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Abstract

We propose an easy-to-implement iterative method for resolving the implicit (or
semi-implicit) schemes arising in solving reaction-diffusion (RD) type equations. We
formulate the nonlinear time implicit scheme as a min-max saddle point problem and
then apply the primal-dual hybrid gradient (PDHG) method. Suitable precondition
matrices are applied to the PDHG method to accelerate the convergence of algorithms
under different circumstances. Furthermore, our method is applicable to various dis-
crete numerical schemes with high flexibility. From various numerical examples tested
in this paper, the proposed method converges properly and can efficiently produce
numerical solutions with sufficient accuracy.

Keywords— Primal-dual hybrid gradient algorithm; Reaction-diffusion equations; First order
optimization algorithm; Implicit finite difference schemes; Preconditioners.

1 Introduction
Reaction-diffusion (RD) equations (systems) have broad applications in many scientific and engi-
neering areas. In material science, the phase-field model is described by typical RD-type equations
known as Allen-Cahn [1] or Cahn-Hilliard equations [4]. They are used to model the development
of microstructures in a mixture of two or more materials or phases over time; In chemistry, RD
systems are used to depict the reaction and diffusion phenomena of chemical species in which a
variety of patterns are produced [37, 39]; RD systems are also ubiquitous tools in biology: They
are widely used for modeling morphogenesis [11], as well as the evolution of species distribution
in ecology system [34]. In recent years, researchers also found that RD equations are useful in
modeling and predicting crimes [44].

Reaction-diffusion (RD) equations are nonlinear parabolic partial differential equations possess-
ing the following general form

∂u(x, t)

∂t
= Lu(x, t) +Ru(x, t) on Ω ⊂ Rd, (1)

with initial condition u(·, 0) = u0,

where L is a certain non-positive definite differential operator associated with the diffusion process.
For example, L can be taken as the Laplace operator ∆ or negative biharmonic operator −∆2, or
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more general operators with variable coefficients; R is a nonlinear operator depicting the reaction
process. The RD equation is usually equipped with either the Neumann boundary condition if Ω is
an ordinary region in Rd, or the periodic boundary condition if Ω is a periodic region Td. We can
also extend the RD equation (1) from the 1D function u to multiple dimensional vector function
U :

∂U(x, t)

∂t
= LU(x, t) +RU(x, t) on Ω ⊂ Rd, (2)

with initial condition U(·, 0) = U0.

Equation (2) can also be equipped with either Neumann or periodic boundary conditions. We also
call the equation (2) reaction-diffusion system.

In recent decades, numerical methods, including finite difference methods [32, 17, 24, 27, 7, 12,
42, 40, 41, 28, 29, 30] and finite element methods [24, 49, 19], have been developed for computing
the reaction-diffusion type equations (systems). Several benchmark problems [26, 13] have also
been introduced to verify the proposed methods’ effectiveness.

In order to get rid of the restriction of the Courant–Friedrichs–Lewy (CFL) condition [15] on
small time steps, most of the popular numerical schemes designed for solving reaction-diffusion
equations (systems) in the aforementioned works of literature are implicit or semi-implicit. As one
uses implicit or semi-implicit schemes for solving RD equations (systems) with nonlinear terms,
Newton’s method [2] is usually needed for solving the series of nonlinear equations arising from
time discretization. However, Newton’s method encounters several drawbacks that may affect the
performance of the proposed numerical scheme, namely,

• Newton’s method requires the initial guess position to be close enough to the exact solution
of the nonlinear equation. Otherwise, Newton’s method may diverge.

• When solving RD equations on mesh grids by Newton’s method, in each iteration, one has
to solve a large-scale linear equation involving the Jacobian matrix of a certain nonlinear
function. Solving this large-scale linear equation for multiple Newton iterations could be
challenging and time-costing.

In this paper, we introduce a method based on the Primal-Dual Hybrid Gradient method
(PDHG) [50, 8, 47, 14, 25] for solving the nonlinear updates arising in the time discretization
schemes of RD equations (systems) with satisfying speed and accuracy.

We sketch the proposed method as follows. We briefly illustrate the main idea by considering
the following fully implicit, semi-discrete scheme of the RD equation at the t-th time step:

ut+1 − ut

ht
= Lut+1 +Rut+1. (3)

In this case, ut is given, and ht > 0 is a stepsize. We need to solve for ut+1. Consider the following
function F

F(u) = u− ht(Lu+Ru)− ut. (4)
The goal is to solve F(u) = 0. If we consider the indicator function ι defined as

ι(u) =

{
0 u = 0

+∞ u 6= 0.

Then the nonlinear functional equation F(u) = 0 is equivalent to the minimization problem

min
u∈X

ι(F(u)),

where X is a certain linear functional space for u. Now since ι can be treated as the Legendre
transform of the constant function 0, i.e., ι(u) = supp∈X∗ {(p, u)} (here X∗ denotes the dual space
of X), we can recast the above minimization problem as a min-max saddle point problem as follows

min
u∈X

max
p∈X∗

{(p, F(u))}. (5)
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We denote L(u, p) = (p,F(u)). To deal with the saddle problem (5), by leveraging the ideas pro-
posed in the PDHG method, we evolve p, u via the following proximal algorithms with extrapolation
on the dual variable p.

pn+1 =argmin
p∈X∗

{
‖p− pn‖22

2τp
− L(un, p)

}
= pn + τpF(un), (6)

p̃n+1 =pn+1 + ω(pn+1 − pn), (7)

un+1 =argmin
u∈X

{
‖u− un‖22

2τu
+ L(u, p̃n+1)

}
= (Id + τu(p̃n+1, ∂uF))−1(un). (8)

Here the extrapolation coefficient ω > 0, τp, τu are time steps used to evolve u, p. We should remind
the reader to distinguish the PDHG time steps τp, τu from the time step ht of the reaction-diffusion
equation. Recall ut+1 as the solution to F(u) = 0, if we further assume that ∂uF(u), as a linear
map from X to X∗, is injective. Then it is not hard to verify that u = ut+1, p = 0 is the equilibrium
of the above dynamic (6) - (8). Thus, we may anticipate that, by evolving (6), (7), (8), uk, pk could
converge to the desired equilibrium point ut+1, 0.

Furthermore, since F is usually nonlinear, the inversion in (8) cannot be directly evaluated. To
mitigate this, we replace L(u, p̃k+1) by its linearization L̂(u, p̃k+1) = L(uk, p̃k+1)+(∂uL(uk, p̃k+1), u−
uk) at u = uk. Thus the update of uk+1 will have an explicit form

uk+1 = uk − τu(p̃k+1, ∂uF(uk)). (9)

As a result, we can evolve the discrete-time dynamic (6), (7), (9) for approximating the solution
ut+1 of the nonlinear equation F(u) = 0, and the explicit updating rules will enable us to deal with
large-scale computational problems conveniently and efficiently. This work will mainly focus on
applying such a PDHG algorithm to solve various types of reaction-diffusion equations (systems)
up to satisfying accuracy and efficiency. Based on the discussion and presentation in this paper,
our method may serve as a potential alternative to the widely used Newton-type algorithms for
time-implicit updates of reaction-diffusion equations for time-implicit schemes.

It is worth mentioning that instead of designing and analyzing new discretization schemes for
RD equations, our paper is mainly devoted to a strategy that can efficiently resolve the ready-made
scheme. Thus, in our paper, we will omit most of the discussions on the properties of the numerical
scheme but focus more on the implementing details and the effectiveness of the proposed PDHG
method.

We clarify that the method is inspired by [31], in which the authors design a similar algorithm
for solving multiple types of PDEs accompanied by 1-D examples. This paper will be more specific
and focus on computing various 2-D RD equations (systems) with different boundary conditions.

It is also worth mentioning that introducing damping terms into wave equations to achieve faster
stabilization [18] shares great similarity with the limiting stepsize version of applying the PDHG
method to PDE-solving algorithms. On the other hand, PDHG methods are also utilized in [47] to
solve nonlinear equations with theoretical convergence guarantee under different circumstances.

Furthermore, people have applied PDHG or first-order methods to compute time-implicit up-
dates of Wasserstein gradient flows [5] and reaction-diffusions [6, 19]. Compared to them, the
proposed approach work for general non-gradient flow reaction-diffusion equations. In recent re-
search [10], the authors deal with the nonlinear saddle point problems via the transformed PDHG
method, with the follow-up research [9] aiming at solving the nonlinear equations associated with
a class of monotone operators. In recent works [48, 3], the authors utilize the weak forms of PDEs
and deep learning techniques to compute high-dimensional PDEs. The algorithm in [48] can be
formulated as a min-max saddle point problem and is directly solved by alternative stochastic
gradient descent and ascent method. Although the proposed method shares similarities with the
aforementioned research. It differs from them in the saddle point problem formulation and the
computational scheme.
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This paper is organized as follows. In section 2, we provide a brief introduction to the Primal-
Dual Hybrid Gradients method; then we present the details of how we implement the PDHG
method to update the finite difference schemes for RD equations (systems). We then provide some
existing theoretical results on the convergence of the PDHG method. We demonstrate our numerical
examples in section 3. Our numerical experiments cover well-known Allen-Cahn and Cahn-Hilliard
equations; higher-order gradient flow that emerges from functionalized polymer research; RD system
known as the Schnakenberg model, which originates from the study of steady chemical patterns;
and RD systems involving nonlocal terms depicting the species evolution of wolves and deer. We
conclude the work in section 4. Some of the future research directions will also be discussed in
section 4.

2 PDHG method for reaction-diffusion equation
In recent years, The Primal-Dual Hybrid Gradient (PDHG) method [50, 49, 8] proves to be an
efficient algorithm for solving saddle point problems emerging from imaging. This method is it-
erative and each of its iterations consists of alternative proximal steps together with a suitable
extrapolation. We refer the readers to [8] for further details (both theoretical and experimental) of
the method.

2.1 PDHG method for updating implicit finite difference schemes
To clearly convey our proposed idea, let us first consider the following reaction-diffusion equation
as an illustrative example on 2D periodic region Ω = T2. We assume Ω is square shaped and denote
its side length as L.

∂u(x, t)

∂t
= λ∆u(x, t) + f(u(x, t)), u(x, 0) = u0(x). (10)

Here we assume λ is a positive constant coefficient; f : R→ R is the nonlinear function depicting the
reaction term. Since we assume Ω to be the periodic region, we use periodic boundary conditions
(BC) for equation (10).

Although there are numerous pieces of research on designing numerical schemes for RD equa-
tions, to demonstrate how our method works, let us narrow down and focus on the implicit one-step
finite difference (FD) scheme. Once we have demonstrated how to implement the method to this
implicit scheme, such a method can be easily extended to general numerical schemes.

We discretize the time interval [0, T ] into Nt equal subintervals with length ht = T/Nt. Suppose
we discretize each side of the region Ω into Nx subintervals with space stepsize hx = L/Nx, we
choose the central difference scheme to discretize the Laplace operator ∆. We denote the discrete
Laplace operator with the periodic boundary condition as LapP

hx
which is anN2

x×N2
x block-circulant

matrix possessing the following form

LapP
hx

=
1

h2
x


L I I
I L I

. . .
. . .

. . .
I L I

I I L


Nx×Nxblocks

L =


−4 1 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 1 −4


Nx×Nx

.

Here I is the Nx by Nx identity matrix. We denote Uk ∈ RN
2
x as the numerical solution of (10) at

the kth time step. We vectorize the Nx ×Nx square array along the column to form the 1D vector
Uk. That is, for l = i ·Nx + j with 1 ≤ i ≤ Nx and 1 ≤ j ≤ Nx, Ukl is the numerical approximation
of u((j − 1)hx, (i− 1)hx, kht).
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Now the implicit one-step FD scheme for (10) is cast as

Uk+1 − Uk = ht(λ LapP
hx
Uk+1 + f(Uk+1)), U0 = U0. (11)

Here U0 denotes the initial condition on mesh grid points. When solving for the numerical solution
of (10), one has to sequentially solve a series of nonlinear equations as shown in (11). This is the
place in which we should apply the PDHG method. Let us denote the function F : RN

2
x → RN

2
x as

F (U) = U − Uk − ht(λLapP
hx
U + f(U)). (12)

We want to solve F (U) = 0. As discussed in the introduction, this is equivalent to minimizing
ι(F (U)), which can further be cast as the following min-max saddle point problem

min
U∈RN2

x

max
P∈RN2

x

{L(U,P )}, (13)

where L is defined as L(U,P ) = P>F (U). As a result, solving the equation F (U) = 0 finally boils
down to the min-max problem (13).

Now the PDHG method suggests the following gradient ascent-descent dynamic for solving (13).

Pn+1 = argmin
P∈RN2

x

{
‖P − Pn‖22

2τp
+ L(Un, P )

}
= Pn + τpF (Un); (14)

P̃n+1 = Pn+1 + ω(Pn+1 − Pn); (15)

Un+1 = argmin
U∈RN2

x

{
‖U − Un‖22

2τu
+ L(U, P̃n+1)

}
= (Id + τu∇UF (·)>P̃n+1)−1Un. (16)

Similar to our discussion in the introduction, the third line above involves a nonlinear equation that
cannot be directly solved. We thus can replace the term L(U, P̃n+1) in (16) by the linearization
L̂(U,P ) = L(Un, P ) +∇UL(Un, P )(U − Un), then (16) can be explicitly computed as

Un+1 = argmin
U∈RN2

x

{
‖U − Un‖22

2τu
+ L̂(U, P̃n+1)

}
= Un − τu∇UF (Un)>P̃n+1. (17)

Let us denote U∗ as the solution to F (U) = 0. It is not hard to tell that (U∗, 0) is a critical point of
the functional L(U,P ). Furthermore, (U∗, 0) is the equilibrium point of the time-discrete dynamic
(14), (15), (17).

To analyze the convergence speed to the equilibrium state (U∗, 0), we first consider the affine
case in which F (U) = AU − b with A as an N2

x × N2
x symmetric matrix. We have the following

result, similar to the analysis carried out in [31].

Theorem 1 (Convergence speed in Linear, symmetric case). We fix the extrapolation coefficient
ω = 2. Suppose we obtain the sequence {(Un, Pn)}n≥0 by evolving the PDHG dynamic (14), (15),
(17) with initial condition (U0, P0). Suppose F (U) = AU with A symmetric and non-singular.
Denote λmax as the maximum eigenvalue (in absolute value) of A, and denote κ as the condition
number of A. Then {(Un, Pn)} will converge to (U∗, 0) linearly if τuτp ≤ 4

3λ2
max

. Then the maximum

convergence speed is achieved when τuτp = η∗
λ2
max

, with the optimal convergence rate γ∗ =
√

1− η∗
κ2 ,

i.e., we have for any n ≥ 1, ‖(Un, Pn)− (U∗, 0)‖2 ≤ γn∗ ‖(U0, P0)− (U∗, 0)‖2. Here η∗ = η∗(κ) is a
function of κ. The range of η∗ belongs to [1, 3

4
).

The proof of the theorem is provided in Appendix A. The explicit form of η∗(κ) and γ∗ are
given in remark 2 of Appendix A.

The optimal convergence rate γ∗ will be very close to 1 if the condition number κ is large.
Furthermore, one will require O(κ2) iterations for Un to converge. This can be very expensive
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when A is a large-scale matrix with a large condition number. For example, we consider the heat
equation

∂tu(x, t) = ∆u(x, t)

with periodic boundary conditions. We apply the one-step implicit scheme to this equation, i.e.,
we consider solving (I − λhtLapP

hx
)Un+1 = Un at each time step n. Thus A = I − htλLapP

hx
. One

can tell that the eigenvalues of A equal 1 + 4htλN
2 sin2

(
πk
N

)
for 1 ≤ k ≤ N. When N is even, the

condition number κ of A equals 1+4λN2ht. Since we can get rid of the CFL condition by using the
implicit scheme, we can pick ht � 1

N2 , which leads to κ(A)� 1. The convergence of the primitive
PDHG method could be very slow, even for the heat equation.

As discussed in remark 2, γ∗ approaches 0 if the condition number κ drops to 1. Hence, we
need to control the condition number of the matrix A to achieve faster convergence speed. This
motivates us to introduce the preconditioning technique to the PDHG method. As suggested in
both [25] and [31], we replace the l2 norm used in either ‖U − Un‖2 or ‖P − Pn‖2 by the G−norm
‖ · ‖G which is defined as

‖v‖G =
√
v>Gv,

with G as a symmetric, positive definite matrix. In this work, we mainly focus on substituting the
norm ‖P − Pn‖2 with ‖P − Pn‖G. The PDHG method involving G−norm in its proximal step is
sometimes named G−prox PDHG [25]. The dynamic obtained via such G−prox PDHG is shown
below.

Pn+1 = Pn + τpG
−1F (Un); (18)

P̃n+1 = Pn+1 + ω(Pn+1 − Pn); (19)

Un+1 = Un − τu∇UF (Un)>P̃n+1. (20)

We should pause here to emphasize to the reader that the above three-line dynamic (18), (19), (20)
will be the core gadget for our RD equation solver throughout the remaining part of the paper.
Before we move on to further details on solving the RD equation (10) via G−prox PDHG dynamic,
let us provide a little more explanation on how (18) - (20) improve the convergence speed γ∗.
Analogous to Theorem 1, we have the following corollary for affine function F .

Corollary 1.1 (Convergence for G−prox dynamic). Suppose we keep all the assumptions in The-
orem 1, if we further assume that G commutes with A, i.e., GA = AG, then all the conclusions in
Theorem 1 still hold except λmax now denotes the largest (in absolute value) eigenvalue of A>G−1A,
and κ2 now is the condition number of A>G−1A.

It is now clear that if we can find a matrix G that approximates AA> well, then A>G−1A will
be reasonably close to the identity matrix I. Thus the condition number of A>G−1A will hopefully
remain close to 1. In such cases, by properly choosing the step size τu, τp such that τuτp is close to
1, we can obtain a rather fast convergence rate γ∗.

Up to this stage, although most of our intuition and analysis on G−prox PDHG dynamic comes
from the case when F is affine, it is natural to extend our treatment to the nonlinear F (U) defined
in (12). We may still anticipate the effectiveness of our method since (12) can be recast as

F (U) = (I − λhtLapP
hx

)U − Uk − htf(U),

which can be treated as an affine function with a nonlinear perturbation htf(U) carrying the small
ht coefficient. We now discuss several details in applying the G−prox PDHG dynamic (18)-(20) to
the above F (U). We aim at evolving the following dynamic in order to update the implicit one-step
scheme (11).

Pn+1 = Pn + τpG
−1(Un − λhtLapP

hx
Un − htf(Un)− Uk); (21)

P̃n+1 = Pn+1 + ω(Pn+1 − Pn); (22)

Un+1 = Un − τu(P̃n+1 − λhtLapP
hx
P̃n+1 − htf ′(Un)� P̃n+1). (23)
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Initial guess It is natural to choose the initial value U0 of the dynamic (21) - (23) as the
computed result from the last time step k, i.e., we set U0 = Uk; And we will simply set P0 = 0.
A more sophisticated choice for U0 could be the numerical solution at time k + 1 obtained by a
forward Euler scheme or an IMEX scheme [36, 24].

Choosing the matrix G The function F (U) defined in (12) is dominated by the affine term
(I − λhtLapP

hx
)U − Uk. It is then natural to choose G = (I − λhtLapP

hx
)2 as the preconditioner

matrix. If the nonlinear term f(U) is a highly stiff term, we may also consider absorbing its Jacobian
∇Uf(U) = diag(f(U)) into G. So, G can also be chosen as G = (I−λhtLapP

hx
−diag(f(U)))2 in such

case. However, there might be a trade-off in doing so: if diag(f(U)) does not have equal diagonal
entries, I −λhtLapP

hx
− diag(f(U)) cannot be efficiently inverted by Fast Fourier Transform (FFT)

or Discrete Cosine Transform (DCT) method. Nevertheless, in most of our experiments, we discover
that choosing G = (I − λhtLapP

hx
)2 is adequate for achieving satisfying convergence speed. For

more general reaction-diffusion equations, we discover that the nonlinear function F (U) is usually
decomposed as the sum of the linear term AU and the nonlinear term htf(U). The linear term
AU can be treated as the dominating term of F (U). It is then reasonable to choose G = AA>

or at least close to AA> as a decent preconditioner of our method. This strategy works properly
on general RD equations such as the Cahn-Hilliard equation or higher-order equations arising in
polymer science. We refer the reader to examples in section 3 for details.

Application of FFT for fast computation Making use of the Fast Fourier Transform (FFT)
method, or more precisely, 2-dimensional FFT [22] to accelerate our computation is crucial in our
method. There are two places where we should apply FFT. The first is where we compute G−1u; the
second is where we compute LapP

hx
u. We refer the readers to chapter 4.8 of [22] and the references

therein for details on implementing FFT. We also refer the reader to the examples in section 3 for
applying FFT to general RD equations.

Choose suitable stepsize For the affine case discussed in Corollary 1.1, if G is close to AA>,
then λmax(A>G−1A) should be a close to 1, then τuτp ≤ 4

3λ2
max

indicates that we could choose
stepsizes τu, τp rather large. In our practice, starting at τu = τp = 0.8 should be a reasonable
choice. One can increase or decrease the stepsize based on the actual performance of the method.

Stopping criterion During our computation, we will set up a threshold δ for our method.
After each iteration of the PDHG dynamic, we evaluate the l2 norm of the residual Res(Un) =
Un−Uk
ht

− (λLapP
hx
Un + f(Un)), we terminate the PDHG iteration iff ‖Res(Un)‖2 ≤ δ.

Remark 1 (Neumann boundary condition and DCT). It is worth providing some further discus-
sions on our treatment of the Neumann boundary condition (BC), i.e., for a particular rectangular
region Ω ⊂ R2, ∂u

∂~n
= 0 on ∂Ω. We discretize both sides of Ω into Nx − 1 subintervals. Thus the

space stepsize hx = L
Nx−1

. Such discretization will lead to N2
x mesh grid points. For point (ihx, 0)

on the vertical boundary of Ω, we apply the central difference scheme to the Neumann boundary
condition at the midpoint (ihx,− 1

2
hx), which leads to Ui,−1−Ui,0

hx
= 0, thus Ui,−1 = Ui,0. Similar

treatments are applied to the other boundaries of Ω. Suppose we consider using the central differ-
ence scheme to discretize the Laplacian ∆, let us denote the discretized Laplacian w.r.t. Neumann
boundary condition as LapNhx , then LapNhx takes the following form.

LapNhx =
1

h2
x


L1 I
I L2 I

. . .
. . .

. . .
I L2 I

I L1


Nx×Nxblocks

. (24)
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Here the block matrices L1, L2 are

L1 =


−2 1
1 −3 1

. . .
. . .

. . .
1 −3 1

1 −2


Nx×Nx

, L2 =


−3 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −3


Nx×Nx

Similar to using FFT for the computation involving LapPhx , we can use the Discrete Cosine Trans-
form (DCT) [46] [22] to efficiently evaluate matrix-vector multiplication or solve linear equations
involving the matrix LapNhx . To be more specific, we use the DCT-2 transform introduced in [46] in
the 2-dimensional scenario which enjoys the O(N2

x logNx) computational complexity.

We summarize our method in the following algorithm. It is not hard to tell that the total
complexity of each inner PDHG method is O(]{PDHG iter} ·N2

x logNx}).

Algorithm 1 PDHG method for updating implicit one-step FD scheme of RD equation
1: Input: Initial condition u0, terminal time T , number of time subintervals Nt; region

size L, number of space subintervals Nx;
2: Initialize ht = T/Nt, hx = L/Nx, {U0

ij} = {u0(ihx, jhx)}.
3: for 0 ≤ k ≤ Nt − 1 do
4: Set initial condition: U0 = Uk (or Ûk+1 obtained via explicit Euler or IMEX scheme).
5: n = 0.
6: while ‖Res(Un)‖2 ≥ δ do
7: Evolve the G-prox PDHG dynamic (21) - (23) with help of 2D FFT(DCT):
8: We use FFT for periodic BC and DCT for Neumann BC.
9: Compute Vn = LapP

hxUn via 2D FFT(DCT);
10: Compute Wn = Un − λhtVn − htf(Un)− Uk;
11: Solve GYn =Wn via 2D FFT(DCT);
12: Update Pn+1 = Pn + τpYn; P̃n+1 = Pn+1 + ω(Pn+1 − Pn);
13: Compute Qn+1 = LapP

hx P̃n+1 via 2D FFT(DCT);
14: Update Un+1 = Un − τu(P̃n+1 − λhtQn+1 − htf ′(Un)� P̃n+1);
15: n = n+ 1;
16: end while
17: Set Uk+1 = Un;
18: end for
19: Output: The numerical solution U0, U1, ..., UNt .

In this section, we mainly focus on the one-step implicit finite difference (FD) scheme to illustrate
how we apply the PDHG iterations to update the given FD scheme. But we should emphasize that
our method is not restricted to such a scheme. One can extend the PDHG method to various types
of numerical schemes by formulating the scheme at a certain time step k as a nonlinear equation
F k(U) = 0, and construct the functional Lk(U,P ) = P>F k(U). Then one can apply the dynamic
(18) - (20) to update the numerical solution from Uk to Uk+1. In addition, our method is applicable
to more general reaction-diffusion equations (systems). Further discussions and details are supplied
in section 3.
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2.2 Discussion on convergence criteria and adaptive ht method
Theorem 1 suggests that under the linear case, the convergence of PDHG method relies on condition
number κ, which is directly related to hx, ht of our discrete scheme. In practice, we fix hx and τu, τp
in the algorithm. At every time step n we discover that when time stepsize ht gets larger than a
certain threshold value h∗t which depends on hx, τu, τp and n, PDHG method will hardly converge.
The method works well when ht is slightly smaller than the threshold. The theoretical study on
how h∗t guarantees the convergence of our method will be an important future research direction.

Adaptive time stepsize As discussed above, we cannot guarantee the convergence of the
PDHG iteration (21) - (23) for any time stepsize ht. Since the aforementioned threshold h∗t may
vary at different time stages, and how h∗t varies depends on the nature of the equation as well as
the discretization scheme. Given the potential difficulty of choosing the suitable ht that guarantees
both the numerical accuracy as well as the convergence of the PDHG iterations, we come up with
the strategy of using adaptive stepsize ht throughout the computation. We choose a time stepsize
h0
t that guarantees the numerical accuracy and will serve as the upper bound of all ht throughout

our method, we also set up two integers N∗ > N∗ > 0 as the thresholding integers for enlarging or
shrinking the time stepsize ht. We also pick a rescaling coefficient η ∈ (0, 1). During each time step
n of the algorithm, we record the total number of PDHG iterations MPDHG, and reset the stepsize
ht for the next time step based on the following rules:

• If MPDHG > N∗, we shrink ht by rate η, ht = ηht;

• If N∗ ≥MPDHG ≥ N∗, we remain ht unchanged;

• If MPDHG < N∗, we enlarge ht by rate 1
η
, ht = ht

η
, if ht

η
≤ h0

t ; we remain ht unchanged if
ht
η
> h0

t .

It is also reasonable to fix hx, ht but to only shrink the PDHG stepsizes τu, τp when we encounter
difficulties in converging. However, according to our experience, shrinking τu, τp usually requires
much more PDHG iterations for convergence, which may cause the algorithm less efficient compared
with the aforementioned adaptive ht strategy.

3 Numerical examples
In this section, we demonstrate some numerical results computed by the proposed method. Through-
out our experiments, we always use the extrapolation coefficient ω = 1, and set the initial condition
U0 as the numerical solution Uk computed from the last time step tk. One can also try other values
of ω or a more sophisticated initial guess of U0. Our experiences show that confining ω around 1 will
probably provide the best performance of the PDHG method. Choosing U0 as Ûk+1 obtained by a
specific explicit or IMEX scheme may slightly shorten the convergence time of the PDHG iteration.
However, it is worth mentioning that when we are dealing with stiff equations, such treatment may
introduce instability to the PDHG dynamic which may lead to the blow-up of the method.

Furthermore, as we have emphasized before, the mission of this paper is to verify the correctness
and effectiveness of the proposed PDHG method in resolving the equation F (U) = 0 at each time
step. Thus, in this work, we will mainly focus on the straightforward one-step implicit scheme (11)
in all numerical examples by omitting further discussions and experiments on more sophisticated
numerical schemes.

We use fixed time stepsize ht in our numerical examples unless we emphasize that the adaptive
ht method is applied in the experiments.

Our numerical examples are computed in MATLAB on a laptop with 11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz CPU.
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3.1 Allen-Cahn equations
The Allen-Cahn equation [1] is a typical reaction-diffusion equation taking the following form

∂u(x, t)

∂t
= a∆u(x, t)− bW ′(u(x, t)), on Ω ⊂ R2, u(·, 0) = u0. (25)

Here a, b > 0 are positive coefficients,

W (u) =
(u2 − 1)2

4
(26)

is a double-well potential function with its derivative W ′(u) = u3 − u. We will always assume
periodic boundary conditions in our discussion.

The Allen-Cahn equation can be treated as the L2−gradient flow of the following functional
E(u).

E(u) =

∫
Ω

1

2
a|∇u|2 + bW (u) dx. (27)

3.1.1 Examples with shrinking level set curve

In the first example, we consider Ω = [−L,L]2 with L = 0.25. We consider taking a = ε, b = 1
ε
with

ε = 0.01. Let use consider u0 = 2χB − 1. Here χE denotes the indicator function of measurable
set E, i.e., χE(x) = 1 if x ∈ E, and χE(x) = 0 otherwise. We denote B as the disk centered at O
with a radius equal to 0.2. Suppose we use periodic boundary conditions for (25). It is well-known
that the zero-level-set curve of the solution u(x, t) to Allen-Cahn equation behaves similarly to the
mean curvature flow as time t increases [38, 33, 32]. In this case, we can treat the initial level set
curve as the circle centered at the origin with radius r(0) = 0.2. As t increases, the circle radius
will shrink at the rate of ε times circle curvature, i.e., ṙ(t) = −εκ(t) = − ε

r(t)
. Solving this equation

leads to r(t) =
√
r(0)2 − 2εt. Thus the level set circle will vanish at finite time t = r(0)2

2ε
= 2.

As suggested in section 4.4 of [33], it is important to choose the spatial stepsize hx small enough
so that hx no larger than O(ε) to capture the shrinkage of level set curve, otherwise, the numerical
solution may get stuck at some intermediate stage. In this example, we solve the equation on time
interval [0, 3]. We choose Nt = 3000, thus ht = 1/1000; Nx = 100 with hx = L/Nx = 1/200. Recall
hx < ε. We choose τu = τp = 0.5 as the stepsize for the PDHG iteration. Some computed results
are shown in Figure 1. Plots of the radial position as well as the moving speed of the front (zero
level set circle) of the numerical solution are presented in Figure 2.

We apply the PDHG method described in Algorithm 1 to this problem. Although equation (1)
contains a nonlinear term with a significant coefficient 1

ε
, our proposed PDHG method still solves

the nonlinear F (U) = 0 efficiently. To be more specific, we set the PDHG-threshold δ = 10−7.
Most PDHG iterations will terminate in less than 200 steps for each discrete time step. The right
plot of Figure 2 indicates the linear convergence of the proposed method.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0 (d) t = 1.5 (e) t = 2.0 (f) t = 2.5

Figure 1: Numerical solution of (1) at different times with initial condition u0 = 2χB − 1.

We also solve equation (1) on Ω = [0, 0.5]2 within the time interval [0, 0.5]. We still set a =
ε, b = 1

ε
with ε = 0.01. We pick Nx = 100, Nt = 500, thus hx = 1/200, ht = 1/1000. We consider
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(a) Plot of the front position
(calculated from linear interpo-
lation of the numerical solution)
in radial direction versus time

(b) Plot of the front speed (cal-
culated from finite difference)
versus time

(c) Plot of the front speed (cal-
culated from finite difference)
versus time

Figure 2: Plots of front position and speed (Left & Middle); Plots of log10 Res(Un) versus
PDHG iterations at time stage t = 1.0 (Right).

the initial condition u0 = 2χE−1 with the region E = (B1 \B2)∪ (B2 \B1), where B1, B2 are disks
centered at (0.2, 0.25), (0.3, 0.25) with radius both equal to 0.1. We apply the PDHG method with
τu = τp = 0.5 and obtain the numerical results in Figure 3. In this example, the PDHG method
takes no more than 200 iterations for each time step update.

(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.2 (e) t = 0.3 (f) t = 0.4

Figure 3: Numerical solution at different times with initial condition u0 = 2χE − 1. Notice
that in the last plot, we have almost converged to the equilibrium solution u = −1.

3.2 Cahn-Hilliard equations
We now switch to another well-known reaction-diffusion equation known as the Cahn-Hilliard equa-
tion [4], which takes the following form.

∂u(x, t)

∂t
= −a∆∆u(x, t) + b∆W ′(u(x, t)), on Ω ⊂ R2, u(·, 0) = u0. (28)

Here we assume a, b > 0, andW (u) defined the same as in the Allen-Cahn equation. In this section,
we will restrict our discussion to periodic boundary conditions. Similar to the Allen-Cahn equation,
the Cahn-Hilliard equation can be treated as the H−1−gradient flow of the functional E(u) defined
in (27). Due to this reason, compared with the Allen-Cahn equation, the Cahn-Hilliard equation
involves one extra operator −∆ on the right-hand side of the equation. This difference leads to
several slight modifications to our original algorithm.

The functional F (U) introduced in (12) is now

F (U) = (I − λhtLapP
hx

LapP
hx

)U − Uk − htLapP
hx
f(U). (29)

Thus L(U,P ) = P>((I − λhtLapP
hx

LapP
hx

)U −Uk)− htP>LapP
hx
f(U). It is then natural to choose

precondition matrix G as (I − λhtLapP
hx

LapP
hx

)2. The three-step PDHG update for Cahn-Hilliard
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i 1 2 3 4 5 6 7

xi π/2 π/4 π/2 π 3π/2 π 3π/2
yi π/2 3π/4 5π/4 π/4 π/4 π 3π/2
ri π/5 2π/15 π/15 π/10 π/10 π/4 π/4

Table 1: data 7 circles

equation can thus be formulated as

Pn+1 = Pn + τpG
−1(Un − λhtLapP

hx
LapP

hx
Un − htLapP

hx
f(Un)− Uk); (30)

P̃n+1 = Pn+1 + ω(Pn+1 − Pn); (31)

Un+1 = Un − τu(P̃n+1 − λhtLapP
hx

LapP
hx
P̃n+1 − htf ′(Un)� LapP

hx
P̃n+1). (32)

By carefully investigating the steps among (30) - (32), one can tell that both the linear equation
involving G and the matrix-vector multiplication involving LapP

hx
can be computed via FFT, which

indicates the effectiveness of the computational scheme when applied to Cahn-Hilliard equations.
We demonstrate several numerical examples below.

3.2.1 Example with seven circles

Inspired by the second example introduced in [13], we consider Cahn-Hilliard equation (28) on
periodic domain Ω = [0, 2π]2 with a = 0.12 and b = 1. We set the initial condition u0 as

u0(x, y) = −1 +

7∑
i=1

ϕ(
√

(x− xi)2 + (y − yi)2 − ri),

where the mollifier function ϕ is defined as

ϕ(s) =

{
2e
− ε

2

s2 s < 0;

0 s ≥ 0
, with ε = 0.1.

One can think of u0(x, y) as an indicator function whose value equals +1 if (x, y) falls into any of
the seven circles; and equals −1 otherwise. Furthermore, we set the centers and radii of the seven
circles as in Table 1.

We will solve equation (28) on the time interval [0, 30]. In our numerical implementation, we
set Nx = 128, hx = π/64; Nt = 6000, ht = 1/200. For the PDHG iteration, we set τu = τp = 0.5.
The numerical solution to this equation is demonstrated in Figure 4. The plots of log residuals
at different time stages are also presented in Figure 4, which exhibit the linear convergence of the
PDHG algorithm. The small circles will gradually fade out, leaving the largest circle in the center
of the domain till the end. By analyzing our numerical solution, the time T1 at which the value of
our numerical solution is evaluated at (π/2, π/2) passes 0 is located in the interval [6.340, 6.345];
while the time T2 at which our numerical value evaluated at (3π/2, 3π/2) passes 0 is located in the
interval [26.015, 26.020]. Both times meet the accuracy proposed in [13].

3.2.2 Example with sinusoidal initial condition

In this section, we follow example 4 proposed in [13] to compute (28) on Ω = [0, 2π]2. We set
a = π2

25000
, b = 1. The initial condition is set as

u0(x, y) = 0.05(cos(3x) cos(4y) + (cos(4x) cos(3y))2 + cos(x− 5y) cos(2x− y)).

We solve the equation on the time interval [0, 8]. We set Nx = 256, hx = π/128; Nt = 24000,
ht = 1/3000. For the PDHG part, we choose τu = τp = 0.5. The PDHG iteration is working
efficiently at every time stepsize. Some numerical plots are shown in Figure 5.
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(a) t = 0.0 (b) t = 1.0 (c) t = 5.0 (d) t = 15.0 (e) t = 25.0 (f) t = 30.0

Figure 4: Numerical solution and log10 Res(Un) plot at different time stages for the seven
circle example. The residual plots indicate the linear convergence of PDHG method for the
nonlinear objective functions used in this example.

(a) t = 0.0 (b) t = 0.05 (c) t = 0.30 (d) t = 8.0

Figure 5: Numerical solution at different time stages with sinusoidal initial condition.

3.2.3 Example with random initial condition

One can also consider the Cahn-Hilliard equation (28) with random initial condition. This may
impose more challenges to our computation since the randomness will remove the regularity of
u0 and make the numerical computation unstable. We will solve the equation (28) on [0, 1] in
this example. We let the periodic domain Ω = [0, 1]2. Then we choose Nx = 128, hx = 1/128;
Nt = 100000 with ht = 1/100000. We choose a rather small time step size in this example in order
to guarantee the accuracy of our numerical solution. For the initial condition, we choose u0 as a
random scalar field that takes i.i.d. values uniformly distributed on [−0.05, 0.05]. We evolve the
PDHG dynamic with stepsize τu = τp = 0.75. We plot the numerical solutions at certain time
stages in Figure 6. The reaction-diffusion system reaches the equilibrium state at t = 1. The
residual plots of Res(U) at time t = 0.01 and t = 1 are provided in Figure 7.

(a) t = 0.0 (b) t = 0.001 (c) t = 0.003 (d) t = 0.01 (e) t = 1.0

Figure 6: Numerical solution at different time stages with random initial condition.
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(a) Plot of the residual Res(U) at t = 0.01 (b) Plot of the residual Res(U) at t = 1.0

Figure 7: Plots of residual at t = 0.01 and t = 1.0.

3.3 Higher-order Reaction-Diffusion Equations
In addition to the Allen-Cahn and Cahn-Hilliard equations, we test the method on the following
6th-order Cahn-Hilliard-type equation.

∂u(x, t)

∂t
= ∆(ε2∆−W ′′(u) + ε2)(ε2∆u−W ′(u)) On Ω, u(·, 0) = u0. (33)

The above equation was first proposed in [21] which depicts the pore formation in functionalized
polymers. This equation was later studied in the numerical examples of [12]. In this example, we
set Ω = [0, 2π]2. We choose parameter ε = 0.18. The potential functionW (u) is the same as defined
in (26). Thus W ′(u) = u3 − u,W ′′(u) = 3u2. Similar to Allen-Cahn or Cahn-Hilliard equations,
equation (33) can also be treated as a flow that dissipates the energy E(u) with a = ε2, b = 1.

In our numerical implementation of the PDHG method, the functional F (U) is now

F (U) = U − htLapP
hx

(ε2LapP
hx
− diag(W ′′(U)) + ε2I)(ε2LapP

hx
U −W ′(U))− Uk.

Similar to Allen-Cahn and Cahn-Hilliard equations, we pick the preconditioner G as the square of
the matrix in the dominating linear part of F (U). However, if we directly keep the diagonal matrix
diag(W ′′(U)), we will not be able to invert G efficiently by using FFT. Since the value of W ′′(u)
close to the equilibrium states ±1 is approximately 2, we follow a similar idea in [12] to replace such
matrix with 2I. Thus, in this problem, we set G = (I − htε2LapP

hx
(ε2LapP

hx
− (2 − ε2)I)LapP

hx
)2

which can be inverted via FFT algorithm. Now the 3-line PDHG update is formulated as

Pn+1 = Pn + τpG
−1(Un − htLapP

hx
L̃aphx(ε, Un))(ε2LapP

hx
Un −W ′(Un))− Uk);

P̃n+1 = Pn+1 + ω(Pn+1 − Pn);

Un+1 = Un − τu(P̃n+1 − ht(ε2LapP
hx
− diag(W ′′(U)))L̃aphx(ε, Un)LapP

hx
P̃n+1

+ ht(ε
2LapP

hx
Un −W ′(Un))�W ′′′(Un)� LapP

hx
P̃n+1)).

Here we denote L̃aphx(ε, U) = ε2LapP
hx
− diag(W ′′(U)) + ε2I. If the size of U is N2

x , one can verify
that all calculations among the PDHG iteration can be computed with complexity O(N2

x log(Nx))
via the FFT method.

Similar to [12], we choose initial condition

u0(x, y) = 2esin x+sin y−2 + 2.2e− sin x−sin y−2 − 1. (34)
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In the numerical implementation, we solve the equation (33) from t = 0 to t = 20. We choose
Nx = 128, hx = π/64; Nt = 20000, ht = 1/1000. We choose the PDHG stepsizes τu = τp = 0.58.
We choose the threshold for terminating the iteration as δ = 0.5 × 10−5. We present some of the
results in Figure 8 and Figure 9.

(a) t = 0.0 (b) t = 0.1 (c) t = 2.0 (d) t = 20.0

Figure 8: Numerical solution at different time stages with initial condition (34).

(a) Residual decay at t = 0.1 (b) Residual decay at t = 2.0 (c) Residual decay at t = 20.0

(d) Residual plot at t = 0.1 (e) Residual plot at t = 2.0 (f) Residual plot at t = 20.0

Figure 9: log−residual decay & plots of residual functional Res(Un) at different time stages
t = 0.1, 2.0, 20.0.

3.4 Reaction-diffusion systems
We have already shown some reaction-diffusion equation examples in the previous sections. We
now apply the method to compute reaction-diffusion systems.

3.4.1 Schnakenberg Model

The Schnakenberg model is first considered in [39] to model the limit-cycle behavior in a two-
component chemical reaction system. In the discussion, we consider the following reaction-diffusion
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PDE system defined on unit square Ω = [0, 1]2 where u, v represent the density concentration of
two chemicals. Such a PDE system is also investigated in references [24, 49].

∂u(x, y, t)

∂t
= D1∆u(x, y, t) + κ(a− u+ u2v), (35)

∂v(x, y, t)

∂t
= D2∆v(x, y, t) + κ(b− u2v). (36)

The initial condition of the system is

u(x, y, 0) = a+ b+ 10−3 ∗ e−100((x− 1
3

)2+(y− 1
2

)2), v(x, y, 0) =
b

(a+ b)2
. (37)

Here we set κ = 100, a = 0.1305, b = 0.7695, D1 = 0.05, D2 = 1. One can understand the initial data
as exerting a tiny perturbation to the equilibrium solution (a+b, b

(a+b)2
) of the Schnakenberg system

(35), (36). Such equilibrium state is unstable, the small perturbation will lead to the formation of
certain dotted patterns in both components u and v.

We assume the Neumann boundary condition ∂u
∂n

= 0 on ∂Ω where ∂
∂n

denotes the directional
derivative w.r.t. the outer pointing normal direction n.

Suppose we apply the one-step implicit scheme to solve this problem, recall the discrete Lapla-
cian with Neumann BC introduced in (24), at the k−th time step, we consider

Fu(U, V ) = U − Uk − ht(D1LapN
hx
U + κ(a1− U + U2 � V ));

Fv(U, V ) = V − V k − ht(D2LapN
hx
V + κ(b1− U2 � V )).

At each time step, our purpose is to solve Fu(U, V ) = 0, Fv(U, V ) = 0 for updating Uk, V k. By treat-
ing Ũ = (U, V ) ∈ R2N2

x as an entity; and by denoting F̃ : R2N2
x → R2N2

x , Ũ 7→ (Fu(U, V )>, Fv(U, V )>)>,
the problem of solving F̃ (Ũ) = 0 reduces to the scenario of solving single F (U) = 0 discussed before.
Hence, it is natural to introduce the dual variable P̃ = (P,Q) ∈ R2N2

x ; The stiff Laplacian terms can
be treated as dominating linear terms of both functions F,G, thus we set our preconditioner matrix

G̃ =

(
Gu

Gv

)
with Gu = (I − htD1LapN

hx
)2 and Gv = (I − htD2LapN

hx
)2. The corresponding

PDHG iteration for solving F̃ (Ũ) = 0 is formulated as follows.

Pn+1 = Pn + τpG
−1
u (Un − Uk − ht(D1LapN

hx
Un + κ(a1− Un + U2

n � Vn)));

Qn+1 = Qn + τpG
−1
v (Vn − V k − ht(D2LapN

hx
Vn + κ(b1− U2

n � Vn)));

P̃n+1 = Pn+1 + ω(Pn+1 − Pn); Q̃n+1 = Qn+1 + ω(Qn+1 −Qn);

Un+1 = Un − τu(P̃n+1 − ht(D1LapN
hx
P̃n+1 + κ(−P̃n+1 + 2Un � Vn � (P̃n+1 − Q̃n+1))).

Vn+1 = Vn − τu(Q̃n+1 − ht(D2LapN
hx
Q̃n+1 + κ(U2

n � (P̃n+1 − Q̃n+1))).

We recall that the Discrete Cosine Transform mentioned in Remark 1 can be used to compute
matrix-vector multiplication involving LapN

hx
as well as inverting the preconditioners Gu, Gv within

O(N2
x logNx) complexity. Thus every step of the above PDHG iterations can be computed effi-

ciently.
In our numerical implementation, we solve this PDE system, on time interval [0, 2]. We choose

Nx = 128, hx = 1/128; and Nt = 10000, ht = 1/5000. We then choose τu = τp = 0.9. We terminate
the PDHG iteration when ‖Res(Un)‖2 + ‖Res(Vn)‖2 < δ, where we pick threshold δ = 10−7. Our
numerical solutions are presented in the following Figure 10.

In this example, the performance of the PDHG method is stable and the method terminates in
around 30 iterations for all 10000 time steps. We plot the loss as well as the residual term Res(U)
at different time stages in Figure 11.
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.5 (e) t = 1.0 (f) t = 2.0

Figure 10: Numerical solution of u (upper row), and v (lower row) at different time stages
with initial condition (37).

(a) t = 0.2 (b) t = 0.5 (c) t = 1.0 (d) t = 2.0

Figure 11: log−residual decay of U & plots of residual Res(U) at different time stages
t = 0.2, 0.5, 1.0, 2.0.

We compare the computational speed of our PHDG method with the commonly used Newton-
SOR method [43, 32]. We fix all the parameters the same for both methods, typically, we set the
termination threshold for both methods to be δ = 10−7. We solve the PDE system on [0, 1] with
Nt = 5000 and Nx = 128. The time cost for the Newton-SOR method is 8122.81s, while the time
cost for the PDHG method is 1121.81s.

3.4.2 Wolf-deer model

At last, let us consider an equation system describing the evolution of predator (wolves) and prey
(deer) distributions in an ecology system [34, 20]. The PDE system is defined on the region
Ω = [−L,L]2 and takes the following form,

∂ρ1

∂t
= D∆ρ1 +∇ · (ρ1∇V1(ρ1, ρ2)) +Aρ1(1− ρ1)−B ρ1ρ2

1 + ρ1
; (38)

∂ρ2

∂t
= D∆ρ2 +∇ · (ρ2∇V2(ρ1, ρ2)) +B

ρ1ρ2

1 + ρ1
− Cρ2. (39)

Here we set D = 1
2
, A = 5, B = 35, C = 5

2
. We also define the interacting potentials V1,V2 as

V1(ρa, ρb)(·) = V ∗ ρ1 − V ∗ ρ2; V2(ρa, ρb)(·) = V ∗ ρ1 + V ∗ ρ2.
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Here the convolution is defined as V ∗ ρ(x, y) =
∫∫

Ω×Ω
V ((x, y) − (x′, y′))ρ(x′, y′) dx′dy′ with

potential V (x, y) = x2+y2

2
.

We choose Neumann boundary condition for both ρ1 and ρ2, and set the initial condition

ρi(x, 0) =
1

π

(
π

2
+ arctan

(
R2 − |X − ~µi|2

ε

))
, i = 1, 2, (40)

where ~µ1 = ( 3
2
, 3

2
), ~µ2 = (− 3

2
,− 3

2
), R = 1 and ε = 0.1.

In system (38), (39), ρ1 represents the distribution of deer, and ρ2 stands for the distribution
of wolf. In addition to the diffusion and reaction terms affecting ρa, ρ2, the PDE system (38),
(39) contain non-local drift terms ∇V1(ρa, ρ2),∇V2(ρ1, ρ2) that depict the interactions among the
individuals of wolves and deer: The deer are attracting each other to dodge wolves’ predation, while
the wolves are gathering together to chase the flock of deer.

Suppose we discretize each side of Ω into Nx − 1 equal subintervals, we denote the numerical
solutions at the n−th time step as ρn1 , ρn2 ∈ RN

2
x . We consider the following implicit, central-

difference scheme,

ρn+1
1 − ρn1
ht

−DLapN
hx
ρn+1

1 −D>x (ρn+1
1

x
�Dx(Kρn+1

1 −Kρn+1
2 ))

−D>y (ρn+1
1

y
�Dy(Kρn+1

1 −Kρn+1
2 )) +R1(ρn+1

1 , ρn+1
2 ) = 0;

ρn+1
2 − ρn2
ht

−DLapN
hx
ρn+1

2 −D>x (ρn+1
2

x
�Dx(Kρn+1

1 +Kρn+1
2 ))

−D>y (ρn+1
2

y
�Dy(Kρn+1

1 +Kρn+1
2 )) +R2(ρn+1

1 , ρn+1
2 ) = 0.

Here Dx is an (Nx + 1)Nx ×N2
x matrix which can be treated as the discrete gradient with respect

to x, i.e., for any u ∈ RN
2
x , (Dxu)(i,j+ 1

2
) equals ui,j+1−ui,j

hx
for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nx − 1; for

j = 0, Nx, we define (Dxu)(i, 1
2

) =
ui,2−ui,1

hx
and (Dxu)(i,Nx+ 1

2
) =

ui,Nx−ui,Nx−1

hx
. Dy can also be

defined in a similar way.
The notation ρn+1

1

x
∈ R(Nx+1)Nx denotes the average value of ρn+1

1 at midpoints, i.e., (ρn+1
1

x
)(i,j+ 1

2
) =

ρn+1
1,(i,j)

+ρn+1
1,(i,j+1)

2
for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nx − 1; for j = 0, Nx, we define ρn+1

1

x

(i, 1
2

) = ρn+1
1,i,1 and

ρn+1
1

x

(i,Nx+ 1
2

) = ρn+1
i,Nx

. ρn+1
1

y
, ρn+1

2

x
, ρn+1

2

y
can be defined in the similar way.

K is an N2
x ×N2

x matrix used for approximating the convolution V ∗ ρ1, V ∗ ρ2, to precisely, for
any u ∈ RN

2
x defined on the mesh grid of Ω, Ku is defined as

(Ku)(i,j) =
∑

1≤k,l≤Nx

h2
xV (vi,j − vk,l)uk,l =

∑
1≤k,l≤Nx

h4
x

2
((i− k)2 + (j − l)2)uk,l.

The above discrete convolution can be reduced to Toeplitz matrix-vector multiplication computa-
tion, which can be efficiently computed by FFT algorithm [45].

Furthermore, for ρ1, ρ2 ∈ RN
2
x the reaction terms are defined as R1(ρ1, ρ2) = Aρ1 � (1− ρ1)−

B ρ1
1+ρ1

� ρ2; R2(ρ1, ρ2) = B ρ1
1+ρ1

� ρ2 − Cρ2.
Given the above discrete scheme of the PDE system, similar to the discussion made in the

Schnakenberg model, our purpose is to solve two nonlinear equations Fρ1(ρ1, ρ2) = 0, Fρ2(ρ1, ρ2) =
0 at each time step n. We apply two dual variables P,Q, and compose the corresponding PDHG
dynamic for solving the two equations. According to the previous discussion, one can verify that
each PDHG step can be computed within O(N2

x logNx) complexity. This guarantees the efficiency
of the computation. To keep the discussion concise, we omit the exact formulas for the PDHG
dynamic here.

In our implementation, we set L = 3. We solve the equation system (38), (39) on time interval
[0, 1]. We set Nx = 128, hx = 3/64. We practice the method of adaptive time stepsize ht in
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this example. We set both our initial time stepsize ht and maximum stepsize h0
t equal to 1/500

with shrinkage/enlarge coefficient η as 0.75. The thresholding iteration numbers of shrinking and
enlarging ht are set to be N∗ = 100, and N∗ = 20. For the PDHG iteration, we set stepsize
τu = τp = 0.95, and pick the threshold δ = 5 × 10−6. We present the numerical results in Figure
12.

(a) t = 0.0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.585 (e) t = 0.759 (f) t = 0.866

Figure 12: Numerical solution of ρ1 (upper row), and ρ2 (lower row) at different time stages
with initial condition (40).

The linear convergence of the residual term ‖Res(U)‖2 is reflected from the residual decay plots
in Figure 13.

(a) t = 0.2 (b) t = 0.4 (c) t = 0.585 (d) t = 0.759 (e) t = 0.997

Figure 13: log10 Res(Un) vs PDHG iteration number n at different time stages.

The changes in PDHG iterations at each time stepsize as well as the changes in time step size
ht are demonstrated via Figure 14. As reflected from the plots, in this example, we are gradually
shrinking the time stepsize ht as the accumulated time increases to guarantee the computational
efficiency of the PDHGmethod. Our method takes a total of 1106 time to complete the computation.
the algorithm experiences 7 stepsize shrinkage among our computation. The initial ht is set as 0.002
while when we finish the computation, ht = 0.00027.

4 Conclusion and Future Study
This research proposes an iterative method as a convenient but efficient gadget for solving the im-
plicit (or semi-implicit) numerical schemes arising in time-evolution PDEs, especially the reaction-
diffusion type equations. Our method recasts the nonlinear equation from the discrete numerical
scheme at each time step as a min-max saddle point problem and applies the Primal-Dual Hybrid
Gradient method. The algorithm can flexibly fit into various numerical schemes, such as semi-
implicit and fully implicit schemes, etc. Furthermore, the method is easy to implement since it
gets rid of the computation of large-scale linear systems involving Jacobian matrices, which are
usually required by Newton’s methods. The performance of our method on accuracy and efficiency
is satisfying and is comparable to the commonly used Newton-type methods. This has been verified
by the numerical examples presented in this paper.
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(a) Number of PDHG iterations at each time
step.

(b) Time stepsize ht used at each time step,
initial ht = 0.002, terminal ht ≈ 0.00027.

Figure 14: Changes in number of PDHG iterations & time stepsize ht.

There are three main future research directions of our work. We summarize them below:

• Conduct theoretical analysis on the convergence of the PDHG method for nonlinear RD
equations. We are interested in the necessary condition on ht, hx, τu, τp that can guarantee
the convergence of our method for certain types of RD equations.

• Generalize the method to nonlinear time-evolution equations, especially the advection-reaction-
diffusion dynamics from GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible
Coupling) [16, 23, 35].

• Apply the method to high-dimensional time-evolution PDEs by leveraging deep learning
techniques and PDHG algorithms.

Acknowledgement: S. Liu and S. Osher’s work was partly supported by AFOSR MURI FP 9550-
18-1-502 and ONR grants: N00014-20-1-2093 and N00014-20-1-2787. W. Li’s work was supported
by AFOSR MURI FP 9550-18-1-502, AFOSR YIP award No. FA9550-23-1-0087, and NSF RTG:
2038080.

A Proof of Theorem 1
Proof. It is not hard to verify that the dynamic (14), (15) and (17) can be formulated as[

Un+1

Pn+1

]
=

[
I − 2τuτpA

>A −τuA>
τpA I

] [
Un
Pn

]
+

[
2τuτpA

>b
−τpb

]
, n ≥ 0 (41)

This equation admits a unique fixed point X∗ = (U∗, P∗) = (A−1b, 0). We denote Xn = [U>n , P
>
n ]>

and the above recurrence equation as Xn+1 = MXn+y (or equivalently, Xn+1−X∗ = M(Xn−X∗))
for shorthand. Suppose A has spectral decomposition A = QΛQ>, then M is decomposed as

M =

[
Q

Q

] [
I − 2τuτpΛ

2 −τuΛ
τpΛ I

] [
Q

Q

]>
We denote NA as the size of A. The middle matrix is composed of four NA×NA diagonal matrices,
by rearranging the rows and columns of it, one can show that it is orthogonally equivalent to the

block diagonal matrix Σ = diag(D1, D2, ..., DNA) where each Dk =

[
1− 2τuτpλ

2
k −τuλk

τpλk 1

]
. We
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now analyze the spectral radius ρ(M) ofM , which equals ρ(Σ) = max
1≤k≤NA

{ρ(Dk)}. We can calculate

ρ(Dk) = max{|τuτpλ2
k − 1±

√
(τuτp)2λ4

k − τuτpλ2
k|}.

We denote f(t) = max{|t − 1 +
√
t2 − t|, |t − 1 −

√
t2 − t|}, with t > 0. One can directly compute

f(t) =

{√
1− t 0 < t ≤ 1

t− 1 +
√
t2 − t t > 1

. Thus we have ρ(M) = max
1≤k≤NA

{f(τuτpλ
2
k)}. Then f is decreasing

on [0, 1] and increasing on [1,∞) with f(0) = f( 4
3
) = 1. We know that the convergence of (41) is

guaranteed if and only if ρ(M) < 1. This is equivalent to τuτpλ2
max ≤ 4

3
, which yields τuτp ≤ 4

3λ2
max

.
Furthermore, ρ(M) is the convergence rate of the dynamic, i.e.,

‖Xn −X∗‖2 ≤ ρ(M)n‖X0 −X∗‖2

To evaluate the optimal convergence rate, we compute the minimum value of ρ(M) w.r.t. stepsizes
τu, τp. Suppose we require τuτp ≤ 4

3λmax
to guarantee convergence, if we denote η = τuτpλ

2
max,

then ρ(M) = max
1≤k≤NA

{
f(

λ2
k

λ2
max

η)
}

for η ∈ (0, 4
3
). The minimum value of ρ(M) will be attained at

a unique η = η∗ ∈ [1, 4
3
) such that f( η

κ2 ) = f(η). I.e., η∗ is the solution of√
1− η

κ2
= η − 1 +

√
η2 − η, on [1,

4

3
). (42)

Thus, the optimal convergence rate γ∗ =
√

1− η∗
κ2 and it is achieved when τu, τp satisfy τuτp = η∗

λ2
max

.

Remark 2. The equation (42) can be reduced to a quadratic equation. And it admits a unique
solution η∗ on [1, 4

3
), η∗ takes the following form

η∗ =
2κ2(

3
4
κ2 + 3

2
− 1

4κ2

)
+ κ−1

2κ

√
(κ− 1)(3κ+ 1)

√
3
4
κ2 + 3

2
+ 2κ− 1

4κ2

.

The optimal convergence rate γ∗ =
√

1− η∗
κ2 takes the explicit form

γ∗ =

1− 2(
3
4
κ2 + 3

2
− 1

4κ2

)
+ κ−1

2κ

√
(κ− 1)(3κ+ 1)

√
3
4
κ2 + 3

2
+ 2κ− 1

4κ2

 1
2

.

Notice that γ∗ ≈ (1 − 4
3κ2 )

1
2 when the conditional number κ is very large; and γ∗ will approach 0

as condition number κ approaches 1. This motivates the preconditioning technique of our method.
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