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Abstract

We propose an unconstrained optimization method based on the well-known primal-
dual hybrid gradient (PDHG) algorithm. We first formulate the optimality condition of
the unconstrained optimization problem as a saddle point problem. We then compute
the minimizer by applying generalized primal-dual hybrid gradient algorithms. The-
oretically, we demonstrate the continuous-time limit of the proposed algorithm forms
a class of second-order differential equations, which contains and extends the heavy
ball ODEs and Hessian-driven damping dynamics. Following the Lyapunov analysis of
the ODE system, we prove the linear convergence of the algorithm for strongly convex
functions. Experimentally, we showcase the advantage of algorithms on several convex
and non-convex optimization problems by comparing the performance with other well-
known algorithms, such as Nesterov’s accelerated gradient methods. In particular, we
demonstrate that our algorithm is efficient in training two-layer and convolution neural
networks in supervised learning problems.

Keywords— Optimization; Primal-dual hybrid gradient algorithms; Primal-dual damping
dynamics

1 Introduction
Optimization is one of the essential building blocks in many applications, including scientific com-
puting and machine learning problems. One of the classical algorithms for unconstrained opti-
mization problems is the gradient descent method, which updates the state variable in the negative
gradient direction at each step [Boyd and Vandenberghe, 2004]. Nowadays, accelerated gradient de-
scent methods have been widely studied. Typical examples include Nesterov’s accelerated gradient
method [Nesterov, 1983], Polyak’s heavy ball method [Polyak, 1964], and Hessian-driven damping
methods [Chen and Luo, 2019, Attouch et al., 2019, 2020, 2021].

On the other hand, some first-order methods are introduced to solve linear-constrained opti-
mization problems. Typical examples include the primal-dual hybrid gradient (PDHG) method
[Chambolle and Pock, 2011] and the alternating direction method of multipliers (ADMM) [Boyd
et al., 2011, Gabay and Mercier, 1976]. They are designed to solve an inf-sup saddle point type
problem, which updates the gradient descent direction for the minimization variable and applies the
gradient ascent direction for the maximization variable. Both PDHG and ADMM are designed for
solving optimization problems with affine constraints. Ouyang et al. [2015] proposed accelerated
linearized ADMM, which incorporates a multi-step acceleration scheme into linearized ADMM.
Recently, the PDHG method has been extended into solving nonlinear-constrained minimization
problems [Valkonen, 2014].
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In this paper, we study a general class of accelerated first-order methods for unconstrained
optimization problems. We reformulate the original optimization problem into an inf-sup type
saddle point problem, whose saddle point solves the optimality condition. We then apply a lin-
earized preconditioned primal-dual hybrid gradient algorithm to compute the proposed saddle point
problem.

The main description of the algorithm is as follows. Consider the following inf-sup problem for
a C2 strongly convex function f over Rd

inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ − ε

2
∥p∥2 , (1.1)

where p is a constructed “dual variable”, ε > 0 is a constant, ⟨·, ·⟩ is an Euclidean inner product, and
∥ · ∥ is an Euclidean norm. We later prove that the solution to the saddle point problem 1.1 gives
the global minimum of f . We propose a linearized preconditioned PDHG algorithm for solving the
above inf-sup problem:

pn+1 = pn + σA(xn)∇f(xn)− σεA(xn)pn+1 , (1.2a)

p̃n+1 = pn+1 + ω(pn+1 − pn) , (1.2b)

xn+1 = xn − τC(xn)p̃n+1 , (1.2c)

where n = 1, 2, · · · is the iteration step, τ , σ > 0 are stepsizes for the updates of x, p, respectively,
and ω > 0 is a parameter. In the above algorithm, C(xn) = B(xn)∇2f(xn), where A(xn) ∈ Rd×d,
and B(xn) ∈ Rd×d act as preconditioners on the updates of pn+1 and xn+1, respectively. This
paper will only focus on the simple case where A(x) = AI for some constant A > 0. Although there
is a second-order term ∇2f(xn) in the update of xn+1 (hidden in C(xn)), our algorithm is still
a first-order algorithm by choosing B(xn)∇2f(xn) = C(xn) for some C that is easy to compute.
For example, we test that C = I is a very good choice in most of our numerical examples. See
empirical choices of parameters in our numerical sections.

Our method forms a class of ordinary differential equation systems in terms of (x,p) in the
continuous limit τ , σ → 0. We call it the primal-dual damping (PDD) dynamics. We show that
the PDD dynamics form a class of second-order ODEs, which contains and extends the inertia
Hessian-driven damping dynamics [Chen and Luo, 2019, Attouch et al., 2019]. Theoretically, we
analyze the convergence property of PDD dynamics. If f is a quadratic function of x, with constant
A, B, the PDD dynamic satisfies a linear ODE system. Under suitable choices of parameters, we
obtain a similar convergence acceleration in heavy ball ODE [Siegel, 2019]. Moreover, for general
nonlinear function f , we have the following informal theorem characterizing the convergence speed
of our algorithm:

Theorem 1.1 (Informal). Let f : Rd → R be a C4 strongly convex function. Let x∗ be the global
minimum of f and p∗ = 0. Then, the iteration (xn,pn) produced by 1.2 converges to the saddle
point (x∗,p∗) if τ , σ, are small enough. Moreover,

∥pn∥2 + ∥∇f(xn)∥2 ≤ (∥p0∥2 + ∥∇f(x0)∥2)(1− µ2

M + δ
)n,

where µ = minx λmin(∇2f(x)C(x)), C(x) = B(x)∇2f(x), δ > 0 depends on the initial condition,
and M > 0 depends on C(x)T

(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x), τ , σ, A, ε, and ω. The detailed

version is given in Theorem 3.10.

Numerically, we test the algorithms in both convex and non-convex optimization problems. In
convex optimization, we demonstrate the fast convergence results of the proposed algorithm with
selected preconditioners, compared with the gradient descent method, Nesterov accelerated gradient
method, and Heavy ball damping method. This justifies the convergence analysis. We also test
our algorithm for several well-known non-convex optimization problems. Some examples, such as
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the Rosenbrock and Ackley functions, demonstrate the potential advantage of our algorithms in
converging to the global minimizer. In particular, we compare our algorithms with the stochastic
gradient descent method, Adam, for training two-layer and convolutional neural network functions
in supervised learning problems. This showcases the potential advantage of the proposed methods
in terms of convergence speed and test accuracy.

PDHG has been widely used in linear-constrained optimization problems [Chambolle and Pock,
2011]. Recently, Valkonen [2014] applied the PDHG for nonlinearly constrained optimization prob-
lems. They proved the asymptotic convergence for the nonlinear coupling saddle point problems.
It is different from our PDHG algorithm for computing unconstrained optimizations. And we show
the linear convergence for a particular nonlinear coupling saddle point problem. Meanwhile, Nes-
terov accelerated gradient methods and Hessian damping algorithms can also be formulated in
both discrete-time updates and continuous-time second-order ODEs. Wibisono et al. [2016] also
introduced the idea of Bregman Lagrangian to study a family of accelerated methods in continuous
time limit. It forms a nonlinear second-order ODE. Compared to them, the PDD algorithm induces
a generalized second-order ODE system, which contains both heavy ball ODE [Siegel, 2019] and
Hessian damping dynamics [Chen and Luo, 2019, Attouch et al., 2019, 2020, 2021]. For example,
when C = I, algorithm Eq. 1.2 can be viewed as the other time discretization of Hessian damping
dynamics [Chen and Luo, 2019, Attouch et al., 2019]. It provides a different update in discrete
time update. We only evaluate the gradient of f once, whereas Attouch’s algorithm [Attouch et al.,
2020] evaluates the gradient of f twice. In numerical experiments, we demonstrate that the pro-
posed algorithm outperforms Nesterov accelerated methods and Hessian-driven damping methods
in some non-convex optimization problems, including supervised learning problems for training
neural network functions.

Our work is also related to preconditioning, an important technique in numerical linear alge-
bra [Trefethen and Bau, 2022] and numerical PDEs [Rees, 2010, Park et al., 2021]. In general,
preconditioning aims to reduce the condition number of some operators to improve convergence
speed. One famous example would be preconditioning gradient descent by the inverse of the Hes-
sian matrix, which gives rise to Newton’s method. In recent years, preconditioning techniques have
also been developed in training neural networks Osher et al. [2022], Kingma and Ba [2014]. Adam
[Kingma and Ba, 2014] is arguably one of the most popular optimizers in training deep neural
networks. It can also be viewed as a preconditioned algorithm using a diagonal preconditioner that
approximates the diagonal of the Fisher information matrix [Pascanu and Bengio, 2013]. Shortly
after Chambolle and Pock [2011] developed PDHG for constrained optimization, the same authors
also studied preconditioned PDHG method [Pock and Chambolle, 2011], in which they developed a
simple diagonal preconditioner that can guarantee convergence without the need to compute step
sizes. Liu et al. [2021] proposed non-diagonal preconditioners for PDHG and showed close con-
nections between preconditioned PDHG and ADMM. Park et al. [2021] studied the preconditioned
Nesterov’s accelerated gradient method and proved convergence in the induced norm. Jacobs et al.
[2019] introduced a preconditioned norm in the primal update of the PDHG method and improved
the step size restriction of the PDHG method.

Our paper is organized as follows. In Section 2 we provide some background and derivations
of our algorithm. We also provide the ODE formulations for our primal-dual damping dynamics.
In Section 3, we prove our main convergence results for the algorithm. In Section 4 we showcase
the advantage of our algorithm through several convex and non-convex examples. In particular,
we show that our algorithm can train neural networks and is competitive with commonly used
optimizers, such as SGD with Nesterov’s momentum and Adam. We conclude in Section 5 with
more discussions and future directions.

2 Primal-dual damping algorithms for optimizations
In this section, we first review PDHG algorithms for constrained optimization problems. We then
construct a saddle point problem for the unconstrained optimization problem and apply the precon-
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ditioned PDHG algorithm to compute the proposed saddle point problem. We last derive an ODE
system, which takes the limit of stepsizes in the PDHG algorithm. It forms a second-order ODE,
which generalizes the Hessian-driven damping dynamics. We analyze the convergence properties of
the ODE system for quadratic optimization problems.

2.1 Review PDHG for constrained optimization
In Chambolle and Pock [2011], the following saddle point problem was considered:

min
x∈X

max
y∈Y

⟨Kx, y⟩+G(x)− F ∗(y) , (2.1)

where X and Y are two finite-dimensional real vector spaces equipped with inner product ⟨·, ·⟩ and
norm ∥ · ∥ = ⟨·, ·⟩1/2. The map K : X → Y is a continuous linear operator. G : X → [0,+∞] and
F ∗ : Y → [0,+∞] are proper, convex, lower semi-continuous (l.s.c.) functions. F ∗ is the convex
conjugate of a convex l.s.c. function F . It is straightforward to verify that 2.1 is the primal-dual
formulation of the nonlinear primal problem

min
x∈X

F (Kx) +G(x) .

Then the PDHG algorithm for saddle point problem 2.1 is given by

yn+1 = (I + σ∂F ∗)−1(yn + σKx̃n) , (2.2a)

xn+1 = (I + τ∂G)−1(xn + τK∗yn+1) , (2.2b)

x̃n+1 = xn+1 + ω(xn+1 − xn) , (2.2c)

where (I+σ∂F )−1 is the resolvent operator, which is defined the same way as the proximal operator

(I + τ∂F )−1(y) = argmin
x

∥x− y∥2

2τ
+ F (x)

= proxτF (y)

When ω = 1, Chambolle and Pock [2011] proved convergence if τσ∥K∥2 < 1, where ∥ · ∥ is the
induced operator norm. It is worth noting that the convergence analysis requires that K is a linear
operator.

2.2 Saddle point problem for unconstrained optimization
We consider the problem of minimizing a C2 strongly convex function f : Rd → R over Rd. Instead
of directly solving for ∇f(x∗) = 0, we consider the following saddle point problem:

inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ , (2.3)

due to the following proposition.

Proposition 2.1. Let f : Rd → R be a C2 strongly convex function. Then the saddle point to 2.3
is the unique global minimum of f .

Proof. Directly differentiating 2.3 and setting the derivatives to 0 yields

∇f(x∗) = 0 ,

∇2f(x∗)p∗ = 0 .

By the strong convexity of f , we obtain that x∗ is the unique global minimum and p∗ = 0.
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Recall that p∗ = 0 by the optimality condition. Thus we make the following change to our
saddle point formulation. We add a regularization term in 2.3:

inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ − ε

2
∥p∥2 , (2.4)

where ε > 0 is a constant. This regularization term further drives p to 0. Similar to Proposition
2.1, we have the following proposition

Proposition 2.2. Let f : Rd → R be a C2 strongly convex function. Then the saddle point to 2.4
is the unique global minimum of f .

Proof. Directly differentiating 2.4 and setting derivatives to 0 yields

∇f(x∗) = εp∗ ,

∇2f(x∗)p∗ = 0 .

Since f is strongly convex, we have ∇2f(x∗) ≻ 0 and the second equation implies p∗ = 0. Then the
first equation implies ∇f(x∗) = 0. Since f is strongly convex, we conclude that x∗ is the unique
global minimum.

2.3 PDHG for unconstrained optimization
We apply the scheme given by 2.2 to the saddle point problem 2.4 (set F = G = 0 and identify
Kx = ∇f(x) in 2.1). Thus,

pn+1 = argmax
p

⟨∇f(xn),p⟩ − ε

2
∥p∥2 −

∥p− pn∥2A(xn)−1

2σ
, (2.5a)

p̃n+1 = ω(pn+1 − pn) + pn+1 , (2.5b)

xn+1 = argmin
x

⟨∇f(x), p̃n+1⟩+
∥x− xn∥2B(xn)−1

2τ
, (2.5c)

where we have added symmetric positive definite matrices A(xn), B(xn) ∈ Rd×d, as preconditioners
for updates of p, x, respectively. We also denote the norm ∥h∥2A−1 as hTA−1h, where h ∈ Rd.

As mentioned, the convergence analysis of PDHG relies on the assumption that K is a linear
operator. So we can not apply the same convergence analysis to 2.5 since ∇f(x) is not necessarily
linear in x. By taking the optimality conditions of 2.5, we find that pn+1 and xn+1 solves

pn+1 + σεA(xn)pn+1 − pn − σA(xn)∇f(xn) = 0 , (2.6a)

τB(xn)∇2f(xn+1)
(
(1 + ω)σA(xn)∇f(xn) + pn)+ (xn+1 − xn) = 0 , (2.6b)

where we substitute the update Eq. 2.5b into update Eq. 2.6b.
Note that the update for xn+1 in Eq. 2.6b is implicit, unless ∇2f(x) does not depend on x.

We also remark that the update for xn+1 in Eq. 2.6b will be explicit if we perform a gradient step
instead of a proximal step in Eq. 2.5c. To be more precise, when B = I, the linearized version of
Eq. 2.5c can be written as

xn+1 = proxτ⟨∇f(·),p̃n+1⟩(x
n) .

Taking a gradient step instead of proximal step yields

xn+1 = xn − τ∇2f(xn)p̃n+1 (2.7)

For general choice of preconditioner B(xn), the linearized version of Eq. 2.5c satisfies

xn+1 = xn − τB(xn)∇2f(xn)p̃n+1 = xn − τC(xn)p̃n+1.

5



Here we always denote a matrix function C, such that

C(xn) := B(xn)∇2f(xn).

For simplicity of presentation, we only consider the simple case where A(xn) = AI for some A > 0.
We now summarize the linearized update Eq. 2.6 into the following algorithm.

Algorithm 1 Linearized Primal-Dual Damping Algorithm

Require: Initial guesses x0 ∈ Rd, p0 ∈ Rd; Stepsizes τ > 0, σ > 0; Parameters A > 0,
ε > 0, ω > 0, C ≻ 0.
while n = 1, 2, · · · , not converge do

pn+1 = 1
1+σεApn + σA

1+σεA∇f(xn);

p̃n+1 = pn+1 + ω(pn+1 − pn);
xn+1 = xn − τC(xn)p̃n+1;

end while

We note that Algorithm 1 and update Eq. 2.6 are different methods for solving saddle point
problem Eq. 2.3. In this paper, we focus on the computation and analysis of Algorithm 1.

2.4 PDD dynamics
An approach for analyzing optimization algorithms is by first studying the continuous limit of the
algorithm using ODEs [Su et al., 2015, Siegel, 2019, Attouch et al., 2019]. The advantage of doing
so is that ODEs provide insights into the convergence property of the algorithm.

We first reformulate the proposed algorithm Eq. 2.6 into a first-order ODE system.

Proposition 2.3. As τ, σ → 0 and σω → γ, both updates in 2.6 and Algorithm 1 can be formulated
as a discrete-time update of the following ODE system.

ṗ = A(x)∇f(x)− εA(x)p , (2.8a)
ẋ = −C(x)(p+ γ(A(x)∇f(x)− εA(x)p)) , (2.8b)

where C(x) = B(x)∇2f(x) and the initial condition satisfies x(0) = x0, p(0) = p0. Suppose that
∇f is Lispchitz continuous and each index in matrix A, C is continuous and bounded. Then, there
exists a unique solution for the ODE system Eq. 2.8. A stationary state (x∗,p∗) of ODE system
Eq. 2.8 satisfies

∇f(x∗) = 0, p∗ = 0.

Proof. Rearranging Eq. 2.6a and Eq. 2.6b, we have

pn+1 − pn

σ
= A(xn)∇f(xn)− εA(xn)pn+1 ,

xn+1 − xn

τ
= −B(xn)∇2f(xn+1)

(
(1 + ω)σA(xn)∇f(xn) + pn) .

Taking the limit as τ, σ → 0 and σω → γ, we obtain

ṗ = A(x)∇f(x)− εA(x)p ,

ẋ = −B(x)∇2f(x)(p+ γ(A(x)∇f(x)− εA(x)p)) .

Similarly, the update in Algorithm 1 also converges to the ODE system Eq. 2.8. Clearly, a stationary
state satisfies p∗ = 0, ∇f(x∗) = 0.
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Proposition 2.4 (Primal-dual damping second order ODE). The ODE system Eq. 2.8 satisfies
the following second-order ODE

ẍ+
[
εA+ γCA∇2f(x)− ĊC−1]ẋ+CA∇f(x) = 0 . (2.9)

Here Ċ = d
dt
C(x(t)).

The proof follows by direct calculations and can be found in Appendix C. We note that the
formulation given by Eq. 2.9 includes several important special cases in the literature. In a word,
we view Eq. 2.4 as a preconditioned accelerated gradient flow.

Example 2.1. Let C = A = I and γ ̸= 0. Then equation Eq. 2.4 satisfies

ẍ+ ϵẋ+ γ∇2f(x)ẋ+∇f(x) = 0 , (2.10)

which is an inertial system with Hessian-driven damping [Attouch et al., 2020].

Remark 2.5. In the case of C = A = I, although the derived second order ODE Eq. 2.9 is the same
as the one in Attouch et al. [2020] at a continuous time level, our algorithm 1 provides a different
time discretization from the one in Attouch et al. [2020].

Example 2.2. Let C = A = I, γ(t) = 0. Then equation Eq. 2.4 satisfies the heavy ball ODE
[Siegel, 2019]

ẍ+ εẋ+∇f(x) = 0 . (2.11)

Example 2.3. Let C = A = I, γ(t) = 0, ε(t) = 3
t
. Then equation Eq. 2.4 satisfies the Nesterov

ODE [Su et al., 2015]:

ẍ+
3

t
ẋ+∇f(x) = 0 . (2.12)

We next provide a convergence analysis of ODE Eq. 2.8 for quadratic optimization problems.
We demonstrate the importance of preconditioners in characterizing the convergence speed of ODE
Eq. 2.8.

Theorem 2.6. Suppose f(x) = 1
2
xTQx for some symmetric positive definite matrix Q ∈ Rd×d.

Assume A, B are constant matrices. In this case, equation Eq. 2.8 satisfies the linear ODE system:(
ẋ
ṗ

)
=

(
−γBQAQ −BQ(I− γεA)

AQ −εA

)(
x
p

)
.

Suppose that A commutes with Q, such that AQ = QA. Suppose A and BQAQ are simultaneously
diagonalizable and have positive eigenvalues. Let µ1 ≥ . . . ≥ µn > 0 be the eigenvalues of BQAQ
and ai the i-th eigenvalue of A (not necessarily in descending order) in the same basis. Then

(a) The solution of ODE system 2.8 converges to (x∗,p∗) = (0, 0):

∥(x(t),p(t))∥ ≤ ∥(x0,p0)∥ exp(αt) ,

where
α = max

i

1

2

[
− γµi − εai + ℜ

(√
(γµi + ε)2 − 4µi

)]
.

(b) When A = I, ε = 0, the optimal convergence rate is achieved at γ∗ =
2
√
µ1√

µn(2µ1−µn)
. The

corresponding rate is α =
−√

µn√
2− 1

κ

, where κ = µ1/µn > 1.

(c) Moreover, when γ = ε = 0, the system will not converge for any initial data (x0,p0) ̸= (0, 0).
(d) If A = I, γ ≤ 1√

µ1
, ε = 2

√
µ′ − γµ′ for some µ′ ≤ µn, then

α = −
√

µ′ − γ

2
(µn − µ′) ≤ −

√
µ′ .
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We defer the proof to Appendix B.

Remark 2.7. If ω is bounded, then we have γ = O(σ). Then, in the limit as σ → 0, we also have
that γ → 0. By Theorem 2.6 (c), the ODE system 2.8 does not converge for any initial data.

Remark 2.8. If µ′ is an estimate of the smallest eigenvalue µn, then the convergence speed for
the solution of heavy ball ODE is exp(−

√
µ′t). In Theorem 2.6 (d), if γ = 0 and µ′ = µn, then

α = −√
µn which is the same as the convergence rate of the heavy ball ODE [Siegel, 2019]. However,

if γ > 0 and µ′ < µn, then we have α = −
√
µ′ − γ(µn − µ′) < −

√
µ′, which converges faster than

the heavy ball ODE.

3 Lyapunov Analysis
In this section, we present the main theoretical result of this paper. We provide the convergence
analysis for general objective functions in both continuous-time ODEs Eq. 2.8 and discrete-time
Algorithm 1. From now on, we make the following two assumptions for the convergence analysis.

Assumption 3.1. There exists two constants L ≥ µ > 0 such that µI ⪯ C0(x) ⪯ LI for all x,
where C0(x) = ∇2f(x)B(x)∇2f(x), and µ ≤ 1.

Assumption 3.2. There exists a constant L′ > 0 such that

C(x)T
(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x) ⪯ L′I (3.1)

for all x, where C(x) = B(x)∇2f(x).

3.1 Continuous time Lyapunov analysis
In this subsection, we establish convergence results of the ODE system Eq. 2.8.

Theorem 3.3. Consider the ODE system Eq. 2.8 with an initial condition (x(0), p(0)) ∈ R2d.
Define the functional

I(x,p) = 1

2
(∥p∥2 + ∥∇f(x)∥2) . (3.2)

Suppose Assumption 3.1 holds, we have

I(x(t),p(t)) ≤ I(x(0),p(0)) exp(−2λt) , (3.3)

where

λ = min
{
µγA− 1

2
|A− µ(1− εγA)|, LγA− 1

2
|A− L(1− εγA)|,

εA− 1

2
|A− µ(1− εγA)|, εA− 1

2
|A− L(1− εγA)|

}
In particular, when γ = 1

µ
, ε = 1, A = µ+L

2+(µ+L)εγ
, then λ = µ

2
.

Proof. It is straightforward to compute the following

dI
dt

= ⟨p, ṗ⟩+ ⟨∇f,∇2f ẋ⟩

= −∇fTC0γA∇f − pT εAp+∇fT (A−C0(I− εγA)
)
p (3.4)

We shall find λ such that dI
dt

+2λI ≤ 0. Then we obtain the exponential convergence by Gronwall’s
inequality, i.e.,

I(x(t),p(t)) ≤ I(x(0),p(0)) exp(−2λt) .
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We can compute

dI
dt

+ 2λI = ∇fT (−C0γA+ λI
)
∇f + pT (− εA+ λI

)
p

+∇fT (A−C0(I− εγA)
)
p . (3.5)

By Lemma A.1, we obtain the following sufficient conditions for dI
dt

+ 2λI ≤ 0

−εA+ λ+
1

2
|ξi(1− εγA)−A| ≤ 0 (3.6a)

λ− ξiγA+
1

2
|ξi(1− εγA)−A| ≤ 0 (3.6b)

where ξi(x) is the eigenvalue of C0(x). By our assumptions, we have L ≥ ξ1(x) ≥ . . . ≥ ξn(x) ≥ µ.
Eq. 3.6 give two upper bounds on λ. Define g1(ξ) = εA + 1

2
|ξ(1 − εγA) − A|, and g2(ξ) = ξγA −

1
2
|ξ(1− εγA)−A| on the interval [µ,L]. Then Eq. 3.6 implies that

λ ≤ gj(ξi) , (3.7)

for all i = 1, . . . , n and j = 1, 2. Since each gj(ξ) is a piece-wise linear in ξ, it is not hard to see
that

min
ξ∈[µ,L]

gj(ξ) = min{gj(µ), gj(L)} ,

for j = 1, 2. This proves the formula for λ. When A = µ+L
2+(µ+L)εγ

, we have g1(µ) = g1(L), and

µ(1− εγA)−A = −L(1− εγA) +A .

Further, requiring g1(µ) = g2(µ) yields ε = µγ. And we obtain

λ = µγA− 1

2
|A− µ(1− εγA)|

= µγA− 1

2
(A− µ(1− εγA))

=
µ

2
+A(γµ− 1

2
γ2µ2 − 1

2
)

=
µ

2
− A

2
(γµ− 1)2. (3.8)

We note that λ is maximized when taking γ = µ−1. We obtain λ = µ
2
.

3.2 Discrete time Lyapunov analysis
In this subsection, we study the convergence criterion for the discretized linearized PDHG flow
given by Eq. 1.2 and Algorithm 1.

From now on, we assume that f is a C4 strongly convex function.
We can rewrite the iterations as

pn+1 =
1

1 + σεA
pn +

σA

1 + σεA
∇f(xn) , (3.9a)

xn+1 = xn − τB(xn)∇2f(xn)

(
1− εγA

1 + σεA
pn +

σA+ γA

1 + σεA
∇f(xn)

)
, (3.9b)

where γ = σω. We define the following notations which will be used later.

N(xn) =
1

1 + σεA

(
B(xn)∇2f(xn)(σA+ γA) B(xn)∇2f(xn)(1− εγA)

−σ
τ
A σ

τ
εA

)
. (3.10)
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And

H(xn) = sym

((
∇2f(xn) 0

0 I

)
·N(xn)

)
.

Remark 3.4. The matrix N(xn) and H(xn) also depends on the τ , σ, A, ε and ω.

Define the Lyapunov functional in discrete time as

I(xn,pn) =
1

2
∥∇f(xn)∥2 + 1

2
∥pn∥2 .

Theorem 3.5. Suppose that there exists positive constants λ,M1 ∈ R+, such that

H(x) ⪰ λI ,

N(x)T∇2I(x̃, p̃)N(x) ⪯ M1I,

for all x, x̃ ∈ Rn. If τ = a λ
M

for some a ∈ (0, 2), then the functional I(xn,pn) decreases geomet-
rically, i.e.

I(xn,pn) ≤ I(x0,p0)
(
1 + (a2 − 2a)

λ2

2M1

)n
.

Proof. It follows from our definition of N(xn) that(
xn+1 − xn

pn+1 − pn

)
= −τN(xn)

(
∇f(xn)

pn

)
, (3.11)

By the mean-value theorem, we obtain

I(xn+1,pn+1)− I(xn,pn)

=

(
∇xI(xn,pn)
∇pI(xn,pn)

)T (
xn+1 − xn

pn+1 − pn

)
+

1

2

(
xn+1 − xn

pn+1 − pn

)T

∇2I(x̃, p̃)
(
xn+1 − xn

pn+1 − pn

)
where (x̃, p̃) is in between (xn+1,pn+1) and (xn,pn). And

∇xI(xn,pn) = ∇2f(xn)∇f(xn) ,

∇pI(xn,pn) = pn ,

∇2I(xn,pn) =

(
∇3f(xn)∇f(xn) +∇2f(xn)∇2f(xn) 0

0 I

)
.

Then using Eq. 3.11 and definition of H(xn), we obtain

I(xn+1,pn+1)− I(xn,pn)

=− τ

(
∇f(xn)

pn

)T (∇2f(xn) 0
0 I

)
·N(xn)

(
∇f(xn)

pn

)
+

τ2

2

(
∇f(xn)

pn

)T

N(xn)T∇2I(x̃, p̃)N(xn)

(
∇f(xn)

pn

)
=− τ

(
∇f(xn)

pn

)T

H(xn)

(
∇f(xn)

pn

)
+

τ2

2

(
∇f(xn)

pn

)T

N(xn)T∇2I(x̃, p̃)N(xn)

(
∇f(xn)

pn

)
, (3.12)
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From Eq. 3.12 and our assumption on N(x) and H(x), we obtain

I(xn+1,pn+1)− I(xn,pn) ≤
(
− τλ+

τ2M1

2

)
I(xn,pn)

=
M1

2

(
(τ − λ

M1
)2 − λ2

M2
1

)
I(xn,pn)

= (a2 − 2a)
λ2

2M1
I(xn,pn) , (3.13)

where we used τ = a λ
M1

. Hence,

I(xn+1,pn+1) ≤ I(xn,pn)
(
1 + (a2 − 2a)

λ2

2M1

)
≤ I(x0,p0)

(
1 + (a2 − 2a)

λ2

2M1

)n+1
.

When 0 < a < 2, we have a2 − 2a < 0. Thus we obtain the desired convergence result.

Theorem 3.6. Let f : Rd → R be a C4 strongly convex function. Suppose (x0,p0) satisfies

I(x0,p0)1/2 ≤ δ

τD0∥N(x)∥32
, (3.14)

for some δ > 0 and all x. Here

D0 = sup
x,p,x′,p′

(
x′

p′

)T (
∇3I(x,p)

(
x′

p′

))(
x′

p′

)
∥∥∥∥(x′

p′

)∥∥∥∥3
2

.

Suppose further that there exists positive constants λ,M2 ∈ R+ such that

H(x) ⪰ λI ,

N(x)T∇2I(x,p)N(x) ⪯ M2I

for all x ∈ Rn. If τ = a λ
M2+δ

for some a ∈ (0, 2), then the functional I(xn,pn) decreases geomet-
rically, i.e.

I(xn,pn) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)n
.

Remark 3.7. Note that the constant M2 in Theorem 3.6 can be better than the constant M1 in
Theorem 3.5 because N and ∇2I are evaluated at the same x in Theorem 3.6.

Proof. We will prove it by induction. Using the mean-value theorem, we have

I(xn+1,pn+1)− I(xn,pn)

=

(
∇xI(xn,pn)
∇pI(xn,pn)

)T (
xn+1 − xn

pn+1 − pn

)
+

1

2

(
xn+1 − xn

pn+1 − pn

)T

∇2I(xn,pn)

(
xn+1 − xn

pn+1 − pn

)
+

1

6

(
xn+1 − xn

pn+1 − pn

)T (
∇3I(x̃n, p̃n)

(
xn+1 − xn

pn+1 − pn

))(
xn+1 − xn

pn+1 − pn

)
, (3.15)
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where (x̃n, p̃n) is in between (xn+1,pn+1) and (xn,pn). By Eq. 3.15 and Eq. 3.11, we can bound

I(x1,p1)− I(x0,p0)

=− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
− τ3

6

(
∇f(x0)

p0

)T

N(x0)T
(
∇3I(x̃0, p̃0)N(x0)

(
∇f(x0)

p0

))
N(x0)

(
∇f(x0)

p0

)
≤− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
+

τ3

6

(
∇f(x0)

p0

)T (
D0∥N(x0)∥32

∥∥∥∥(∇f(x0)
p0

)∥∥∥∥
2

)(
∇f(x0)

p0

)
=− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
+

τ3

6

(
∇f(x0)

p0

)T

D0∥N(x0)∥32I(x0,p0)
1/2

(
∇f(x0)

p0

)
≤− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
+

τ2δ

6

(
∇f(x0)

p0

)T (∇f(x0)
p0

)
, (3.16)

where the last inequality is by our assumption on (x0,p0). Using our assumptions on the lower
bound of H and the upper bound of NT · ∇2I ·N , we obtain

I(x1,p1)− I(x0,p0) ≤
(
− τλ+

τ2δ

6
+

τ2M2

2

)
I(x0,p0)

≤
(
− τλ+

τ2(δ +M2)

2

)
I(x0,p0)

=
1

2
(a2 − 2a)

λ2

M2 + δ
I(x0,p0) , (3.17)

where we used τ = a λ
M2+δ

for some a ∈ (0, 2). Hence,

I(x1,p1) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)
.

This proves the base case. Now suppose it holds that

I(xn,pn) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)n
,
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for some n ≥ 1. In particular, this implies that

I(xn,pn) < I(x0,p0) ,

which yields
τD0∥N(x)∥32I(xn,pn)1/2 < τD0∥N(x)∥32I(x0,p0)1/2 ≤ δ .

Then, repeating the derivation of Eq. 3.16 and Eq. 3.17 yields

I(xn+1,pn+1) ≤ I(xn,pn)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)
.

Combining with our induction hypothesis, we conclude that

I(xn+1,pn+1) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)n+1
.

The proof is complete by induction.

Corollary 3.8. Suppose Assumption 3.1 and Assumption 3.2 hold. When σ = τ , γ = 1−σµ
µ

, ε =

1, A = µ+L
2+(µ+L)εγ

, we have

H(x) ⪰ µ

4
I.

Proof. By definition of H, we can compute

(1 + σεA) ·H(x) =

(
C0(x)(σA+ γA) 1

2
C0(x)(1− εγA)− 1

2
ηA

1
2
C0(x)(1− εγA)− 1

2
ηA ηεA

)
,

where η = σ/τ = 1, C0(x) = ∇2f(x)B(x)∇2f(x). We want to find some constant λ > 0, such
that (

z
w

)T

H(x)

(
z
w

)
≥ λ(∥z∥2 + ∥w∥2) .

Observe that (
z
w

)T

H(x)

(
z
w

)
− λ(∥z∥2 + ∥w∥2)

= zT (C0(γ + σ)A/(1 + σεA)− λI
)
z +wT (εA/(1 + σεA)− λI

)
w

+ zT (−A+C0(I− εγA)
)
w/(1 + σεA) , (3.18)

which is almost the same as Eq. 3.5. Thus, following a similar procedure in Theorem 3.3 with the
provided parameters, we obtain that

λ ≥ µ

2

1 + Aσ
2

1 + σA
≥ µ

4
.

This implies

H(x) ⪰ µ

4
I . (3.19)

Corollary 3.9. Let f : Rd → R be a C4 strongly convex function. Suppose Assumption 3.1 and
Assumption 3.2 hold. If σ = τ , γ = 1−σµ

µ
, ε = 1, A = µ+L

2+(µ+L)εγ
, we have

(1)

∥N(x)∥2 ≤
max{L, 1} ·

(
A(σ + 2γ + 2) + 1

)
(1 + σA)

.

13



(2)

N(x)T∇2I(x,p)N(x) ⪯ (3 + σA+ 2A)2

(1 + σA)2
·max{L′, 1} · I .

Proof. We can decompose

(1 + σA) ·N(x) =

(
B(x)∇2f(x) 0

0 I

)(
(σ + γ)A (I− γA)

−A A

)
.

Observe that (
(σ + γ)A (I− γA)

−A A

)
=

(
(σ + γ)I −γI

−I I

)
·
(
A 0
0 A

)
+

(
0 I
0 0

)
.

Therefore, ∥∥∥∥((σ + γ)A (I− γA)
−A A

)∥∥∥∥
2

≤ A

∥∥∥∥((σ + γ)I −γI
−I I

)∥∥∥∥
2

+

∥∥∥∥(0 I
0 0

)∥∥∥∥
2

≤ A

∥∥∥∥((σ + γ)I −γI
−I I

)∥∥∥∥
2

+ 1

≤ A(σ + 2γ + 2) + 1 . (3.20)

To get the last inequality, we consider (z,w) such that ∥z∥2 + ∥w∥2 = 1. Thus∥∥∥∥((σ + γ)I −γI
−I I

)(
z
w

)∥∥∥∥
2

=

∥∥∥∥((σ + γ)z − γw
−z +w

)∥∥∥∥
≤ σ

∥∥∥∥(z
w

)∥∥∥∥+ γ∥z −w∥+ ∥z −w∥

≤ σ + 2γ + 2 .

We now have

(1 + σA)∥N(x)∥2 ≤
∥∥∥∥(B(x)∇2f(x) 0

0 I

)∥∥∥∥
2

∥∥∥∥((σ + γ)A (I− γA)
−A A

)∥∥∥∥
2

≤ max{L, 1} ·
(
A(σ + 2γ + 2) + 1

)
.

This proves part (1) of our Corollary. It follows that

N(x)T∇2I(x,p)N(x)

=
1

(1 + σA)2

(
(σ + γ)A −A
(I− γA) A

)
·
(
C(x)T

(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x) 0

0 I

)
·
(
(σ + γ)A (I− γA)

−A A

)
, (3.21)

where we recall C(x) = B(x)∇2f(x).
By assumption, there exists L′ > 0, such that

C(x)T
(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x) ⪯ L′I ,

for all x. Then, combining Eq. 3.21 and Eq. 3.20, we obtain that

∥N(x)T∇2I(x,p)N(x)∥2 ≤
(
A(σ + 2γ + 2) + 1

)2
(1 + σA)2

·max{L′, 1}

≤ (3 + σA+ 2A)2

(1 + σA)2
·max{L′, 1} , (3.22)

where we have used γA < 1 to derive the last inequality.
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Theorem 3.10 (Restatement of Theorem 1.1). Suppose Assumption 3.1 and Assumption 3.2 hold.
Let σ = τ , γ = 1−σµ

µ
, ε = 1, A = µ+L

2+(µ+L)εγ
. And suppose 3.14 holds for some δ > 0 and all x. If

τ = 1
4

µ
δ+36max{L′,1} , then

I(xn,pn) ≤ I(x0,p0)
(
1− µ2/32

δ + 36max{L′, 1}
)n

.

Proof. By Assumption 3.1 and Assumption 3.2, we have µ ≤ L ≤ L′. Thus µ/L′ ≤ 1 and σ = τ <
1/36. Moreover,

γ =
1

µ
− σ ≥ 1− 1

36
=

35

36
.

And
A =

µ+ L

2 + (µ+ L)εγ
<

1

γ
≤ 36

35
.

Then it follows
3 + σA+ 2A

1 + σA
≤ 3 + σA+ 2A < 6 .

By Corollary 3.9, we have

∥N(x)T∇2I(x,p)N(x)∥2 ≤ 36max{L′, 1} .

Combining this with Theorem 3.6 and Corollary 3.8, we finish the proof.

Remark 3.11. The choice of parameters in Theorem 3.10 may not be optimal. The main purpose
of Theorem 3.10 is to show the existence of geometric convergence in Algorithm 1.

4 Numerical experiment
We test our PDD algorithm using several convex and non-convex functions and compare the results
with other commonly used optimizers, such as gradient descent, Nesterov’s accelerated gradient
(NAG), IGAHD (inertial gradient algorithm with Hessian damping) [Attouch et al., 2020], and
IGAHD-SC (inertial gradient algorithm with Hessian damping for strongly convex functions) [At-
touch et al., 2020].

4.1 Summary of algorithms
For reference, we write down the iterations of gradient descent, NAG, IGAHD-SC, and IGAHD for
better comparison.

Gradient descent:
xn+1 = xn − τgd∇f(xn) ,

where τgd > 0 is a stepsize.
NAG:

yn+1 = xn − τnag∇f(xn) ,

xn+1 = yn+1 + βnag(y
n − yn−1) ,

where τnag > 0 is a stepsize, and βnag > 0 is a parameter.
IGAHD: Suppose ∇f is L1-Lipschitz.

yn = xn + αn(x
n − xn−1)− β(1)√τatt(∇f(xn)−∇f(xn−1))−

β(1)√τatt

n
∇f(xn−1) ,

xn+1 = yn − τatt∇f(yn) .
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Here αn = 1− α
n

for some α ≥ 3. β(1) needs to satisfy

0 ≤ β(1) ≤ 2
√
τatt .

And τatt > 0 is a stepsize, which needs to satisfy

τatt ≤
1

L1
.

Remark 4.1. As mentioned earlier, in each iteration of IGAHD, ∇f(·) is evaluated twice: at xn and
at yn. This differs from one gradient evaluation in gradient descent, NAG, and our method Eq. 1.2.
Chen and Luo [2021] proposed a slightly different algorithm from IGAHD that only requires one
gradient evaluation in each iteration.

IGHD-SC: Suppose f is m1-strongly convex and ∇f is L1-Lipschitz.

xn+1 = xn+
1−√

m1τatt

1 +
√
m1τatt

(xn−xn−1)−
β(2)√τatt

1 +
√
m1τatt

(∇f(xn)−∇f(xn−1))− τatt
1 +

√
m1τatt

∇f(xn) .

Here β(2) and L1 need to satisfy

β(2) ≤ 1√
m1

, L1 ≤ min
{√

m1

8β(2)
,

√
m1

2τatt
+ m1√

τatt

2β(2)m1 +
1√
τatt

+
√
m1

2

}
. (4.1)

4.2 regularized log-sum-exp
Consider the regularized log-sum-exp function

f(x) = log

(
n∑

i=1

exp(qT
i x)

)
+

1

2
xTQx ,

where n = 100, Q = QT ≻ 0 and qT
i is the ith row of Q. Q is chosen to be diagonally dominant, i.e.

Qi,i >
∑

j ̸=i |Qi,j |. In this case, we may choose the diagonal preconditioner C(x) =
(
diag(Q)

)−1.
We compare the performance of gradient descent, preconditioned gradient descent, PDD with
C(x) = I, PDD with diagonal preconditioner, NAG, and IGAHD-SC (inertial gradient algorithm
with Hessian damping for strongly convex functions) by Attouch et al. [2020] methods for minimiz-
ing f . The stepsize of gradient descent is determined by τgd = 2

λ1∗3+λn
, where λ1 and λn are the

maximum and minimum eigenvalues of Q, respectively. For a pure quadratic objective function,
xTQx, the optimal stepsize of gradient descent is 2

λ1+λn
. However, since our objective function

also contains a log-sum-exp term, we slightly change the stepsize. Otherwise, gradient descent
will not converge. Similarly, when deciding the parameters for NAG, we choose τnag = 4

30∗λ1+λn

and βnag =
√
3κ′+1−2√
3κ′+1+2

, where κ′ = 10λ1/λn, which is slightly smaller than the optimal parameters
of NAG for a purely quadratic function to guarantee convergence. For PDD with C(x) = I, we
choose τpdd = σpdd = 2

λ1+λn
, ε = 1, A = 10, ω = 1. For PDD with diagonal preconditioner

C(x) =
(
diag(Q)

)−1, we choose τpdd = σpdd = 0.5, ε = 1, A = 1, ω = 1. We use the same
C(x) =

(
diag(Q)

)−1 as a preconditioner for gradient descent. The stepsize for preconditioned
gradient descent is chosen to be the same as τpdd = 0.5. For IGAHD-SC (‘att’), we need m1 as
the smallest eigenvalue of ∇2f(x). In this example, we may estimate m1 as the smallest eigenvalue
of Q. And τatt = 0.0016 via grid search. β(2) in IGAHD-SC is found by solving (see Theorem 11
Eq. (26) of Attouch et al. [2020])

√
m1

8β(2)
=

√
m1

2τatt
+

√
m1√
τatt

2β(2)m1 +
1√
τatt

+
√
m1

2

,
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Figure 1: Comparison of gradient descent, NAG, PDD, and IGAHD-SC (we use ‘att’ as a
shorthand for this method) on minimizing (a) the regularized log-sum-exp function and (b)
the quadratic minus cosine function. The y-axis represents the 2-norm of the gradient of the
objective function on a logarithmic scale. The x-axis represents the number of iterations on
a logarithmic scale.

which gives

β(2) =

√
τatt + τatt

√
m1/2

4 + 8
√
m1

√
τatt − 2m1τatt

. (4.2)

The initial condition is x0 = np.ones(n) ∗ 0.1. The result is presented in Fig. 1a.

4.3 Quadratic minus cosine function
Consider the function

f(x) = ∥x∥2 − cos(cTx) ,

where c is a vector in R100 with ∥c∥2 = 1.9. Then a direct calculation shows that 0.1I ⪯ ∇2f(x) ⪯
3.9I for any x. This allows us to choose the optimal stepsize for gradient descent and NAG. When
minimizing f using gradient descent, we can choose τgd = 2

0.1+3.9
= 0.5. Meanwhile, for NAG, we

may choose τnag = 4
3∗3.9+0.1

, and β =
√
3κ+1−2√
3κ+1+2

, where κ = 3.9/0.1. For PDD with C(x) = I, we
choose τpdd = σpdd = 0.5, ε = 1, A = 1, ω = 1. For IGAHD-SC (‘att’), we choose m1 = 0.1,
τatt = 0.55 via grid search and β(2) is given by Eq. 4.2. The initial condition is x0 = np.ones(n)∗5.
The result is presented in Fig. 1b.

4.4 Rosenbrock function
4.4.1 2-dimension

The 2-dimensional Rosenbrock function is defined as

f(x, y) = (a− x)2 + b(y − x2)2 ,

where a common choice of parameters is a = 1, b = 100. This is a non-convex function with a
global minimum of (x∗, y∗) = (a, a2). The global minimum is inside a long, narrow, parabolic-
shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is
difficult. We compare the performance of gradient descent, NAG, PDD with C(x) = I and IGAHD
(inertia gradient algorithm with Hessian damping) by Attouch et al. [2020] when minimizing the
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Figure 2: Minimizing the Rosenbrock function with gradient descent, NAG, PDD with
C(x) = I and IGAHD (‘att’). The left panel shows the convergence speed of each method.
The right panel shows the optimization trajectories of each method.

Rosenbrock function starting from (−3,−4). The stepsize of gradient descent is τgd = 0.0002. The
stepsize of NAG is τnag = 0.0002, βnag = 0.9. The parameters of PDD are τpdd = σpdd = 0.005,
ε = 1, ω = 1, A = 5. The stepsize of the PDD method is larger than τgd and τnag because gradient
descent and NAG do not allow larger stepsizes for convergence. For IGAHD (‘att’), we choose
τatt = 0.00045, α = 3, β(1) =

√
τatt/14. The convergence result and the optimization trajectories

are shown in Fig. 2.

4.4.2 N-dimension

The N -dimensional coupled Rosenbrock function is defined as

f(x) =

N−1∑
i=1

(
(a− xi)

2 + b(xi+1 − x2
i )

2) ,
where we choose a = 1 and b = 100 as in the 2-dimensioal case and we set N = 100. The global
minimum is at x∗ = (1, 1, . . . , 1). Using the same stepsizes as in the 2-dimensional case, we compare
the performance of the three algorithms starting from x0 = (0, . . . , 0). The stepsize of gradient
descent is τgd = 0.001. The stepsize of NAG is τnag = 0.0008, β = 0.95. The parameters of PDD
are τpdd = σpdd = 0.01, ε = 0.5, ω = 1, A = 5. The stepsize of the PDD method is larger than
τgd and τnag because gradient descent and NAG do not allow larger stepsizes for convergence. For
IGAHD (‘att’), we choose τatt = 0.0002, α = 3, β(1) = 2∗√τatt. The result is summarized in Fig. 3

4.5 Ackley function
We consider minimizing the two-dimensional Ackley function given by

f(x, y) = −20 exp
(
− 0.2

√
0.5(x2 + y2)

)
− exp

[
0.5
(
cos(2πx) + cos(2πy)

)]
+ e + 20 ,

which has many local minima. The unique global minimum is located at (x∗, y∗) = (0, 0). We
compare the performance of gradient descent, NAG, PDD, and IGAHD (‘att’) for minimizing the
two-dimensional Ackley function starting from (x0, y0) = (2.5, 4). The stepsize of gradient descent
is τgd = 0.002. The stepsize of NAG is τnag = 0.002, βnag = 0.9. The parameters of PDD are
τpdd = σpdd = 0.002, ε = 1, ω = 1, A = 1. For IGAHD (‘att’), we choose τatt = 0.01, α = 3,
β(1) = 2 ∗ √τatt. The results are summarized in Fig. 4.
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Figure 3: Comparison of gradient descent, NAG, PDD with C(x) = I and IGAHD (‘att’)
on minimizing the 100-dimensional coupled Rosenbrock function. The y-axis represents the
distance between the current iterate and the global minimum on a logarithmic scale. The
x-axis represents the number of iterations on a logarithmic scale.
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Figure 4: Minimizing the Ackley function with gradient descent, NAG, PDD and IGAHD
(‘att’). The left panel shows the convergence speed of each method. The right panel shows
the optimization trajectories of each method.
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Algorithm SGD NAG PDD Adam Att
train loss 2.223 ± 0.034 0.964 ± 0.244 0.433 ± 0.270 0.589 ± 0.282 0.591 ± 0.288
test acc 29.3 ± 8.3 % 71.2 ± 9.4 % 85.4 ± 10.4 % 79.1 ± 11.3 % 80.8 ± 11.4 %

Table 1: Average training loss and test accuracy of different algorithms for MNIST hand-
written digit recognition over 60 random seeds.
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Figure 5: Training a two-layer neural network with the MNIST data set using gradient
descent, NAG, PDD, Adam, and IGAHD (‘att’). The left panel shows the convergence
speed of training loss. The right panel shows the test accuracy of each method. The x-axis
represents the number of iterations in terms of mini-batches.

Remark 4.2. We remark that our algorithm has no stochasticity. It will not always converge to
the global minimum for non-convex functions in general. For example, it will not converge for the
Griewank, Drop-Wave, and Rastrigin functions.

4.6 Neural Networks training
4.6.1 MNIST with Two-layer neural network

We consider the classification problem using the MNIST handwritten digit data set with a two-layer
neural network. The neural network has an input layer of size 784 = 28 × 28, a hidden layer of
size 32 followed by another hidden layer of size 32, and an output layer of size 10. We use ReLU
activation function across the layers, and the loss is evaluated using the cross-entropy loss. We use
a batch size of 200 for all the algorithms. The stepsize of gradient descent is τgd = 0.001. The
stepsize of NAG is τnag = 0.001, momentum = 0.9. The parameters of PDD are τpdd = 0.001,
σpdd = 5, ε = 0.005, ω = 1, A = 1. For IGAHD (‘att’), we choose τatt = 0.001, α = 3, β(1) = 0.01.
For Adam, we choose τadam = 0.001, β1 = 0.9, β2 = 0.999.

4.6.2 CIFAR10 with CNN

We train a convolutional neural network using the CIFAR10 datasets with SGD, Nesterov, PDD,
Adam, and IGAHD (‘Att’). The architecture of the network is described as follows. The network
consists of two convolutional layers. The first convolutional layer has 32 output channels, and the
filter size is 3 × 3. The second convolutional layer has 64 output channels, and the filter size is
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Figure 6: Training loss (left panel) and test accuracy (right panel) of a convolutional neural
network on the CIFAR10 data set. The x-axis represents the number of iterations in terms
of mini-batches.

Algorithm SGD NAG PDD Adam Att
train loss 2.038 ± 0.070 1.347 ± 0.100 0.697 ± 0.077 0.927 ± 0.128 0.879 ± 0.092
test acc 27.5 ± 2.2 % 51.2 ± 0.7 % 70.3 ± 0.5 % 64.4 ± 2.7 % 66.8 ± 0.6 %

Table 2: Average training loss and test accuracy of different algorithms for CIFAR10 data
set over 60 random seeds.

4 × 4. Each convolutional layer is followed by a ReLU activation and then a 2 × 2 max-pooling
layer. Lastly, we have 3 fully connected layers of size (64 · 4 · 4, 120), (120, 84), and (84, 10). The
loss is evaluated using the cross-entropy loss. The stepsize of gradient descent is τgd = 0.01. The
stepsize of NAG is τnag = 0.005, momentum = 0.9. The parameters of PDD are τpdd = 0.005,
σpdd = 5, ε = 0.005, ω = 1, A = 1. For IGAHD (‘att’), we choose τatt = 0.005, α = 3, β(1) = 0.01.
For Adam, we choose τadam = 0.005, β1 = 0.9, β2 = 0.999.

5 Discussion
This paper presents primal-dual hybrid gradient algorithms for solving unconstrained optimization
problems. We reformulate the optimality condition of the optimization problem as a saddle-point
problem and then compute the proposed saddle-point problem by a preconditioned PDHG method.
We present the geometric convergence analysis for the strongly convex objective functions. In
numerical experiments, we demonstrate that the proposed method works efficiently in non-convex
optimization problems, at least in some examples, such as Rosenbrock and Ackley functions. In
particular, it could efficiently train two-layer and convolution neural networks in supervised learning
problems.

So far, our convergence study is limited to strongly convex objective functions, not convex
ones. Meanwhile, the choice of preconditioners and stepsizes are independent of time. We also have
not discussed the optimal choices of parameters or general proximal operators in the updates of
algorithms. These generalized choices of functions, parameters, and their convergence properties
have been intensively studied in Nesterov accelerated gradient methods and Attouch’s Hessian-
driven damping methods. In future work, we shall explore the convergence property of PDHG
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methods for convex functions with time-dependent parameters. We also investigate the convergence
of similar algorithms in scientific computing problems of implicit time updates of partial differential
equations [Li et al., 2022, 2023, Liu et al., 2023].
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Appendix A Matrix lemma
Lemma A.1. Let A,B,C ∈ Rn be real symmetric matrices that are simultaneously diagonalizable.
Then for any x,y ∈ Rn, if

λA,i +
|λC,i|
2

≤ 0

λB,i +
|λC,i|
2

≤ 0

for all i, where λA,i, λB,i, λC,i are the ith eigenvalues of A,B,C respectively in the same basis.
Then

xTAx+ yTBy + xTCy ≤ 0,

for all x,y ∈ Rn.

Proof. Let x,y ∈ Rn. By our assumption, there exists Q unitary such that A,B,C are simulta-
neously diagonalizable by Q. Set x̃ = Qx and ỹ = Qy. Then we can compute

xTAx+ yTBy + xTCy =

n∑
i=1

x̃2
iλA,i + ỹ2

i λB,i + x̃iλC,iỹi

≤
n∑

i=1

x̃2
i

(
λA,i +

|λC,i|
2

)
+ ỹ2

i

(
λB,i +

|λC,i|
2

)
≤ 0 ,

where the first inequality follows from αxy ≤ (x2 + y2)|α|/2 for any α, x, y ∈ R.

Appendix B Proof of Theorem 2.6

B.1 Part (a)
We have the following system of ODE:(

ẋ
ṗ

)
=

(
−γBQAQ −BQ(I− γεA)

AQ −εA

)(
x
p

)
. (B.1)

Let us compute the eigenvalues of the above system. Let α be an eigenvalue, then α satisfies

det

(
−γBQAQ− αI −BQ(I− γεA)

AQ −εA− αI

)
= 0

det
(
(−γBQAQ− αI)(−εA− αI) +BQ(I− γεA)AQ

)
= 0

det
(
α2I+ α(εA+ γBQAQ) + γεBQAQA+BQAQ− γεBQAAQ

)
= 0

det
(
α2I+ α(εA+ γBQAQ) +BQAQ

)
= 0 .

The late equality is because A commutes with Q. We assume that A and BQAQ are simultane-
ously diagonalizable. Thus,

0 = α2 + α(εai + γµi) + µi ,

α =
−εai − γµi ±

√
(ε+ γµi)2 − 4µi

2
.

If γ > 0 and ε ≥ 0, then the real part of the eigenvalues are negative, and the system will converge.
The convergence rate depends on the largest real part of the eigenvalues, which is

max
i

1

2

[
− γµi − εai + ℜ

(√
(γµi + ε)2 − 4µi

)]
.
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B.2 Part (c)
When γ = ε = 0, we see that α is purely imaginary. Thus solutions to Eq. B.1 will be oscillatory
and will not converge.

B.3 Part (b)
Let us define

g(γ) = max
i

{µi

(
− γ + ℜ

(√
γ2 − 4/µi

))
2

}
.

Essentially, we would like to find γ∗ = argminγ g(γ). We then define

γ(µ) := argmin
γ

µ
(
− γ + ℜ

(√
γ2 − 4/µ

))
2

=
2
√
µ
.

Observe that if γ ≥ 2/
√
µn, then γ2 − 4/µi ≥ 0 for all i. Thus

g(γ) = max
i

{µi

(
− γ +

√
γ2 − 4/µi

)
2

}
.

For µ ∈ [µn, µ1] and γ ≥ 2/
√
µn, one can check that the function µ

(
−γ+

√
γ2 − 4/µ

)
is increasing

in µ by computing the partial derivative with respect to µ. Then we get

g(γ) =
µ1

(
− γ +

√
γ2 − 4/µ1

)
2

≥ g(2/
√
µn) =

√
µ1(

√
κ− 1−

√
κ) ≈ −√

µn/2 ,

where κ = µ1/µn > 1. The last approximation is valid for µ1/µn ≫ 1. This shows that γ∗ ≤ 2/
√
µn.

Similarly, if γ ≤ 2/
√
µ1, then γ2 − 4/µi ≤ 0 for all i. Thus

g(γ) = max
i

{−µiγ

2

}
=

−µnγ

2

≥ − µn√
µ1

= g(2/
√
µ1) .

This shows that γ∗ ≥ 2/
√
µ1. Combining with our previous observation, we get γ∗ ∈ [2/

√
µ1, 2/

√
µn].

Now let us fix some γ′ ∈ [2/
√
µ1, 2/

√
µn]. Let j = inf{i : 1 ≤ i ≤ n, γ′2 − 4/µi ≤ 0}. By our

assumption on γ′, we know that 1 < j < n. Now for 1 ≤ i ≤ j − 1, we have

µi

(
− γ′ + ℜ

(√
γ′2 − 4/µi

))
2

=
µi

(
− γ′ +

√
γ′2 − 4/µi

)
2

≤
µ1

(
− γ′ +

√
γ′2 − 4/µ1

)
2

.

And for j ≤ k ≤ n, we have

µk

(
− γ′ + ℜ

(√
γ′2 − 4/µk

))
2

=
−µkγ

′

2
≤ −µnγ

′

2
.

It is thus clear that for γ′ ∈ [2/
√
µ1, 2/

√
µn],

g(γ′) = max
{µ1

(
− γ′ +

√
γ′2 − 4/µ1

)
2

,
−µnγ

′

2

}
.
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It is straightforward to calculate that for γ ∈ [ 2√
µ1

,
2
√
µ1√

µn(2µ1−µn)
], we have

−µnγ

2
≥

µ1

(
− γ +

√
γ2 − 4/µ1

)
2

.

So
g(γ) =

−µnγ

2
≥ g(

2
√
µ1√

µn(2µ1 − µn)
) =

−√
µn√

2− 1
κ

.

And for γ ∈ [
2
√
µ1√

µn(2µ1−µn)
, 2/

√
µn] we have

−µnγ

2
≤

µ1

(
− γ +

√
γ2 − 4/µ1

)
2

.

This implies

g(γ) =
µ1

(
− γ +

√
γ2 − 4/µ1

)
2

≥ g(
2
√
µ1√

µn(2µ1 − µn)
) =

−√
µn√

2− 1
κ

.

This shows γ∗ =
2
√

µ1√
µn(2µ1−µn)

.

B.4 Part (d)
Define ∆γ(µ, ε) = (γµ + ε)2 − 4µ. Also define gγ(µ) = 2

√
µ − γµ. Then for µ ≥ 0, we have

∆γ(µ, ε) ≤ 0 if and only if ε ≤ gγ(µ). Note that g′γ(µ) =
1√
µ
− γ ≥ 0 for µ ≤ µ1 if γ ≤ 1√

µ1
. Then

∆γ(µ, ε) ≤ 0 for all µ ≤ µ1 if γ ≤ 1√
µ1

and ε ≤ gγ(µn). In particular, ∆γ(µ, ε) ≤ 0 for all µ ≤ µ1 if
ε = gγ(µ

′) for some µ′ ≤ µn. We have

α = max
i

1

2

[
− γµi − ε+ ℜ

(√
(γµi + ε)2 − 4µi

)]
= max

i

1

2

[
− γµi − ε

]
= max

i

1

2

[
− γµi − 2

√
µ′ + γµ′]

= −
√

µ′ − γ(µn − µ′)

2
.

Appendix C Proof of Proposition 2.4
We directly compute

ẍ = −C
(
(I− γεA)ṗ+ γA∇2f(x)ẋ

)
− Ċ

(
(I− γεA)p+ γA∇f(x)

)
= −C

(
(I− γεA)(A∇f(x)− εAp) + γA∇2f(x)ẋ

)
− Ċ

(
(I− γεA)p+ γA∇f(x)

)
= −C

[
(I− γεA)A∇f(x) + εA(C−1ẋ+ γA∇f(x)) + γA∇2f(x)ẋ

]
+ ĊC−1ẋ

= −C
[
A∇f(x) + εAC−1ẋ+ γA∇2f(x)ẋ

]
+ ĊC−1ẋ .
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