ∗)−W p

p (ρ(·, 0), ρ∗)

θ
≥ 2p + p− 1

For θ < 0, we have that

(A.6) W p
p (ρ(·, θ), ρ∗) =

3∑
k=1

∫
Jk

|Tθ(x)− x|pρ(x, θ)dx,

where J1 = [0, 1], J2 = [2, 2− θ
0.5−θ ], and J3 = [2− θ

0.5−θ , 3]. Furthermore,

|Tθ(x)− x|p ≥1 + p(Tθ(x)− x− 1), x ∈ J1 ∪ J3,

|Tθ(x)− x|p ≥0, x ∈ J2.
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Plugging these inequalities in (A.6), we obtain

W p
p (ρ(·, θ), ρ∗) ≥ 1 + (p+ 1)θ + pθ2, −0.5 < θ < 0,

and so

lim sup
θ→0−

W p
p (ρ(·, θ), ρ∗)−W p

p (ρ(·, 0), ρ∗)

θ
≤ p+ 1

Since 2p + p− 1 > p+ 1 for p > 1, we obtain that θ 7→ W p
p (ρ(·, θ), ρ∗) is not

differentiable at θ = 0.

A.5. Proof of Proposition 4.8.

Proof. Assume by contradiction that there exist (φn, ψn) ∈ Φc(ρ(·, θ0), ρ∗) and
ε0 > 0 such that I(φn, ψn) > f(θ0)− 1

n and

(A.7)

∣∣∣∣∇θf(θ0)−
∫

Ω

φccn (x)∇θρ(x, θ0)dx

∣∣∣∣ ≥ ε0.
Note that by adding a suitable constant to φn, we can assume that supφn = ‖c‖∞.
Thus, (φccn , φ

c
n) ∈ Kc and

f(θ0) ≥ I(φccn , φ
c
n, θ0) ≥ I(φn, ψn, θ0) > f(θ0)− 1

n
.

Since Kc is compact, we have that (φccn , φ
c
n) → (φ, φc) ∈ Kc at least through a

subsequence. Thus,

I(φ, φc, θ0) = lim
n→∞

I(φccn , φ
c
n, θ0) = f(θ0),

and so (φ, φc) ∈ S(θ0). Hence, from Proposition 4.1 we have that∣∣∣∣∇θf(θ0)−
∫

Ω

φccn (x)∇θρ(x, θ0)dx

∣∣∣∣
=

∣∣∣∣∫
Ω

φ(x)∇θρ(x, θ0)dx−
∫

Ω

φccn (x)∇θρ(x, θ0)dx

∣∣∣∣ ≤ ‖φ− φccn ‖∞‖η‖1,
which contradicts to (A.7) and finishes the proof.

Appendix B. Numerical Schemes for Computing the Gradient.

B.1. Numerical Scheme for (5.6) and (5.8). We remark that the first equa-
tion in both (5.6) and (5.8) are the same, which corresponds to solving the forward
problem (3.5) given the current iterate of the unknown parameter θl. There are at
least three ways to solve the linear system: (1) the power method, (2) the Richardson
iteration, and (3) the sparse linear solve. We refer the readers to [39] for more details
about the first two approaches and explain (3) in more detail.

In (3.5), we are interested in finding the solution ρ to the linear system

(B.1) Mερ = (1− ε)Mρ+
ε

n
11>ρ = ρ

where 1 = [1, 1, . . . , 1]>, M is defined in (3.3) and ε is our teleportation (regulariza-
tion) parameter. Thus, we can rewrite the linear system as(

(1− ε)M − I
)
ρ = − ε

n
11>ρ.
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Since the biggest eigenvalue of (1− ε)M is 1− ε < 1, the matrix on the left-hand side
is invertible, and the solution is unique. We have

(B.2) ρ∗ =
ρ

1>ρ
= −

(
(1− ε)M − I

)−1 ε

n
1,

where ρ∗ is our solution that we seek as 1>ρ∗ = 1.
Regarding the second equation of (5.6), we consider the general linear system as

below to solve for ζ given the right-hand side y where

(B.3) (Mε − I)ζ = y.

Based on Lemma 5.1, we know the right-hand side of (5.6), which we denote as y,
satisfies y ·1 = 0, and Mε− I has a one-dimensional null space with generator ρ∗. We
seek a unique solution ζ∗ where 1>ζ∗ = 0. Note that (B.3) is equivalent to(

(1− ε)M − I
)
ζ = y − ε

n
11>ζ.

Since 1>ζ∗ = 0, we obtain that ζ∗ must satisfy
(
(1 − ε)M − I

)
ζ∗ = y. As above,

(1− ε)M − I is invertible, and this system has a unique solution. Therefore,

(B.4) ζ∗ =
(
(1− ε)M − I

)−1
y.

Regarding the third equation of (5.8), we consider the general linear system as
below to solve for ζ given the right-hand side b where

(B.5) (M>ε − I)ζ = b.

Based on Lemma 5.2, we know the right-hand side of (5.8), which we denote as b,
satisfies b · ρ∗ = 0, and M>ε − I has a one-dimensional null space with generator 1.
We seek a unique solution ζ∗ where 1>ζ∗ = 0. Note that (B.5) is equivalent to(

(1− ε)M> − I
)
ζ = b− ε

n
11>ζ.

Since 1>ζ∗ = 0, we obtain that ζ∗ must satisfy
(
(1 − ε)M> − I

)
ζ = b. As above,

(1− ε)M> − I is invertible, and this system has a unique solution. Therefore

(B.6) ζ∗ =
(
(1− ε)M> − I

)−1
b.

Note that both the matrix (1− ε)M − I and its transpose are sparse. Therefore,
it is relatively efficient to solve the linear systems that are essential for gradient
calculation. The other components in (5.6) and (5.8) are rather straightforward once
we solve (B.1) and (B.3) (or (B.5)).

B.2. Automatic Differentiation. In the previous sections, we explained how
to directly compute ∇θKmat(θ) (or equivalently ∇θMε(θ)), which is necessary to
calculate ∇θρ(θ). However, if the numerical scheme for the forward problem changes,
the structure of Kmat(θ) changes, and consequently, one has to re-derive the explicit
form of ∇θKmat(θ). Such situations occur when using a higher-order finite volume
method or switching to other standard numerical schemes such as the discontinuous
Galerkin method. In order to make our code more flexible, we also implemented an
automatic differentiation version using the Python library JAX [14].
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Fig. 12: Rössler system single-parameter inference starting with a = 0.5 (left), b = 0.5
(middle), c = 10 (right), respectively. The reference PDF is generated by the truth
(a, b, c) = (0.1, 0.1, 14) through the same numerical solver for the synthetic data.

Automatic differentiation techniques have been used since the 1990s for optimiza-
tion, parameter identification, nonlinear equation solving, the numerical integration of
differential equations, and combinations of these (see for example [61, 42]). However, it
is only after the advent of high-speed computers and modern deep learning algorithms
that automatic differentiation became extremely popular and largely used; automatic
differentiation techniques made the computation of derivatives for functions defined
by evaluation programs both easier and faster, especially for complicated functions
with thousands of parameters like neural networks.

We compute the full Jacobian matrices of Kmat(θ) using the jacfwd function.
It uses the forward-mode automatic differentiation, the most efficient choice when
working with “tall” matrices like in our case. The improvement in flexibility, how-
ever, comes with a considerable increase in computational time: the computation by
pre-calculated formulae of the derivative is roughly 3 times faster than the JAX com-
putation; it also comes with a slight decrease in accuracy: on average, the difference
between the derivative matrices computed by hand and with JAX is of the order of
10−14. This is because the code generating Kmat contains many element-wise compu-
tations, resulting in a large computation graph for automatic differentiation. Thus, it
may be preferable when working with synthetic data to use the other two approaches.

Remark B.1. The method of automatic differentiation is extremely valuable when
working with real-world data despite the increase in computational time and the de-
crease in terms of accuracy. In many realistic situations, such as weather forecast, we
do not have access to the underlying dynamical system, and thus we cannot compute
∇θKmat(θ) directly. In future work, we plan on using neural networks to approxi-
mate the dynamical system from data. Given the large number of parameters and the
complex functional form of a deep neural network, it would be impossible to derive
∇θKmat(θ) explicitly, making the automatic differentiation approach necessary.

Appendix C. More Numerical Results.

C.1. Single Parameter Inversion for the Rössler and Chen systems.
Figure 12 and Figure 13 show the single-parameter inversion for the Rössler and
Chen systems, respectively. The reference data is produced by the same PDE solver
as the synthetic data but evaluated at the true set of parameters.

C.2. Convergence History of Parameter Inference With Noisy Time
Trajectories. Fig. 11 and Fig. 14 are the inversion results where the Lorenz time
trajectory is polluted by extrinsic and intrinsic noises, respectively. The properties
of the time trajectories that are affected by the intrinsic and extrinsic noises are
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Fig. 13: Chen system single-parameter inference starting with a = 45 (left), b = 5
(middle), c = 20 (right), respectively. The reference PDF is generated by the truth
(a, b, c) = (40, 3, 28) through the same numerical solver for the synthetic data.
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(a) Single-parameter inversion
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(b) Multi-parameter inversion

Fig. 14: Top row: Lorenz system single-parameter inference starting with σ = 5 (left),
ρ = 20 (middle), β = 1 (right), respectively. Bottom row: Multi-parameter inference
using coordinate gradient descent with initial guess (σ, ρ, β) = (5, 20, 1). The reference
PDF is the histogram from the time trajectory with intrinsic noise.

the same as the ones in Figure 2. As one can see from all the single-parameter
and multi-parameter inversions, it gets more challenging to achieve reconstruction
with high accuracy than the previous noise-free cases. In particular, the over-fitting
phenomenon occurs, which can be directly observed for β in the single-parameter
inversion (the top right plot in both figures) and the three-parameter joint inversion
(the bottom plots). As the number of iterations increases, the reconstructed β first
reaches the actual value but immediately deviates away as the objective function keeps
being minimized to fit the noise.
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