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Primal-Dual Damping algorithms for optimization

Xinzhe Zuo∗,Stanley Osher †, and Wuchen Li ‡

We propose an unconstrained optimization method based on the
well-known primal-dual hybrid gradient (PDHG) algorithm. We
first formulate the optimality condition of the unconstrained opti-
mization problem as a saddle point problem. We then compute the
minimizer by applying generalized primal-dual hybrid gradient al-
gorithms. Theoretically, we demonstrate the continuous-time limit
of the proposed algorithm forms a class of second-order differen-
tial equations, which contains and extends the heavy ball ODEs
and Hessian-driven damping dynamics. Following the Lyapunov
analysis of the ODE system, we prove the linear convergence of
the algorithm for strongly convex functions. Experimentally, we
showcase the advantage of algorithms on several convex and non-
convex optimization problems by comparing the performance with
other well-known algorithms, such as Nesterov’s accelerated gradi-
ent methods. In particular, we demonstrate that our algorithm is
efficient in training two-layer and convolution neural networks in
supervised learning problems.

Keywords and phrases: Optimization, Primal-dual hybrid gradient
algorithms, Primal-dual damping dynamics.

1. Introduction

Optimization is one of the essential building blocks in many applications,
including scientific computing and machine learning problems. One of the
classical algorithms for unconstrained optimization problems is the gradient
descent method, which updates the state variable in the negative gradient
direction at each step [4]. Nowadays, accelerated gradient descent methods
have been widely studied. Typical examples include Nesterov’s accelerated
gradient method [16], Polyak’s heavy ball method [22], and Hessian-driven
damping methods [7, 1, 2, 3].
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On the other hand, some first-order methods are introduced to solve
linear-constrained optimization problems. Typical examples include the
primal-dual hybrid gradient (PDHG) method [6] and the alternating direc-
tion method of multipliers (ADMM) [5, 9]. They are designed to solve an inf-
sup saddle point type problem, which updates the gradient descent direction
for the minimization variable and applies the gradient ascent direction for
the maximization variable. Both PDHG and ADMM are designed for solving
optimization problems with affine constraints. Ouyang et al. [18] proposed
accelerated linearized ADMM, which incorporates a multi-step acceleration
scheme into linearized ADMM. Recently, the PDHG method has been ex-
tended into solving nonlinear-constrained minimization problems [27].

In this paper, we study a general class of accelerated first-order methods
for unconstrained optimization problems. We reformulate the original opti-
mization problem into an inf-sup type saddle point problem, whose saddle
point solves the optimality condition. We then apply a linearized precon-
ditioned primal-dual hybrid gradient algorithm to compute the proposed
saddle point problem.

The main description of the algorithm is as follows. Consider the follow-
ing inf-sup problem for a C2 strongly convex function f over Rd

(1.1) inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ − ε

2
∥p∥2 ,

where p is a constructed “dual variable”, ε > 0 is a constant, ⟨·, ·⟩ is an
Euclidean inner product, and ∥ ·∥ is an Euclidean norm. We later prove that
the solution to the saddle point problem (1.1) gives the global minimum of
f . We propose a linearized preconditioned PDHG algorithm for solving the
above inf-sup problem:

pn+1 = pn + σA(xn)∇f(xn)− σεA(xn)pn+1 ,(1.2a)

p̃n+1 = pn+1 + ω(pn+1 − pn) ,(1.2b)

xn+1 = xn − τC(xn)p̃n+1 ,(1.2c)

where n = 1, 2, · · · is the iteration step, τ , σ > 0 are stepsizes for the updates
of x, p, respectively, and ω > 0 is a parameter. p̃n+1 is an extrapolation of
pn+1 in the direction of pn+1−pn. This extrapolation term is motivated by
the PDHG method [6]. In the above algorithm, C(xn) = B(xn)∇2f(xn),
where A(xn) ∈ Rd×d, and B(xn) ∈ Rd×d act as preconditioners on the
updates of pn+1 and xn+1, respectively. This paper will only focus on the
simple case where A(x) = AI for some constant A > 0. Although there
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is a second-order term ∇2f(xn) in the update of xn+1 (hidden in C(xn)),
our algorithm is still a first-order algorithm by choosing B(xn)∇2f(xn) =
C(xn) for some C that is easy to compute. For example, we test that C = I
is a very good choice in most of our numerical examples. See empirical
choices of parameters in our numerical sections.

Our method forms a class of ordinary differential equation systems in
terms of (x,p) in the continuous limit τ , σ → 0. We call it the primal-dual
damping (PDD) dynamics. We show that the PDD dynamics form a class of
second-order ODEs, which contains and extends the inertia Hessian-driven
damping dynamics [7, 1]. Theoretically, we analyze the convergence property
of PDD dynamics. If f is a quadratic function of x, with constant A, B,
the PDD dynamic satisfies a linear ODE system. Under suitable choices
of parameters, we obtain a similar convergence acceleration in heavy ball
ODE [24]. Moreover, for general nonlinear function f , we have the following
informal theorem characterizing the convergence speed of our algorithm:

Theorem 1.1 (Informal). Let f : Rd → R be a C4 strongly convex function.
Let x∗ be the global minimum of f and p∗ = 0. Then, the iteration (xn,pn)
produced by (1.2) converges to the saddle point (x∗,p∗) if τ , σ, are small
enough. Moreover,

∥pn∥2 + ∥∇f(xn)∥2 ≤ (∥p0∥2 + ∥∇f(x0)∥2)(1− µ2

M + δ
)n,

where µ = minx λmin(∇2f(x)C(x)), C(x) = B(x)∇2f(x), δ > 0 depends
on the initial condition, and M > 0 depends on C(x)T

(
∇3f(x)∇f(x) +

(∇2f(x))2
)
C(x), τ , σ, A, ε, and ω. The detailed version is given in Theorem

3.10.

Numerically, we test the algorithms in both convex and non-convex op-
timization problems. In convex optimization, we demonstrate the fast con-
vergence results of the proposed algorithm with selected preconditioners,
compared with the gradient descent method, Nesterov accelerated gradient
method, and Hessian-driven damping method. This justifies the convergence
analysis. We also test our algorithm for several well-known non-convex opti-
mization problems. Some examples, such as the Rosenbrock and Ackley func-
tions, demonstrate the potential advantage of our algorithms in converging
to the global minimizer. In particular, we compare our algorithms with some
popular optimizers including stochastic gradient descent, Nesterov, Adam,
and Hessian-driven damping for training two-layer and convolutional neu-
ral network functions in supervised learning problems. This showcases the
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potential advantage of the proposed methods in terms of convergence speed
and test accuracy.

PDHG has been widely used in linear-constrained optimization prob-
lems [6]. Recently, Valkonen [27] applied the PDHG for nonlinearly con-
strained optimization problems. They proved the asymptotic convergence
for the nonlinear coupling saddle point problems. It is different from our
PDHG algorithm for computing unconstrained optimizations. In our paper,
we show linear convergence for a particular nonlinear coupling saddle point
problem. Meanwhile, Nesterov accelerated gradient method and Hessian-
driven damping algorithms can also be formulated in both discrete-time
updates and continuous-time second-order ODEs. Wibisono et al. [28] also
introduced the idea of Bregman Lagrangian to study a family of accelerated
methods in continuous time limit. It forms a nonlinear second-order ODE.
Compared to them, our PDD algorithm induces a generalized second-order
ODE system, which contains both heavy ball ODE [24] and Hessian-driven
damping dynamics [7, 1, 2, 3]. For example, when C = I, algorithm (1.2) can
be viewed as a different time discretization of Hessian-driven damping dy-
namics [7, 1]. It provides a different update in discrete time update. We only
evaluate the gradient of f once, whereas Attouch’s algorithm [2] evaluates
the gradient of f twice. In numerical experiments, we demonstrate that the
proposed algorithm outperforms Nesterov accelerated gradient method and
Hessian-driven damping methods in some non-convex optimization prob-
lems, including supervised learning problems for training neural network
functions.

Our work is also related to preconditioning, an important technique
in numerical linear algebra [26] and numerical PDEs [23, 19]. In general,
preconditioning aims to reduce the condition number of some operators to
improve convergence speed. One famous example would be precondition-
ing gradient descent by the inverse of the Hessian matrix, which gives rise
to Newton’s method. In recent years, preconditioning techniques have also
been developed in training neural networks [17, 11]. Adam [11] is arguably
one of the most popular optimizers in training deep neural networks. It can
also be viewed as a preconditioned algorithm using a diagonal precondi-
tioner that approximates the diagonal of the Fisher information matrix [20].
Shortly after Chambolle and Pock [6] developed PDHG for constrained opti-
mization, the same authors also studied preconditioned PDHG method [21],
in which they developed a simple diagonal preconditioner that can guar-
antee convergence without the need to compute step sizes. Liu et al. [15]
proposed non-diagonal preconditioners for PDHG and showed close connec-
tions between preconditioned PDHG and ADMM. Park et al. [19] studied
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the preconditioned Nesterov’s accelerated gradient method and proved con-
vergence in the induced norm. Jacobs et al. [10] introduced a preconditioned
norm in the primal update of the PDHG method and improved the step size
restriction of the PDHG method.

Our paper is organized as follows. In Section 2 we provide some back-
ground and derivations of our algorithm. We also provide the ODE formu-
lations for our primal-dual damping dynamics. In Section 3, we prove our
main convergence results for the algorithm. In Section 4 we showcase the ad-
vantage of our algorithm through several convex and non-convex examples.
In particular, we show that our algorithm can train neural networks and is
competitive with commonly used optimizers, such as SGD with Nesterov’s
momentum and Adam. We conclude in Section 5 with more discussions and
future directions.

2. Primal-dual damping algorithms for optimizations

In this section, we first review PDHG algorithms for constrained optimiza-
tion problems. We then construct a saddle point problem for the uncon-
strained optimization problem and apply the preconditioned PDHG algo-
rithm to compute the proposed saddle point problem. We last derive an
ODE system, which takes the limit of stepsizes in the PDHG algorithm. It
forms a second-order ODE, which generalizes the Hessian-driven damping
dynamics. We analyze the convergence properties of the ODE system for
quadratic optimization problems.

2.1. Review PDHG for constrained optimization

In Chambolle and Pock [6], the following saddle point problem was consid-
ered:

(2.1) min
x∈X

max
y∈Y

⟨Kx, y⟩+G(x)− F ∗(y) ,

where X and Y are two finite-dimensional real vector spaces equipped with
inner product ⟨·, ·⟩ and norm ∥ · ∥ = ⟨·, ·⟩1/2. The map K : X → Y is a
continuous linear operator. G : X → [0,+∞] and F ∗ : Y → [0,+∞] are
proper, convex, lower semi-continuous (l.s.c.) functions. F ∗ is the convex
conjugate of a convex l.s.c. function F . It is straightforward to verify that
(2.1) is the primal-dual formulation of the nonlinear primal problem

min
x∈X

F (Kx) +G(x) .
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Then the PDHG algorithm for saddle point problem (2.1) is given by

yn+1 = (I + σ∂F ∗)−1(yn + σKx̃n) ,(2.2a)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1) ,(2.2b)

x̃n+1 = xn+1 + ω(xn+1 − xn) ,(2.2c)

where x̃n+1 is an extrapolation of xn+1 in the direction of xn+1 − xn. It
is worthwhile noting that ω = 0 corresponds to the semi-implicit classical
Arrow-Hurwicz algorithm which has been presented as an efficient approach
for solving some type of imaging problems [29]. I is the identity operator
and (I + σ∂F )−1 is the resolvent operator, which is defined the same way
as the proximal operator

(I + τ∂F )−1(y) = argmin
x

∥x− y∥2

2τ
+ F (x)

= proxτF (y)

When ω = 1, Chambolle and Pock [6] proved convergence if τσ∥K∥2 <
1, where ∥ · ∥ is the induced operator norm. It is worth noting that the
convergence analysis requires that K is a linear operator.

2.2. Saddle point problem for unconstrained optimization

We consider the problem of minimizing a C2 strongly convex function f :
Rd → R over Rd. Instead of directly solving for ∇f(x∗) = 0, we consider
the following saddle point problem:

(2.3) inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ ,

due to the following proposition.

Proposition 2.1. Let f : Rd → R be a C2 strongly convex function. Then
the saddle point to (2.3) is the unique global minimum of f .

Proof. Differentiating the objective function of (2.3) and setting the deriva-
tives to 0 yield

∇f(x∗) = 0 ,

∇2f(x∗)p∗ = 0 .

By the strong convexity of f , we obtain that x∗ is the unique global minimum
and p∗ = 0.
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Recall that p∗ = 0 by the optimality condition. Thus we make the fol-

lowing change to our saddle point formulation. We add a regularization term

in (2.3):

(2.4) inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ − ε

2
∥p∥2 ,

where ε > 0 is a constant. This regularization term further drives p to 0.

Similar to Proposition 2.1, we have the following proposition.

Proposition 2.2. Let f : Rd → R be a C2 strongly convex function. Then

the saddle point to (2.4) is the unique global minimum of f .

Proof. Differentiating the objective function of (2.4) and setting derivatives

to 0 yield

∇f(x∗) = εp∗ ,

∇2f(x∗)p∗ = 0 .

Since f is strongly convex, we have ∇2f(x∗) ≻ 0 and the second equation

implies p∗ = 0. Then the first equation implies ∇f(x∗) = 0. Since f is

strongly convex, we conclude that x∗ is the unique global minimum.

2.3. PDHG for unconstrained optimization

We apply the scheme given by (2.2) to the saddle point problem (2.4) (set

F = G = 0 and identify Kx = ∇f(x) in (2.1)). Thus,

pn+1 = argmax
p

⟨∇f(xn),p⟩ − ε

2
∥p∥2 −

∥p− pn∥2A(xn)−1

2σ
,(2.5a)

p̃n+1 = ω(pn+1 − pn) + pn+1 ,(2.5b)

xn+1 = argmin
x

⟨∇f(x), p̃n+1⟩+
∥x− xn∥2B(xn)−1

2τ
,(2.5c)

where we have added symmetric positive definite matrices A(xn), B(xn) ∈
Rd×d, as preconditioners for updates of p, x, respectively. We also denote

the norm ∥h∥2A−1 as hTA−1h, where h ∈ Rd.

As mentioned, the convergence analysis of PDHG relies on the assump-

tion that K is a linear operator. So we can not apply the same convergence
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analysis to (2.5) since ∇f(x) is not necessarily linear in x. By taking the
optimality conditions of (2.5), we find that pn+1 and xn+1 solves

pn+1 + σεA(xn)pn+1 − pn − σA(xn)∇f(xn) = 0 ,(2.6a)

τB(xn)∇2f(xn+1)
[
(1 + ω)

(
I+ σεA(xn)

)−1
σA(xn)∇f(xn)

+
(
(ω + 1)

(
I+ σεA(xn)

)−1 − ωI
)
pn
]
+ (xn+1 − xn) = 0 ,(2.6b)

where we substitute the update Eq. (2.5b) into update Eq. (2.6b). We use I
to represent the identity matrix in Eq. (2.6b).

Note that the update for xn+1 in Eq. (2.6b) is implicit, unless ∇2f(x)
does not depend on x. We also remark that the update for xn+1 in Eq. (2.6b)
will be explicit if we perform a gradient step instead of a proximal step
in Eq. (2.5c). To be more precise, when B = I, the linearized version of
Eq. (2.5c) can be written as

xn+1 = proxτ⟨∇f(·),p̃n+1⟩(x
n) .

Taking a gradient step instead of proximal step yields

(2.7) xn+1 = xn − τ∇2f(xn)p̃n+1 .

For general choice of preconditioner B(xn), the linearized version of (2.5c)
satisfies

xn+1 = xn − τB(xn)∇2f(xn)p̃n+1 = xn − τC(xn)p̃n+1.

Here we always denote a matrix function C, such that

C(xn) := B(xn)∇2f(xn) .

For simplicity of presentation, we only consider the simple case A(xn) = AI
for some A > 0. We now summarize the linearized update Eq. (2.6) into the
following algorithm.

We note that Algorithm 1 and update Eq. (2.6) are different methods
for solving saddle point problem Eq. (2.3). In this paper, we focus on the
computation and analysis of Algorithm 1.

2.4. PDD dynamics

An approach for analyzing optimization algorithms is by first studying the
continuous limit of the algorithm using ODEs [25, 24, 1]. The advantage of
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Algorithm 1 Linearized Primal-Dual Damping Algorithm

Require: Initial guesses x0 ∈ Rd, p0 ∈ Rd; Stepsizes τ > 0, σ > 0; Parameters
A > 0, ε > 0, ω > 0, C ≻ 0, N > 0, tol > 0.
while n ≤ N and ∥∇f(xn)∥ ≥ tol do

pn+1 = 1
1+σεApn + σA

1+σεA∇f(xn);

p̃n+1 = pn+1 + ω(pn+1 − pn);
xn+1 = xn − τC(xn)p̃n+1;
n = n+ 1;

end while

doing so is that ODEs provide insights into the convergence property of the
algorithm.

We first reformulate the proposed algorithm Eq. (2.6) into a first-order
ODE system.

Proposition 2.3. As τ, σ → 0 and σω → γ, both updates in (2.6) and
Algorithm 1 can be formulated as a discrete-time update of the following
ODE system.

ṗ = A(x)∇f(x)− εA(x)p ,(2.8a)

ẋ = −C(x)(p+ γ(A(x)∇f(x)− εA(x)p)) ,(2.8b)

where C(x) = B(x)∇2f(x) and the initial condition satisfies x(0) = x0,
p(0) = p0. Suppose that ∇f is Lispchitz continuous and each index in matrix
A, C is continuous and bounded. Then, there exists a unique solution for the
ODE system Eq. (2.8). A stationary state (x∗,p∗) of ODE system Eq. (2.8)
satisfies

∇f(x∗) = 0, p∗ = 0.

Proof. Rearranging Eq. (2.6a) and Eq. (2.6b), we have

pn+1 − pn

σ
= A(xn)∇f(xn)− εA(xn)pn+1 ,

xn+1 − xn

τ
= −B(xn)∇2f(xn+1)

[
(1 + ω)

(
I+ σεA(xn)

)−1
σA(xn)∇f(xn)

+
(
(ω + 1)

(
I+ σεA(xn)

)−1 − ωI
)
pn
]
.

Taking the limit as τ, σ → 0 and σω → γ, we obtain

ṗ = A(x)∇f(x)− εA(x)p ,
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ẋ = −B(x)∇2f(x)(p+ γ(A(x)∇f(x)− εA(x)p)) .

Similarly, the update in Algorithm 1 also converges to the ODE system

Eq. (2.8). Clearly, a stationary state satisfies p∗ = 0, ∇f(x∗) = 0.

Proposition 2.4 (Primal-dual damping second order ODE). The ODE sys-

tem Eq. (2.8) satisfies the following second-order ODE

(2.9) ẍ+
[
εA+ γCA∇2f(x)− ĊC−1

]
ẋ+CA∇f(x) = 0 .

Here Ċ = d
dtC(x(t)).

The proof follows by direct calculations and can be found in Appendix

C. We note that the formulation given by Eq. (2.9) includes several im-

portant special cases in the literature. In a word, we view Eq. (2.4) as a

preconditioned accelerated gradient flow.

Example 2.1. Let C = A = I and γ ̸= 0. Then equation Eq. (2.4) satisfies

(2.10) ẍ+ ϵẋ+ γ∇2f(x)ẋ+∇f(x) = 0 ,

which is an inertial system with Hessian-driven damping [2].

Remark 2.5. In the case of C = A = I, although the derived second order

ODE Eq. (2.9) is the same as the one in Attouch et al. [2] at a continuous

time level, our algorithm 1 provides a different time discretization from the

one in Attouch et al. [2].

Example 2.2. Let C = A = I, γ(t) = 0. Then equation Eq. (2.4) satisfies

the heavy ball ODE [24]

(2.11) ẍ+ εẋ+∇f(x) = 0 .

Example 2.3. Let C = A = I, γ(t) = 0, ε(t) = 3
t . Then equation Eq. (2.4)

satisfies the Nesterov ODE [25]:

(2.12) ẍ+
3

t
ẋ+∇f(x) = 0 .

We next provide a convergence analysis of ODE Eq. (2.8) for quadratic

optimization problems. We demonstrate the importance of preconditioners

in characterizing the convergence speed of ODE Eq. (2.8).
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Theorem 2.6. Suppose f(x) = 1
2x

TQx for some symmetric positive def-

inite matrix Q ∈ Rd×d. Assume A, B are constant matrices. In this case,

equation Eq. (2.8) satisfies the linear ODE system:(
ẋ
ṗ

)
=

(
−γBQAQ −BQ(I− γεA)

AQ −εA

)(
x
p

)
.

Suppose that A commutes with Q, such that AQ = QA. Suppose A and

BQAQ are simultaneously diagonalizable and have positive eigenvalues. Let

µ1 ≥ · · · ≥ µn > 0 be the eigenvalues of BQAQ and ai the i-th eigenvalue

of A (not necessarily in descending order) in the same basis. Then

(a) The solution of ODE system (2.8) converges to (x∗,p∗) = (0, 0):

∥(x(t),p(t))∥ ≤ ∥(x0,p0)∥ exp(αt) ,

where

α = max
i

1

2

[
− γµi − εai + ℜ

(√
(γµi + ε)2 − 4µi

)]
.

(b) When A = I, ε = 0, the optimal convergence rate is achieved at

γ∗ =
2
√
µ1√

µn(2µ1−µn)
. The corresponding rate is α =

−√
µn√

2− 1

κ

, where κ =

µ1/µn > 1.
(c) Moreover, when γ = ε = 0, the system will not converge for any initial

data (x0,p0) ̸= (0, 0).
(d) If A = I, γ ≤ 1√

µ1
, ε = 2

√
µ′ − γµ′ for some µ′ ≤ µn, then

α = −
√

µ′ − γ

2
(µn − µ′) ≤ −

√
µ′ .

We defer the proof to Appendix B.

Remark 2.7. If ω is bounded, then we have γ = O(σ). Then, in the limit as

σ → 0, we also have that γ → 0. By Theorem 2.6 (c), the ODE system (2.8)

does not converge for any initial data.

Remark 2.8. If µ′ is an estimate of the smallest eigenvalue µn, then the

convergence speed for the solution of heavy ball ODE is exp(−
√
µ′t). In

Theorem 2.6 (d), if γ = 0 and µ′ = µn, then α = −√
µn which is the same

as the convergence rate of the heavy ball ODE [24]. However, if γ > 0 and

µ′ < µn, then we have α = −
√
µ′ − γ(µn − µ′) < −

√
µ′, which converges

faster than the heavy ball ODE.
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3. Lyapunov Analysis

In this section, we present the main theoretical result of this paper. We
provide the convergence analysis for general objective functions in both
continuous-time ODEs Eq. (2.8) and discrete-time Algorithm 1. From now
on, we make the following two assumptions for the convergence analysis.

Assumption 3.1. There exists two constants L ≥ µ > 0 such that µI ⪯
C0(x) ⪯ LI for all x, where C0(x) = ∇2f(x)B(x)∇2f(x), and µ ≤ 1.

Assumption 3.2. There exists a constant L′ > 0 such that

(3.1) C(x)T
(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x) ⪯ L′I

for all x, where C(x) = B(x)∇2f(x).

3.1. Continuous time Lyapunov analysis

In this subsection, we establish convergence results of the ODE system
Eq. (2.8).

Theorem 3.3. Consider the ODE system Eq. (2.8) with an initial condition
(x(0), p(0)) ∈ R2d. Define the functional

(3.2) I(x,p) = 1

2
(∥p∥2 + ∥∇f(x)∥2) .

Suppose Assumption 3.1 holds, we have

(3.3) I(x(t),p(t)) ≤ I(x(0),p(0)) exp(−2λt) ,

where

λ = min
{
µγA− 1

2
|A− µ(1− εγA)|, LγA− 1

2
|A− L(1− εγA)|,

εA− 1

2
|A− µ(1− εγA)|, εA− 1

2
|A− L(1− εγA)|

}
In particular, when γ = 1

µ , ε = 1, A = µ+L
2+(µ+L)εγ , then λ = µ

2 .

Proof. It is straightforward to compute the following

dI
dt

= ⟨p, ṗ⟩+ ⟨∇f,∇2f ẋ⟩
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= −∇fTC0γA∇f − pT εAp+∇fT
(
A−C0(I− εγA)

)
p(3.4)

We shall find λ such that dI
dt + 2λI ≤ 0. Then we obtain the exponential

convergence by Gronwall’s inequality, i.e.,

I(x(t),p(t)) ≤ I(x(0),p(0)) exp(−2λt) .

We can compute

dI
dt

+ 2λI = ∇fT
(
−C0γA+ λI

)
∇f + pT

(
− εA+ λI

)
p

+∇fT
(
A−C0(I− εγA)

)
p .(3.5)

By Lemma A.1, we obtain the following sufficient conditions for dI
dt +2λI ≤ 0

−εA+ λ+
1

2
|ξi(1− εγA)−A| ≤ 0(3.6a)

λ− ξiγA+
1

2
|ξi(1− εγA)−A| ≤ 0(3.6b)

where ξi(x) is the eigenvalue of C0(x). By our assumptions, we have L ≥
ξ1(x) ≥ · · · ≥ ξn(x) ≥ µ. Eq. (3.6) give two upper bounds on λ. Define
g1(ξ) = εA − 1

2 |ξ(1 − εγA) − A|, and g2(ξ) = ξγA − 1
2 |ξ(1 − εγA) − A| on

the interval [µ,L]. Then Eq. (3.6) implies that

(3.7) λ ≤ gj(ξi) ,

for all i = 1, . . . , n and j = 1, 2. Since each gj(ξ) is a piece-wise linear in ξ,
it is not hard to see that

min
ξ∈[µ,L]

gj(ξ) = min{gj(µ), gj(L)} ,

for j = 1, 2. This proves the formula for λ. When A = µ+L
2+(µ+L)εγ , we have

g1(µ) = g1(L), and

µ(1− εγA)−A = −L(1− εγA) +A .

Further, requiring g1(µ) = g2(µ) yields ε = µγ. And we obtain

λ = µγA− 1

2
|A− µ(1− εγA)|



14 Xinzhe Zuo et al.

= µγA− 1

2
(A− µ(1− εγA))

=
µ

2
+A(γµ− 1

2
γ2µ2 − 1

2
)

=
µ

2
− A

2
(γµ− 1)2.(3.8)

We note that λ is maximized when taking γ = µ−1. We obtain λ = µ
2 .

3.2. Discrete time Lyapunov analysis

In this subsection, we study the convergence criterion for the discretized
linearized PDHG flow given by Eq. (1.2) and Algorithm 1. From now on, we
assume that f is a C4 strongly convex function. We can rewrite the iterations
as

pn+1 =
1

1 + σεA
pn +

σA

1 + σεA
∇f(xn) ,(3.9a)

xn+1 = xn − τB(xn)∇2f(xn)

(
1− εγA

1 + σεA
pn +

σA+ γA

1 + σεA
∇f(xn)

)
,(3.9b)

where γ = σω. We define the following notations which will be used later.

N(xn)

=
1

1 + σεA

(
B(xn)∇2f(xn)(σA+ γA) B(xn)∇2f(xn)(1− εγA)

−σ
τA

σ
τ εA

)
.

And

H(xn) = sym

((
∇2f(xn) 0

0 I

)
·N(xn)

)
.

Remark 3.4. The matrix N(xn) and H(xn) also depends on the τ , σ, A, ε
and ω.

Define the Lyapunov functional in discrete time as

I(xn,pn) =
1

2
∥∇f(xn)∥2 + 1

2
∥pn∥2 .

Theorem 3.5. Suppose that there exists positive constants λ,M1 ∈ R+,
such that

H(x) ⪰ λI ,
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N(x)T∇2I(x̃, p̃)N(x) ⪯ M1I,

for all x, x̃ ∈ Rn. If τ = a λ
M for some a ∈ (0, 2), then the functional

I(xn,pn) decreases geometrically, i.e.

I(xn,pn) ≤ I(x0,p0)
(
1 + (a2 − 2a)

λ2

2M1

)n
.

Proof. It follows from our definition of N(xn) that

(3.10)

(
xn+1 − xn

pn+1 − pn

)
= −τN(xn)

(
∇f(xn)

pn

)
,

By the mean-value theorem, we obtain

I(xn+1,pn+1)− I(xn,pn) =

(
∇xI(xn,pn)
∇pI(xn,pn)

)T (
xn+1 − xn

pn+1 − pn

)
+

1

2

(
xn+1 − xn

pn+1 − pn

)T

∇2I(x̃, p̃)
(
xn+1 − xn

pn+1 − pn

)
,

where (x̃, p̃) is in between (xn+1,pn+1) and (xn,pn). And

∇xI(xn,pn) = ∇2f(xn)∇f(xn) ,

∇pI(xn,pn) = pn ,

∇2I(xn,pn) =

(
∇3f(xn)∇f(xn) +∇2f(xn)∇2f(xn) 0

0 I

)
.

Then using Eq. (3.10) and definition of H(xn), we obtain

I(xn+1,pn+1)− I(xn,pn)

=− τ

(
∇f(xn)

pn

)T (∇2f(xn) 0
0 I

)
·N(xn)

(
∇f(xn)

pn

)
+

τ2

2

(
∇f(xn)

pn

)T

N(xn)T∇2I(x̃, p̃)N(xn)

(
∇f(xn)

pn

)
=− τ

(
∇f(xn)

pn

)T

H(xn)

(
∇f(xn)

pn

)
+

τ2

2

(
∇f(xn)

pn

)T

N(xn)T∇2I(x̃, p̃)N(xn)

(
∇f(xn)

pn

)
,(3.11)
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From Eq. (3.11) and our assumption on N(x) and H(x), we obtain

I(xn+1,pn+1)− I(xn,pn) ≤
(
− τλ+

τ2M1

2

)
I(xn,pn)

=
M1

2

(
(τ − λ

M1
)2 − λ2

M2
1

)
I(xn,pn)

= (a2 − 2a)
λ2

2M1
I(xn,pn) ,(3.12)

where we used τ = a λ
M1

. Hence,

I(xn+1,pn+1) ≤ I(xn,pn)
(
1 + (a2 − 2a)

λ2

2M1

)
≤ I(x0,p0)

(
1 + (a2 − 2a)

λ2

2M1

)n+1
.

When 0 < a < 2, we have a2 − 2a < 0. Thus we obtain the desired conver-
gence result.

Theorem 3.6. Let f : Rd → R be a C4 strongly convex function. Suppose
(x0,p0) satisfies

(3.13) I(x0,p0)1/2 ≤ δ

τD0∥N(x)∥32
,

for some δ > 0 and all x. Here

D0 = sup
x,p,x′,p′

(
x′

p′

)T (
∇3I(x,p)

(
x′

p′

))(
x′

p′

)
∥∥∥∥(x′

p′

)∥∥∥∥3
2

.

Suppose further that there exists positive constants λ,M2 ∈ R+ such that

H(x) ⪰ λI ,
N(x)T∇2I(x,p)N(x) ⪯ M2I

for all x ∈ Rn. If τ = a λ
M2+δ for some a ∈ (0, 2), then the functional

I(xn,pn) decreases geometrically, i.e.

I(xn,pn) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)n
.
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Remark 3.7. Note that the constant M2 in Theorem 3.6 can be better than
the constant M1 in Theorem 3.5 because N and ∇2I are evaluated at the
same x in Theorem 3.6.

Proof. We will prove it by induction. Using the mean-value theorem, we
have

I(xn+1,pn+1)− I(xn,pn) =

(
∇xI(xn,pn)
∇pI(xn,pn)

)T (
xn+1 − xn

pn+1 − pn

)
+

1

2

(
xn+1 − xn

pn+1 − pn

)T

∇2I(xn,pn)

(
xn+1 − xn

pn+1 − pn

)
+

1

6

(
xn+1 − xn

pn+1 − pn

)T (
∇3I(x̃n, p̃n)

(
xn+1 − xn

pn+1 − pn

))(
xn+1 − xn

pn+1 − pn

)
,(3.14)

where (x̃n, p̃n) is in between (xn+1,pn+1) and (xn,pn). By Eq. (3.14) and
Eq. (3.10), we can bound

I(x1,p1)− I(x0,p0)

=− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
− τ3

6

(
∇f(x0)

p0

)T

N(x0)T
(
∇3I(x̃0, p̃0)N(x0)

(
∇f(x0)

p0

))
·N(x0)

(
∇f(x0)

p0

)
≤− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
+

τ3

6

(
∇f(x0)

p0

)T (
D0∥N(x0)∥32

∥∥∥∥(∇f(x0)
p0

)∥∥∥∥
2

)(
∇f(x0)

p0

)
=− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
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+
τ3

6

(
∇f(x0)

p0

)T

D0∥N(x0)∥32I(x0,p0)
1/2

(
∇f(x0)

p0

)
≤− τ

(
∇f(x0)

p0

)T

H(x0)

(
∇f(x0)

p0

)
+

τ2

2

(
∇f(x0)

p0

)T

N(x0)T∇2I(x0,p0)N(x0)

(
∇f(x0)

p0

)
+

τ2δ

6

(
∇f(x0)

p0

)T (∇f(x0)
p0

)
,(3.15)

where the last inequality is by our assumption on (x0,p0). Using our as-
sumptions on the lower bound of H and the upper bound of NT · ∇2I ·N ,
we obtain

I(x1,p1)− I(x0,p0) ≤
(
− τλ+

τ2δ

6
+

τ2M2

2

)
I(x0,p0)

≤
(
− τλ+

τ2(δ +M2)

2

)
I(x0,p0)

=
1

2
(a2 − 2a)

λ2

M2 + δ
I(x0,p0) ,(3.16)

where we used τ = a λ
M2+δ for some a ∈ (0, 2). Hence,

I(x1,p1) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)
.

This proves the base case. Now suppose it holds that

I(xn,pn) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)n
,

for some n ≥ 1. In particular, this implies that

I(xn,pn) < I(x0,p0) ,

which yields

τD0∥N(x)∥32I(xn,pn)1/2 < τD0∥N(x)∥32I(x0,p0)1/2 ≤ δ .

Then, repeating the derivation of Eq. (3.15) and Eq. (3.16) yields

I(xn+1,pn+1) ≤ I(xn,pn)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)
.
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Combining with our induction hypothesis, we conclude that

I(xn+1,pn+1) ≤ I(x0,p0)
(
1 +

a2 − 2a

2

λ2

M2 + δ

)n+1
.

The proof is complete by induction.

Corollary 3.8. Suppose Assumption 3.1 and Assumption 3.2 hold. When
σ = τ , γ = 1−σµ

µ , ε = 1, A = µ+L
2+(µ+L)εγ , we have

H(x) ⪰ µ

4
I.

Proof. By definition of H, we can compute

(1+σεA)·H(x) =

(
C0(x)(σA+ γA) 1

2C0(x)(1− εγA)− 1
2ηA

1
2C0(x)(1− εγA)− 1

2ηA ηεA

)
,

where η = σ/τ = 1, C0(x) = ∇2f(x)B(x)∇2f(x). We want to find some
constant λ > 0, such that(

z
w

)T

H(x)

(
z
w

)
≥ λ(∥z∥2 + ∥w∥2) .

Observe that(
z
w

)T

H(x)

(
z
w

)
− λ(∥z∥2 + ∥w∥2)

= zT
(
C0(γ + σ)A/(1 + σεA)− λI

)
z +wT

(
εA/(1 + σεA)− λI

)
w

+ zT
(
−A+C0(I− εγA)

)
w/(1 + σεA) ,(3.17)

which is almost the same as Eq. (3.5). Thus, following a similar procedure
in Theorem 3.3 with the provided parameters, we obtain that

λ ≥ µ

2

1 + Aσ
2

1 + σA
≥ µ

4
.

This implies

H(x) ⪰ µ

4
I .(3.18)
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Corollary 3.9. Let f : Rd → R be a C4 strongly convex function. Suppose
Assumption 3.1 and Assumption 3.2 hold. If σ = τ , γ = 1−σµ

µ , ε = 1, A =
µ+L

2+(µ+L)εγ , we have

(1)

∥N(x)∥2 ≤
max{L, 1} ·

(
A(σ + 2γ + 2) + 1

)
(1 + σA)

.

(2)

N(x)T∇2I(x,p)N(x) ⪯ (3 + σA+ 2A)2

(1 + σA)2
·max{L′, 1} · I .

Proof. We can decompose

(1 + σA) ·N(x) =

(
B(x)∇2f(x) 0

0 I

)(
(σ + γ)A (I− γA)

−A A

)
.

Observe that(
(σ + γ)A (I− γA)

−A A

)
=

(
(σ + γ)I −γI

−I I

)
·
(
A 0
0 A

)
+

(
0 I
0 0

)
.

Therefore,∥∥∥∥((σ + γ)A (I− γA)
−A A

)∥∥∥∥
2

≤ A

∥∥∥∥((σ + γ)I −γI
−I I

)∥∥∥∥
2

+

∥∥∥∥(0 I
0 0

)∥∥∥∥
2

≤ A

∥∥∥∥((σ + γ)I −γI
−I I

)∥∥∥∥
2

+ 1

≤ A(σ + 2γ + 2) + 1 .(3.19)

To get the last inequality, we consider (z,w) such that ∥z∥2 + ∥w∥2 = 1.
Thus∥∥∥∥((σ + γ)I −γI

−I I

)(
z
w

)∥∥∥∥
2

=

∥∥∥∥((σ + γ)z − γw
−z +w

)∥∥∥∥
≤ σ

∥∥∥∥(z
w

)∥∥∥∥+ γ∥z −w∥+ ∥z −w∥

≤ σ + 2γ + 2 .

We now have

(1 + σA)∥N(x)∥2 ≤
∥∥∥∥(B(x)∇2f(x) 0

0 I

)∥∥∥∥
2

∥∥∥∥((σ + γ)A (I− γA)
−A A

)∥∥∥∥
2
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≤ max{L, 1} ·
(
A(σ + 2γ + 2) + 1

)
.

This proves part (1) of our Corollary. It follows that

N(x)T∇2I(x,p)N(x) =
1

(1 + σA)2

(
(σ + γ)A −A
(I− γA) A

)
·
(
C(x)T

(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x) 0

0 I

)
·
(
(σ + γ)A (I− γA)

−A A

)
,(3.20)

where we recall C(x) = B(x)∇2f(x).
By assumption, there exists L′ > 0, such that

C(x)T
(
∇3f(x)∇f(x) + (∇2f(x))2

)
C(x) ⪯ L′I ,

for all x. Then, combining Eq. (3.20) and Eq. (3.19), we obtain that

∥N(x)T∇2I(x,p)N(x)∥2 ≤
(
A(σ + 2γ + 2) + 1

)2
(1 + σA)2

·max{L′, 1}

≤ (3 + σA+ 2A)2

(1 + σA)2
·max{L′, 1} ,(3.21)

where we have used γA < 1 to derive the last inequality.

Theorem 3.10 (Restatement of Theorem 1.1). Suppose Assumption 3.1
and Assumption 3.2 hold. Let σ = τ , γ = 1−σµ

µ , ε = 1, A = µ+L
2+(µ+L)εγ . And

suppose (3.13) holds for some δ > 0 and all x. If τ = 1
4

µ
δ+36max{L′,1} , then

I(xn,pn) ≤ I(x0,p0)
(
1− µ2/32

δ + 36max{L′, 1}
)n

.

Proof. By Assumption 3.1 and Assumption 3.2, we have µ ≤ L ≤ L′. Thus
µ/L′ ≤ 1 and σ = τ < 1/36. Moreover,

γ =
1

µ
− σ ≥ 1− 1

36
=

35

36
.

And

A =
µ+ L

2 + (µ+ L)εγ
<

1

γ
≤ 36

35
.
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Then it follows
3 + σA+ 2A

1 + σA
≤ 3 + σA+ 2A < 6 .

By Corollary 3.9, we have

∥N(x)T∇2I(x,p)N(x)∥2 ≤ 36max{L′, 1} .

Combining this with Theorem 3.6 and Corollary 3.8, we finish the proof.

Remark 3.11. The choice of parameters in Theorem 3.10 may not be optimal.
The main purpose of Theorem 3.10 is to show the existence of geometric
convergence in Algorithm 1.

4. Numerical experiment

We test our PDD algorithm using several convex and non-convex functions
and compare the results with other commonly used optimizers, such as gradi-
ent descent, Nesterov’s accelerated gradient (NAG), IGAHD (inertial gradi-
ent algorithm with Hessian damping) [2], and IGAHD-SC (inertial gradient
algorithm with Hessian damping for strongly convex functions) [2]. In all
of our numerical examples, we set tol = 0 for better demonstration of the
convergence comparison. In practice, one can choose the size of tol.

4.1. Summary of algorithms

For reference, we list down the iterations of gradient descent, NAG, IGAHD,
and IGAHD-SC for better comparison.

Gradient descent:

xn+1 = xn − τgd∇f(xn) ,

where τgd > 0 is a stepsize.
NAG:

yn+1 = xn − τnag∇f(xn) ,

xn+1 = yn+1 + βnag(y
n − yn−1) ,

where τnag > 0 is a stepsize, and βnag > 0 is a parameter.
IGAHD: Suppose ∇f is L1-Lipschitz.
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yn = xn + αn(x
n − xn−1)− β(1)√τatt(∇f(xn)−∇f(xn−1))

−
β(1)√τatt

n
∇f(xn−1) ,

xn+1 = yn − τatt∇f(yn) .

Here αn = 1− α
n for some α ≥ 3. β(1) needs to satisfy

0 ≤ β(1) ≤ 2
√
τatt .

And τatt > 0 is a stepsize, which needs to satisfy

τatt ≤
1

L1
.

Remark 4.1. As mentioned earlier, in each iteration of IGAHD, ∇f(·) is
evaluated twice: at xn and at yn. This differs from one gradient evaluation
in gradient descent, NAG, and our method Eq. (1.2). Chen and Luo [8]
proposed a slightly different algorithm from IGAHD that only requires one
gradient evaluation in each iteration.

IGHD-SC: Suppose f is m1-strongly convex and ∇f is L1-Lipschitz.

xn+1 = xn +
1−√

m1τatt
1 +

√
m1τatt

(xn − xn−1)−
β(2)√τatt

1 +
√
m1τatt

(∇f(xn)

−∇f(xn−1))− τatt
1 +

√
m1τatt

∇f(xn) .

Here β(2) and L1 need to satisfy

β(2) ≤ 1
√
m1

, L1 ≤ min
{√m1

8β(2)
,

√
m1

2τatt
+ m1√

τatt

2β(2)m1 +
1√
τatt

+
√
m1

2

}
.(4.1)

4.2. regularized log-sum-exp

Consider the regularized log-sum-exp function

f(x) = log

(
n∑

i=1

exp(qTi x)

)
+

1

2
xTQx ,
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where n = 100, Q = QT ≻ 0 and qTi is the ith row of Q. Q is chosen
to be diagonally dominant, i.e. Qi,i >

∑
j ̸=i |Qi,j |. In this case, we may

choose the diagonal preconditioner C(x) =
(
diag(Q)

)−1
. We compare the

performance of gradient descent, preconditioned gradient descent, PDD with
C(x) = I, PDD with diagonal preconditioner, NAG, and IGAHD-SC (iner-
tial gradient algorithm with Hessian damping for strongly convex functions)
by Attouch et al. [2] methods for minimizing f . The stepsize of gradient
descent is determined by τgd = 2

λ1∗3+λn
, where λ1 and λn are the maximum

and minimum eigenvalues of Q, respectively. For a pure quadratic objective
function, xTQx, the optimal stepsize of gradient descent is 2

λ1+λn
. However,

since our objective function also contains a log-sum-exp term, we slightly
change the stepsize, with the fastest guaranteed convergence speed. Other-
wise, gradient descent will not converge. Similarly, the optimal parameters

of NAG for a purely quadratic function is τ = 4
3λ1+λn

, and β =
√
3κ+1−2√
3κ+1+2

,

where κ = λ1/λn. However, NAG with this choice of τ and κ will not con-
verge since f is not purely quadratic. We thus choose τnag = 4

3λ′
1+λn

and

βnag =
√
3κ′+1−2√
3κ′+1+2

, where κ′ = λ′
1/λn and λ′

1 = anagλ1. In our experiment,

anag = 5 gives the fastest convergence for NAG. For PDD with C(x) = I,
we choose τpdd = σpdd = 2

apddλ1+λn
, ε = 1, A = 10, ω = 1. In our experiment

apdd = 0.5 gives the fastest convergence. For PDD with diagonal precondi-

tioner C(x) =
(
diag(Q)

)−1
, we choose τpdd,prec = σpdd,prec = 0.5, ε = 1,

A = 1, ω = 1. We use the same C(x) =
(
diag(Q)

)−1
as a preconditioner for

gradient descent. The stepsize for preconditioned gradient descent is chosen
to be the same as τpdd,prec = 0.5. For IGAHD-SC (‘att’), we need m1 as
the smallest eigenvalue of ∇2f(x). In this example, we may estimate m1

as the smallest eigenvalue of Q. And τatt = 0.0016 via grid search. β(2) in
IGAHD-SC is found by solving (see Theorem 11 Eq. (26) of Attouch et al.
[2])

√
m1

8β(2)
=

√
m1

2τatt
+

√
m1√
τatt

2β(2)m1 +
1√
τatt

+
√
m1

2

,

which gives

(4.2) β(2) =

√
τatt + τatt

√
m1/2

4 + 8
√
m1

√
τatt − 2m1τatt

.

The initial condition is x0 = np.ones(n) ∗ 0.1. The result is presented in
Fig. 1a.
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Figure 1: Comparison of gradient descent, NAG, PDD, and IGAHD-SC (we
use ‘att’ as a shorthand for this method) on minimizing (a) the regularized
log-sum-exp function and (b) the quadratic minus cosine function. The y-
axis represents the 2-norm of the gradient of the objective function on a
logarithmic scale. The x-axis represents the number of iterations on a loga-
rithmic scale.

4.3. Quadratic minus cosine function

Consider the function

f(x) = ∥x∥2 − cos(cTx) ,

where c is a vector in R100 with ∥c∥2 = 1.9. Then a direct calculation shows
that 0.1I ⪯ ∇2f(x) ⪯ 3.9I for any x. This allows us to choose the optimal
stepsize for gradient descent and NAG. When minimizing f using gradient
descent, we can choose τgd = 2

0.1+3.9 = 0.5. Meanwhile, for NAG, we may

choose τnag = 4
3∗3.9+0.1 , and β =

√
3κ+1−2√
3κ+1+2

, where κ = 3.9/0.1. For PDD

with C(x) = I, we choose τpdd = σpdd = 0.5, ε = 1, A = 1, ω = 1. For
IGAHD-SC (‘att’), we choose m1 = 0.1, τatt = 0.55 via grid search and β(2)

is given by Eq. (4.2). The initial condition is x0 = np.ones(n)∗5. The result
is presented in Fig. 1b.

4.4. Rosenbrock function

4.4.1. 2-dimension. The 2-dimensional Rosenbrock function is defined
as

f(x, y) = (a− x)2 + b(y − x2)2 ,
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Figure 2: Minimizing the Rosenbrock function with gradient descent, NAG,
PDD with C(x) = I and IGAHD (‘att’). The left panel shows the con-
vergence speed of each method. The right panel shows the optimization
trajectories of each method.

where a common choice of parameters is a = 1, b = 100. This is a non-convex
function with a global minimum of (x∗, y∗) = (a, a2). The global minimum
is inside a long, narrow, parabolic-shaped flat valley. To find the valley is
trivial. To converge to the global minimum, however, is difficult. We compare
the performance of gradient descent, NAG, PDD with C(x) = I and IGAHD
(inertia gradient algorithm with Hessian damping) by Attouch et al. [2] when
minimizing the Rosenbrock function starting from (−3,−4). The stepsize of
gradient descent is τgd = 0.0002. The stepsize of NAG is τnag = 0.0002,
βnag = 0.9. The parameters of PDD are τpdd = σpdd = 0.005, ε = 1, ω = 1,
A = 5. The stepsize of the PDD method is larger than τgd and τnag because
gradient descent and NAG do not allow larger stepsizes for convergence.
For IGAHD (‘att’), we choose τatt = 0.00045, α = 3, β(1) =

√
τatt/14. The

convergence result and the optimization trajectories are shown in Fig. 2.

4.4.2. N-dimension. The N -dimensional coupled Rosenbrock function
is defined as

f(x) =

N−1∑
i=1

(
(a− xi)

2 + b(xi+1 − x2i )
2
)
,

where we choose a = 1 and b = 100 as in the 2-dimensioal case and we
set N = 100. The global minimum is at x∗ = (1, 1, . . . , 1). Using the same
stepsizes as in the 2-dimensional case, we compare the performance of the
three algorithms starting from x0 = (0, . . . , 0). The stepsize of gradient
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Figure 3: Comparison of gradient descent, NAG, PDD with C(x) = I and
IGAHD (‘att’) on minimizing the 100-dimensional coupled Rosenbrock func-
tion. The y-axis represents the distance between the current iterate and the
global minimum on a logarithmic scale. The x-axis represents the number
of iterations on a logarithmic scale.

descent is τgd = 0.001. The stepsize of NAG is τnag = 0.0008, β = 0.95. The
parameters of PDD are τpdd = σpdd = 0.01, ε = 0.5, ω = 1, A = 5. The
stepsize of the PDD method is larger than τgd and τnag because gradient
descent and NAG do not allow larger stepsizes for convergence. For IGAHD
(‘att’), we choose τatt = 0.0002, α = 3, β(1) = 2 ∗ √

τatt. The result is
summarized in Fig. 3.

4.5. Ackley function

We consider minimizing the two-dimensional Ackley function given by

f(x, y) = −20 exp
(
− 0.2

√
0.5(x2 + y2)

)
− exp

[
0.5
(
cos(2πx) + cos(2πy)

)]
+ e + 20 ,

which has many local minima. The unique global minimum is located at
(x∗, y∗) = (0, 0). We compare the performance of gradient descent, NAG,
PDD, and IGAHD (‘att’) for minimizing the two-dimensional Ackley func-
tion starting from (x0, y0) = (2.5, 4). The stepsize of gradient descent is
τgd = 0.002. The stepsize of NAG is τnag = 0.002, βnag = 0.9. The param-
eters of PDD are τpdd = σpdd = 0.002, ε = 1, ω = 1, A = 1. For IGAHD
(‘att’), we choose τatt = 0.01, α = 3, β(1) = 2 ∗ √

τatt. The results are
summarized in Fig. 4.

Remark 4.2. We remark that our algorithm has no stochasticity. It will
not always converge to the global minimum for non-convex functions in
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Figure 4: Minimizing the Ackley function with gradient descent, NAG, PDD
and IGAHD (‘att’). The left panel shows the convergence speed of each
method. The right panel shows the optimization trajectories of each method.
The reason why only two colors appear on the left panel is because gradient
descent, NAG and IGAHD do not converge and their error curves overlap
with each other.

general. For example, it will not converge for the Griewank, Drop-Wave,

and Rastrigin functions.

Remark 4.3. We believe that one of the reasons why Algorithm 1 could con-

verge for some of the non-convex functions is that we choose p0 to point

in the direction of the global minimizer. Suppose we start at a local mini-

mum/maximum, i.e., ∇f(x0) = 0. Then the gradient descent algorithm will

always be stuck at x0. However, in Algorithm 1, even if we have ∇f(x0) = 0,

we can still choose p0 to be pointing in the direction of the global minimizer

if we have some information about the global minimizer. Then Eq. (3.9b)

for n = 1 reads

x1 = x0 − τB(x0)∇2f(x0)
1− εγA

1 + σεA
p0 ,

which is a non-trivial update compared with gradient descent when

∇f(x0) = 0. In all of our numerical examples, we have chosen p0 = x0.

This choice of p0 works well for the non-convex functions we choose when

the global minimizer is near the origin. We emphasize that this remark only

serves as an intuition on the applicability of Algorithm 1 to some non-convex

examples. We leave rigorous convergence analysis for non-convex functions

to future works.
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Algorithm SGD NAG PDD Adam Att
train loss 2.223 ± 0.034 0.964 ± 0.244 0.433 ± 0.270 0.589 ± 0.282 0.591 ± 0.288
test acc 29.3 ± 8.3 % 71.2 ± 9.4 % 85.4 ± 10.4 % 79.1 ± 11.3 % 80.8 ± 11.4 %

Table 1: Average training loss and test accuracy of different algorithms for
MNIST handwritten digit recognition over 60 random seeds.
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Figure 5: Training a two-layer neural network with the MNIST data set using
gradient descent, NAG, PDD, Adam, and IGAHD (‘att’). The left panel
shows the convergence speed of training loss. The right panel shows the test
accuracy of each method. The x-axis represents the number of iterations in
terms of mini-batches.

4.6. Neural Networks training

4.6.1. MNIST with Two-layer neural network. We consider the clas-
sification problem using the MNIST handwritten digit data set with a two-
layer neural network. The neural network has an input layer of size 784 =
28 × 28, a hidden layer of size 32 followed by another hidden layer of size
32, and an output layer of size 10. We use ReLU activation function across
the layers, and the loss is evaluated using the cross-entropy loss. We use a
batch size of 200 for all the algorithms. The stepsize of gradient descent is
τgd = 0.001. The stepsize of NAG is τnag = 0.001, momentum = 0.9. The
parameters of PDD are τpdd = 0.001, σpdd = 5, ε = 0.005, ω = 1, A = 1.
For IGAHD (‘att’), we choose τatt = 0.001, α = 3, β(1) = 0.01. For Adam,
we choose τadam = 0.001, β1 = 0.9, β2 = 0.999.

4.6.2. CIFAR10 with CNN. We train a convolutional neural network
using the CIFAR10 datasets with SGD, Nesterov, PDD, Adam, and IGAHD
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Figure 6: Training loss (left panel) and test accuracy (right panel) of a con-
volutional neural network on the CIFAR10 data set. The x-axis represents
the number of iterations in terms of mini-batches.

(‘Att’). The architecture of the network is described as follows. The network
consists of two convolutional layers. The first convolutional layer has 32
output channels, and the filter size is 3× 3. The second convolutional layer
has 64 output channels, and the filter size is 4× 4. Each convolutional layer
is followed by a ReLU activation and then a 2×2 max-pooling layer. Lastly,
we have 3 fully connected layers of size (64 ·4 ·4, 120), (120, 84), and (84, 10).
The loss is evaluated using the cross-entropy loss. The stepsize of gradient
descent is τgd = 0.01. The stepsize of NAG is τnag = 0.005, momentum = 0.9.
The parameters of PDD are τpdd = 0.005, σpdd = 5, ε = 0.005, ω = 1, A = 1.
For IGAHD (‘att’), we choose τatt = 0.005, α = 3, β(1) = 0.01. For Adam,
we choose τadam = 0.005, β1 = 0.9, β2 = 0.999.

Algorithm SGD NAG PDD Adam Att
train loss 2.038 ± 0.070 1.347 ± 0.100 0.697 ± 0.077 0.927 ± 0.128 0.879 ± 0.092
test acc 27.5 ± 2.2 % 51.2 ± 0.7 % 70.3 ± 0.5 % 64.4 ± 2.7 % 66.8 ± 0.6 %

Table 2: Average training loss and test accuracy of different algorithms for
CIFAR10 data set over 60 random seeds.

5. Discussion

This paper presents primal-dual hybrid gradient algorithms for solving un-
constrained optimization problems. We reformulate the optimality condition
of the optimization problem as a saddle-point problem and then compute
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the proposed saddle-point problem by a preconditioned PDHG method. We

present the geometric convergence analysis for the strongly convex objec-

tive functions. In numerical experiments, we demonstrate that the proposed

method works efficiently in non-convex optimization problems, at least in

some examples, such as Rosenbrock and Ackley functions. In particular, it

could efficiently train two-layer and convolution neural networks in super-

vised learning problems.

So far, our convergence study is limited to strongly convex objective

functions, not convex ones. Meanwhile, the choice of preconditioners and

stepsizes are independent of time. We also have not discussed the optimal

choices of parameters or general proximal operators in the updates of algo-

rithms. These generalized choices of functions, parameters, and their con-

vergence properties have been intensively studied in Nesterov accelerated

gradient methods and Hessian-driven damping methods [1, 2, 3]. In future

work, we shall explore the convergence property of PDHG methods for con-

vex functions with time-dependent parameters. We also investigate the con-

vergence of similar algorithms in scientific computing problems of implicit

time updates of partial differential equations [12, 13, 14].
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Appendix A Matrix lemma

Lemma A.1. Let A,B,C ∈ Rn be real symmetric matrices that are simul-

taneously diagonalizable. Then for any x,y ∈ Rn, if

λA,i +
|λC,i|
2

≤ 0

λB,i +
|λC,i|
2

≤ 0

for all i, where λA,i, λB,i, λC,i are the ith eigenvalues of A,B,C respectively

in the same basis. Then

xTAx+ yTBy + xTCy ≤ 0,

for all x,y ∈ Rn.

Proof. Let x,y ∈ Rn. By our assumption, there exists Q unitary such that

A,B,C are simultaneously diagonalizable by Q. Set x̃ = Qx and ỹ = Qy.

Then we can compute

xTAx+ yTBy + xTCy =

n∑
i=1

x̃2iλA,i + ỹ2i λB,i + x̃iλC,iỹi

≤
n∑

i=1

x̃2i
(
λA,i +

|λC,i|
2

)
+ ỹ2i

(
λB,i +

|λC,i|
2

)
≤ 0 ,

where the first inequality follows from αxy ≤ (x2+y2)|α|/2 for any α, x, y ∈
R.

Appendix B Proof of Theorem 2.6

B.1 Part (a)

We have the following system of ODE:

(B.1)

(
ẋ
ṗ

)
=

(
−γBQAQ −BQ(I− γεA)

AQ −εA

)(
x
p

)
.
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Let us compute the eigenvalues of the above system. Let α be an eigenvalue,
then α satisfies

0 = det

(
−γBQAQ− αI −BQ(I− γεA)

AQ −εA− αI

)
,

0 = det
(
(−γBQAQ− αI)(−εA− αI) +BQ(I− γεA)AQ

)
,

0 = det
(
α2I+ α(εA+ γBQAQ) +BQAQ

)
.

The last equality is because A commutes with Q. We assume that A and
BQAQ are simultaneously diagonalizable. Thus,

0 = α2 + α(εai + γµi) + µi ,

α =
−εai − γµi ±

√
(ε+ γµi)2 − 4µi

2
.

If γ > 0 and ε ≥ 0, then the real part of the eigenvalues are negative, and
the system will converge. The convergence rate depends on the largest real
part of the eigenvalues, which is

max
i

1

2

[
− γµi − εai + ℜ

(√
(γµi + ε)2 − 4µi

)]
.

B.2 Part (c)

When γ = ε = 0, we see that α is purely imaginary. Thus solutions to
Eq. (B.1) will be oscillatory and will not converge.

B.3 Part (b)

Let us define

g(γ) = max
i

{µi

(
− γ + ℜ

(√
γ2 − 4/µi

))
2

}
.

Essentially, we would like to find γ∗ = argminγ g(γ). We then define

γ(µ) := argmin
γ

µ
(
− γ + ℜ

(√
γ2 − 4/µ

))
2

=
2
√
µ
.
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Observe that if γ ≥ 2/
√
µn, then γ2 − 4/µi ≥ 0 for all i. Thus

g(γ) = max
i

{µi

(
− γ +

√
γ2 − 4/µi

)
2

}
.

For µ ∈ [µn, µ1] and γ ≥ 2/
√
µn, one can check that the function µ

(
−

γ +
√

γ2 − 4/µ
)
is increasing in µ by computing the partial derivative with

respect to µ. Then we get

g(γ) =
µ1

(
− γ +

√
γ2 − 4/µ1

)
2

≥ g(2/
√
µn) =

√
µ1(

√
κ− 1−

√
κ) ≈ −√

µn/2 ,

where κ = µ1/µn > 1. The last approximation is valid for µ1/µn ≫ 1. This
shows that γ∗ ≤ 2/

√
µn. Similarly, if γ ≤ 2/

√
µ1, then γ2 − 4/µi ≤ 0 for all

i. Thus

g(γ) = max
i

{−µiγ

2

}
=

−µnγ

2

≥ − µn√
µ1

= g(2/
√
µ1) .

This shows that γ∗ ≥ 2/
√
µ1. Combining with our previous observation, we

get γ∗ ∈ [2/
√
µ1, 2/

√
µn]. Now let us fix some γ′ ∈ [2/

√
µ1, 2/

√
µn]. Let

j = inf{i : 1 ≤ i ≤ n, γ′2 − 4/µi ≤ 0}. By our assumption on γ′, we know
that 1 < j < n. Now for 1 ≤ i ≤ j − 1, we have

µi

(
− γ′ + ℜ

(√
γ′2 − 4/µi

))
2

=
µi

(
− γ′ +

√
γ′2 − 4/µi

)
2

≤
µ1

(
− γ′ +

√
γ′2 − 4/µ1

)
2

.

And for j ≤ k ≤ n, we have

µk

(
− γ′ + ℜ

(√
γ′2 − 4/µk

))
2

=
−µkγ

′

2
≤ −µnγ

′

2
.

It is thus clear that for γ′ ∈ [2/
√
µ1, 2/

√
µn],

g(γ′) = max
{µ1

(
− γ′ +

√
γ′2 − 4/µ1

)
2

,
−µnγ

′

2

}
.
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It is straightforward to calculate that for γ ∈ [ 2√
µ1
,

2
√
µ1√

µn(2µ1−µn)
], we have

−µnγ

2
≥

µ1

(
− γ +

√
γ2 − 4/µ1

)
2

.

So

g(γ) =
−µnγ

2
≥ g(

2
√
µ1√

µn(2µ1 − µn)
) =

−√
µn√

2− 1
κ

.

And for γ ∈ [
2
√
µ1√

µn(2µ1−µn)
, 2/

√
µn] we have

−µnγ

2
≤

µ1

(
− γ +

√
γ2 − 4/µ1

)
2

.

This implies

g(γ) =
µ1

(
− γ +

√
γ2 − 4/µ1

)
2

≥ g(
2
√
µ1√

µn(2µ1 − µn)
) =

−√
µn√

2− 1
κ

.

This shows γ∗ =
2
√
µ1√

µn(2µ1−µn)
.

B.4 Part (d)

Define ∆γ(µ, ε) = (γµ+ ε)2 − 4µ. Also define gγ(µ) = 2
√
µ− γµ. Then for

µ ≥ 0, we have ∆γ(µ, ε) ≤ 0 if and only if ε ≤ gγ(µ). Note that g′γ(µ) =
1√
µ − γ ≥ 0 for µ ≤ µ1 if γ ≤ 1√

µ1
. Then ∆γ(µ, ε) ≤ 0 for all µ ≤ µ1

if γ ≤ 1√
µ1

and ε ≤ gγ(µn). In particular, ∆γ(µ, ε) ≤ 0 for all µ ≤ µ1 if

ε = gγ(µ
′) for some µ′ ≤ µn. We have

α = max
i

1

2

[
− γµi − ε+ ℜ

(√
(γµi + ε)2 − 4µi

)]
= max

i

1

2

[
− γµi − ε

]
= max

i

1

2

[
− γµi − 2

√
µ′ + γµ′]

= −
√

µ′ − γ(µn − µ′)

2
.
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Appendix C Proof of Proposition 2.4

We directly compute

ẍ = −C
(
(I− γεA)ṗ+ γA∇2f(x)ẋ

)
− Ċ

(
(I− γεA)p+ γA∇f(x)

)
= −C

(
(I− γεA)(A∇f(x)− εAp) + γA∇2f(x)ẋ

)
− Ċ

(
(I− γεA)p+ γA∇f(x)

)
= −C

[
(I− γεA)A∇f(x) + εA(C−1ẋ+ γA∇f(x)) + γA∇2f(x)ẋ

]
+ ĊC−1ẋ

= −C
[
A∇f(x) + εAC−1ẋ+ γA∇2f(x)ẋ

]
+ ĊC−1ẋ .
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