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Abstract

This paper introduces a new neural-network-based approach, namely
In-Context Operator Networks (ICON), to simultaneously learn operators
from the prompted data and apply it to new questions during the inference
stage, without any weight update. Existing methods are limited to using
a neural network to approximate a specific equation solution or a spe-
cific operator, requiring retraining when switching to a new problem with
different equations. By training a single neural network as an operator
learner, we can not only get rid of retraining (even fine-tuning) the neural
network for new problems, but also leverage the commonalities shared
across operators so that only a few demos in the prompt are needed when
learning a new operator. Our numerical results show the neural network’s
capability as a few-shot operator learner for a diversified type of differen-
tial equation problems, including forward and inverse problems of ordinary
differential equations (ODEs), partial differential equations (PDEs), and
mean-field control (MFC) problems, and also show that it can generalize
its learning capability to operators beyond the training distribution.

1 Introduction

The development of neural networks has brought a significant impact on solv-
ing differential equation problems. We refer the readers to [1] for the recent
advancement in this topic.

One typical approach aims to directly approximate the solution given a spe-
cific problem. The Physics-Informed Neural Networks (PINNs) [2] propose a
neural network method for solving both forward and inverse problems by inte-
grating both data and differential equations in the loss function. Deep Galerkin
Method (DGM) [3] imposes constraints on the neural networks to satisfy the
prescribed differential equations and boundary conditions. Deep Ritz Method
(DRM) [4] utilizes the variational form of PDEs and can be used for solving
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PDEs that can be transformed into equivalent energy minimization problems.
Weak Adversarial Network (WAN) [5] leverages the weak form of PDEs by
parameterizing the weak solution and the test function as the primal and ad-
versarial networks, respectively. [6] proposed a deep learning method based on
the stochastic representation of high-dimensional parabolic PDEs. [7] solves
high-dimensional mean-field game problems by encoding both Lagrangian and
Eulerian viewpoints in neural network parameterization. APAC-net [8] proposes
a generative adversarial network style method that utilizes the primal-dual for-
mulation for solving mean-field game problems.

Despite their success, the above methods are designed to solve problems with
a specific differential equation. The neural network needs to be trained again
when the terms in the equation or the initial/boundary conditions change.

Later, efforts have been made to approximate the solution operator for a
differential equation with different parameters or initial/boundary conditions.
PDE-Net [9] utilizes convolution kernels to learn differential operators, allowing
it to unveil the evolution PDE model from data, and make forward predic-
tions with the learned solution map. Deep Operator Network (DeepONet) [10]
designed a neural network architecture to approximate the solution operator
which maps the parameters or the initial/boundary conditions to the solutions.
Fourier Neural Operator (FNO) [11] utilizes the Fourier transform to learn the
solution operator.

The above methods have successfully demonstrated the capability of neu-
ral networks in approximating solution operators. However, in these methods,
“one” neural network is limited to approximating “one” operator. Even a minor
change in the differential equation can cause a shift in the solution operator. For
example, in the case of learning a solution operator mapping from the diffusion
coefficient to the solution of a Poisson equation, the solution operator changes if
the source term (which is not designed as a part of the operator input) changes,
or a new term is introduced to the equation. Consequently, the neural network
must be retrained.

We argue that there are commonalities shared across various solution oper-
ators. By using a single neural network with a single set of weights to learn
various solution operators, we can not only get rid of retraining (even fine-
tuning) the neural network, but also leverage such commonalities so that fewer
data are needed when learning a new operator.

If we view learning one solution operator as one task, then we are now
targeting solving multiple differential-equation-related tasks with a single neural
network. Our expectation for this neural network goes beyond simply learning
a specific operator. Rather, we expect it to acquire the ability to “learn an
operator from data” and apply the newly learned operator to new problems.

Such ability to learn and apply new operators might be a very important part
of artificial general intelligence (AGI). By observing the inputs and outputs of a
physical system, a human could learn the underlying operator mapping inputs
to outputs, and control the system according to their goals. For example, a
motorcyclist can quickly adapt to a new motorcycle; a kayaker can quickly
adapt to a new kayak or varying water conditions. If a human has expertise in
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both sports, they may be able to master jet skiing at their first few attempts.
We expect a robot with AGI able to adapt to new environments and tasks, just
as a human would.

The paradigm of “learning to learn”, or meta-learning, has achieved great
success in the recent development of artificial intelligence. In natural language
processing (NLP), in-context learning introduced in GPT-2 [12] and further
scaled up in GPT-3 [13] has demonstrated the capability of large language mod-
els (LLM) as few-shot learners. In-context learning gets rid of the limitations
of the previous paradigm, i.e. pre-training plus fine-tuning, including (1) the
need to fine-tune the neural network with a relatively large dataset for every
new task, (2) the potential to overfit during fine-tuning which leads to poor out-
of-distribution generalization, and (3) the lack of ability to seamlessly switch
between or mix together multiple skills.

In this paper, we adapt the idea of in-context learning to learn operators for
differential equations problems.

Condition QoI Condition QoI Condition PredictionQuery

Condition QoI Condition QoI Condition PredictionQuery

Prompt

Unknown operator 1
hidden ODE:

Condition QoI Condition QoI Condition PredictionQuery

Training

In-context learning

Inference
In-context learning

In-context learning

Demo Demo Question

Demo Demo Question

Demo Demo Question

？

Unknown operator 2
hidden PDE:

Unknown operator
hidden PDE:

Figure 1: Training and inference of In-Context Operator Networks (ICON).

We refer to the inputs of the operators as “conditions”, and the operator
outputs as “quantities of interest (QoIs)”. A “demo” consists of one pair of
condition and QoI. In the previous paradigm of operator learning [10] [11],
the neural network is trained on demos that share the same operator. During
the inference stage, it takes a new condition as input and predicts the QoI
corresponding to the learned operator. There are other non-neural-network
methods in the similar paradigm, such as SINDy [14] for solving inverse ODE
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problems via sparse regression over ODE parameters. In this paper, during the
inference stage, we instead have the trained neural network taking the demos
and a new condition (namely “question condition”) as input, and simultaneously
completing the following two jobs: (1) learn the operator from demos, (2) apply
the learned operator to the question condition and predict the corresponding
QoI. We emphasize that there are no weight updates during the inference stage.
We name the proposed method as In-Context Operator Networks, or “ICON”
in short. The illustration of the training and inference of ICON is shown in
Figure 1.

The rest parts of the paper are organized as follows. In Section 2, we intro-
duce the problem setup of in-context operator learning. In Section 3, we present
the detailed methodology of ICON. In Section 4, we present the experimental
results, where we show the capability of ICON in learning operators from demos
and applying to question conditions during the inference stage. In Section 5,
we try to answer the question why a few demos are sufficient in learning the
operator in the proposed method. In Section 6, we conclude the paper and
discuss the limitations and future work.

2 Problem Setup

In this section, we introduce the problem setup of in-context operator learn-
ing.

An operator is defined as a mapping that takes either a single input function
or a tuple of input functions and produces an output function. In this paper, we
refer to the inputs of the operators as the “condition”, and the operator outputs
as the “quantities of interest (QoI)”.

Take a one-dimensional ODE problem u′(t) = αu(t)+βc(t)+γ as an example.
Given the parameters α, β, γ ∈ R, there exists a solution operator that maps
from the function c : [0, T ] → R and the initial condition u(0), to u : [0, T ] → R.
In this case, c : [0, T ] → R and the initial condition u(0) form the condition, and
u : [0, T ] → R is the QoI. Note that while u(0) is a number, we can still view it
as a function on the domain {0} to fit into the framework.

In practical scenarios, it is often challenging to obtain an analytical repre-
sentation of conditions and QoIs. Instead, we typically rely on observations or
data collected from the system. To address this, we utilize a flexible and gen-
eralizable approach by representing these entities using key-value pairs, where
keys are discrete function inputs, and values are the corresponding outputs of
the function. Continuing with the example of the one-dimensional ODE prob-
lem introduced above, to represent the function c : [0, T ] → R, we consider the
discrete time instances as the keys, and the corresponding function values of c
as the associated values. we use the key 0 and value u(0) to represent the initial
condition of u. It is important to note that the number of key-value pairs is
arbitrary, the arrangement of keys is flexible, and they can vary across different
functions.
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The training data can be represented as {{(condji ,QoIji )}
Ni
j=1}Mi=1, where each

i corresponds to a different operator. For a given i, {(condji ,QoIji )}
Ni
j=1 repre-

sents a set of Ni condition-QoI pairs that share the same operator. In our setup,
it is important to emphasize that the operators here are completely unknown,
even in terms of the corresponding differential equation types. This aspect is
aligned with many real-world scenarios where either the parameters of the gov-
erning equations are missing or the equation themselves need to be constructed
from scratch.

During the inference stage, we are presented with pairs of conditions and
QoIs, referred to as “demos”, that also share an unknown operator. Addition-
ally, we are given a condition called the “question condition”. The objective is
to predict the QoI corresponding to the question condition and the unknown
operator. Note that the unknown operator in the inference stage may differ
from the operators present in the training dataset, potentially even being out
of distribution.

3 Methodology

In this section, we will introduce the method in detail. In Section 3.1, we show
how to build the neural network inputs, including prompts and queries. In
Section 3.2, we illustrate the neural network architecture. We introduce the
data preparation and training process in Section 3.3, and the inference process
in Section 3.4.

3.1 Prompt and Query

The model is expected to learn the operator from multiple demos, each con-
sisting of a pair of condition and QoI, and apply it to the question condition,
making predictions on the question QoI. As the question QoI is a function, it’s
also necessary to specify where the model should make evaluations, i.e., the keys
for the question QoI, which is referred to as the “queries” (each query is a vec-
tor). We group the demos and question condition as “prompts”, which together
with the queries are the neural network inputs. The output of the neural net-
work represents the prediction for the values of the question QoI, corresponding
to the input queries.

Although alternative approaches exist, in this paper, we choose a simple
method for constructing the prompts, wherein we concatenate the demos and
the question condition to create a matrix representation. Each column of the
matrix represents a key-value pair. Given that we will be using transformers, the
arrangement of columns in the prompt will not affect the outcome. Therefore,
in order to distinguish the key-value pairs from different conditions and QoIs,
we concatenate the key and value in each column with an index column vector.
Suppose the maximum capacity of demos is Jm, for simplicity, we use index
vector ej for the condition in j-th demo, and −ej for the QoI in j-th demo,
where ej is the one-hot column vector of size Jm+1 with the j-th component to
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be 1. The index vector for the question condition is eJm+1. We remark that for
a large Jm, a more compact representation, such as the trigonometric position
embedding used in NLP tasks, can be applied.

In order to cater to operators with varying numbers of input condition func-
tions, and functions from different spaces, we restructure the keys in prompts
and queries. Specifically, we assign the first row of the prompts/queries to in-
dicate different function terms, the second row to denote temporal coordinates,
the third row for the first spatial coordinate, and so forth. If certain entries are
not required, we will populate them with zeros.

In table 1, we show the matrix representation of the j-th demo for the one-
dimensional forward ODE problem aforementioned in Section 2. The prompt is
simply the concatenation of demos and the question condition along the row.

condition QoI
term


0 0 . . . 0 1
t1 t2 . . . tnj−1 0
0 0 . . . 0 0

c(t1) c(t2) . . . c(tnj−1) u(0)
ej ej . . . ej ej




0 0 . . . 0
τ1 τ2 . . . τmj

0 0 . . . 0
u(τ1) u(τ2) . . . u(τmj )
−ej −ej . . . −ej


key time

space
value
index

Table 1: The values of condition and QoI in the j-th demo in the example of
solving the one-dimensional forward ODE problem. Here the condition consists
of c : [0, T ] → R and the initial condition u(0); and u : [0, T ] → R is the QoI.
We use nj − 1 key-value pairs to represent c, one key-value pair for u(0), and
mj key-value pairs for u. Note that in the first row, we use the indicator 0 and
1 to distinguish different terms in the condition, i.e., c and u(0). The third row
is populated with zeros since there are no spatial coordinates. ej is the column
index vector.

In the end, we remark that the number of demos and key-value pairs may
differ across various prompts. Transformers are specifically designed to handle
inputs of different lengths. However, for the purpose of batching, we still use
zero-padding to ensure consistent lengths. Such padding, along with appropriate
masks, has no impact on mathematical calculations.

3.2 Neural Network Architecture

We employ an encoder-decoder neural network architecture in our method. The
architecture of neural networks is shown in Figure 2.

Before entering the encoder, the columns of the prompt are processed by a
shared linear layer. The encoder, which is a self-attention transformer, combines
information from all demos and the question condition within the prompt. This
process generates an output that represents an embedding of the operator and
the question. Along with the queries (which also undergo another shared linear
layer), this embedding is fed into the decoder, which is a cross-attention trans-
former. Finally, the decoder’s output is passed through an additional linear layer
to adjust its dimensionality to match the question’s quantity of interest (QoI).
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Condition

Demo J
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Question
Condition

Prompt
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Encoder

Operator and Question Embedding

Queries
Keys of Question QoI

Prediction
Value of Question QoI

Key

Value

Index

Condition

Quantity of
Interest (QoI)

Transformer
Decoder

Figure 2: The neural network architecture for In-Context Operator Networks
(ICON).

The encoder-decoder structure utilized in this architecture shares similarities
with the one used in computer vision for object detection tasks [15]. In that
particular context, the decoder takes the image embedding and “object queries”
as inputs. Each output from the decoder is then forwarded to a common feed-
forward network that predicts the detection.

Note that in our decoder, there are no self-attention layers for the queries.
Therefore, with a fixed prompt, if we input n query vectors (or n keys of question
QoI) into the model and receive n corresponding values as output, each value
is exclusively determined by its corresponding query, unaffected by the others.
Such independence enables us to design an arbitrary number of queries, wherever
we wish to evaluate the question QoI function.

3.3 Data Preparation and Training

Before training the neural network, we prepare data that contains the numerical
solutions to different kinds of differential equation problems. The details of data
generation are described in Algorithm 1.

In the training process, in each iteration, we randomly build a batch of
prompts, queries, and labels (ground truths) from data. Note that different
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Algorithm 1: Data preparation.

1 for each type of problem do
2 Randomly generate M sets of parameters;
3 // Each set of parameters defines an operator
4 for each set of paramters do
5 Randomly generate N pairs of conditions and QoIs;
6 // These N pairs of conditions and QoIs share the same operator

7 end

8 end

Algorithm 2: The training and inference of In-Context Operator Net-
works (ICON).

1 // Training stage:
2 for i = 1, 2, . . . , training steps do
3 for b = 1, 2, . . . , batch size do
4 Randomly select a type of problem and a set of parameters from

dataset;
5 Randomly set the number of demos J , and the number of

key-value pairs in each condition and QoI of the demos and
question;

6 From N pairs of conditions and QoIs, randomly select J pairs as
demos and one pair as the question;

7 Build a prompt matrix, query vectors, and the ground truth
using the selected demos and question;

8 end
9 Use the batched prompts, queries and labels to calculate the MSE

loss and update the neural network parameters with gradients;

10 end
11 // Inference stage:
12 Given a new system with an unknown operator, collect demos and a

question condition, and design the queries;
13 Construct the prompt using the demos and question condition;
14 Get the prediction of the question QoI using a forward pass of the

neural network;
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problems with different operators appear in the same batch. The loss function
is the mean squared error (MSE) loss between the outputs of the neural network
and the labels. The details of the training process are described in Algorithm 2.

3.4 Inference: Few-shot Learning without Weight Update

After the training, we use the trained neural network to make predictions of the
question QoI based on a few demos that describes the operator, as well as the
question condition.

During one forward pass, the neural network finishes the following two tasks
simultaneously: it learns the operator from the demos, and applies the learned
operator to the question condition for predicting the question QoI. We empha-
size that the neural network does not update its weights during such a forward
pass. In other words, the trained neural network acts as a few-shot operator
learner, and the training stage can be perceived as “learning to learn operators”.

4 Numerical Results

We designed 19 types of problems for training, each of which has 1000 sets
of parameters, so 19 × 1000 = 19000 operators in total. For each operator,
we generate 100 condition-QoI pairs. In other words, M = 1000, N = 100 in
Algorithm 1 and 2.

4.1 Problems

In this subsection, we list all 19 types of problems, as well as the setups for
parameters and condition-QoI pairs in the data preparation stage (Algorithm 1)
in Table 2. As for the implementation of the parameters, we present them in
the appendix section.

During training, we randomly select 1-5 demos when building the prompt.
The number of key-value pairs in each condition/QoI randomly ranges from 41
to 50. The details are in the appendix.
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Figure 3: Visualization of three in-context operator learning test cases for the
selected differential equation problems. The problem type is shown in the title.
The colored dotted line represents the hidden function of conditions and QoIs
in demos, while the grey dots represent the sampled key-value pairs of the demo
conditions and QoIs used in the prompts. The blue dots represent the key-
value pairs in the question conditions, sampled from the hidden function of the
question condition in black solid lines. The neural network prediction of the
question QoI is illustrated with red dots. One can see the consistency between
the prediction and the ground truth (solid black lines).

4.2 In-Distribution Operators

In this section, we show the testing errors for each of the 19 types of problems,
with the distributions for parameters, conditions and QoIs the same as in the
training stage, i.e., in-distribution operator learning. The number of key-value
pairs in each condition/QoI randomly ranges from 41 to 50, as in the training
stage. By using different random seeds, we ensure that the testing data are
different from the training data (although in the same distribution), and that
each condition-QoI pair only shows once, either as a demo or a question, during
testing.

We show several in-context operator learning test cases in Figure 3 and
Figure 4.

In Figure 5, we show relative errors with respect to the number of demos in
each prompt for all 19 problems listed in Table 2. For each type of problem,
we conduct 500 in-context learning cases, corresponding to 100 different opera-
tors, i.e., 5 cases for each operator. Firstly, the absolute error is computed by
averaging the differences between the predicted question QoI values and their
corresponding ground truth values across all in-context learning cases. Then,
the relative error is obtained by dividing the absolute error by the mean of the
absolute values of the ground truth values.

Across all 19 problems examined, it is evident from Figure 5 that the average
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Figure 4: Visualization of the in-context operator learning test case for problem
17: mean-field control (MFC) g-parameter 2D → 2D. On the top, we show
the three demos used when building the prompt, where the blue dots represent
the sampled key-value pairs of conditions; the red dot represents the sampled
key-value pairs of QoIs. At the bottom, we present the question condition
(black dot indicates the condition), ground truth, prediction, and the errors
(difference between prediction and ground truth). Note here, we obtain the
prediction of the density profile for t ∈ [0.5, 1], x ∈ [0, 1] by setting the question
keys as grid points over the temporal-spatial domain. The demos and question
conditions/QoIs share the same color bar.

relative error remains below 6% even in the cases with a single demo. The
majority of the average relative falls around 2% when using 5 demonstrations.
This underscores the capacity of a single neural network to effectively learn
the operator from demos and accurately predict the QoI for various types of
differential equation problems. Furthermore, the error consistently decreases as
the number of demos in each prompt increases for all 19 problems.

4.3 Super-Resolution and Sub-Resolution

Even though the neural network is trained using 41 to 50 key-value pairs to
represent conditions and QoIs, it demonstrates the ability to generalize to a sig-
nificantly broader range of numbers without requiring any fine-tuning, including

12



1 2 3 4 5
number of demos

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

re
la

tiv
e 

er
ro

r

Forward problem of ODE 1
Inverse problem of ODE 1
Forward problem of ODE 2
Inverse problem of ODE 2
Forward problem of ODE 3
Inverse problem of ODE 3
Forward damped oscillator
Inverse damped oscillator

1 2 3 4 5
number of demos

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

re
la

tiv
e 

er
ro

r

Forward nonlinear reaction-diffusion
Inverse nonlinear reaction-diffusion
Forward Poisson equation
Inverse Poisson equation
Forward linear reaction-diffusion
Inverse linear reaction-diffusion

1 2 3 4 5
number of demos

0.000

0.005

0.010

0.015

0.020

0.025

re
la

tiv
e 

er
ro

r

MFC g-parameter 1D -> 1D
MFC g-parameter 1D -> 2D
MFC g-parameter 2D -> 2D
MFC 0-parameter 1D -> 1D
MFC 0-parameter 1D -> 2D

Figure 5: Average relative in-distribution testing errors for all problems listed
in Table 2. The error decreases with the number of demos in each prompt.
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Figure 6: Average relative testing errors for problem 17, i.e., MFC g-parameter
2D → 2D, with the number of key-value pairs ranging from 10 to 500 in each
condition/QoI. As we increase the number of key-value pairs, the error decreases
and finally converges below 1%. Note that the neural network is trained using
41 to 50 key-value pairs, represented by the narrow red region in the figure.

more key-value pairs (super-resolution) or less key-value pairs (sub-resolution).
In figure 6, we examine the neural network on problem 17, i.e. mean-field

control (MFC) g-parameter 2D → 2D, with the number of (randomly sampled)
key-value pairs ranging from 10 to 500 in each condition/QoI. The average
relative error is calculated in the same way as in Section 4.2, except that we
make predictions and evaluate errors in the domain (t, x) ∈ [0.5, 1] × [0, 1], by
setting the question keys as grid points over the temporal-spatial domain. A
case of 3 demos, and 50 key-value pairs is illustrated in Figure 4.

With a fixed number of demos in the prompt, the average relative error
decreases with an increasing number of key-value pairs in each condition/QoIs,
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and finally converges below 1%, even for the case of a single demo.

4.4 Out-of-Distribution Operators

In this section, we examine the capability of the neural network in generalizing
in-context learning to operators beyond the training distribution. Here we em-
phasize that the term “out-of-distribution” does not refer to the conditions, but
rather to the operator itself being outside the distribution of operators observed
during training.
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Figure 7: Average relative error for out-of-distribution operators. The region of
operator parameters utilized during training is indicated by a black rectangle.

We conducted tests on four representative problem types, i.e. problems
5, 6, 11, and 12 in Table 2. During the training process of the forward and
inverse problems of ODE 3, we randomly generated a1 and a2 from a uniform
distribution U(0.5, 1.5) and U(−1, 1), respectively. Each pair of (a1, a2) defines
an operator. Now, we expand the distribution of (a1, a2) to a much larger region.
To evaluate the performance, we divided the region [0.1, 3.0]× [−3, 3] into a grid
and tested the performance within each cell. Specifically, we conducted 500
in-context learning cases in each cell, corresponding to 100 different operators
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and 5 cases with different demos and questions for each operator. Here, the
number of demos is fixed as five, and the number of key-value pairs is fixed as
the maximum number used in training. We calculate the relative error for each
cell and depict the results in Figure 7a and 7b.

A similar analysis was applied to the forward and inverse problems of linear
reaction-diffusion PDE problems. We divided the region of (a, c) into a grid,
while keeping the boundary condition parameters u(0) and u(1) randomly sam-
pled from U(−1, 1). The average relative errors are shown in Figure 7c and 7d.

It is evident that for all four problems, the neural network demonstrated ac-
curate prediction capabilities even with operator parameters extending beyond
the training region. This showcases its strong generalization ability to learn and
apply out-of-distribution operators.

4.5 Generalization to Equations of New Forms

As discussed in [13], one of the advantages of in-context learning over pre-
training plus fine-tuning is the ability to mix together multiple skills to solve
new tasks. GPT-4 [16] even showed emergent abilities or behaviors beyond
human expectations.

Although the scale of our experiment is much smaller than GPT-3 or GPT-4,
we also observed preliminary evidence of the neural network’s ability to learn
and apply operators for equations of new forms that were never seen in training
data.
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Figure 8: Average relative errors for the new ODE, with the same neural net-
work trained with different datasets. The error shows a decreasing trend as the
training dataset becomes larger.

In particular, we designed a new ODE u′(t) = a1u(t)c(t) + bu(t) + a2 over
time interval [0, 1], by adding a linear term bu(t) to ODE 2, which is borrowed
from ODE 3. In the new problem, b is also a parameter, and the operator is
determined by (a1, a2, b). We study the forward and inverse problems for the
new ODE and evaluate performance of the neural network with b ∈ [−0.3, 0.3].
The other setups, including the distribution of a1, a2 and c(t), are the same as
in problems 3 and 4 (forward and inverse problem of ODE 2).
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To study the influence of scaling up the training dataset, in Figure 7, we show
the average relative errors of neural networks trained with different training
datasets. Here we obtain the average relative error for each b in the same way
as we did for each cell in Section 4.4. To reduce the computational cost, in
this section, we train the same neural network as the one analyzed in other
sections, but only with half batch size, for 1/5 training steps. We remark that
in these runs, the training datasets have different sizes, but the training steps
and batch size remain the same. In other words, the neural network encounters
the same number of prompts during training. The expansion of dataset types
simply enhances the diversity of prompts.

We first train the neural network only with the datasets involving ODE
2 (both forward and inverse problems). Then, as a reference, we apply the
“wrong” operator directly to the question condition. The “wrong” operator
is defined as the one corresponding to ODE 2 u′(t) = a1u(t)c(t) + a2 instead
of the new ODE, with the same a1 and a2. Note that when b = 0, the new
ODE is reduced to ODE 2, thus the error is zero. As another reference, we
perform in-context operator learning with the same neural network, but replace
the demos in the prompts with the ones corresponding to ODE 2, denoted as
“wrong demos”. We can see the neural network with “correct demos” performs
no better than both references, indicating that the network can hardly generalize
its capability of in-context operator learning beyond ODE 2.

We then gradually add more ODE-related datasets to the training data. It
is encouraging to see that the error shows a decreasing trend as the training
dataset becomes larger. When trained with all ODE 1, 2, and 3, the neural
network performs significantly better than the one merely trained with ODE
2. Such evidence shows the potential of the neural network to learn and apply
operators corresponding to previously unseen equation forms, as we scale up the
size and diversity of related training data.

In the end, we also show the results of the neural network used in other
sections, which is trained with the full dataset with a larger batch size for
a longer time. The performance on the new ODE is not improved, which is
reasonable, since the newly added data on the damped oscillator, PDEs, and
MFC problems are not closely related to the new ODE.

5 Discussion

Why a very few demos are sufficient to learn the operator? We try to answer
this question as follows:

1. We actually only need to learn the operator for a certain distribution of
question conditions, not for all possible question conditions.

2. The training operators and testing operators share commonalities. For
example, for ODE problems, u’s time derivative, u, and c satisfy the same
equation at each time t. If the neural network captures such shared prop-
erty during training, and also notices this property in the demos during
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inference, it only needs to identify the ODE, for which a few demos are
sufficient.

3. The operators in this paper are rather simple and limited to a small family,
hence easy to identify with a few demos. It is likely that for a larger family
of operators in training and testing, in-context operator learning requires
more demos (especially for those complicated operators), as well as a larger
neural network with more computation resources.

6 Summary

In this paper, we proposed In-Context Operator Networks (ICON) to learn
operators for differential equation problems. It goes beyond the conventional
paradigm of approximating solutions for specific problems or some particular so-
lution operators. Instead, ICON acts as an “operator learner” during inference,
i.e., learns an operator from the given data and applies it to new conditions
without any weight updates.

Through our numerical experiments, we demonstrated that a single neural
network has the capability to learn an operator from a small number of prompted
demos and effectively apply it to the question condition. Such a single neural
network, without any retraining or fine-tuning, can handle a diverse set of dif-
ferential equation problems, including forward and inverse problems of ODEs,
PDEs, and mean field control problems. Moreover, while the numbers of key-
value pairs for representing the condition/QoI functions are limited to a narrow
range during training, ICON can generalize its in-context operator learning abil-
ity to a significantly broader range during testing, with errors decreasing and
converging as we increase the number of key-value pairs. Furthermore, ICON
showed its capacity to learn operators with parameters that extend beyond the
training distribution. In the end, our observations provide preliminary evidence
of ICON’s potential to learn and apply operators corresponding to previously
unseen equation forms.

The scale of our experiments is rather small. In the future, we wish to scale
up the size of the neural network, the types of differential equation problems, the
dimensions of keys and values, the length of conditions and QoIs, and the capac-
ity of demo numbers. This requires further development of in-context operator
learning, including improvements in neural network architectures and training
methods, as well as further theoretical and numerical studies of how in-context
operator learning works. In the field of NLP, for example in GPT-4, scaling up
leads to emergent abilities or behaviors beyond human expectations [16]. We
anticipate the possibility of witnessing such emergence in a large-scale operator
learning network.
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Appendix

6.1 Details on Differential Equation problems

In Table 3 below, we provide comprehensive information regarding the operator,
condition, and QoI parameters for differential equation problems.

# Operator Parameters Condition and QoI Paramters
1-2 a1 ∼ U(0.5, 1.5), i.e., randomly sampled

from the uniform distribution [0.5, 1.5],
a2 ∼ U(−1, 1).

u(0) ∼ U(−1, 1), c(t) ∼ GP(0, k(x, x′)),
i.e., sampled from a Gaussian
process with zero mean and ker-
nel k(x, x′), where k(x, x′) =
σ2 exp

(
− 1

2l2 (x− x′)2
)
, σ2 = 1,

l = 0.5.
3-4 a1 ∼ U(0.5, 1.5), a2 ∼ U(−1, 1). u(0) ∼ U(−1, 1), c(t) ∼ GP(0, k(x, x′))
5-6 a1 ∼ U(−1, 1), a2 ∼ U(0.5, 1.5), a3 ∼

U(−1, 1).
u(0) ∼ U(−1, 1), c(t) ∼ GP(0, k(x, x′))

7-8 k ∼ U(0, 2) A ∼ U(0.5, 1.5), T ∼ U(0.1, 0.2), η ∼
U(0, 2π)

9-10 u(0) ∼ U(−1, 1), u(1) ∼ U(−1, 1). c(x) ∼ GP(0, k(x, x′)), where σ2 = 2,
l = 0.5.

11-12 u(0) ∼ U(−1, 1), u(1) ∼ U(−1, 1), a ∼
U(0.5, 1.5), c ∼ U(−2, 2)

k(x) = softplus
(
k̂(x)

)
, where k̂(x) ∼

GP(0, k(x, x′)), where σ2 = 1, l = 0.5.
13-14 u(0) ∼ U(−1, 1), u(1) ∼ U(−1, 1), a ∼

U(0.5, 1.5), k ∼ U(0.5, 1.5)
û(x) ∼ GP(0, k(x, x′)), where σ2 = 1,
l = 0.5. We apply an affine map to û(x)
to obtain u(x) such that it satisfies the
boundary condition u(0), u(1). Then
we apply u to the equation to obtain
the term c(x).

15-17 ĝ(x) ∼ GP(0, kp(x, x
′)), where

the Gaussian process with zero
mean and kernel kp(x, x

′) =

σ2 exp

−
(
sin(2πx)−sin

(
2πx′))2+

(
cos(2πx)−cos

(
2πx′))2

2l2

,
σ2 = 1, l = 1. g(x) = ĝ(x)−

∫
ĝ(z)dz.

ρ̂0(x) ∼ GP(0, kp(x, x
′)), where σ2 = 1,

l = 1, ρ̃0(x) = softplus (ρ̂0 (x)), then
we normalize the density function to get

ρ0(x) =
ρ̃0(x)∫
ρ̃0(z)dz

.

18-19 see ρ0(x) for # 15-17 see g(x) for # 15-17.

Table 3: Operator, condition, and QoI parameters for differential equation prob-
lems listed in Table 2.

For ODE-type of problems, we prepare 50 equidistant key-value pairs for
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each u and c in the dataset, then select the first n− 1 key-value pairs for c, and
the first n key-value pairs for u when building the prompt, queries, and ground
truth, with n randomly sampled from 41 to 50.

For the damped oscillator and PDE-type problems, we prepare 100 equidis-
tant key-value pairs for each condition/QoI in the dataset, then randomly select
n key-value pairs for each condition/QoI when building the prompt, queries, and
ground truth, with n randomly sampled from 41 to 50.

For MFC-type problems, we prepare 100 equidistant key-value pairs for each
g, and prepare the key-value pairs for the density ρ on a 51× 100 uniform grid
over the whole temporal-spatial domain, with 25×100 for (t, x) ∈ [0.0.5)× [0, 1],
and 26× 100 for (t, x) ∈ [0.5, 1]× [0, 1]. We randomly sample n key-value pairs
for each condition/QoI when building the prompt, queries, and ground truth,
with n randomly sampled from 41 to 50.
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