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Abstract. We design and compute a class of optimal control problems
for reaction-diffusion systems. They form mean field control problems
related to multi-density reaction-diffusion systems. To solve proposed
optimal control problems numerically, we first apply high-order finite
element methods to discretize the space-time domain and then solve the
optimal control problem using augmented Lagrangian methods (ALG2).
Numerical examples, including generalized optimal transport and mean
field control problems between Gaussian distributions and image densi-
ties, demonstrate the effectiveness of the proposed modeling and com-
putational methods for mean field control problems involving reaction-
diffusion equations/systems.

1. Introduction

Reaction-diffusion systems are essential classes of modeling dynamics [37],
which have applications in tumor growth modeling [9], propagation of pan-
demic spread [24, 25], evolutionary games [19], etc. The reaction term re-
flects general nonlinear interacting behaviors of agents/particles in complex
systems. Patterns of population behaviors often arise in the solution of
reaction-diffusion equations, which model the collective behaviors of parti-
cles/agents.

In recent years, mean field control problems [20, 22] have been studied,
which are optimal control problems for mean-field limits of infinitely many
identical particles/agents. The problem models the complex behaviors of
identical particles/agents interacting with each other. It is worth mention-
ing that a special example of a mean-field control problem forms the dynam-
ical optimal transport problem [3]. It studies a particular optimal control

2020 Mathematics Subject Classification. 35K57, 49N80, 49M41, 65N30.
Key words and phrases. Optimal transport; Multi-population mean-field control prob-

lems; Generalized Fisher information functional; Reaction-diffusion systems; Finite ele-
ment methods; ALG2 algorithms.

G. Fu’s work is supported by NSF grant DMS-2012031.
S. Osher’s work is supported in part by AFOSR MURI FP 9550-18-1-502 and ONR

grants: N00014-20-1-2093 and N00014-20-1-2787.
W. Li’s work is supported by AFOSR MURI FP 9550-18-1-502, AFOSR YIP award

No. FA9550-23-1-0087, NSF DMS-2245097, and NSF RTG: 2038080.

1

ar
X

iv
:2

30
6.

06
28

7v
1 

 [
m

at
h.

O
C

] 
 9

 J
un

 2
02

3



2 FU, OSHER, PAZNER, AND LI

problem in density space, which transfers an initial density toward the ter-
minal density function. The optimal transport problem also introduces a
functional distance, namely the Wasserstein distance. It helps study and
compute a class of initial value evolutionary dynamics, namely, Wasserstein
gradient flows [21]. They are also valuable for modeling interaction behav-
iors of particle dynamics.

Nowadays, optimal transport and mean field control problems have vast
applications in modeling and computations. Classical studies of optimal
transport and mean field control problems are often limited to a single-
density function. The complex interaction between densities is a vital mod-
eling factor that has not been systemically studied.

In this paper, we generalize a class of mean field control of reaction-
diffusion equations/systems proposed in [27]. It forms an optimal control
problem among multiple density functions interacting with each other with
a nonlinear reaction vector function. After change of variables, we reformu-
late the optimal control problem into an optimization problem with a Fisher
information type potential functional. We apply the high-order finite ele-
ment method to discretize the spatial-time domain and use the augmented
Lagrangian method, ALG2 from [15], to compute the discretized optimiza-
tion problems. Numerical examples, including mean field control problems
between Gaussian densities and a system with 12 images, demonstrate the
solution of the proposed generalized mean field control problems.

Generalized optimal transport and mean field control problems have been
widely investigated in [6, 7, 14, 35]. For example, multi-population mean
field games were discussed in [4], and generalized optimal transport distances
between vector densities were formulated in [11]. Meanwhile, unnormalized
and unbalanced optimal transport were proposed in [12, 23, 32], which al-
lows to control densities with different total masses. In applications, one also
applies mean field control problems to model the propagation of pandemics
[24, 25]. They are all important examples of optimal control problems for
reaction-diffusion systems. Modeling and computational mean-field control
problems for general convection-reaction-diffusion systems are new research
directions [28, 29]. They have potential applications in classical modeling
dynamics based on reaction-diffusion equations and systems. This paper
proposes a class of mean field control of reaction-diffusion systems. Mean-
while, the optimal control problem of gradient flows in Wasserstein space
is widely studied, namely Schrödinger bridge problems [10, 13, 26, 31, 36].
In addition, the generalized gradient flows in multiple-density spaces have
been studied [17, 18, 34, 35]. Our formulation extends the optimal control
problem of gradient flows based on reaction-diffusion equations and systems.
Thus, we study the mean field control using formalisms of controlling gra-
dient flows. In simulations, we apply high-order finite element schemes to
simulate the proposed generalized optimal transport and mean field control
problems.
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The paper is organized as follows. In section 2, we first review gradient
flows and their induced metric distances in generalized optimal transport
spaces. We then formulate and derive optimality conditions for generalized
optimal transport and mean field control problems of reaction-diffusion sys-
tems. In section 3, we approximate the proposed mean field control problems
using high-order finite element schemes and then use the ALG2 method to
compute the discretized optimization problems. Numerical results, including
scalar reaction-diffusion equations and two-species, twelve-species reaction-
diffusion systems, are presented in section 4. Finally, we conclude with a
discussion in section 5.

2. Generalized optimal transport and mean field control of
reaction-diffusion systems

This section presents the main formulation of mean field control (MFC)
problems for scalar reaction-diffusion equations and systems.

2.1. Background: Reaction-diffusion induced metric distances. Be-
fore delving into the mean field control problems that will be discussed in
this manuscript, we first review the definitions of two metric distances: one
for scalars and one for systems, which are obtained from generalized op-
timal transport type gradient flow problems. The material in this subsec-
tion follows closely our previous work on variational time implicit schemes
for reaction-diffusion systems in [17]. We only give the definition of these
metric distances without further elaboration, but refer to the references
[1, 26, 27, 34] for more details on optimal transport type gradient flows,
distances, mean-field control and related problems.

2.1.1. The metric distance: scalar case. The scalar metric distance is de-
rived from the following reaction-diffusion equation [27, 17]:

∂tρ = ∇ · (V1(ρ)∇
δ

δρ
E(ρ))− V2(ρ)

δ

δρ
E(ρ), on [0, T ]× Ω, (2.1)

with homogeneous Neumann boundary conditions V1(ρ)∇ δ
δρE(ρ) · ν|∂Ω = 0,

where ν is the unit outward normal direction on the boundary ∂Ω. Here
Ω ⊂ Rd is the spatial domain, ρ : [0, T ] × Ω → R is a scalar non-negative
density function satisfying

ρ(t, ·) ∈ M = {ρ ∈ H1(Ω) : ρ ≥ 0}, ∀t ≥ 0, (2.2)

E : M → R is an energy functional, V1, V2 : R+ → R+ are two positive
mobility functions, and δ

δρ is the first variation operator in L2 space.

A crucial property of the equation (2.1) is that it satisfies an energy-
dissipation law:

d

dt
E(ρ) = −

∫
Ω

[
∥∇ δ

δρE(ρ)∥
2V1(ρ) + | δ

δρE(ρ)|
2V2(ρ)

]
dx ≤ 0, (2.3)
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where we use the fact that functions V1, V2 are non-negative. In the litera-
ture, the above right hand side (dissipation rate)

I(ρ) =
∫
Ω

[
∥∇ δ

δρE(ρ)∥
2V1(ρ) + | δ

δρE(ρ)|
2V2(ρ)

]
dx, (2.4)

is called the generalized Fisher information functional. This Fisher infor-
mation functional induces a metric in the space M, which further defines a
distance between two densities ρ0, ρ1 ∈ M.

Definition 2.1 (Scalar distance functional). Define a distance functional

DistV1,V2 : M×M → R+

as below. Consider the following optimal control problem:

DistV1,V2(ρ
0, ρ1)2 := inf

ρ,v1,v2

∫ T

0

∫
Ω

[
∥v1∥2V1(ρ) + |v2|2V2(ρ)

]
dxdt, (2.5a)

where the infimum is taken among ρ(t, x) : [0, T ]×Ω → R+, v1(t, x) : [0, T ]×
Ω → Rd, v2(t, x) : [0, T ] × Ω → R, such that ρ satisfies a reaction-diffusion
type equation with drift vector field v1, drift mobility V1, reaction rate v2,
reaction mobility V2, connecting initial and terminal densities ρ0, ρ1 ∈ M:{

∂tρ+∇ · (V1(ρ)v1) = V2(ρ)v2, on [0, T ]× Ω,

ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x),
(2.5b)

with no-flux boundary condition V1(ρ)v1 · ν|∂Ω = 0

Introducing the flux functionm(t, x) : [0, T ]×Ω → Rd and source function
s(t, x) : [0, T ]× Ω → R, such that

m(t, x) = V1(ρ(t, x))v1(t, x), s(t, x) = V2(ρ(t, x))v2(t, x),

the distance in Definition 2.1 is rewritten as the following optimization prob-
lem with a linear constraint:

DistV1,V2(ρ
0, ρ1)2 := inf

ρ,m,s

∫ T

0

∫
Ω

[∥m∥2

V1(ρ)
+

|s|2

V2(ρ)

]
dxdt, (2.6a)

such that

∂tρ(t, x) +∇ ·m(t, x) = s(t, x), in [0, T ]× Ω,

m · ν = 0, on [0, T ]× ∂Ω,

ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x), in Ω.

(2.6b)

The optimization functional in (2.6a) is convex under the condition that
both V1 and V2 are positive concave functions.
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2.1.2. The metric distance: system case. The system metric distance is de-
rived from the following reaction-diffusion system with M species and R
reactions [17, 34]:

∂tρi = ∇ ·
(
V1,i(ρi)∇

δ

δρ
Ei(ρi)

)
−

R∑
p=1

V2,p(ρ)γi,p

M∑
j=1

γj,p
δ

δρ
Ej(ρj), (2.7)

with homogeneous Neumann boundary conditions V1,i(ρi)∇ δ
δρEi(ρi) ·ν|∂Ω =

0 for 1 ≤ i ≤ M . Here ρi is the density such that ρi(t, ·) ∈ M, Ei : M → R
is the energy functional and V1,i : R+ → R+ is the positive mobility function
for i-th species, and V2,p : RM

+ → R+ is the positive mobility function for
p-th reaction. The bolded density ρ = (ρ1, · · · , ρM ) is simply the collection
of M densities. Moreover, the coefficient matrix Γ = (γi,p) ∈ RM×R sat-

isfies
∑M

i=1 γi,p = 0 for all 1 ≤ p ≤ R, which is related to the total mass

conservation: d
dt

∫
Ω

∑M
i=1 ρi dx = 0.

The equation (2.7) satisfies the energy-dissipation law:

d

dt

M∑
i=1

Ei(ρi) = −I(ρ) ≤ 0, (2.8)

where I(ρ) denotes the generalized Fisher information functional

I(ρ) :=
∫
Ω

[ M∑
i=1

∥∇δEi
δρ

∥2V1,i(ρi) +
R∑

p=1

∣∣∣∣∣∣
M∑
j=1

γj,p
δEj
δρ

∣∣∣∣∣∣
2

V2,p(ρ)
]
dx. (2.9)

In the above, we use the fact that functions V1,i, V2,p, 1 ≤ i ≤M , 1 ≤ p ≤ R,
are non-negative. The functional I, again, induces a metric function in space
MM , which defines distances between two system densities ρ0,ρ1 ∈ MM .

Definition 2.2 (System distance functional). Define a distance functional

DistV1,V2 : MM ×MM → R+

as below.

DistV1,V2(ρ
0,ρ1)2 := inf

ρ,m,s

{∫ T

0

∫
Ω

 M∑
i=1

|mi|2

V1,i(ρi)
+

R∑
p=1

|sp|2

V2,p(ρ)

 dxdt :

∂tρi +∇ ·mi =
∑R

p=1 γi,psp,∀1 ≤ i ≤M ,

mi · ν|∂Ω = 0, ρ(0, ·) = ρ0, ρ(T, ·) = ρ1.

}
,

(2.10)
where m = (m1, · · · ,mM ) is the collection of fluxes, and s = (s1, · · · , sR)
is the collection of sources.

Again, the optimization functional in (2.10) is convex under the condition
that V1,i and V2,p are positive concave functions for all 1 ≤ i ≤ M and
1 ≤ p ≤ R.
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2.2. MFC for scalar reaction-diffusion. In this subsection, we introduce
the following MFC problem. This can be viewed as a generalization of the
scalar distance (2.6).

Definition 2.3 (Scalar MFC problem). Suppose that there exist two pos-
itive mobility functions V1, V2 : R+ → R+, a terminal time T > 0, a non-
negative regularization parameter β ≥ 0, an energy functional E : M → R,
a potential functional F : M → R, and a terminal functional G : M → R.
Consider

inf
ρ,m̃,s̃

∫ T

0

[∫
Ω

(
∥m̃∥2

2V1(ρ)
+

|s̃|2

2V2(ρ)

)
dx−F(ρ)

]
dt+ G(ρ(T, ·)), (2.11a)

where the infimum is among all densities ρ with ρ(t, ·) ∈ M for t ∈ [0, T ],
flux m̃ : [0, T ]× Ω → Rd, and source s̃ : [0, T ]× Ω → R, such that

∂tρ+∇ · m̃− s̃ = β

(
∇ · (V1(ρ)∇

δ

δρ
E(ρ))− V2(ρ)

δ

δρ
E(ρ)

)
, (2.11b)

with boundary condition(
m̃− βV1(ρ)∇

δ

δρ
E(ρ)

)
· ν

∣∣∣∣
∂Ω

= 0, (2.11c)

and fixed initial density ρ(0, ·) = ρ0 in Ω.

From the modeling perspective, the variational problem in Definition 2.3
models the movement of the density from the initial density under the dy-
namical constraint of reaction-diffusion equations. It aims to find the opti-
mal choices of vector fields and reaction rate functions under general kinetic,
potential, and terminal energies.

We will construct numerical scheme for problem (2.3) based on the fol-
lowing change of variables.

Proposition 2.1 (Scalar MFC reformulation). Denotem : [0, T ]×Ω → Rd,
and s : [0, T ]× Ω → R, such that

m = m̃− βV1(ρ)∇
δ

δρ
E(ρ), s = s̃− βV2(ρ)

δ

δρ
E(ρ),

and denote

V3(ρ) =
1

V1(ρ)| δ2

δρ2
E(ρ)|2

, (2.12)

where δ2

δρ2
E(ρ) is the second variational derivative of the energy functional

E(ρ). Then, the scalar MFC problem (2.3) is equivalent to the following
optimization problem: Consider

inf
ρ,m,s

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+ β2

|∇ρ|2

2V3(ρ)
+
β2

2
|δE
δρ

|2V2(ρ)
]
dxdt

−
∫ T

0
F(ρ) dt+ G(ρ(T, ·)) + β[E(ρ(T, ·))− E(ρ0)],

(2.13a)
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where the infimum is among all densities ρ with ρ(t, ·) ∈ M, for t ∈ [0, T ],
flux m : [0, T ]× Ω → Rd, and source s : [0, T ]× Ω → R, such that

∂tρ(t, x) +∇ ·m(t, x)− s(t, x) = 0, (2.13b)

with no-flux boundary condition m · ν|∂Ω = 0, and fixed initial density
ρ(0, ·) = ρ0.

The proof of the above proposition follows from a similar argument in [8,
Proposition 2]. We present the detailed derivation in the Appendix. The
main idea is to use integration by parts to show that∫ T

0

∫
Ω

[ ∥m̃∥2

2V1(ρ)
+

∥s̃∥2

2V2(ρ)

]
dxdt

=

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

∥s∥2

2V2(ρ)
+ β2

|∇ρ|2

2V3(ρ)
+
β2

2
|δE
δρ

|2V2(ρ)
]
dxdt

+ β[E(ρ(T, ·))− E(ρ0)].

For simplicity of discussions, we assume that there are two functions F :
[0, T ]× Ω× R+ → R and G : Ω× R+ → R, such that∫

Ω
F (t, x, ρ)dx = F(ρ(t, ·))−

∫
Ω

β2

2
|δE
δρ

(ρ(t, x))|2V2(ρ(t, x))dx, ∀ t ≥ 0,∫
Ω
G(x, ρ)dx = G(ρ) + βE(ρ).

Then the functional in (2.13a) simplifies to the following formula:∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+
β2|∇ρ|2

2V3(ρ)
− F (t, x, ρ)

]
dxdt+

∫
Ω
G(x, ρ(T, x))dx.

This is the form we use in our numerical scheme.
For completeness, we formulate the Karush–Kuhn–Tucker (KKT) condi-

tion, i.e., the critical point system, for the optimization problem (2.13). The
proof is presented in the Appendix; see also [27, 30].

Proposition 2.2 (KKT system for (2.13)). Let (ρ,m, s) be the critical point
of the optimization problem (2.13). Then there exists a function ϕ : [0, T ]×
Ω → R, such that

m(t, x)

V1(ρ(t, x))
= ∇ϕ(t, x), s(t, x)

V2(ρ(t, x))
= ϕ(t, x),

and
∂tρ(t, x) +∇ · (V1(ρ(t, x))∇ϕ(t, x))− V2(ρ(t, x))ϕ(t, x) = 0,

∂tϕ(t, x) +
1

2
∥∇ϕ(t, x)∥2V ′

1(ρ(t, x)) +
1

2
|ϕ(t, x)|2V ′

2(ρ(t, x))

+
δ

δρ

[
F(ρ)− β2

2
I(ρ)

]
= 0,

(2.14)
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where I(ρ) is the generalized Fisher information functional given in (2.4),
with initial and terminal time boundary conditions

ρ(0, x) = ρ0(x), ϕ(T, x) = − δ

δρ

(
G(ρ(T, ·)) + βE(ρ(T, ·))

)
. (2.15)

2.2.1. Examples. Different choices of the functions V1, V2, V3, F , G, along
with the regularization parameter β ≥ 0 and initial density ρ0, lead to vari-
ous scalar MFC problems (2.13). We present some examples of these func-
tions in Table 1 below. Here V (t, x) for F (t, x, ρ) is a given drift coefficient,

V1(ρ): α1ρ
γ1 with 0 ≤ γ1 ≤ 1. α1 > 0.

V2(ρ): α2ρ
γ2 with 0 ≤ γ2 ≤ 1, or α2

ρ−1
log(ρ) . α2 ≥ 0

V3(ρ): α3ρ
γ3 with 0 ≤ γ3 ≤ 1. α3 > 0.

F (t, x, ρ): −τρ(log(ρ) + V (t, x)), or −τ(ρm + ρV (t, x)). τ ≥ 0, m > 1.
G(x, ρ): γ(ρ− ρ1)2, or γρ log(ρ/ρ1). γ > 0.

Table 1. Example of various functions for scalar MFC (2.13).

and ρ1 for G(x, ρ) is a given terminal density. Taking the energy

E(ρ) =


∫
Ω

1√
α1α3

ρ log(ρ) dx, if r1 = r3 = 1,∫
Ω

4ρ2−(r1+r3)/2

(2−r1−r3)(4−r1−r3)
√
α1α3

dx, else,

ensures that the relation (2.12) holds. Since V1, V2, V3 in Table 1 are positive
and concave, F is concave, and G is convex, the objection functional in the
MFC problem (2.13) is convex under a linear constraint. Hence there exists
a minimizer.

Remark 2.4 (Comparison with existing models). When the terminal den-
sity ρ(T, ·) = ρ1 is prescribed (or when γ → +∞ for the terminal function in
Table 1), the problem (2.13) is called the planning problem for MFC. This
problem with β = 0 (no V3) was consider in the work [27].

Taking the regularization parameter β > 0 in MFC (2.13) forms a Schrödinger
bridge type problem [10, 26]. A related planning problem with β > 0 and
no potential F = 0 was considered recently in [9], known as unbalanced
regularized optimal mass transport (urOMT). It has applications in cancer
imaging. Therein, V1(ρ) = V3(ρ) = ρ, V2(ρ) = α(t, x)ρ for α ≥ 0, and

the objective function has an additional term
∫ T
0

∫
Ω βs log(ρ)dxdt compared

with our formulation (2.13a) under the same linear constraint (2.13b).

2.3. MFC for reaction-diffusion systems. In this subsection, we intro-
duce a system of MFC problem. It can be viewed as a generalization of the
system distance (2.10).

Definition 2.5 (System MFC problem). Suppose there exist M ∈ N+

species and R ∈ N+ reactions with reaction coefficient matrix Γ = (γi,p) ∈
RM×R. Let V1,i : R+ → R+ for 1 ≤ i ≤ M , and V2,p : RM

+ → R+ for
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1 ≤ p ≤ R be positive mobility functions. Take terminal time T > 0, and
non-negative regularization parameter β ≥ 0. Choose energy functionals
Ei : M → R for 1 ≤ i ≤ M , an potential functional F : MM → R, and a
terminal functional G : MM → R. Consider

inf
ρ,m̃,s̃

∫ T

0

∫
Ω

 M∑
i=1

|m̃i|2

2V1,i(ρi)
+

R∑
p=1

|s̃p|2

2V2,p(ρ)

 dx−F(ρ)

 dt+ G(ρ(T, ·)),

(2.16a)

where the infimum is among all densities ρ = (ρ1, · · · , ρM ) with ρ(t, ·) ∈
MM , fluxes m̃ = (m̃1, · · · , m̃M ) with m̃i : [0, T ] × Ω → Rd, and sources
s̃ = (s̃1, · · · , s̃M ) : [0, T ]× Ω → RM , such that

∂tρi +∇ · m̃i −
R∑

p=1

γi,ps̃p

= β

∇ · (V1,i(ρi)∇
δ

δρ
Ei(ρi))−

R∑
p=1

γi,pV2,p(ρ)
M∑
j=1

γj,p
δ

δρ
Ej(ρj)

 ,

(2.16b)

with boundary condition

(
m̃i − βV1,i(ρi)∇

δ

δρ
Ei(ρi)

)
· ν

∣∣∣∣
∂Ω

= 0, (2.16c)

for all 1 ≤ i ≤M , and fixed initial density ρ(0, ·) = ρ0 ∈ MM .

Again, our numerical scheme is based on the following equivalent formu-
lation after the change of variables, whose proof is given in the Appendix.

Proposition 2.3 (System MFC reformulation). For 1 ≤ i ≤ M and 1 ≤
p ≤ R, denote mi : [0, T ]× Ω → Rd and sp : [0, T ]× Ω → R, such that

mi = m̃i − βV1i(ρi)∇
δ

δρ
Ei(ρi), sp = s̃p − βV2,p(ρ)

M∑
j=1

γj,p
δ

δρ
Ej(ρj),

and denote

V3,i(ρi) =
1

V1,i(ρi)| δ2

δρ2
Ei(ρi)|2

. (2.17)
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Then, the system MFC problem (2.5) is equivalent to the following optimiza-
tion problem: Consider

inf
ρ,m,s

∫ T

0

∫
Ω

M∑
i=1

(
|mi|2

2V1,i(ρi)
+ β2

|∇ρi|2

2V3,i(ρi)

)
dxdt

+

∫ T

0

∫
Ω

R∑
p=1

 |sp|2

2V2,p(ρ)
+
β2

2
|

M∑
j=1

γj,p
δEj
δρ

(ρj)|2V2,p(ρ)

 dxdt

−
∫ T

0
F(ρ) dt+ G(ρ(T, ·)) + β

M∑
i=1

[Ei(ρi(T, ·))− Ei(ρ0i )],

(2.18a)

subject to the constraints

∂tρi(t, x) +∇ ·mi(t, x)−
R∑

p=1

γi,psp(t, x) = 0, (2.18b)

with no-flux boundary condition mi · ν|∂Ω = 0, for all 1 ≤ i ≤M , and fixed
initial density ρ(0, ·) = ρ0 = (ρ01, · · · , ρ0M ) ∈ MM .

Note that when M = 1 and R = 1, the MFC problem (2.18) corresponds
to the scalar case considered in Definition (2.3).

Similar to the scalar case, we assume that there are two functions F :
[0, T ]× Ω× RM

+ → R and G : Ω× RM
+ → R, such that∫

Ω
F (t, x,ρ)dx = F(ρ(t, ·))−

∫
Ω

R∑
p=1

β2

2
|

M∑
j=1

δEj
δρ

(ρj)|2V2,p(ρ)dx,

∫
Ω
G(x,ρ)dx = G(ρ) + β

M∑
i=1

Ei(ρi).

This simplifies the functional in (2.18a) as follows:

∫ T

0

∫
Ω

 M∑
i=1

(
|mi|2

2V1,i(ρi)
+ β2

|∇ρi|2

2V3,i(ρi)

)
+

R∑
p=1

|sp|2

2V2,p(ρ)
− F (t, x,ρ)

 dxdt
+

∫
Ω
G(x,ρ(T, x))dx,

The KKT system for the optimization problem (2.18) is given below. Its
proof is again presented in the Appendix.

Proposition 2.4 (KKT system for (2.18)). Let (ρ,m, s) be the critical
point of the optimization problem (2.18). Then there exists a function ϕ =
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(ϕ1, · · · , ϕM ) : [0, T ]× Ω → RM , such that

mi(t, x)

V1,i(ρi(t, x))
= ∇ϕi(t, x),

sp(t, x)

V2,p(ρ(t, x))
=

M∑
j=1

γj,pϕj(t, x),

and

∂tρi +∇ · (V1,i(ρi)∇ϕi)−
R∑

p=1

V2,p(ρ)γi,p

M∑
j=1

γj,pϕj = 0,

∂tϕi +
1

2
∥∇ϕi∥2V ′

1,i(ρi) +
1

2

R∑
p=1

|
M∑
j=1

γj,pϕj |2
∂

∂ρi
V2,p(ρ)

+
δ

δρi

[
F(ρ)− β2

2
I(ρ)

]
= 0,

(2.19)
where I(ρ) is the generalized Fisher information functional given in (2.9),
with initial and terminal time boundary conditions

ρi(0, x) = ρ0i (x), ϕi(T, x) = − δ

δρi

(
G(ρ(T, ·)) + βEi(ρi(T, ·))

)
. (2.20)

2.3.1. Examples. Let us consider examples with only pairwise interactions.
This setting is similar to the reversible Markov chains on discrete states
(symmetric weighted graph) [19, 34, 33]. We assume the mobility function
V2,p only depends on two densities ρp0 and ρp1 for p0 ̸= p1 ∈ {1, · · · ,M} for
1 ≤ p ≤ R. We take the reaction coefficient Γ = (γi,p) ∈ RM×R, such that

γi,p =


1 if i = p0,

−1 if i = p1,

0 else.

(2.21)

These reactions naturally lead to a graph with M vertices {X1, · · · , XM}
and R edges {E1, · · · , ER} with Ep = (Xp0 , Xp1) connecting vertices Xp0

and Xp1 , where each vertex represents a density species, and each edge
represents a reaction between two densities.

Different choices of the functions V1,i, V2,p, V3,i, F , G, along with the
reaction coefficient matrix Λ ∈ RM×R in (2.21), regularization parameter
β ≥ 0 and initial density ρ0, lead to various system MFC problems (2.5).
We present some examples of these functions in Table 2 below. Here we can
again take the energies

Ei(ρi) =


∫
Ω

1√
α1α3

ρi log(ρi) dx, if r1 = r3 = 1,∫
Ω

4ρ
2−(r1+r3)/2
i

(2−r1−r3)(4−r1−r3)
√
α1α3

dx, else ,

so that the relations (2.17) hold. Here, the four choices for V2,p correspond to
arithmetic, geometric, harmonic, and logarithmic averages of two densities;
see [19, 34, 33]. Similar to the scalar case, V1,i, V2,p, V3,i in Table 2 are
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V1,i(ρi): α1ρ
γ1
i with 0 ≤ γ1 ≤ 1. α1 > 0.

V2,p(ρ): α2(ρp0 + ρp1)/2, or α2
√
ρp0ρp1 ,

or α2
ρp0ρp1
ρp0+ρp1

, or α2
ρp0−ρp1

log(ρp0 )−log(ρp1 )
. α2 ≥ 0

V3,i(ρi): α3ρ
γ3
i with 0 ≤ γ3 ≤ 1. α3 > 0.

F (t, x,ρ): −
∑M

i=1 τiρi(log(ρi) + Vi(t, x)),

or −
∑M

i=1 τi(ρ
m
i + ρiVi(t, x)). τi ≥ 0, m > 1.

G(x, ρ): γ
∑M

i=1(ρi − ρ1i )
2, or γ

∑M
i=1 ρi log(ρi/ρ

1
i ). γ > 0.

Table 2. Example of functions for system MFC (2.5).

positive and concave, F is concave, and G is convex. Hence the objective
functional in MFC problem (2.18) is convex under a linear constraint. A
minimizer is guaranteed.

This formulation naturally allows general nonlinear reactions among more
than two densities. We leave the detailed modeling study of MFC for more
general reaction-diffusion systems in future work.

3. High order discretizations and optimization algorithms

In this section, we present the high-order spatial-time finite element for-
mulations for the proposed MFC problems (2.13) and (2.18).

3.1. Scalar case. In this subsection, we discretize the scalar model (2.13).
By introducing a new approximation variable n = β∇ρ, the optimization
problem (2.13) is rewritten as follows. Consider

inf
ρ,m,s,n

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+

|n|2

2V3(ρ)
− F (ρ)

]
dxdt+

∫
Ω
G(ρ(T, x))dx,

(3.1a)
where the infimum is taken over density ρ : [0, T ]×Ω → R+, fluxm : [0, T ]×
Ω → Rd, source s : [0, T ]×Ω → R, and vector field n : [0, T ]×Ω → Rd, such
that

∂tρ+∇ ·m− s = 0, (3.1b)

n− β∇ρ = 0, (3.1c)

on [0, T ] × Ω, with fixed initial density ρ(0, x) = ρ0(x) in Ω and no-flux
boundary conditionm·ν = 0 on [0, T ]×∂Ω. Here we suppress the coordinate
dependence of functions F and G for simplicity of presentation.

Following the high-order finite element scheme for MFC problems in [16],
we discretize the constraint optimization problem (3.1) using high-order fi-
nite element methods and apply the ALG2 optimization algorithm to solve
the discrete saddle-point problem.

3.1.1. The continuous saddle-point formulation. We introduce a scalar La-
grange multiplier ϕ ∈ H1(ΩT ), where ΩT := [0, T ] × Ω is the space-time
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domain, for the constraint (3.1b), and a vectorial Lagrange multiplier σ ∈
L2([0, T ])⊗H(div0; Ω) for the constraint (3.1c), where

H(div0; Ω) := {τ ∈ H(div; Ω) : τ · ν|∂Ω = 0},

in which the H(div)-conforming space

H(div; Ω) := {τ ∈ [L2(Ω)]d : ∇ · τ ∈ L2(Ω)}.

We reformulate the constrained optimization problem (3.1) into the follow-
ing saddle-point system: Find the critical point of the system

inf
ρ,m,s,n,ρT

sup
ϕ,σ

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+

|n|2

2V3(ρ)
− F (ρ)

]
dxdt

−
∫ T

0

∫
Ω

[
(ρ ∂tϕ+m · ∇ϕ+ sϕ) + (n · σ + βρ∇ · σ)

]
dxdt

+

∫
Ω

(
ρT ϕ(T, ·)− ρ0 ϕ(0, ·)

)
dx+

∫
Ω
G(ρT )dx,

(3.2)

where the variables m,n ∈ [L2(ΩT )]
d, ρ, s ∈ L2(ΩT ), ρT ∈ L2(Ω) with

ρ, ρT ≥ 0 a.e., ϕ ∈ H1(ΩT ), and σ ∈ L2([0, T ]) ⊗ H(div0; Ω). Notice that
integration by parts is used to incorporate the linear constraints (3.1b)–
(3.1c) to the saddle point problem (3.2). Moreover, since no derivative
information is needed for the physical variables m,n, ρ and s, it is natural
to approximate them using L2-conforming spaces.

To simplify the notation, we collect the variables

u := (ρ,m, s,n), and Φ := (ϕ,σ), (3.3a)

and define the differential operator D by

D(Φ) := (∂tϕ+ β∇ · σ,∇ϕ, ϕ,σ) ∈ [L2(ΩT )]
2d+2. (3.3b)

With this notation, the above saddle-point problem simplifies to the follow-
ing: Find the critical point of

inf
u,ρT

sup
Φ

∫ T

0

∫
Ω

[
H(u)− u · D(Φ)

]
dxdt

+

∫
Ω

[
G(ρT ) + ρT ϕ(T, ·)− ρ0 ϕ(0, ·)

]
dx,

(3.4)

where the variables u ∈ [L2(ΩT )]
2d+2, ρT ∈ L2(Ω) with ρ, ρT ≥ 0 a.e., and

Φ ∈ H1(ΩT ) ×
(
L2([0, T ]) ⊗H(div0; Ω)

)
, the nonlinear functional H(u) is

given by

H(u) :=
∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+

|n|2

2V3(ρ)
− F (ρ),

and the inner-product is defined by

u · D(Φ) := ρ(∂tϕ+ β∇ · σ) +m · ∇ϕ+ s ϕ+ n · σ.
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3.1.2. The high-order finite element scheme and numerical integration. Fol-
lowing the work [16], we approximate the physical variablesm,n, s, ρ using
(discontinuous) high-order integration rule spaces, the variable ϕ using a
high-order H1-conforming finite element space, and the variable σ using a

vectorial H1-conforming finite element space. Let Ωh = {Tℓ}NS
ℓ=1 be a con-

forming mesh of the spatial domain Ω with NS elements, and Ih = {Ij}NT
j=1

be a uniform discretization of the temporal domain [0, T ] with NT line seg-
ments. We denote the space-time mesh ΩT,h := Ih ⊗ Ωh. For simplicity, we

restrict ourselves to the case where the domain Ω = [0, 1]d is a unit hyper-
cube and its spatial mesh Ωh is a Cartesian mesh with uniform hypercubic
elements. Given a polynomial degree k ≥ 1, we denote the following H1 and
L2 finite element spaces:

V k
h := {v ∈ H1(ΩT ) : v|Ij×Tℓ

∈ Qk(Ij)⊗Qk(Tℓ) ∀j, ℓ}, (3.5)

W k−1
h := {w ∈ L2(ΩT ) : w|Ij×Tℓ

∈ Qk−1(Ij)⊗Qk−1(Tℓ) ∀j, ℓ}, (3.6)

Mk−1
h := {µ ∈ L2(Ω) : µ|Tℓ

∈ Qk−1(Tℓ) ∀ℓ}, (3.7)

where Qk(S) is the tensor-product polynomial space of degree no greater
than k in each coordinate direction.

Using the above finite element spaces, we obtain the following discrete
saddle point problem: Find the critical point of the discrete system

inf
uh, ρT,h

sup
Φh

∫ T

0

∫
Ω

[
H(uh)− uh · D(Φh)

]
dxdt

+

∫
Ω

[
G(ρT,h) + ρT,h ϕh(T, ·)− ρ0 ϕh(0, ·)

]
dx,

(3.8)

where the variables uh := (ρh,mh, sh,nh) with mh,nh ∈ [W k−1
h ]d, ρ, s ∈

W k−1
h , ρ ≥ 0 a.e., ρT,h ∈ Mk−1

h with ρT,h ≥ 0 a.e., and Φh := (ϕh,σh) with

ϕh ∈ V k
h and σh ∈ [V k

h ]
d with σh · ν|∂Ω = 0.

Remark 3.1 (On the choice of the finite element spaces). In the scheme
(3.8), we use L2-conforming spaces to approximate the physical variables
uh and ρT,h, which is natural as no derivative information is needed. More-
over, we use H1(ΩT )-conforming finite element spaces to approximate the
Lagrange multipliers Φh. The use of H1-conforming space to approximate
the scalar variable ϕh is natural as the formulation (3.8) requires space-
time derivative information for ϕh. On the other hand, the use of H1(ΩT )-
conforming space for the vectorial Lagrange multiplier σh is only for the
simplicity of implementation. A more natural finite element space for this
variable is the following:

[W k
h ]

d ∩
(
L2([0, T ])⊗H(div0; Ω)

)
,

which is discontinuous in time and H(div)-conforming in space. We will
implement this choice in future work.
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Here we use polynomial degree of one order lower to approximate the
physical variables uh than that for the Lagrange multipliers Φh. Our lowest
order scheme is a staggered grid scheme where the physical variables stay in
cell centers and the Lagrange multipliers stay on mesh vertices.

In practice, the integrals in (3.8) are discretized using Gauss-Legendre
quadrature rules with k integration points per direction. The total number of
integration points for the space-time integral on [0, T ]×Ω is (kNT )×(kdNS),
and that for the spatial integral on Ω is kdNS , where NT is the number
of temporal cells and NT is the number of spatial cells. Denoting these
spatial/temporal Gauss-Legendre quadrature points as

{ξi}k
dNS

i=1 , and {ηj}kNT
j=1 (3.9a)

with their associated quadrature weights as

{ωi}k
dNS

i=1 , and {ζj}kNT
j=1 , (3.9b)

we write the discrete integrals as follows:

⟨⟨f(t, x)⟩⟩h :=

kNT∑
j=1

kdNS∑
i=1

f(ηj , ξi)ωiζj , (3.9c)

⟨f(x)⟩h :=

kdNS∑
i=1

f(ξi)ωi. (3.9d)

Furthermore, we use the Gauss-Legendre basis for the L2-conforming spaces
W k−1

h and Mk−1
h in the implementation, i.e., a function wh ∈ W k−1

h is
expressed as

wh =

kNT∑
j=1

kdNS∑
i=1

wij ψj(t)φi(x),

with coefficient wij ∈ R. Here the tensor-product Gauss-Legendre basis

function ψj(t)φi(x) ∈W k−1
h satisfies the nodal interpolation property

ψj(ζj′) = δjj′ , and φi(ξi′) = δii′ ,

where δii′ = 1 if i = i′ and δii′ = 0 if i ̸= i′. A function vh ∈ Mk−1
h

is expressed as vh =
∑kdNS

i=1 viφi(x) with coefficient vi ∈ R. Here wij =
wh(ζj , ξi) is the value of wh on the space-time integration point (ζj , ξi), and
vi = vh(ξi) is the value of vh on the spatial integration point ξi. Hence there
holds

⟨⟨f(wh)⟩⟩h :=

kNT∑
j=1

kdNS∑
i=1

f(wij)ωiζj , ∀wh =

kNT∑
j=1

kdNS∑
i=1

wij ψj(t)φi(x) ∈W k−1
h ,

⟨f(vh)⟩h :=

kdNS∑
i=1

f(vi)ωi, ∀vh =

kdNS∑
i=1

viφi(x) ∈Mk−1
h .
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With these notation, the fully discrete scheme (3.8) with numerical in-
tegration is given as follows: Find the critical point of the fully discrete
system

inf
uh, ρT,h

sup
Φh

⟨⟨H(uh)− uh · D(Φh)⟩⟩h

+ ⟨G(ρT,h) + ρT,h ϕh(T, ·)− ρ0 ϕh(0, ·)⟩h.
(3.10)

Here the unknowns ρT,h =
∑kdNS

i=1 ρT,iφi(x) with non-negative coefficient
ρT,i ∈ R+, uh := (ρh,mh, sh,nh) with

ρh =

kNT∑
j=1

kdNS∑
i=1

ρij ψj(t)φi(x), mh =

kNT∑
j=1

kdNS∑
i=1

mijψj(t)φi(x),

sh =

kNT∑
j=1

kdNS∑
i=1

sijψj(t)φi(x), nh =

kNT∑
j=1

kdNS∑
i=1

nijψj(t)φi(x),

where coefficients ρij ∈ R+, mij ,nij ∈ Rd, and sij ∈ R, and Φh := (ϕh,σh) ∈
[V k

h ]
d+1 with σh · ν|∂Ω = 0.

We further note that the use of Gauss-Legendre integral rule along with
the (nodal) Gauss-Legendre bases for the discontinuous spaces W k−1

h and

Mk−1
h significantly simplifies the optimization problem (3.10), as no explicit

degrees of freedom coupling is introduced among the physical variables uh

and ρT,h. In particular, given a fixed Lagrange multiplier Φh, the nonlinear
optimization problem (3.10) for uh and ρT,h can be solved in a pointwise
fashion per integration point. Moreover, positivity of the (space-time) den-
sity ρh and the terminal density ρT,h is guaranteed on all quadrature points
by design as the admissible set requires their coefficients to be non-negative:
ρij , ρT,i ≥ 0. The scheme (3.10) does not prescribe the choice of basis func-

tions for the H1-conforming space V k
h . The results are independent of the

specific choice of bases for V k
h . We use a nodal Gauss-Lobatto base in our

implementation.
The scheme (3.10) is our fully discrete high-order finite element discretiza-

tion to the scalar constraint optimization problem (3.1). Next, we present
its optimization solver using the ALG2 algorithm [15], which is also referred
to as the alternating direction method of multipliers (ADMM) method [5].

3.1.3. Duality and augmented Lagrangian. We introduce the dual variables

u∗
h = (ρ∗h,m

∗
h, s

∗
h,n

∗
h) ∈ [W k−1

h ]2d+2, and ρ∗T,h =

kdNS∑
i=1

ρ∗T,iφi(x) ∈Mk−1
h .

To further simplify the notation, we denote

uh =

kNT∑
j=1

kdNS∑
i=1

uij ψj(t)φi(x), and u
∗
h =

kNT∑
j=1

kdNS∑
i=1

u∗
ij ψj(t)φi(x),
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where

uij := (ρij ,mij , sij ,nij) ∈ R2d+2, with ρij ≥ 0,

and

u∗
ij := (ρ∗ij ,m

∗
ij , s

∗
ij ,n

∗
ij) ∈ R2d+2.

Introducing the following Legendre transforms:

H∗(u∗
ij) := sup

uij∈R2d+2,ρij≥0

uij · u∗
ij −H(uij), (3.11a)

G∗(ρ∗T,i) := sup
ρT,i∈R+

ρT,i · ρ∗T,i −G(ρT,i), (3.11b)

by duality, there holds

H(uij) := sup
u∗
ij∈R2d+2

uij · u∗
ij −H∗(u∗

ij), (3.11c)

G(ρT,i) := sup
ρ∗T,i∈R

ρT,i · ρ∗T,i −G∗(ρ∗T,i). (3.11d)

Plugging the relations (3.11c) and (3.11d) back to the scheme (3.10), we
have the following dual formulation of (3.10): Find the critical point of

sup
uh, ρT,h

inf
Φh,u

∗
h, ρ

∗
T,h

⟨⟨H∗(uh) + uh · (D(Φh)− u∗
h)⟩⟩h

+ ⟨G∗(ρ∗T,h)− ρT,h (ϕh(T, ·) + ρ∗T,h) + ρ0 ϕh(0, ·)⟩h.
(3.12)

It is clear that in the above formulation (3.12), the variable uh is the La-
grange multiplier for the constraint D(Φh)−u∗

h = 0, while the variable ρT,h
is the Lagrange multiplier for the terminal constraint ϕh(T, x)+ρ

∗
T,h(x) = 0.

Hence, the critical point of the system (3.12) is equivalent to the following
augmented Lagrangian system

sup
uh, ρT,h

inf
Φh,u

∗
h, ρ

∗
T,h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨G∗(ρ∗T,h)− ρT,h (ϕh(T, ·) + ρ∗T,h) + ρ0 ϕh(0, ·)⟩h

+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h

+
r

2
⟨(ϕh(T, ·) + ρ∗T,h)

2⟩h,

(3.13)

where r > 0 is the augmented Lagrangian parameter.

3.1.4. The ALG2 algorithm and its efficient (modified) implementation. The
ALG2 solves the optimization problem (3.13) in a splitting fashion. One
update from iteration level ℓ− 1 to ℓ contains three steps:

• Step A: Given data uℓ−1
h , ρℓ−1

T,h ,u
∗,ℓ−1
h , ρ∗,ℓ−1

T,h , compute Φℓ
h by opti-

mizing the target functional in (3.13) with respect to Φh.

• Step B: Given data uℓ−1
h , ρℓ−1

T,h ,Φ
ℓ
h, compute u∗,ℓ

h and ρ∗,ℓT,h by opti-

mizing the target functional in (3.13) with respect to u∗
h and ρ∗T,h.
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• Step C: Update the Lagrange multipliers uℓ
h, ρ

ℓ
T,h by the following

explicit expressions:

uℓ
h = uℓ−1

h + r(D(Φℓ
h)− u

∗,ℓ
h ), (3.14a)

ρℓT,h = ρℓ−1
T,h − r(ϕℓh(T, ·) + ρ∗,ℓT,h). (3.14b)

Here Step A contains a global constant-coefficient linear system solver for
the variables Φh = (ϕh,σh), Step B is a pointwise nonlinear equation solved
per quadrature point that involves the dual functions H∗ and G∗, and Step
C is a simple pointwise update. In practical implementation, we apply two
further simplifications to the above ALG2 algorithm: (1) apply splitting to
solve ϕh and σh sequentially; (2) use duality to solve pointwise nonlinear
problems for uh and ρT,h, and then apply a simple pointwise update for the
dual variables u∗

h and ρ∗T,h. We note that the second modification avoids
the explicit computation of the dual functions, which has already been used
in our previous work on ALG2 for variational time implicit schemes for
reaction-diffusion systems [17]. One iteration of the modified ALG2 algo-
rithm is documented in Algorithm 1 below. We skip the detailed derivation
of each step. Since the whole algorithm is very similar to Algorithm 2 in
[17] with simple modifications.

Remark 3.2 (Computational complexity for Algorithm 1). Step A1 involves
solving a symmetric positive definite linear system for a constant-coefficient
reaction-diffusion equation, for which we use preconditioned conjugate gra-
dient (PCG) method with a geometric multigrid preconditioner. It achieves
a linear computational complexity O(N) with N = dimV k

h being the total
number of degrees of freedom. Step A2 is an H(div)-elliptic linear system
problem. This system is well-conditioned for small parameter β ≪ 1, which
is usually the case in our applications. We use the PCG method with a
Jacobi preconditioner, which achieves optimal linear computational com-
plexity O(dN). Step B and C involve pointwise updates, which again have
a linear complexity of O(N). Hence the overall computational complexity
of applying one iteration of Algorithm 1 is linear. It is also clear that Step
B1 guarantees the positivity of density on all quadrature points.

Remark 3.3 (On unique solvability for Step B1). Unique solvability of the
one-dimensional minimization problem in Step B1 of Algorithm 1 can be
guaranteed when the functions Lij and LT,i are strongly convex. Strong
convexity is ensured if the mobility functions V1, V2, and V3 are positive and
concave functions, the potential function F (ρ) is concave, and the function
G(ρ) is convex, which are satisfied by the choices in Table 1.

3.2. System case. In this subsection, we discretize the model (2.18) with
M species and R reactions. We note that due to our formulation, there are
no additional technical difficulties for the system derivation compared with
the scalar case. We still document details of the finite element scheme and
its splitting optimization solver for the completeness of this paper.
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Algorithm 1 One iteration of (modified) ALG2 for (3.13).

1: Step A1. Find ϕℓh ∈ V k
h such that, for all ψh ∈ V k

h ,

⟨⟨∂tϕℓh · ∂tψh +∇ϕℓh · ∇ψh + ϕℓh · ψh⟩⟩h + ⟨ϕℓh(T, ·)ψh(T, ·)⟩h

= ⟨⟨(ρ∗,ℓ−1
h −

ρℓ−1
h

r
− β∇ · σℓ−1

h )∂tψh + (m∗,ℓ−1
h −

mℓ−1
h

r
) · ∇ψh⟩⟩h

+ ⟨⟨(s∗,ℓ−1
h −

sℓ−1
h

r
) · ψh⟩⟩h − ⟨(ρ∗,ℓ−1

T,h −
ρℓ−1
T,h

r
) · ψh(T, ·)⟩h − ⟨ρ

0

r
· ψh(0, ·)⟩h.

2: Step A2. Find σℓ
h ∈ [V k

h ]
d with σℓ

h · ν|∂Ω = 0 such that

⟨⟨β2(∇ · σℓ
h)(∇ · τh) + σℓ

h · τh⟩⟩h

= ⟨⟨β(ρ∗,ℓ−1
h −

ρℓ−1
h

r
− ∂tϕ

ℓ
h)∇ · τh + (n∗,ℓ−1

h −
nℓ−1
h

r
) · τh⟩⟩h

for all τh ∈ [V k
h ]

d with τh · ν|∂Ω = 0.

3: Step A3. Evaluate D(Φℓ
h) on each space-time quadrature point (ζj , ξi),

and ϕℓh(T, ·) on each spatial quadrature point ξi. Denote these values as

DΦℓ
ij := (dρℓij ,dm

ℓ
ij , ds

ℓ
ij ,dn

ℓ
ij), dρℓT,i = ϕℓh(T, ξi).

Set uℓ
ij = (ρℓij ,m

ℓ
ij , s

ℓ
ij ,n

ℓ
ij) := DΦℓ

ij+uℓ−1
ij /r, and ρℓT,i := ρℓ−1

T,i /r−dρℓT,i.

4: Step B1. For each quadrature point (ζj , ξi), find the nonnegative density

coefficient ρℓij ∈ R+ such that it minimizes the function

Lij(ρ) :=
r2|mℓ

ij |2

r + V1(ρ)
+

r2|sℓij |2

r + V2(ρ)
+

r2|nℓ
ij |2

r + V3(ρ)
+

(ρ− rρℓij)
2

r
− 2F (ρ),

and find the nonnegative terminal density coefficient ρℓT,i ∈ R+ such

that it minimizes the function LT,i(ρ) := 2G(ρ) + (ρ− rρℓT,i)
2/r.

5: Step B2. Update the following coefficients:

mℓ
ij =

rV1(ρ
ℓ
ij)

r + V1(ρℓij)
mℓ

ij , sℓij =
rV2(ρ

ℓ
ij)

r + V2(ρℓij)
sℓij , nℓ

ij =
rV3(ρ

ℓ
ij)

r + V3(ρℓij)
nℓ
ij .

6: Step C. update the dual variables according to the following:

u∗,ℓ
ij = uℓ

ij − uℓ
ij/r, ρ

∗,ℓ
T,i = ρℓT,i − ρℓT,i/r.

Again, we introduce the vectors ni := β∇ρi to avoid derivative evalua-
tion of the densities for the scheme. To simplify the notation, we denote the
collection of densities ρ = (ρ1, · · · , ρM ), fluxes m = (m1, · · · ,mM ), vec-
tors n = (n1, · · · ,nM ), and sources s = (s1, · · · , sR). Then optimization
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problem (2.18) is rewritten as follows:

inf
ρ,m,s,n

∫ T

0

∫
Ω

 M∑
i=1

(
∥mi∥2

2V1,i(ρi)
+

|ni|2

2V3,i(ρi)

)
+

R∑
p=1

|sp|2

2V2,p(ρ)

 dxdt

−
∫ T

0

∫
Ω
F (ρ) dxdt+

∫
Ω
G(ρ(T, x))dx,

(3.15a)

subject to constraints

∂tρi +∇ ·mi −
R∑

p=1

γi,psp = 0, (3.15b)

ni − β∇ρi = 0, (3.15c)

for all 1 ≤ i ≤ M on [0, T ] × Ω, with fixed initial densities ρi(0, x) = ρ0i (x)
in Ω and no-flux boundary conditions mi · ν = 0 on [0, T ]× ∂Ω.

Similar to the scalar case in (3.4), we reformulate the constrained op-
timization problem (3.1) into the following saddle-point system: Find the
critical point of

inf
u,ρT

sup
Φ

∫ T

0

∫
Ω

[
H(u)− u · D(Φ)

]
dxdt

+

∫
Ω

[
G(ρT ) + ρT · ϕ(T, ·)− ρ0 · ϕ(0, ·)

]
dx.

(3.16)

Here the variables

u := (ρ,m, s,n) ∈ [L2(ΩT )]
(2d+1)M+R, (3.17)

ρT := (ρ1,T , · · · , ρM,T ) ∈ [L2(Ω)]M , (3.18)

Φ := (ϕ,σ) ∈ [H1(ΩT )]
M ×

[
L2([0, T ])⊗H(div0; Ω)

]M
, (3.19)

with
ϕ = (ϕ1, · · · , ϕM ), and σ = (σ1, · · · ,σM ),

and initial data ρ0 := (ρ01, · · · , ρ0M ). Here the nonlinear function

H(u) :=
M∑
i=1

(
∥mi∥2

2V1,i(ρi)
+

|ni|2

2V3,i(ρi)

)
+

R∑
p=1

|sp|2

2V2,p(ρ)
− F (ρ),

and the operator

D(Φ) := (∂tϕ+ β∇ · σ,∇ϕ,ΓTϕ,σ),

where ∇ · σ := (∇ · σ1, · · · ,∇ · σM ) is the component-wise divergence and
∇ϕ := (∇ϕ1, · · · ,∇ϕM ) is the component-wise gradient, and Γ = (γi,p) ∈
RM×R is the reaction coefficient matrix. Note that the inner-product u·D(Φ)
has the following component-wise form

u · D(Φ) =

M∑
i=1

(ρi(∂tϕi + β∇ · σi) +mi · ∇ϕi + ni · σi) +

R∑
p=1

M∑
i=1

spγi,pϕi.
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Replacing the function spaces with appropriate (high-order) finite element
spaces and applying numerical integration, we derive the following fully
discrete scheme: Find the critical point of the fully discrete system

inf
uh,ρT,h

sup
Φh

⟨⟨H(uh)− uh · D(Φh)⟩⟩h

+ ⟨G(ρT,h) + ρT,h · ϕh(T, ·)− ρ0 · ϕh(0, ·)⟩h.
(3.20)

Here the unknowns ρT,h =
∑kdNS

i=1 ρT,iφi(x) with non-negative coefficient

ρT,i ∈ RM
+ , uh := (ρh,mh, sh,nh) with

ρh =

kNT∑
j=1

kdNS∑
i=1

ρij ψj(t)φi(x), mh =

kNT∑
j=1

kdNS∑
i=1

mijψj(t)φi(x),

sh =

kNT∑
j=1

kdNS∑
i=1

sijψj(t)φi(x), nh =

kNT∑
j=1

kdNS∑
i=1

nijψj(t)φi(x),

where coefficients ρij ∈ RM
+ , mij ,nij ∈ RdM , and sij ∈ RR, and Φh :=

(ϕh,σh) ∈ [V k
h ]

(d+1)M with σh · ν|∂Ω = 0.
We introduce the dual variables

u∗
h = (ρ∗h,m

∗
h, s

∗
h,n

∗
h) ∈ [W k−1

h ](2d+1)M+R,

and ρ∗T,h =
∑kdNS

i=1 ρ∗
T,iφi(x) ∈Mk−1

h , and denote

uh =

kNT∑
j=1

kdNS∑
i=1

uij ψj(t)φi(x), and u
∗
h =

kNT∑
j=1

kdNS∑
i=1

u∗
ij ψj(t)φi(x),

with coefficients

uij := (ρij ,mij , sij ,nij) ∈ R(2d+1)M+R, with ρij ≥ 0,

and

u∗
ij := (ρ∗

ij ,m
∗
ij , s

∗
ij ,n

∗
ij) ∈ R(2d+1)M+R.

Using these dual variables, we obtain the following augmented Lagrangian
formulation of (3.20):

sup
uh,ρT,h

inf
Φh,u

∗
h,ρ

∗
T,h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨G∗(ρ∗T,h)− ρT,h · (ϕh(T, ·) + ρ∗T,h)⟩h

+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h

+
r

2
⟨|ϕh(T, ·) + ρ∗T,h|2⟩h + ⟨⟨ρ0 · ϕh(0, ·)⟩⟩h

(3.21)

Finally, we introduce a splitting algorithm (modified ALG2) for the saddle-
point system (3.21), where we sequentially compute each component of Φh

in the linear elliptic update (Step A) and of the densities ρh and ρT,h in the
nonlinear update (Step B1); see also [17].
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The coupled global elliptic linear system for Φh = (ϕh,σh) in ALG2 takes

the following form: Find (ϕh,σh) ∈ [V k
h ]

(d+1)M with σh · ν|∂Ω = 0, such

that, for all (ψh, τ h) ∈ [V k
h ]

(d+1)M with τ h · ν|∂Ω = 0, there exists

M∑
i=1

⟨⟨(∂tϕi,h + β∇ · σi,h)(∂tψi,h + β∇ · τi,h)⟩⟩h

+ ⟨⟨∇ϕi,h · ∇ψi,h + σi,h · τi,h⟩⟩h + ⟨ϕi,h(T, ·)ψi,h(T, ·)⟩h

+
R∑

p=1

⟨⟨(
∑M

i=1 γi,pϕi,h)(
∑M

i=1 γi,pψi,h)⟩⟩h

=

M∑
i=1

⟨⟨(ρ∗i,h −
ρi,h
r

)(∂tψi,h + β∇ · τi,h)⟩⟩h

+ ⟨⟨(m∗
i,h −

mi,h

r
) · ∇ψi,h + (n∗

i,h −
ni,h

r
) · τi,h⟩⟩h

− ⟨(ρ∗i,T,h −
ρi,T,h
r

)ψi,h(T, ·)⟩h + ⟨(ρ∗i,0 −
ρi,0
r

)ψi,h(0, ·)⟩h

+
R∑

p=1

⟨⟨((s∗p,h −
sp,h
r

))(
∑M

i=1 γi,pψi,h)⟩⟩h.

(3.22)

This system is solved sequentially in practice to drive down the overall com-
putational cost. The i-th component scalar reaction-diffusion solver for ϕℓi,h
at ℓ-th iteration reads as follows:

⟨⟨∂tϕℓi,h∂tψi,h +∇ϕℓi,h · ∇ψi,h⟩⟩h

+ ⟨ϕℓi,h(T, ·)ψi,h(T, ·)⟩h +
R∑

p=1

⟨⟨γ2i,pϕℓi,hψi,h⟩⟩h

= ⟨⟨(ρ∗,ℓ−1
i,h −

ρℓ−1
i,h

r
− β∇ · σℓ−1

i,h )∂tψi,h⟩⟩h

+ ⟨⟨(m∗,ℓ−1
i,h −

mℓ−1
i,h

r
) · ∇ψi,h⟩⟩h

− ⟨(ρ∗,ℓ−1
i,T,h −

ρℓ−1
i,T,h

r
)ψi,h(T, ·)⟩h + ⟨(ρ∗i,0 −

ρi,0
r

)ψi,h(0, ·)⟩h

+
R∑

p=1

⟨⟨(s∗p,h −
sp,h
r

−
∑i−1

j=1 γj,pϕ
ℓ
j,h −

∑M
j=i+1 γj,pϕ

ℓ−1
j,h )γi,pψi,h⟩⟩h.

(3.23)
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The i-th component H(div)-elliptic solver for σℓ
i,h reads as follows

⟨⟨β2(∇ · σℓ
i,h)(∇ · τi,h) + σℓ

i,h · τi,h⟩⟩h

=
M∑
i=1

⟨⟨(ρ∗,ℓ−1
i,h −

ρℓ−1
i,h

r
− ∂tϕ

ℓ
i,h)β∇ · τi,h + (n∗,ℓ−1

i,h −
nℓ−1
i,h

r
) · τi,h⟩⟩h.

(3.24)

Meanwhile, the nonlinear update on each quadrature point for the densi-
ties ρℓ

ij = (ρℓ1,ij , · · · , ρℓM,ij) ∈ RM
+ takes the following form: find ρℓ

ij ∈ RM
+

that minimizes the function

Lij(ρ) :=

M∑
m=1

r2|mℓ
m,ij |2

r + V1,m(ρm)
+

r2|nℓ
m,ij |2

r + V3,m(ρm)
+

(ρm − rρℓm,ij)
2

r

− 2F (ρ) +
R∑

p=1

r2|sℓp,ij |2

r + V2,p(ρ)
.

(3.25)

And the nonlinear update for the terminal densities ρℓ
T,i = (ρℓ1,T,i, · · · , ρℓM,T,i) ∈

RM
+ takes the following form: find ρℓ

T,i ∈ RM
+ that minimizes the function

LT,i(ρ) := 2G(ρ) + |ρ− rρℓ
T,i|2/r. (3.26)

Here the bar-values take the same form as in Step A3 of Algorithm 1, namely,

uℓ
ij := (ρℓ

ij ,m
ℓ
ij , s

ℓ
ij ,n

ℓ
ij) := DΦℓ

ij + uℓ
ij/r, ρ

ℓ
T,i := ρℓ

T,i/r − ϕℓ
h(T, ξi).

(3.27)

The pointwise optimization problems in (3.23) and (3.26) areM -dimensional
problems. These problems are usually loosely coupled among the density
components. We further reduce the computational cost by separately solving
for each density component sequentially, which results inM one-dimensional
minimization problems per integration point. The positivity of the densities
is guaranteed in our algorithm at the quadrature points. After the densi-
ties ρℓ

ij and ρℓ
T,i have been computed, we then update the other physical

variables on the quadrature point as follows:

mℓ
m,ij =

rV1,m(ρ
ℓ
m,ij)

r + V1,m(ρℓm,ij)
mℓ

m,ij , nℓ
m,ij =

rV3,m(ρ
ℓ
m,ij)

r + V3,m(ρℓm,ij)
nℓ
m,ij , (3.28a)

m∗,ℓ
m,ij =

r

r + V1,m(ρℓm,ij)
mℓ

m,ij , n∗,ℓ
m,ij =

r

r + V3,m(ρℓm,ij)
nℓ
m,ij , (3.28b)

ρ
∗,ℓ
ij = ρℓ

ij − ρℓ
ij/r, ρ

∗,ℓ
T,i = ρℓ

T,i − ρℓ
T,i/r, (3.28c)

sℓp,ij =
rV2,p(ρ

ℓ
ij)

r + V2,p(ρℓ
ij)

sℓp,ij , s∗,ℓp,ij =
r

r + V2,p(ρℓ
ij)

sℓp,ij . (3.28d)

For completeness, we collect the above procedures into the following al-
gorithm.
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Algorithm 2 One iteration of (modified) ALG2 for (3.21).

1: Step A. For i = 1, · · · ,M , solve the linear system (3.23) for the unknown
ϕℓi,h, and solve the linear system (3.24) for the unknown σℓ

i,h. Interpolate

the operator D(Φℓ
h) on quadrature points, and compute the bar-values

(on quadrature points) in (3.27).
2: Step B. For each quadrature point, sequentially compute the nonnegative

density minimizers to (3.25) and (3.26).
3: Step C. Update the other variables on quadrature points according to

(3.28).

4. Numerical results

In this section, we present one- and two-dimensional numerical results
for the scalar scheme (3.13) and the system scheme (3.21) using the finite
element software MFEM [2]. The spatial domain Ω = [0, 1]d is taken to be
either a unit line segment (d = 1) or a unit square (d = 2). The terminal
time is T = 1. Furthermore, we solve the mean field planning problem
for all the numerical simulations, where the initial and terminal densities
are prescribed. In this case, the terminal density is no longer an unknown
variable. Hence the scalar optimization problem (3.13) simplifies as below

sup
uh

inf
Φh,u

∗
h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨−ρ1 ϕh(T, ·) + ρ0 ϕh(0, ·)⟩h

+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h,

(4.1)

and the system optimization problem (3.21) simplifies as below

sup
uh

inf
Φh,u

∗
h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨−ρ1 · ϕh(T, ·) + ρ0 · ϕh(0, ·)⟩h

+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h.

(4.2)

We take the augmented Lagrangian parameter r = 1 for all the simulations.

4.1. Scalar MFC for reaction-diffusion: β = 0. We first consider a
planning problem for scalar MFC (2.3) with regularization parameter β = 0
(no Fisher information functional). With β = 0, we do not compute the
nh,n

∗
h and σh variables in the optimization problem (4.1), since they are

always zero and are decoupled from the other variables.
We solve the problem (4.1) (with β = 0) on ΩT = [0, 1]×Ω with Ω = [0, 1]d

for d = 1, 2. The initial (resp. terminal) densities are chosen to be:

ρ0(x) = exp(−50|x−xA|2), ρ1(x) = exp(−50|x−xB|2), ∀x = (x1, · · · , xd) ∈ Ω.



MFC WITH FEM 25

Here xA = 0.25, xB = 0.75 for d = 1, and xA = (0.25, 0.25), xB =
(0.75, 0.75) for d = 2. We fix V1(ρ) = ρ and potential function

F (t, x, ρ) = −(0.01ρ log(ρ) + 0.4ρ cos(4πt)
d∏

i=1

cos(4πxi)). (4.3)

Moreover, we take the following four choices of V2(ρ) to highlight different
reaction effects of the model:


Case 1 : V2(ρ) = 0

Case 2 : V2(ρ) = 20

Case 3 : V2(ρ) = 20ρ

Case 4 : V2(ρ) = 20 ρ−1
log(ρ) .

(4.4)

The 1D results are computed on a 64 × 64 uniform rectangular space-time
mesh, and the 2D results are computed on a 16×64×64 uniform cubic space-
time mesh. We use polynomial degree k = 4, and apply 400 ALG iterations
for all the simulations. The density contours for the d = 1 on the space-time
2D domain ΩT are shown in Figure 1. The snapshots of density contours on
Ω = [0, 1]2 at different times for the d = 2 are shown in Figure 2. We find
the dynamics with and without reaction terms are completely different. The
reaction function in Figure 1 (b) and (d) shows that the reaction mobility
function V2 dominates the path between ρ0 and ρ1. While the transport
mobility function V1 dominates the path between ρ0 and ρ1 in Figure 1 (a)
and (c). In Figure 2, we observe a different pattern formulation for various
choices of general nonlinear reaction mobility function V2. This behaves very
differently from the classical optimal transport problem with V2 = 0.

(a) V2(ρ) = 0. (b) V2(ρ) = 20. (c) V2(ρ) = 20ρ. (d) V2(ρ) = 20 ρ−1
log(ρ)

.

Figure 1. Example 4.1. Snapshots of density contour on the
space-time domain ΩT = [0, 1]2. The vertical axis represents
time.
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(a) V2(ρ) = 0.

(b) V2(ρ) = 20.

(c) V2(ρ) = 20ρ.

(d) V2(ρ) = 20 ρ−1
log(ρ)

.

Figure 2. Example 4.1. Snapshots of density contour at
t = 0.1,0.3,0.5, 0.7, 0.9 (left to right).

4.2. Scalar MFC for reaction-diffusion: effect of β. Here we use a
similar setup as in Example 4.1, but study the effect of the regularization
parameter β. We take take mobility functions V1(ρ) = ρ, V2(ρ) = 20, and
potential function

F (t, x, ρ) = −(0.005ρ log(ρ) + 0.4ρ cos(4πt)

d∏
i=1

cos(4πxi)). (4.5)

We further take the mobility function V3(ρ) = ρ, and vary β, namely, β = 0,
β = 0.005, and β = 0.01. The same discretization as in Example 4.1 is used.
The density contours for d = 1 on the space-time domain ΩT are shown in
Figure 3. The snapshots of density contours at different times for d = 2
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are shown in Figure 4. In numerical examples, we show that increasing
regularization β leads to a more diffusive density evolution.

(a) β = 0 (b) β = 0.005 (c) β = 0.01

Figure 3. Example 4.2. Snapshots of density contour on
ΩT = [0, 1]2.

(a) V2(ρ) = 20, β = 0. (no regularization)

(b) β = 0.005. (weak regularization)

(c) β = 0.01. (strong regularization)

Figure 4. Example 4.2. Snapshots of density contour at
t = 0.1,0.3,0.5,0.7,0.9 (left to right).

4.3. System MFC for reaction-diffusion (M = 2, R = 1). In this
example, we consider a system model (2.5) with M = 2 species and R = 1
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reaction. The initial/terminal densities for each component are given as:

ρ1(0, x) = exp(−50|x− xA|2), ρ1(1, x) = exp(−50|x− xB|2),
ρ2(0, x) = exp(−50|x− xB|2), ρ2(1, x) = exp(−50|x− xA|2).

We take the mobilities V1,i(ρi) = V3,i(ρi) = ρi for i = 1, 2, and the mobility

V2,1(ρ1, ρ2) = 20
ρ1 − ρ2

log(ρ1)− log(ρ2)
.

The potential function is given as follows

F (t, x,ρ) = −
(
0.01ρ1 log(ρ1) + 0.4ρ1 cos(4πt)

d∏
i=1

cos(4πxi)

+ 0.005ρ2 log(ρ2)
)

The potential function for the first component has a drift and an entropy
term in ρ1, while that for the second component only has a smaller entropy
term in ρ2. We use the same discretization as in the previous two examples.
The density contours for the 1D results (d = 1) are shown in Figure 5 for
β = 0, β = 0.005, and β = 0.01. The snapshots of density contours at
different times for the 2D results (d = 2) are shown in Figure 6 for β = 0
and β = 0.01. Without reaction mobility V2, the second component density
path ρ2 will be similar to a Gaussian translation. It is clear that the reaction
mobility completely changes the density evolution. Moreover, increasing the
regularization parameter β leads to a diffusive density path, as expected.

(a) ρ1. Left: β = 0, middle: β = 0.005, right: β = 0.01.

(b) ρ2. Left: β = 0, middle: β = 0.005, right: β = 0.01.

Figure 5. Example 4.3. Snapshots of ρ1 (top) and ρ2 (bottom).
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(a) ρ1. β = 0.

(b) ρ1. β = 0.01.

(c) ρ2. β = 0.

(d) ρ2. β = 0.01.

Figure 6. Example 4.3. Snapshots of ρ1 and ρ2 at t =
0.1,0.3,0.5,0.7,0.9 (left to right).

4.4. 2D Scalar MFC for reaction-diffusion: image transfer. In this
example, we consider a 2D scalar mean field planning problem (2.3) with
complex initial and terminal densities ρ0(x) and ρ1(x), and a complex spatial
coordinate dependent mobility V2(x, ρ) = 20ρ2(x)ρ and potential F (x, ρ) =
−0.001ρ3(x)ρ. Here the four non-negative functions ρ0(x), ρ1(x), ρ2(x),
and ρ3(x) are normalized mascot images as shown in Figure 7, which are
logos from University of Notre Dame, UCLA, Portland State university,
and University of South Carolina, respectively. We further take V1(ρ) =
V3(ρ) = ρ, and vary the regularization parameter β = 0, β = 5× 10−4, and
β = 10−3. We apply the scheme (4.1) with polynomial degree k = 4 on a
16 × 64 × 64 uniform mesh, and perform 2000 ALG iterations. Snapshots
of density contours at different times for different β are shown in Figure 8.
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(a) ρ0(x) (b) ρ1(x) (c) ρ2(x) (d) ρ3(x)

Figure 7. Example 4.4. The four functions ρ0(x), ρ1(x),
ρ2(x), ρ3(x). Initial density is ρ0, terminal density is ρ1,
mobility V2(x, ρ) = 20ρ2(x)ρ and potential F (x, ρ) =
−0.001ρ3(x)ρ.

It is interesting to observe that the mobility coefficient ρ2(x) in V2 and the
interaction coefficient ρ3(x) in F are imprinted in the density evolution. We
also observe a strong diffusion effect when β = 10−3.

(a) β = 0

(b) β = 5× 10−4

(c) β = 10−3

Figure 8. Example 4.4. Snapshots of density contours at
t = 0.2,0.4,0.6,0.8 (left to right) for different β.
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4.5. 2D System MFC for reaction-diffusion (M = 2, R = 1): image
transfer. In this example, we consider a system model (2.5) with M = 2
species and R = 1 reaction. We take the initial and terminal densities as
the images in Figure 7. Specifically, the two initial densities ρ01 = ρ0(x),
ρ02 = ρ3(x), and the two terminal densities ρ11 = ρ1(x) and ρ12 = ρ2(x). We
take V1,i(ρ) = ρ,

V2,1(ρ) = 20
ρ1 + ρ2

2
,

no potential F (ρ) = 0, and no regularization β = 0. We use the same dis-
cretization as the previous example, and apply 2000 ALG iterations. Snap-
shots of the density contour at different times are shown in Figure 9. Here
the reaction with mobility V2,1 makes the density evolution different from a
classical optimal transport path for each component.

(a) ρ1

(b) ρ2

Figure 9. Example 4.5. Snapshots of ρ1 (top) and ρ2 (bot-
tom) at t = 0.2,0.4,0.6,0.8 (left to right).

4.6. 2D System MFC for reaction-diffusion (M = 12, R = 12). In the
last example, we consider a system model (2.5) withM = 12 species and R =
12 reaction. The initial densities are the ancient Chinese calligraphy in seal
script for the 12 Chinese zodiac animals, which are downloaded from Richard
Sears’ website https://hanziyuan.net/, while the terminal densities are
their associated (gray-scale) images, which are generated by Baidu’s text-
to-image AI tool WenXin YiGe https://yige.baidu.com/. We rescale the
images so that the maximal value is 1 and minimial value is 0; see Figure 10–
11 for the 12 initial (t = 0) and terminal (t = 1) density approximations in
gray scale.

Here we take V1,i(ρ) = ρ,

V2,p(ρ) = 20
ρp − ρp+1

log(ρp)− log(ρp+1)
, ∀1 ≤ p ≤ 12,

https://hanziyuan.net/
https://yige.baidu.com/
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where the convention ρ13 = ρ1 is used. The reaction patterns for this system
are cyclic. Again, we set potential F (ρ) = 0, and regularization β = 0. We
use the same discretization as the previous example and apply 2000 ALG
iterations. The results at time t = 0.0, 0.2, 0.5, 0.8, and 1.0 are shown in
Figure 10–11. The color range is gray-scale from 0 (black) to 1 (white). We
observe interesting and complex densities’ evolutions from these figures.

For comparison purposes, we also plot the snapshots of densities at time
t = 0.5 for optimal transport without reaction (V2,p = 0) in Figure 12. It is
observed that the results in the middle row of Figure 10–11 for the reaction-
diffusion system model are very different from the scalar optimal transport
results in Figure 12. These differences come from the nonlinear reaction
mobility functions.

Figure 10. Example 4.6. Snapshots of first 6 densities ρ1
to ρ6 (left to right) at times t = 0.0, 0.2, 0.5, 0.8, 1.0 (top to
bottom).
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Figure 11. Example 4.6. Snapshots of last 6 densities ρ7 to
ρ12 (left to right) at times t = 0.0, 0.2, 0.5, 0.8, 1.0 (top to
bottom).
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Figure 12. Example 4.6. (No reaction V2,p = 0.) Snapshots
of densities at t = 0.5. From left to right, top to bottom: ρ1
to ρ12.

5. Discussions

In this paper, we model and compute a class of generalized optimal trans-
port and mean field control problems for reaction-diffusion equations and
systems. The control problems are constructed by general choices of trans-
port and reaction mobility functions, such as V1, V2, and V3, derived from
entropy dissipation properties. We apply a high-order spatial-time finite
element method to discretize the spatial-time domain and use the ALG2
algorithm to compute mean field control problems. Numerical examples in
Section 4, including transporting two Gaussian distributions and a system of
12 images, demonstrate the effectiveness of the proposed mean field control
models and computations.

In future work, we shall study general modeling, computation, and inverse
mean field control problems for reaction-diffusion systems. The generalized
nonlinear reaction functions often represent complex behaviors between dif-
ferent populations, exhibiting patterns in social dynamical systems. The
mean field control problem over transportation and reactions provides new
patterns in population behaviors observed from our numerical examples.
The analytical study of these new patterns could be a future research direc-
tion. We also expect that the mean field control problem of reaction-diffusion
systems has vast applications in pandemic control, computer vision, and im-
age processing problems. The other important direction is the parallel and
high-order computation of generalized optimal transport and mean field con-
trol problems on three-dimensional spatial domains.
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Appendix

This section gives detailed proofs of Propositions 2.1–2.4.

Proof of Proposition 2.1. Denote E(ρ) =
∫
ΩE(ρ(x))dx. Thus δ

δρE(ρ) =

E′(ρ). By the change of variable formula, we obtain

m = m̃− βV1(ρ)∇E′(ρ), s = s̃− βV2(ρ)E
′(ρ).

The constraint set (2.16b) satisfies

0 =∂tρ+∇ · (m̃− βV1(ρ)∇E′(ρ))− (s̃− βV2(ρ)E
′(ρ))

=∂tρ+∇ ·m− s.
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Moreover, the terms in objective functional (2.11a) satisfy

∫ T

0

∫
Ω

[ ∥m̃(t, x)∥2

2V1(ρ(t, x))
+

|s̃(t, x)|2

2V2(ρ(t, x))

]
dxdt

=

∫ T

0

∫
Ω

[∥m+ βV1(ρ)∇E′(ρ)∥
2V1(ρ)

+
|s+ βV2(ρ)E

′(ρ)|2

2V2(ρ)

]
dxdt

=

∫ T

0

∫
Ω

[∥m∥2 + β2V1(ρ)
2∥∇E′(ρ)∥2

2V1(ρ)
+

|s|2 + β2V2(ρ)
2|E′(ρ)|2

2V2(ρ)

]
dxdt

+ β

∫ T

0

∫
Ω

[
m · ∇E′(ρ)− s · E′(ρ)

]
dxdt

=

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+
β2

2
∥∇E′(ρ)∥2V1(ρ) +

β2

2
|E′(ρ)|2V2(ρ)

]
dxdt

+ β

∫ T

0

∫
Ω
E′(ρ)

[
−∇ ·m+ s

]
dxdt

=

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+
β2

2
∥∇E′(ρ)∥2V1(ρ) +

β2

2
|E′(ρ)|2V2(ρ)

]
dxdt

+ β

∫ T

0

∫
Ω

[
E′(ρ)∂tρ

]
dxdt

=

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+
β2

2
∥∇E′(ρ)∥2V1(ρ) +

β2

2
|E′(ρ)|2V2(ρ)

]
dxdt

+ β

∫
Ω

[
E(ρ(T, ·))− E(ρ0)

]
dx,

where the last equality follows the fact that
∫ T
0 E′(ρ)∂tρdt =

∫ T
0 ∂tE(ρ)dt =

E(ρ(T, ·))−E(ρ0). Thus we derive the variational problem (2.13) using the
definition of V3 in (2.12). □

Proof of Proposition 2.2. Denote the Lagrange multiplier of problem (2.13)
as ϕ : [0, T ]× Ω → R. Consider the following saddle point problem:

inf
m,s,ρ,ρT

sup
ϕ

L(m, s, ρ, ρT , ϕ),

where

L(m, s, ρ, ϕ) =

∫ T

0

∫
Ω

[ ∥m∥2

2V1(ρ)
+

|s|2

2V2(ρ)
+ ϕ

(
∂tρ+∇ ·m− s

)]
dxdt

+

∫ T

0

[β2
2
I(ρ)−F(ρ)

]
dt+ G(ρT ) + βE(ρT ).
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Assume ρ > 0. By solving the saddle point problem of L, we obtain

δ

δm
L = 0,

δ

δs
L = 0,

δ

δρ
L = 0,

δ

δϕ
L = 0,

δ

δρT
L = 0,

⇒



m

V1
= ∇ϕ,

s

V2
= ϕ,

− 1

2

∥m∥2

V 2
1

V ′
1 −

1

2

|s|2

V 2
2

V ′
2 +

δ

δρ

[β2
2
I(ρ)−F(ρ)

]
− ∂tϕ = 0,

∂tρ+∇ ·m− s = 0,

ϕT +
δ

δρT

(
G(ρT ) + βE(ρT )

)
= 0.

This finishes the proof. □

Proof of Proposition 2.3. The proof is similar to the scalar case. Denote
Ei(ρi) =

∫
ΩEi(ρi(x))dx. Thus

δ
δρi

Ei(ρi) = E′
i(ρi). By the change of variable

formula, we obtain

mi = m̃i − βV1,i(ρi)∇E′
i(ρi), sp = s̃p − βV2,p(ρ)

M∑
j=1

γj,pE
′
j(ρj).

The constraint set (2.18b) satisfies

0 =∂tρi +∇ · (m̃i − βV1,i(ρi)∇E′
i(ρi))− (

R∑
p=1

γi,ps̃p − β

R∑
p=1

γi,pV2,p(ρ)

M∑
j=1

γj,pE
′
j(ρj))

=∂tρi +∇ ·mi −
R∑

p=1

γi,psp.

Moreover, the terms in objective functional (2.18a) satisfies∫ T

0

∫
Ω

[ M∑
i=1

∥m̃i(t, x)∥2

2V1,i(ρi(t, x))
+

R∑
p=1

|s̃p(t, x)|2

2V2,p(ρ(t, x))

]
dxdt

=

∫ T

0

∫
Ω

[ M∑
i=1

∥mi + βV1,i(ρi)∇E′
i(ρi)∥

2V1,i(ρi)
+

R∑
p=1

|sp + β
∑M

j=1 γj,pV2,p(ρ)E
′
j(ρj)|2

2V2,p(ρ)

]
dxdt

=

∫ T

0

∫
Ω

[ M∑
i=1

∥mi∥2 + β2V1,i(ρi)
2∥∇E′

i(ρi)∥2

2V1,i(ρi)
+

R∑
p=1

|sp|2 + β2|
∑M

j=1 γj,pV2,p(ρ)E
′
j(ρj)|2

2V2,p(ρ)

]
dxdt

+ β

∫ T

0

∫
Ω

[ M∑
i=1

mi · ∇E′
i(ρi)−

R∑
p=1

sp ·
M∑
j=1

γj,pV2,p(ρ)E
′
j(ρj)

]
dxdt.
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We only need to show that

∫ T

0

∫
Ω

[ M∑
i=1

mi·∇E′
i(ρi)−

R∑
p=1

sp·
M∑
j=1

γj,pE
′
j(ρj)

]
dxdt =

∫
Ω

M∑
i=1

[
Ei(ρi(T, ·))−Ei(ρ

0
i )
]
dx.

This is true from the following fact:

∫ T

0

∫
Ω

[ M∑
i=1

mi · ∇E′
i(ρi)−

R∑
p=1

sp ·
M∑
j=1

γj,pE
′
j(ρj)

]
dxdt

=

∫ T

0

∫
Ω

M∑
i=1

E′
i(ρi) ·

[
−∇ ·mi +

R∑
p=1

γi,psp

]
dxdt

=

∫
Ω

∫ T

0

M∑
i=1

E′
i(ρi) · ∂tρidtdx

=

∫
Ω

M∑
i=1

[
Ei(ρi(T, ·))− Ei(ρ

0
i )
]
dx,

where the last equality uses the integration by parts in the time variable.
This finishes the proof. □

Proof of Proposition 2.4. The proof is similar to the scalar case. We derive
the minimizer system for variational problem (2.18). Denote ϕi : [0, T ]×Ω →
R as the Lagrange multiplier of constraint (2.18a), for i = 1, 2, · · · ,M . Write
ϕ = (ϕi)

M
i=1. Consider the following saddle point problem

inf
m,s,ρ,ρT

sup
ϕ

L1(m, s,ρ,ρT , ϕ),

where

L1(m, s,ρ,ρT , ϕ)

=

∫ T

0

∫
Ω

[1
2

M∑
i=1

∥mi∥2

V1,i(ρi)
+

1

2

R∑
p=1

|sp|2

V2,p(ρ)
+
β2

2
I(ρ)

]
dx−F(ρ(t, ·))dt

+ G(ρT ) + β
(
E(ρT )− E(ρ0)

)
+

M∑
i=1

∫ T

0

∫
Ω
ϕi ·

{
∂tρi +∇ ·mi −

R∑
p=1

γi,psp

}
dxdt.
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Assume ρi > 0, i = 1, 2, · · · ,M . By solving the saddle point problem of L1,
we obtain



δ

δmi
L1 = 0,

δ

δsp
L1 = 0,

δ

δρi
L1 = 0,

δ

δϕi
L1 = 0,

δ

δρT
L1 = 0,

⇒



mi = V1,i(ρi)∇ϕi,

sp = V2,p(ρ)
M∑
j=1

γj,pϕp,

− 1

2

M∑
i=1

∥mi∥2

V1,i(ρi)2
V1,i(ρi)

′

− 1

2

R∑
p=1

|sp|2

V2,p(ρ)2
∂

∂ρi
V2,p(ρ)

+
∂

∂ρi
[
β2

2
I(ρ)−F(ρ)]− ∂tϕi = 0,

∂tρi +∇ ·mi −
R∑

p=1

γi,psp = 0,

ϕT +
δ

δρT
G(ρT ) + β

δ

δρT
E(ρT ) = 0.

This finishes the proof. □
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