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In the growing domain of scientific machine learning, in-context operator
learning [1] has demonstrated notable potential in learning operators from prompted
data during inference stage without weight updates. However, the current
model’s overdependence on sensor data, may inadvertently overlook the invalu-
able human insight into the operator. To address this, we present a transforma-
tion of in-context operator learning into a multi-modal paradigm. We propose
the use of “captions” to integrate human knowledge about the operator, ex-
pressed through natural language descriptions and equations. We illustrate how
this method not only broadens the flexibility and generality of physics-informed
learning, but also significantly boosts learning performance and reduces data
needs. Furthermore, we introduce a more efficient neural network architecture
for multi-modal in-context operator learning, referred to as “ICON-LM”, based
on a language-model-like architecture. We demonstrate the viability of “ICON-
LM” for scientific machine learning tasks, which creates a new path for the
application of language models.

1 Introduction

In [1], the authors introduced in-context operator learning as a new paradigm
for operator learning. As in classic operator learning tasks, an operator maps a
single input function or a tuple of input functions, referred to as the “condition”,
to an output function, referred to as the “quantity of interest (QoI)”. In practice,
we usually have no access to the analytical expression of these functions, but
instead can collect sensor data in the form of key-value pairs, where the keys are
discrete function inputs and the values are the corresponding function outputs.

A wide variety of scientific machine learning tasks can be conceptualized
as operator learning problems. Consider the task of solving partial differential
equations (PDEs) for instance, where the coefficient function serves as the con-
dition, and the solution is the QoI. Conversely, for inverse problems, these roles
are swapped. When dealing with problems that involve temporal evolution,
the condition can be the initial state, while the QoI represents the state at a
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subsequent point in time. For control problems, the condition could correspond
to the cost function and the initial state, while the QoI embodies the control
signal. It’s evident that the relationship between the condition and the QoI is
highly contingent on the operator, which diverges based on the task at hand
and the particular system in question.

In-context operator learning aims to train the neural network to acquire the
ability to learn the operator from condition-QoI pairs, referred to as “examples”,
and apply the learned operator to the new condition to predict the corresponding
QoI. This approach differs from classic operator learning approaches [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12] where the neural networks are limited to approximate
specific operators, and thus need to be trained every time a new operator is
encountered. In contrast, in-context operator learning trains the neural network
as an operator learner, which aims to conduct the above learning process in the
inference stage without weight update. This advancement offering a “train-once-
apply-multiple” paradigm for a broad array of tasks, paves the way for large-
scale foundation models [13], and potentially even artificial general intelligence,
to be employed in scientific machine learning tasks.

The study by [1] showcases the successful implementation of in-context op-
erator learning, which relies solely on sensor data. However, a crucial aspect of
scientific machine learning is overlooked in this approach, namely, the human
knowledge of the operator, which can span from nebulous natural language
explanations to explicit differential equations. There’s a strong case for incor-
porating such knowledge into the learning system alongside sensor data, as this
could potentially enhance learning performance. If the human understanding of
the operator is sufficiently detailed, the system might require fewer examples to
learn the operator. Theoretically, it might even enable zero-shot learning, where
the operator could be learned and utilized without the need for any examples.

Past research on the topic of scientific machine learning typically integrates
human knowledge into the learning system by designing special loss functions
or neural network architectures based on the differential equations or symme-
try/conservation laws that govern the system. While these approaches have
witnessed significant success, they are not without limitations. Firstly, it may
not always be practical to design special loss functions or architectures, as the
system might not be fully understood by humans, or the operator might be too
complicated to be described by equations. Secondly, these bespoke loss func-
tions or architectures are tailored for specific systems or tasks. When confronted
with a new system, there is a requirement not only to design new loss functions
or architectures but also typically to retrain the neural network.

In this paper, we explore an entirely different approach to infuse human
knowledge into the learning system. Inspired by the recent success of large lan-
guage models, we introduce a new component to in-context operator learning:
the “caption”. A caption is a string serving as a descriptor of the operator, and
can take various forms such as equations written in LaTeX form, natural lan-
guage descriptions, or a combination of both. Rather than crafting special loss
functions or architectures, we simply feed the caption into the neural network
as input alongside the examples. We thus evolve the in-context operator learn-
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ing to be multi-modal, meaning that the neural network can learn the operator
from sensor data, captions, or a combination of both. The diagram in Figure 1
illustrates the multi-modal in-context operator learning.

Condition QoI Condition QoI Condition Prediction

Multi-Modal In-Context Operator Learning

Question

？

Learning new operator without weight updates

Example Example

The PDE $- 0.0328
d^2u/dx^2 + c(x) \cdot u =

1.523$ describes the
relationship between

$u(x)$ and $c(x)$, with
boundary conditions $u(0)

= -0.172$ and $u(1) =
-0.649$. condition: $u(x),

x\in[0,1]$, QoI: $c(x),
x\in[0,1]$

Caption

Prompt

Figure 1: Diagram for Multi-modal in-context operator learning.

This method is substantially more flexible and can accommodate a broader
range of systems under the same framework. Moreover, it retains the principle
of in-context operator learning, where human knowledge is integrated into the
learning system without any weight update.

In addition to evolving in-context operator learning into a multi-modal
framework, we have also enhanced the neural network architecture delineated
in [1]. The original architecture consists of two transformers [14]: an encoder
and a decoder. In each iteration during the training stage, the neural network is
solely trained to perform in-context operator learning with a certain number of
examples, although this number can vary between different steps. We identified
this architecture and training method as inefficient. In this paper, we propose a
revamped architecture that merges the encoder and decoder into a single trans-
former, training the neural network to execute in-context operator learning with
varying numbers of examples concurrently in each training step, ranging from
zero (with a caption) or one (without a caption) up to the maximum capacity.

Interestingly and intentionally, the revised architecture and training scheme
bears a stronger resemblance to generative language models like GPT-3 [15]. We
merely utilize a standard transformer, appending a linear layer both before and
after the transformer to map the input and output to the required dimensions,
much akin to existing language models. The training scheme also parallels that
of language models, where the neural network is trained to make predictions of
QoI in each example based on preceding examples. The main deviation (and also
the key challenge) is the necessity to design the input sequence and formulate a
specialized mask to accommodate in-context operator learning tasks. Following
the name “In-Context Operator Networks (ICON)” introduced in [1], we refer
to the revised architecture and training scheme as “ICON-LM”, where “LM”
stands for “language model”.

The adoption of a neural network architecture synonymous with language
models is crucial for two reasons. First, it enables us to utilize existing tech-
niques and tools developed for language models. Second, it paves the way for
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integrating in-context operator learning with current language models. Con-
temporary language models are largely designed for natural language process-
ing tasks, with some extending to image-related tasks. It remains unverified
whether they can be employed for scientific machine learning tasks. In this pa-
per, we present promising results demonstrating the viability of language model
architecture for scientific machine learning, which indicates a new path for the
application of language models.

Our contributions are summarized as follows:

1. We transform the in-context operator learning into a multi-modal frame-
work by introducing “captions” as a means to incorporate human knowl-
edge about the operator, in the form of natural language descriptions
and equations. Compared with existing approaches like crafting special
loss functions or neural network architectures, we demonstrate that this
approach is more flexible and general, yet effective in enhancing learn-
ing performance and reducing data requirement, even enabling zero-shot
learning.

2. We propose a language-model-like architecture for multi-modal in-context
operator learning, namely “ICON-LM”. Working with a novel input se-
quence and mask, we demonstrate that this architecture is superior to the
original “ICON” architecture introduced in [1] in terms of both learning
efficiency and prediction accuracy.

3. The demonstrated viability of language-model-like architecture for scien-
tific machine learning tasks indicates a new path for the application of
language models.

2 Related Work

2.1 Operator Learning and In-Context Operator Learning

Numerous neural network methods have been proposed for approximating oper-
ators, i.e., mappings that take functions as input and output. The early works
of [2, 3] employed shallow neural networks for the approximation of nonlinear
operators. A deep neural network approach to tackle parametric PDE challenges
was suggested in [4]. PDE-Net, as presented in [6] enables forward predictions
of PDE solutions using the inferred forward map. The study in [5] presented a
Bayesian method to address uncertainty quantification in stochastic PDE sce-
narios. The Deep Operator Network (DeepONet), referenced in [7], introduces
a neural network design that approximates the solution operator, mapping pa-
rameters or initial/boundary conditions to their corresponding solutions. The
Fourier Neural Operator (FNO) from [9, 10] leverages the Fourier space’s inte-
gral kernel to approximate the solution operator. Drawing inspiration from neu-
ral networks and model reduction, the paper [11] estimates input-output maps
between infinite-dimensional spaces for parametric PDEs. Additional contribu-
tions can be found in [16, 17, 18, 19, 20].
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Recently, a different operator learning paradigm, namely in-context operator
learning, is proposed in [1]. Instead of approximating specific operators, in-
context operator learning trains the neural network as an operator learner, which
can learn and apply the operator in the inference stage without weight update.

2.2 Physics-Informed Machine Learning

In the literature, two approaches are commonly employed to incorporate physi-
cal knowledge in neural networks: hard constraints and soft constraints. We
refer readers to the survey paper [21] on this topic. Hard constraints in-
volve designing neural network architectures in a way that ensures any solu-
tion generated by the network meets the specified constraints (see, for exam-
ple, [22, 23, 24, 25, 26, 27, 28]). While solutions with specifically designed
architectures are guaranteed to be compliant to the physical constraints, cre-
ating such architectures demands extensive domain knowledge and may not be
easily adaptable to other problems. Additionally, the expressivity and training
complexity could be limited in these cases. Soft constraints are implemented
by incorporating physics-informed terms into the loss function. For example,
[29, 30, 31, 32, 33, 34, 35, 12, 8]. While more flexible in terms of neural network
architecture design, this approach still requires precise knowledge of physics
in the form of differential equations, variational problems, etc., which are not
always available, especially when the system is not fully understood by humans.

In-context operator learning excels at addressing a broad spectrum of phys-
ical problems using a single neural network. The limited flexibility and gener-
alizability of the previously mentioned approaches hinder their application to
in-context operator learning. This limitation motivates our exploration in this
paper, where we introduce a new method to incorporate physical knowledge:
through “captions”.

2.3 Multi-Modal Models

Unimodal language models solely rely on text data for training, limiting their
ability to comprehend the visual world. In contrast, multimodal language mod-
els are trained on data in multiple forms, including texts and images, enabling
them to understand the visual world. We refer readers to the survey [36] on this
topic.

To fuse different modal data, one approach involves combining the extracted
features or embeddings from different modal data and then feeding these em-
beddings into the same model [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Another
approach converts other modal data into language data and uses these language
representations as inputs for language models [48]. Some studies combine both
techniques, utilizing both extracted features and converted language data as
inputs to language models [49, 50].

During the training phase, due to the constraints of computational complex-
ity, many models (such as [45, 46, 38]) freeze the parameters of the language
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models and only train the parameters of the other components, like data em-
beddings or bridging projections. The performance of this training strategy is
compared to end-to-end fine-tuning in [37].

In this paper, we integrate embeddings of sensor data and language captions
into the same model, instead of converting one form of data into another. Given
the model’s relatively small size, we train it end-to-end from scratch.

3 GPT-assisted Caption Generation

In this study, we utilize sensor data obtained from [1] to train the ICON-LM
model. This data set comprises 19 distinct problem types, including ordinary
differential equations (ODEs), partial differential equations (PDEs) and mean-
field control problems, each with 1,000 operators, giving us a total of 19,000
operators. Each operator has 100 associated condition-QoI pairs, i.e. “exam-
ples”.

To perform multi-modal learning, for each operator, we additionally design
20 captions for training and 2 captions for testing. These captions fall into two
categories: vague captions and precise captions.

We generate these captions in the following way. First, we employed Chat-
GPT to generate two sets of captions for each problem type. These AI-generated
captions were largely appropriate, though a few necessitated slight manual ad-
justments. For the vague group, we instruct ChatGPT to use natural language
or tell the form of the equation with parameters, but do not tell the actual value
of the parameters. For the precise group, we instruct ChatGPT to disclose all
parameter values, replacing the actual parameters with unique tokens. These
tokens were then substituted with the real parameter values when formulating
the input sequence for the ICON-LM model. Note that the parameters are
functions for mean-field control problems, we thus discretize the functions to
represent them.

For both the vague and precise groups, we generated 11 captions. In each
group, the initial 10 captions were used for training, and the last one was used
for testing.

To provide a clearer understanding of the captions used, we present some
examples in the Appendix.

4 The ICON-LM Model

4.1 Input and Output Sequence

The input of the ICON-LM model consists of the caption as well as multiple
pairs of conditions and QoIs.

We first use a pre-trained language model to convert the caption into a
sequence of embeddings. We don’t pool over the embeddings, as we care not
only the general semantics of the caption, but also the details, e.g., the numbers
in the equations. In this paper, we use a pre-trained math-aware language model
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provided by [51] and published in HuggingFace1. This model was initialized
from ALBERT-base-v2 model and further pre-trained on Math StackExchange.
We chose this model since it added more LaTeX tokens to enable a better
tokenization of mathematical formulas. While in principle we can fine-tune
the language model during the training of ICON-LM, we found that the fixed
pre-trained model already performs well in our experiments. We thus use the
pre-trained model without fine-tuning to save computational resources.

Each condition and QoI function is represented by a set of key-value pairs.
We found the technique in [1] to be effective in converting the key-value pairs
into a sequence of vectors. Specifically, each vector is a concatenation of the
key, value, and index column vector which distinguishes conditions and QoIs
from different examples. In [1], the index vector is a one-hot vector. Here we
design a more compact index vector by utilizing the binary representation of
the index. For instance, the index vector for the condition is [0, 0, 0, 1]T in the
first example, [0, 0, 1, 0]T in the second example, and [0, 0, 1, 1]T in the third
example, so on and so forth. The index vector for the QoI is the negative of the
index vector for the condition. By doing so, we can represent 2N − 1 examples
with an index vector of size N , as opposed to a linear increase using one-hot
vectors.

One key difference of the training scheme in this paper compared with [1] is
that the learning is performed with varying numbers of examples concurrently
in each training step. This process involves the creation of “queries”, or vec-
tors representing the keys of the QoI, in addition to the condition vectors and
QoI vectors. Such queries are created for each example, instead of only for one
example as in [48]. It’s important to note that “queries” in this context are
distinct from the queries associated with the attention mechanism of the trans-
former model. The index vectors for queries are the same as those for QoIs, but
use different entries to make a distinction.

In table 1, we show the matrix representation of the j-th example for the one-
dimensional forward ODE problem, where the condition consists of the control
c : [0, T ] → R and the initial condition u(0); the QoI is the state u : [0, T ] → R.

Every caption embedding vector is subjected to a transformation via a linear
layer, just as every condition, QoI, and query vector undergoes another linear
layer transformation. These transformed vectors are subsequently concatenated,
and the resulting combined matrix is supplied to the transformer. The trans-
former’s output sequence undergoes a linear layer to align its dimensions with
those of the QoI values. Note that in the output sequence, we only keep the
ones corresponding to the query vectors, which aim to predict the QoI values
for each query. The input/output sequence and the neural network architecture
is depicted in Figure 2a.

1https://huggingface.co/AnReu/math_albert
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condition QoI query
term


0 0 . . . 0 1
t1 t2 . . . tnj−1 0
0 0 . . . 0 0

c(t1) c(t2) . . . c(tnj−1) u(0)
ej ej . . . ej ej
0 0 . . . 0 0




0 0 . . . 0
τ1 τ2 . . . τmj

0 0 . . . 0
u(τ1) u(τ2) . . . u(τmj )
−ej −ej . . . −ej
0 0 . . . 0




0 0 . . . 0
τ1 τ2 . . . τmj

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0

−ej −ej . . . −ej


key time

space
value

index

Table 1: The matrix representation for the j-th example for the one-dimensional
forward ODE problem. We use nj − 1 key-value pairs to represent c, one key-
value pair for u(0), and mj key-value pairs for u. Note that in the first row,
we use the indicator 0 and 1 to distinguish different terms in the condition, i.e.,
c and u(0). The third row is populated with zeros since there are no spatial
coordinates in this problem. The keys for queries are the same as those for QoIs,
but the values are populated with zero. ej is the column index vector, 0 is a
zero vector of the same size as ej .

4.2 Transformer Mask

The neural network is trained to predict the respective QoI value for each query,
taking into account the captions, all the conditions and QoIs from previous
examples, as well as the condition from the current example. The construction
of the transformer mask is guided by the following principles:

1. The query vector is expected to attend to the caption embeddings, all
preceding example condition and QoI vectors, all the condition vectors in
the current example, and itself.

2. It’s crucial that the query does not attend to any QoI vector in the current
example, as the QoI values are the target of the prediction.

3. Also, the query should not attend to other queries in the same example,
as the predictions should be independent of each other.

4. Owing to the first two constraints, the condition vectors can only attend
to the caption embeddings, all the preceding example condition and QoI
vectors, and all the condition vectors in the current example. They cannot
attend to the QoIs in the current example, to prevent inadvertent leakage
of the current example’s QoIs to the query.

5. The QoI vectors can attend to the caption embeddings, all the condition
and QoI vectors in preceding examples, and all the conditions and QoIs
in the current example.

6. The caption embeddings can attend to all the caption embeddings, since
we don’t need to predict the next token as in generative language models.

Consequently, the resultant transformer mask is illustrated in Figure 2b.
Verification of the mask, denoted by M , can be carried out by confirming
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MM = M , which ensures that there is no indirect attention causing unin-
tentional information leakage, like vector c’s information being leaked to vector
a through a attending to b, and b attending to c.

Lastly, it’s worth noting that during batching, we may have to include place-
holder vectors in the input sequence to maintain consistent length across a
batch. These placeholder vectors need to be ignored in the attention mecha-
nism. We accomplish this by carrying out an element-wise multiplication of
the previously constructed mask with another mask specifically designed to in-
dicate these placeholder vectors, in which the columns corresponding to the
placeholder vectors are set to zero, and the rest are set to one.

Language
Model

Caption

ICON-LM

Caption Embedding

Condition Vector

QoI Vector

Query Vector

Prediction
of QoI Value

(a) (b)

Figure 2: (a) Depiction of the input/output sequence and neural network struc-
ture of ICON-LM. For clarity, we present only two examples. The model of
ICON-LM is highlighted by the black dashed enclosure. Grey rectangles with
varying colors signify distinct linear layers. The transformer module’s attention
mechanism is demonstrated by connections between different component blocks
in the sequence. (b) The transformer mask for ICON-LM. As illustrated, the
mask for three examples can be divided into 10 × 10 blocks. In this matrix,
white represents one, and grey represents zero. Pay attention to the diagonal
blocks, indicating that each query attends to itself but not to other queries.
Black solid lines separate blocks for captions and examples, while black dashed
lines separate individual examples. Along the boundary, varying colors indicate
different components – red for caption embeddings, blue for condition vectors,
green for QoI vectors, and orange for query vectors, consistent with (a).
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4.3 Training and Inference

We train the ICON-LM model to execute in-context operator learning, with the
option of including or excluding captions. The loss function generally consists
of the mean squared error between the predicted QoI values and the actual
data. For training inclusive of captions, the loss function is calculated from the
first example prediction up to the last, with the first example prediction being a
zero-shot – a prediction solely based on the caption and condition, excluding any
other examples. When training without captions, we exclude the caption from
the input sequence and calculate the loss function from the second example’s
predictions to the last, bypassing zero-shot learning as it is not meaningful to
predict the QoI value without any example or caption. The total loss comprises
the losses from both scenarios.

During the inference stage, the new question condition vectors and query
vectors are considered “the last example” and appended to the input sequence.
The QoI vector for the new question is not required. The ICON-LM model’s
output corresponding to these query vectors gives the prediction for the corre-
sponding QoI value.

Note that some components of the input sequence can, or should, be excluded
in certain scenarios. This affects the corresponding rows and columns of the
masks as well. In this paper, we applied the following four variations:

1. Training with caption: Here, predictions are needed for all queries.
While the full mask described in section 4.2 is applicable, we find that
the QoI vectors in the last example are never utilized. Hence, they are
omitted from the input sequence to minimize the computational load.

2. Training without caption: In this scenario, predictions are required
for all queries, except those for the first example. We exclude the caption
embeddings, the first example’s queries, and the last example’s QoI vectors
from the input sequence.

3. Inference with caption: Here, the focus lies only on the prediction for
“the last example”, i.e., the new question condition and QoI key. As such,
the queries from all preceding examples can be omitted from the input
sequence, along with the last example’s QoI vectors, which are anyway
absent during the inference stage.

4. Inference without caption: This case parallels the previous “inference
with caption” scenario, except for the omission of the caption embeddings
from the input sequence.

These four mask variations are depicted in Figure 3.
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(a) (b) (c) (d)

Figure 3: Four transformer mask variants for ICON-LM. (a) Training with cap-
tion. (b) Training without caption. (c) Inference with caption. (d) Inference
without caption. Varying colors indicate different components along the bound-
ary, which are consistent with Figure 2b.

5 Experiments

5.1 ICON-LM v.s. Encoder-Decoder ICON

This section serves to draw a comparison between the ICON-LM model, the
focus of this study, and the original encoder-decoder ICON model introduced
in [1]. Note that here we train and test both models without captions.
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0.0175
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0.0250
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ICON-LM (ours)
Encoder-Decoder ICON

Figure 4: Relative testing errors for cases from one-shot to five-shot learning,
without captions. Our ICON-LM outperforms encoder-decoder ICON in all
cases.

The dataset used for training and testing, as well as all the training con-
figurations for the encoder-decoder ICON are inherited from [1]. Specifically,
the encoder-decoder ICON is trained with n examples and one question, with n
randomly chosen from one to five in each step. Meanwhile, ICON-LM is trained
with six examples, which means one-shot to five-shot learning concurrently in
each step. The encoder-decoder ICON encompasses approximately 31.6 mil-
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lion parameters, whereas the ICON-LM operates with nearly half that number,
at around 15.8 million parameters. This substantial reduction can be credited
to the ICON-LM’s simplified architecture, which employs a single transformer
roughly equivalent in size to either the encoder or decoder in the encoder-decoder
ICON. Both models are trained for 1 million steps, with the same setups for
optimizer and learning rate schedule. We put details in the appendix.

The batch size is 32 for encoder-decoder ICON, and 24 for ICON-LM. With
such setups, both models take about 19GB GPU memory, and can fit in one
NVIDIA GeForce RTX 4090 GPU with 24 GB memory. As for the time con-
sumption, the training takes about 40.5 hours for the encoder-decoder ICON,
and about 37 hours for ICON-LM.

We compare the relative testing error averaged over all 19 types of problems
for cases from one-shot to five-shot learning. The results are shown in Figure 4.
It’s clear that ICON-LM outperforms encoder-decoder ICON in all cases.

5.2 Multi-Modal In-Context Operator Learning

In this section, we demonstrate the effectiveness of multi-modal in-context op-
erator learning. We train the ICON-LM model with the same setup as in Sec-
tion 5.1, except that the training loss comprises the losses with and without
captions, and that the batch size is set as 32.

For each of the 19 types of problems, we show the relative testing error
without captions, with the testing vague captions, and with the testing precise
captions in Figure 5. We can see that when the number of examples is small,
e.g., zero-shot and one-shot learning, the testing error shows a clear trend of
decreasing as we move from no caption to vague caption to precise caption. This
indicates that the caption can help the neural network to learn the operator, and
the more precise the caption is, the better the learning performance. When the
number of examples is large, e.g., four-shot and five-shot learning, the captions
don’t seem to help much. This is because the neural network has already learned
the operator from sufficient examples, and the caption is not needed.

It is worth noting that zero-shot learning with vague captions performs very
well for some problems, almost as good as zero-shot learning with precise cap-
tions. These include the forward and inverse damped oscillator series problems,
the inverse Poisson equation problem, and the mean-field control problem with g
parameters, mapping from 2D density field to 2D density field. How can ICON-
LM learn the operator without any knowledge of its parameters or examples?

However, upon reflection, these unexpected results become quite rational.
For these types of problems, once the problem type is identified, the parameters
can indeed be deduced solely based on the given question condition. Specifically,
the decay rate of the damped oscillator can be computed from a segment of the
time series, the boundary conditions of the Poisson equation are encapsulated
within the conditions of u(x), and the terminal cost in the mean-field control
problem can be derived from the density field during the interval t ∈ [0, 0.5].
The success of ICON-LM in such scenarios indeed showcases its remarkable
capability.
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Figure 5: Relative testing error for cases from zero-shot to five-shot learning,
for each type of problem. (a) Testing without captions. (b) Testing with vague
captions. (c) Testing with precise captions.
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6 Summary

This paper presents a novel approach to scientific machine learning with in-
context operator learning, transforming it into a multi-modal framework by
introducing “captions”. These captions incorporate human knowledge about
the operator, in the form of natural language descriptions and equations. We
also introduce a more efficient neural network architecture for multi-modal in-
context operator learning called “ICON-LM”. This architecture closely aligns
with language models, with the exception of novel input sequences and trans-
former mask designs.

In the experiments, we compared the ICON-LM model with the original
encoder-decoder ICON model, both without captions. The proposed ICON-LM
model, comprising approximately half parameters, surpasses the performance
of the encoder-decoder ICON model with less training time. This can be at-
tributed that the encoder-decoder ICON model is trained with a fixed number
of examples in each step, while the ICON-LM model is trained with varying
numbers of examples concurrently in each training step.

Moreover, the utility of multi-modal in-context operator learning was ex-
plored using the ICON-LM model. We found that captions’ presence, especially
precise ones that disclose the parameters in the operators, significantly im-
proved learning performance when the number of examples was limited. It’s
noteworthy that for certain problem types, zero-shot learning with vague cap-
tions yielded comparable results to zero-shot learning with precise captions. In
these problems, the operators can, in principle, be deduced solely based on the
given question condition, once the problem type is identified. The success of
ICON-LM in such scenarios indeed showcases its remarkable learning capability.

In this paper, the usage of “caption” is limited to the model input. In the
future, we wish to explore the generation of captions with in-context operator
learning. Specifically, we’re interested in producing operator descriptions as
equations, in natural language, or a blend of both, based on examples from
sensory data. Such advancements could pave the way for automated scientific
modeling and data analysis within the framework of in-context learning.
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Appendix

Neural Network and Training Configurations

The transformer used in this paper has the configuration in Table 2. We utilize
the AdamW optimizer with a warmup-cosine-decay schedule, employing the
configuration in Table 3.

Table 2: Transformer Configuration

Layers 6
Heads in Multi-Head Attention 8

Input/Output Dimension of Each Layer 256
Dimension of Query/Key/Value in Attention Function 256

Hidden Dimension of Feedforward Networks 1024

Table 3: Configuration of Optimizer and Learning Rate Schedule

Initial Learning Rate 0.0
Peak Learning Rate 1e-4
End Learning Rate 0.0

Warmup Steps First 10% of Total Steps
Cosine Annealing Steps Remaining Steps

Global Norm Clip 1.0
Adam β1 0.9
Adam β2 0.999

Adam Weight Decay 1e-4

Caption Examples

In this section, we show several examples of training and testing captions for
three characteristic problem types: ODE 3 forward problem, PDE 3 forward
problem, and MFC g-parameter 1D → 1D. For each type, we show four captions
for training, where the first two are in the vague group, and the last two are in
the precise group. We also show the two captions for testing.

1. Caption examples for ODE 3 forward problem.

----Train----

An ODE with a state variable $u$ and control variable $c$.
condition: $u(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in[0,1]$

function $u$ change over time with the rate of $a_1 \cdot u(t) +

a_2 \cdot c(t) + a_3$. condition: $u(0)$ and $c(t), t\in[0,1]$,
QoI: $u(t), t\in[0,1]$
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The rate of change of $u(t)$ with respect to time is described by

the equation $du(t)/dt = 0.37 \cdot u(t) + 1.46 \cdot c(t) +

-0.241$. condition: $u(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t

\in[0,1]$
The time derivative of the state variable $u(t)$ is equal to $0.37

\cdot u(t) + 1.46 \cdot c(t) + -0.241$. condition: $u(0)$ and

$c(t), t\in[0,1]$, QoI: $u(t), t\in[0,1]$

----Test----

The rate of change of $u(t)$ over time is given by the equation $du
(t)/dt = a_1 \cdot u(t) + a_2 \cdot c(t) + a_3$. condition: $u
(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in[0,1]$

The relationship between $u(t)$ and $c(t)$ is governed by the

equation $du(t)/dt = 0.48 \cdot u(t) + 1.06 \cdot c(t) + 0.691$
. condition: $u(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in

[0,1]$

2. Caption examples for PDE 3 forward problem.

----Train----

A nonlinear partial differential equation with variables $u(x)$ and

$c(x)$, where $c(x)$ is a part of the source term. condition:

$u(x), x\in[0,1]$, QoI: $c(x), x\in[0,1]$
Nonlinear reaction-diffusion PDE expressed as $-\lambda \frac{d^2u(

x)}{dx^2} + a \cdot u^3 = c(x)$. condition: $u(x), x\in[0,1]$,
QoI: $c(x), x\in[0,1]$

$- 0.0712 d^2u(x)/dx^2 + 0.717 \cdot u(x)^3 = c(x)$, with $u(x=0) =

-0.353$ and $u(x=1) = -0.132$. condition: $u(x), x\in[0,1]$,
QoI: $c(x), x\in[0,1]$

Equation: $- 0.0712 \frac{d^2u(x)}{dx^2} + 0.717 \cdot u(x)^3 = c(x

)$. Boundary condition: $u(x=0) = -0.353$, $u(x=1) = -0.132$.
condition: $u(x), x\in[0,1]$, QoI: $c(x), x\in[0,1]$

----Test----

The nonlinear reaction-diffusion PDE $-\lambda \frac{d^2u(x)}{dx^2}

+ a \cdot u^3(x) = c(x)$ captures the dynamics of the system.

condition: $c(x), x\in[0,1]$, QoI: $u(x), x\in[0,1]$
In this nonlinear reaction-diffusion PDE, $- 0.0944 \cdot \frac{d^2

u(x)}{dx^2} + 1 \cdot u^3(x) = c(x)$, subject to the conditions

$u(0) = -0.967$ and $u(1) = 0.522$. condition: $c(x), x\in

[0,1]$, QoI: $u(x), x\in[0,1]$

3. Caption examples for MFC g-parameter 1D → 1D.

----Train----

A mean field control problem with density denoted as $\rho$,
subject to a terminal cost integral of form $\int g(x)\rho(1,x)

dx$ with an unspecified function $g$. condition: $\rho(0,x), x

\in[0,1]$, QoI: $\rho(1,x), x\in[0,1]$
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Consider a mean field control problem that minimizes $\inf_{\rho, m

}\iint \frac{10m^2}{\rho} dx dt + \int g(x)\rho(1,x) dx$
subject to $\partial_t \rho(t,x) + \nabla_x m(t,x) = 0.02 \

Delta_x \rho(t,x)$ and $\rho(0,x)=\rho_0(x)$, with an undefined

function $g$. condition: $\rho(0,x), x\in[0,1]$, QoI: $\rho(1,
x), x\in[0,1]$

Addressing a mean field control problem where $\inf_{\rho, m}\iint

\frac{10m^2}{\rho} dx dt + \int g(x)\rho(1,x) dx$ is minimized

under the condition $\partial_t \rho(t,x) + \nabla_x m(t,x) =

0.02 \Delta_x \rho(t,x)$ for $t \in [0,1], x \in [0,1]$, with

periodic spatial boundary condition, and the function $g$
satisfies $g(0), g(0.1), ..., g(0.9)$ = 0.315, 0.473, 0.0224,

-0.459, -0.0797, 0.259, -0.192, -0.656, -0.0642, 0.314.

condition: $\rho(0,x), x\in[0,1]$, QoI: $\rho(1,x), x\in[0,1]$
Consider a mean field control problem optimizing $\inf_{\rho, m}\

iint \frac{10m^2}{\rho} dx dt + \int g(x)\rho(1,x) dx$ where

the constraints $\partial_t \rho(t,x) + \nabla_x m(t,x) = 0.02

\Delta_x \rho(t,x)$ are met for $t \in [0,1], x \in [0,1]$,
with periodic spatial boundary condition, and the function $g$
satisfies $g(0), g(0.1), ..., g(0.9)$ = 0.315, 0.473, 0.0224,

-0.459, -0.0797, 0.259, -0.192, -0.656, -0.0642, 0.314.

condition: $\rho(0,x), x\in[0,1]$, QoI: $\rho(1,x), x\in[0,1]$

----Test----

Examine a mean field control problem that involves a density

variable $\rho$ and an unknown function $g$ in the terminal

cost integral. condition: $\rho(0,x), x\in[0,1]$, QoI: $\rho(1,
x), x\in[0,1]$

The mean field control problem is defined by $\inf_{\rho, m}\int \

frac{10m^2}{\rho} dx dt + \int g(x)\rho(1,x) dx$, with

constraint $\partial_t \rho(t,x) + \nabla_x m(t,x) = 0.02 \

Delta_x \rho(t,x)$ for $t \in [0,1], x \in [0,1]$, with

periodic spatial boundary condition, where $g$ is specified as

$g(0), g(0.1), ..., g(0.9)$ = -0.612, -1.48, -1.52, -0.834,

0.165, 0.705, 1.23, 1.34, 0.785, -0.513. condition: $\rho(0,x)
, x\in[0,1]$, QoI: $\rho(1,x), x\in[0,1]$
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