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DUCTILE VOID GROWING IN MICROMORPHIC GLPD POROUS
PLASTIC SOLIDS CONTAINING TWO POPULATIONS OF CAVITIES

WITH DIFFERENT SIZES

ROY BURSON AND KOFFI ENAKOUTSA

Gologanu, Leblond, Perrin, and Devaux (GLPD) developed a constitutive model
for ductile fracture for porous metals based on generalized continuum mechanics
assumptions. The model predicted with high accuracy ductile fracture process in
porous metals subjected to several complex loads. The GLDP model performances over
its competitors has attracted the attention of several authors who explored additional
capabilities of the model. This paper provides analytical solutions for the problem
of a porous hollow sphere subjected to hydrostatic loadings, the matrix of the hollow
sphere obeying the GLPD model. The exact solution for the expressions of the stress
and the generalized stress the GLPD model involved are illustrated for the case where
the matrix material does not contain any voids. The results show that the singularities
obtained in the stress distribution with the local Gurson model are smoothed out,
as expected with any generalized continuum model. The paper also presents some
elements of the analytical solution for the case where the matrix is porous and obeys
the full GLPD model at the initial time when the porosity is fixed. The later analytical
solution can serve to predict the mechanisms of ductile fracture in porous ductile solids
with two populations of cavities with different sizes.

1. Introduction

Metal structures often fail by ductile rupture when they are subjected to external
static or dynamic forces. The need to develop physical, mechanical and mathemati-
cal constitutive models to precisely predict ductile fracture processes in metals is
acutely felt in the metal structure design community. So far, the community has
widely accepted that the model proposed [18] and extended in [28; 29] to account
for cavity interactions and coalescence following an earlier suggestion in [26] can
adequately describe ductile fracture in metals. Several extensions have followed
these pioneering works; among them, let us mention the contributions [21; 22], and
recently [20]. The latter has modified Gurson model to include shear failure which
often occurs, for instance, during high velocity impact failures of many steels.
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Another modification of Gurson model including a characteristic length scale
aimed at eliminating the pathological post-bifurcation mesh dependence issues
proposed in [19] based on a previous suggestion of [23] in the context of concrete
damage was adopted in [30; 31]. This proposal was studied in detail in [7; 13]
and adopted (thanks to its successes) in the context of high rate deformation and
failure of materials in [1; 14; 15]. However, the proposal was less satisfactory
from the theoretical and physical viewpoints since it does not rely on any serious
physical justification. This was the motivation of the development by Gologanu,
Leblond, Perrin, and Devaux [17] of a second-gradient micromorphic model1 for
porous plastic materials. The GLPD model was obtained from a refinement of [2]’s
original homogenization procedure, which was based on conditions of homogeneous
boundary strain rate.

In contrast, the boundary velocity in the GLPD model approach was assumed to
be a quadratic, rather than linear, function of the coordinates. The physical idea
behind this assumption was to account in this way for possible quick variations of
the macroscopic strain rate over very short distances, for example at the scale of the
elementary cell the GLPD model is based on. The output of the procedure was a
model of "micromorphic" nature, involving the second gradient of the macroscopic
velocity and generalized macroscopic stresses of "moment" type (homogeneous to
the product of a stress and a distance.) Other type of higher-order gradient models
involving third-rank stress tensor with applications in bone remodeling design and
other domain of interest exist. Among them let us mention the works [27; 16; 6].

In practice, the GLPD model was extensively studied in [7; 11], where it was
notably shown that the model has the ability to predict mesh-independent FE
solutions and to reproduce satisfactorily ductile fracture tests. Other numerical
simulations involving second gradient models are available in the literature; see
for instance [3; 24; 25]. A recent modification of the GLPD model numerical
implementation developed in [7; 11] was suggested in [4] and yielded the same
conclusions. The assessment of the reliability and accuracy of these two algorithms
requires the development of analytical solutions that have served as critical cross
references, see [7; 9; 10]. These solutions are based on two crude approximations
so as for analytical solutions to be amenable: the porosity in the matrix material of
the geometry considered was assumed to vanish.

The objective of the present paper is twofold: (i) follow up the study of applica-
tions of the GLPD model to simple problems that might be of interest to validate
the numerical implementation of this model into a finite element code and (ii)
use the mechanical fields found to model cracking mechanisms in porous ductile
solids containing two populations of cavities. The problem considered here is

1We refer to micromorphic models as GLPD models for short.
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a hollow sphere subjected to a hydrostatic tension and made of a porous plastic
material, obeying the GLPD model. We found the analytic solution of the hollow
sphere problem in terms of deformation, stress and moment distributions under the
conditions that the matrix obeys a reduced GLPD model for the case where the
porosity vanishes. Also, we consider some elements of the solution of the problem
in the presence of porosity in the matrix material, which is a rather complex type of
problem. The complexity of the latter problem (a highly nonlinear problem) forces
us to present only some elements of the analytical solution at the initial time when
the porosity is held constant. The rest of the paper is structured as follows:

• Section 2 describes the problem model, a hollow sphere subjected to an hydro-
static loading, the matrix obeying the GLPD model.

• In Section 3 we assess the solution obtained for the case where the porosity
vanishes. An algorithm that simulates the behavior of this model and analyzes
the effects of the characteristic length scale on the distribution of stress and
moments is also presented.

• Section 4 considers the solution of the problem for the case where the porosity
does not vanish at the initial time. We provide implicit analytic expressions
for the Cauchy stress and moment components based on a highly nonlinear
ordinary differential equation, which involves the length scale of the GLPD
model. Using then the associated flow rule we calculate the radial velocity.
Employing the evolution law for the porosity we then derive the growth rate
of the voids located in the matrix.

• The concluding Section 5 discusses the results of our analytical solutions with
and without porosity.

2. Presentation of the hollow porous sphere problem

We consider a hollow sphere of inner radius a0 and outer radius b0, representing
an elementary cell of a porous plastic metal; see Figure 1. The matrix contains

Σm

a0

b0

0f2

Σm

Σm Σm

Figure 1. The hollow sphere model problem being considered.
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secondary small, dispersed voids; its porosity (void volume fraction) is initially
uniform and denoted f 0

2 . The boundary of the central void is free of traction
whereas the outer boundary is subjected to some overall hydrostatic tension 6m .
The details of the derivation of these boundary conditions can be found in Appendix
B. The matrix material of the porous hollow sphere is supposed to obey the GLPD
constitutive model as described in Appendix A and in [17]. The hollow sphere
model problem presented here have served to find the solutions of several ductile
fracture problems the solution of which have yields micromechanics based models
for ductile porous metals under various loading conditions. Some of these problems,
with their solutions, can be found in [7; 9; 21; 22].

3. Analytical solution when porosity is neglected

3.1. Derivation of the mechanical fields. We seek a solution of the spherical shell
problem for purely ideal-plastic behavior, the yield stress in simple tension being
denoted by 60 and the porosity in the matrix being neglected. As a result, the yield
criterion (45) reduces to

8(6, M, 6) ≡
1

62

(
62

eq +
Q2

b2

)
− 1 = 0. (1)

In this equation:

• 6 represents the ordinary second-rank symmetric Cauchy stress tensor and M
is the third-rank moment tensor, symmetric in its first two indices only. The
components of M satisfy

Mi j j = 0. (2)

• 6eq ≡
( 3

26′
: 6′

) 1
2 is the von Mises equivalent stress, 6′ being the deviator of 6.

• 6 represents a kind of average yield stress in the heterogeneous metallic matrix.

• Q2 is a quadratic form of the components of the moment tensor given by

Q2
≡ A1M1 + A2M2, with A1 = 0.194, A2 = 6.108, (3)

where
M1 ≡ Mmk Mmk, M2 ≡

3
2 M ′

i jk M ′

i jk, (4)

are the quadratic invariants of M; here Mmk ≡
1
3 Mhhk and M ′ denote the mean

and deviatoric parts of M, taken over its first two indices.

• b represents the characteristic length scale.

After development, the flow rule (47) becomes (see [7; 11] for details)

Ḋ p
i j = η

3
62

0
6′

i j , (∇ Ḋ)
p
i jk =

η

60
2b2

( 2
3 AI δi j Mmk + 3AII M ′

i jk
)
+ δikU j + δ jkUi ,
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where Mmk
1
3 Mhhk and M ′ are as above and η is the plastic multiplier, determined

from the consistency condition and satisfying

η

{
= 0 if 8(6, M, 6) < 0,

≥ 0 if 8(6, M, 6) = 0.

We shall also assume that the parameter AI vanishes for the analytical solution to
be amenable. Another, subtler reason for this choice is that the value ofAI in the
GLPD model, 0.194, is much smaller than that of AII , 6.108; hence, the value of
AI can safely be neglected. The remaining equations of the GLPD constitutive
relations for ductile porous materials can be found in Appendix A and in [17].

We are looking for a solution in which the spherical shell is entirely plastic, so
that the yield function 8(6, M, 60) is zero everywhere. We briefly review the
solution procedure given in [8]. Consider the velocity, strain rate and its gradient
fields first. As in the case of purely elastic behavior, the matrix of spherical shell is
incompressible; as a result, the velocity field is radial and given by

U =
A
r2 , (5)

where A is a parameter independent of the material point position r .
Using the flow rule and the incompressibility of the material, the nonzero com-

ponents of the stress and moment fields are found to be

6′

rr = −
1
η

2A62
0

3r2 , 6′

θθ = 6′

φφ =
1
η

A62
0

3r2 , (6)

M ′

rrr =
1
η

2A62
0b2

AIIr4 , Mrθθ = Mrφφ = −
1
η

A62
0b2

AIIr4 , (7)

M ′

θθr = M ′

φφr = −
1
η

A62
0b2

AIIr4 . (8)

The conditions Mi j j = 0 and the expressions of M ′
rrr and Mrθθ in (8) yield

Mrrr = −2Mrθθ , Mθθr = M ′

θθr .

Substituting the formulas for stress and moment, (6)–(8), in the reduced yield
criterion (1), we get the following expression for the plastic multiplier η:

η =
A60

r3

√
1 +

15
AII

b2

r2 . (9)

This completes the specification of the nonzero components of the moment tensor.
However, the full expressions of the nonzero components of the ordinary stress
tensor are still unknown. After a tedious but straightforward calculation using
the expressions of the nonzero components of the moment tensor, the spherical
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symmetry properties of the problem, and the fact that 6rr − 6θθ = 6′
rr − 6′

θθ ,
the formulas for the nonzero components of the ordinary Cauchy stress tensor are
obtained as

d6rr

dr
= f (r) (10)

with

f (r) =
2A62

0

ηr3 +
2(η′′η2

− 2η′2η)

η4

A62
0b2

AIIr4 −
28η′

η2

A62
0b2

AIIr5

−

(
72
η

+
2η′

η2

)
A62

0b2

AIIr6 −
8A62

0b2

ηAIIr7 , (11)

the primes denoting differentiation with respect to r . Equation (10) implicitly
defines the expression of the component 6rr of the stress tensor. The nonzero
components of the stress tensor are obtained as

6rr =

∫ r

ri

f (τ )dτ, 6θθ = 6φφ = 6rr −
1
η

A62
0

r2 . (12)

The solution of (12) along with the nonzero components of the moment provided
above automatically satisfy the balance equations.

3.2. Numerical illustrations of the solution. We now illustrate the analytic solution
presented in [8], both graphically and by giving explicit expressions for the stress
and moment tensors. We do so by evaluating the integral equation (12) using a
FORTRAN routine we developed. Each integral has also been evaluated analytically
so that we possess the exact solution. We use the following material and model
parameters:

internal radius ri = 0.05 m
yield stress 60 = 100 MPa
parameters: A = 0.001 m, A1 = 0.194, A2 = 6.108

Figure 2 plots the solutions for the stress components 6rr , 6θθ , and the moment
component Mrrr , using the analytical expressions of these components of the Cauchy
stress and the moment tensor obtained in [8]. The figure shows that singularities
are absent from the stress, and there is no discontinuity near the void as the Gurson
model would have predicted.

4. Analytical solution in the presence of porosity in the matrix

In this section we present the solution to the hollow sphere problem for the case
where the matrix obeys the full GLPD model. Therefore, we loose the simplification
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Figure 2. Graphs of the stress components 6rr , 6θθ and the moment
component Mrrr versus the radial coordinate r and the characteristic
length scale b. The surfaces obtained are all smooth; the singularity
in the Cauchy stress obtained with the first gradient model has been
smoothed out with second gradient model effects.

that yields the prior results [8]. A detailed derivation of the solution is presented in
Burson and Enakoutsa [5]; only highlights are given here.

4.1. Derivation of Cauchy stress components. The setup of the problem, taken
from [8], consists of the balance equation

d6rr

dr
+

2
r
(6rr − 6θθ ) −

d2 Mrrr

dr2 −
4
r

d Mrrr

dr
−

2
r2 Mrrr

+
2
r2

d Mθθr

dr
+

4
r

d Mrθθ

dr
+

8
r2 Mrθθ = 0, (13)

the yield criterion

1
62

(
62

eq +
Q2

b2

)
+ 2p cosh

(
3
2

6m

6

)
− 1 − p2

= 0, (14)
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and the boundary conditions

r26rr −
d
dr

(r2 Mrrr ) + 4r Mrθθ = 0, Mrrr = 0,

for r = ri and r = re. Here Mrrr and Mrθθ are the components of the moment
tensor M, 6rr and 6θθ are the nonzero components of the stress tensor 6, 6m is
the mean stress, and 6eq is the von Mises stress.

The stress components 6rr and 6θθ in the balance equation (13) can be expressed
in terms of the invariants 6m and 6eq as follows:

d6rr

dr
+

2
r
(6rr − 6θθ ) =

2

3
√

3

d
dr

6eq +
2

r
√

3
6eq +

d
dr

6m . (15)

We have for 6eq see [5] the differential equation

d
dr

6eq =
α
(
60 − 62

eq
)
−

6
r 6eq

(
60 − 62

eq
)1/2

+ λ(
60 − 62

eq
)1/2

− β6eq

. (16)

Its solution for 6eq also furnishes 6m , which leads to 6rr and 6θ via the linear
system (

6eq

6m

)
=

(√
3 −

√
3

1 2

)(
6rr

6θθ

)
, (17)

namely

6rr =
2

3
√

3
6eq +

1
3
6m, 6θθ =

1
3
6m −

1
3
√

3
6eq. (18)

4.2. Derivation of the moment tensor components. We now derive the components
of the moment tensor M. The moment components Mi jk are recovered by the use
of the flow rule and the velocity field, which we assume can be represented as

U = ( f (r), 0, 0)

for some function f (r) depending on the radial coordinate r . With this assumption
the GLPD flow rule reduces to

∇ Dmk =
2
3ηUk,

where η is the plastic multiplier and U the velocity field (see [8] for details). In
accordance with [8, eq. (36)], when A1 = 0 the strain rate components are

(∇ D)rrr =
d f
dr

=
η

62
0b2

3A2 M ′

rrr , (∇ D)rθθ = 0 =
η

62
0b2

3A2 M ′

θθr ,

(∇ D)θθr =
1
r

d f
dr

=
η

62
0b2

3A2 M ′

rθθ , (∇ D)rφφ =
1
r

d f
dr

=
η

62
0b2

3A2 Mrθθ .

(19)
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Let

κ =
62

0b2

3A2
. (20)

The deviatoric parts of the moment M satisfy

M ′

rrr =
κ

η

d f
dr

, M ′

θθr = 0, M ′

rθθ =
κ

η

1
r

d f
dr

, Mrθθ =
κ

η

1
r

d f
dr

.

The value of Q2 is then computed as

Q2
=

3
2

A2

(
d f
dr

κ

η

)2(r2
+ 1

r2

)
.

Using the yield criterion we find that f satisfies the differential equation(
d f
dr

)2

=
2

3A2

(
η

κ

)2( r2

r2 + 1

)
b2

(
62

(
p2

+ 1 − 2p cosh
(

3
2

6m

6

))
− 62

eq

)
.

Using [8, (37)] we get the deviatoric part of the stress

6′

rr = −
62

0

3
1
η

f (r), 6′

θθ =
62

0

3
1
η

f (r). (21)

and from there the plastic multiplier satisfies

η =
1
262

0 f (r)
/(

6m −
1

√
36eq

)
, (22)

where 6m and 6eq are as in the previous section. Substituting (22) into (21) yields(
d f
dr

)2

= f (r)2 p(r), (23)

where p(r) = h(r)ι(r) j (r), with

ι(r) =
64

0

6(6m −
1

√
36eq

)2κ2 A2
, j (r) =

r2

r2 + 1
,

h(r) = b2
(

62
(

p2
+ 1 − 2p cosh

(
3
2

6m

6

))
− 62

eq

)
.

Next, the nonzero components of the moment are recovered from (19) as

M ′

rrr =
κ

η

d f
dr

, M ′

θθr = M ′

φφr =
−κ

η

1
r

d f
dr

, M ′

rθθ = Mrθθ =
κ

η

1
r

d f
dr

, (25)

where η and κ are given by (22) and (20).
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The conditions Mi j j = 0 relate the rest of the nonzero components of the moment
tensor, Mrrr and Mrθθ , as follows:

Mrrr + 2Mrθθ = 0 (26)

Furthermore, we find

Mmr = Mrrr − M ′

rrr = 2Mrθθ − M ′

rrr , (27)

where Mmr denotes the deviatoric part of the tensor M over its first two indices.
This leads to Mθθr = M ′

θθr . The formula (27) immediately gives

Mrθθ = M ′

θθr (28)

Figure 3 illustrates the radial distribution of the equivalent and mean stresses
obtained from the analytical solution in this paper. Along a radius of the hollow
sphere matrix material, 6eq increases going outward while 6m shows the opposite
behavior, which seems to confirm strong triaxaility effects in the vicinity of the
inner surface of the hollow sphere structure, usually due to loading histories. There
is a need to develop a full solution of the model problem (involving porosity effects)
to confirm this trend.

4.3. Derivation of the velocity field. This section presents the analytical solution
to the velocity field of the problem model presented. Following the procedure in
[22] we use the results obtained for the stress invariants to rewrite the flow rule and
so obtain a new differential equation for the velocity. Recall that dm =

1
3 tr(D′) and

deq =
2
3(D′

: D′)2/3, where D′ is the deviator of D =
1
2

(
∇U+ (∇U)t

)
. Following

Leblond’s calculation [22, p. 97] we find

dm

deq
=

tr(D′)

2(D′ : D′)1/2 =
dU/dr + 2U/r
2(U/r − dU/r)

=
p
2

60

6eq
sinh

(
3
2

6m

60

)
. (29)
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Figure 3. Radial distribution of equivalent stress 6eq (left) and
mean stress 6m (right) for the Cauchy stress tensor.
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Here the right-hand side is derived from the elimination of the plastic multiplier
between the deviatoric and mean parts of the homogenized flow rule. Using the
yield criterion we obtain for the right-hand side the value

ϕ(r) ≡
p
2

60

6eq

√
64

0

4p2

(
p2 + 1 −

(
62

eq

62
0

+
Q2

b262
0

))
− 1, (30)

which involves both stress and moments. Thus the ordinary differential equation
for the velocity is

dU/dr + 2U/r
2(U/r − dU/r)

= ϕ(r), (31)

or yet
dU
dr

+ g(r)U = 0, with g(r) :=
2
r

1 − ϕ(r)

1 + 2ϕ(r)
. (32)

Integrating by separation of variables yields

U(r) = λ exp
(

−

∫ r

r0

g(τ ) dτ

)
, (33)

where λ is a constant velocity determined from the boundary conditions.

4.4. The growth rate of the voids. The growth rate f of voids in the matrix satisfies

−
d
dt

ln(1 − f ) = dm =
dU
dr

+
2U
r

= λ exp
(

−

∫ r

r0

p(τ )dτ

)(
p(r) +

2
r

)
. (34)

Solving for f gives

f = 1 − exp
(∫ r

r0

ξ(γ )dγ

)
, with ξ(γ ) = λ exp

(
−

∫ γ

r0

g(τ )dτ

)(
g(γ ) +

2
γ

)
.

The porous material’s matrix contains small voids and a matrix that is incompress-
ible; the dilatation div(U(r)er ) is associated to a growth ḟ2(r) of the porosity at the
points located at a distance r of the central void, or equivalently to a growth of the
mean radius, ρ, of the small cavities located at this position. Standard derivations
based on incompressibility of the sound (void-free) matrix have demonstrated that
the growth rate ρ̇/ρ of secondary voids is given by

ρ̇

ρ
=

ḟ2

3 f 0
2 (1 − f 0

2 )
=

div(U(r)er )

f 0
2

=
dm

f 0
2

. (35)

When the porosity f 0
2 is small (which is the case for practical reasons), this becomes

ρ̇

ρ
=

ḟ2

3 f 0
2

=
ȧ
f 0
2

exp
(

−

∫ r

r0

g(τ )dτ

)(
g(r) +

2
r

)
. (36)
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In the vicinity of the large void where r = a0, equation (36) reduces to

ρ̇

ρ
(r = a0) =

ȧ
a0

(
f 0
2 p(a0) +

2
f 0
2

)
. (37)

Since the term in parentheses is close to 2/ f 0
2 when f 0

2 is very small, we see that
the small voids near the boundary of the big one grow logarithmically faster than
the larger void.

4.5. Discussion. We make some concluding remarks.

• When the characteristic length scale vanishes, all the components of the moment
tensor also vanish by (19). This means that any second gradient effects in the GLPD
model no longer exist. The yield criterion reduces to the original Gurson model
yield criterion and the stress state of the material does not contain any length scale
effects.

• Unlike [8], where porosity was disregarded, here we consider nonvanishing
porosity, at the initial time where the porosity has not yet evolved. This will be
sufficient to model ductile fracture mechanisms in metals with two populations
of cavities. The study of porosity effects after the initial time is left for future
investigations. (Perrin and Leblond [21; 22] have addressed these features, but the
model their analysis is based on does not contain second gradient effects.)

• The boundary conditions Mrrr (r = ri , re) = 0 ensure that the model does not
account for boundary layer effects. Also, these boundary conditions induce no shear
component effects.

• The expression of the void growth rate of the small voids in the matrix of the
hollow sphere suggests that small voids located at the boundary of the large central
void grow much more rapidly than the latter; this was first pointed out by Perrin
and Leblond [21; 22] in the absence of nucleation, and is enhanced by nucleation as
demonstrated in [8; 12]. As a consequence, the small voids may reach coalescence
before the large central one. The presence of length scale effects in the growth rate
will add microstructure effects on the fracture mechanisms pointed out above.

5. Conclusion

In this work we developed a solution for the micromorphic hollow sphere model
under tension obeying the GLPD constitutive model when the porosity is constant
at the initial time and we illustrate the analytic solutions provided previously by
Enakousta’s work when the porosity is neglected, but some effects of the strain
gradient were involved. We express the stress solutions in terms of the invariants of
the Cauchy stress tensor. The solution of the nonzero components of the moments
due to the strain gradient effects are also provided in this work.The radial velocity
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field and the growth rate of the small voids located in the matrix are derived; the
expression of the latter suggest that small voids located near the larger one grow
faster to form a shell of ruined material around the large void, a scenario that agrees
very well with experimental observations. In addition, the solution developed in
this work depends on the characteristic length scale and can be used as benchmark
solution to assess micromorphic gradient models; the solution can also be used
to test the efficiency of numerical implementation of gradient models into finite
element software.

Appendix A: Constitutive relations of the GLPD model

A.1. Generalities. In the GLPD model, internal forces are represented through
some ordinary second-rank symmetric Cauchy stress tensor 6 plus some addi-
tional third-rank “moment tensor” M symmetric in its first two indices only.2 The
components of M are related through the three conditions

Mi j j = 0, (38)

which may be compared to the condition of plane stress in the theory of thin plates
or shells. The virtual power of internal forces is given by

P(i)
≡ −

∫
�

(6 : D + M ... ∇ D) d�, (39)

where � denotes the domain considered, D ≡
1
2

(
∇V + (∇V )T

)
(V being the

material velocity) the Eulerian strain rate, 6 : D = 6i j Di j is the double inner
product and M ... ∇ D ≡ Mi jk Di j,k the triple inner product. The virtual power of
external forces is given by

P(e)
≡

∫
d�

T .V d S, (40)

where T represents some surface traction. The general equilibrium equations and
boundary conditions corresponding to expressions (39) and (40) of the virtual
powers of internal and external forces need not be given since they are not necessary
for the numerical implementation.

The hypothesis of additivity of elastic and plastic strain rates reads

D ≡ De
+ D p, ∇ D ≡ (∇ D)e

+ (∇ D)p. (41)

The elastic and plastic parts (∇ D)e, (∇ D)p of the gradient of the strain rate here do
not coincide in general with the gradients ∇(De), ∇(D p) of the elastic and plastic
parts of the strain rate.

2The component Mi jk is denoted Mk|i j in [17]. The present notation leads to more natural-looking
expressions.
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A.2. Hypoelasticity law. The elastic parts of the strain rate and its gradient are
related to the rates of the stress and moment tensors through the hypoelasticity law

d6i j

dt
= λ δi j De

kk +2µDe
i j ,

d Mi jk

dt
=

b2

5

(
λ δi j (∇ D)e

hhk +2µ(∇ D)e
i jk −2λ δi jU e

k −2µ(δikU e
j +δ jkU e

i )
)
.

(42)

Here λ and µ are the Lamé coefficients, b is the mean half-spacing between neigh-
boring voids,3 d6i j/dt, d Mi jk/dt are the Jaumann (objective) time-derivatives of
6i j , Mi jk , given by

d6i j

dt
≡ 6̇i j + �ki6k j + �k j6ik,

d Mi jk

dt
≡ Ṁi jk + �hi Mhjk + �hj Mihk + �hk Mi jh,

(43)

where � ≡
1
2(∇V − (∇V )T) is the antisymmetric part of the velocity gradient, and

finally Ue is a vector derived from (38), when written in rate form (DMi j j/Dt = 0):

U e
i =

λ(∇ D)e
hhi + 2µ(∇ D)e

ihh

2λ + 8µ
. (44)

(This vector may be compared to the through-the-thickness component of the elastic
strain rate in the theory of thin plates or shells, the value of which is fixed by the
condition of plane stress).

A.3. Yield criterion. The plastic behavior is governed by the Gurson-like yield
criterion

1
62

(
62

eq +
Q2

b2

)
+ 2p cosh

(
3
2

6m

6

)
− 1 − p2

≤ 0. (45)

As before (pages 398 ff.), 6eq is the von Mises equivalent stress, 6m is the mean
stress, b is the mean half-spacing between neighboring voids, Q2 is given by (3), and
6 is an average yield stress in the heterogeneous metallic matrix (further discussed
below). Finally, p is a parameter connected to the porosity f through the relation

p ≡ q f ∗, f ∗
≡

{
f if f ≤ fc,

fc + δ( f − fc) if f > fc,
(46)

where q is Tvergaard’s parameter, fc the critical porosity at the onset of coalescence
of voids, and δ > 1 a factor describing the accelerated degradation of the material
during coalescence [28; 29].

3In the homogenization procedure, b is the radius of the spherical elementary cell being considered.
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A.4. Flow rule. The plastic parts of the strain rate and its gradient are given by the
flow rule associated to the criterion (45) through normality (8 is the yield function
and η is the plastic multiplier; see page 398):

D p
i j = η

d8

d6i j
(6, M, 6, f ),

(∇ D)
p
i jk = η

d8

d Mi jk
(6, M, 6, f ) + δikU p

j + δ jkU p
i ,

(47)

The terms δikU p
j +δ jkU p

i in (47) represent a rigid-body motion of the elementary
cell, left unspecified by the flow rule but fixed in practice by conditions (38). (The
vector U p may be compared to the through-the-thickness component of the plastic
strain rate in the theory of thin plates or shells, the value of which is fixed by the
condition of plane stress.)

The derivatives of the yield function in (47) are easily calculated to be

d8

d6i j
(6, M, 6, f ) = 3

6′

i j

62 +
p
6

δi j sinh
(

3
2

6m

6

)
,

d8

d Mi jk
(6, M, 6, f ) =

1
62b2

( 2
3 A1δi j Mmk + 3A2 M ′

i jk
)
.

(48)

A.5. Evolution of internal parameters. The evolution of the porosity is governed
by the classical equation resulting from approximate incompressibility of the
metallic matrix:

ḟ = (1 − f ) tr D p. (49)

The parameter 6 is given by

6 ≡ 6(E) (50)

where 6(ϵ) is the function which provides the yield stress of the matrix material
in terms of the local equivalent cumulated plastic strain ϵ, and E represents some
average value of this equivalent strain in the heterogeneous matrix. The evolution
of E is governed by

(1 − f )6 Ė = 6 : D p
+ M ... (∇ D)p. (51)

Appendix B: Balance equations and boundary conditions

To derive the equilibrium equations and boundary conditions presented in Section 2,
we shall apply the principle of virtual work with a radial velocity v⋆

≡ v⋆
r er ,

instead of departing from the global equilibrium equations and calculating ∇∇ M
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in spherical coordinates. The virtual power of internal forces is defined as

−P(i)
≡ 4π

∫ re

ri

(6 : D⋆
+ M...∇ D⋆) r2dr (52)

Using the expressions of the strain and gradient of the strain, this becomes

−P(i)
≡ 4π

∫ re

ri

(
6rr

∂v⋆
r

∂r
+ 26θθ

v⋆
r

r
+ 2Mθθr

∂(v⋆
r /r)

∂r

)
r2 dr

+ 4π

∫ re

ri

(
Mrrr

∂2v⋆
r

∂r2 + Mrθθ

(
1
r

∂v⋆
r

∂r
−

v⋆
r

r

))
r2 dr. (53)

After integration by parts, this gives

−P(i)
≡ 4π

∫ re

ri

(
∂(−r26rr )

∂r
v⋆

r + 2r6θθv
⋆
r − 2

∂(r2 Mθθr )

∂r
v⋆

r

r

)
dr

− 4π

∫ re

ri

(
∂(r2 Mrrr )

∂r
∂v⋆

r

∂r
+ 4v⋆

r
∂(r Mrθθ )

∂r
+ v⋆

r Mrθθ

)
dr

+ 4π

(
r26rrv

⋆
r + r2 Mrrr

∂v⋆
r

∂r
+ 2r Mθθrv

⋆
r + 2r Mrθθv

⋆
r

)∣∣∣∣re

ri

. (54)

Here as usual the notation
∣∣re

ri
after a function of r represents the difference between

its values at re and ri . After development, this yields

−P(i)
≡ 4π

∫ re

ri

(
−2r6rr −r2 ∂6rr

∂r
+2r6θθ +r2 ∂2 Mrrr

∂r2 +4r
∂ Mrrr

∂r

)
v⋆

r dr

+ 4π

∫ re

ri

(
−4Mθθr − 2r

∂ Mθθr

∂r
− 8Mrθθ − 4r

∂ Mrθθ

∂r
+ 2Mrrr

)
v⋆

r dr

+ 4π

((
r26rr −

∂(r2 Mrrr )

∂r
+ 2r Mθθr + 4r Mrθθ

)
v⋆

r + r2 Mrrr
∂v⋆

r

∂r

)∣∣∣∣re

ri

. (55)

The application of the principle of virtual work (with the virtual power of external
forces P(e)

= 4πb2T v⋆
b, where T is a traction force applied on the outer surface of

the hollow sphere) gives the balance equations

∂6rr

∂r
+

2
r
(6rr − 6θθ ) −

∂2 Mrrr

∂r2 −
4
r

∂ Mrrr

∂r
−

2
r2 Mrrr +

2
r2

∂ Mθθr

∂r

+
4
r2 Mθθr +

4
r

∂ Mrθθ

∂r
+

8
r2 Mrθθ = 0 (56)

and the boundary conditions

r26rr −
∂(r2 Mrrr )

∂r
+ 2r Mθθr + 4r Mrθθ = 0 for r = ri and r = re,

Mrrr = 0 for r = ri and r = re.
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