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Abstract Quotient regularization models (QRMs) are a class of powerful reg-
ularization techniques that have gained considerable attention in recent years,
due to their ability to handle complex and highly nonlinear data sets. How-
ever, the nonconvex nature of QRM poses a significant challenge in finding its
optimal solution. We are interested in scenarios where both the numerator and
the denominator of QRM are absolutely one-homogeneous functions, which is
widely applicable in the fields of signal processing and image processing. In this
paper, we utilize a gradient flow to minimize such QRM in combination with
a quadratic data fidelity term. Our scheme involves solving a convex problem
iteratively. The convergence analysis is conducted on a modified scheme in a
continuous formulation, showing the convergence to a stationary point. Nu-
merical experiments demonstrate the effectiveness of the proposed algorithm
in terms of accuracy, outperforming the state-of-the-art QRM solvers.
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1 Introduction

In this paper, we consider a generalized quotient regularization model (QRM)
with a least-squares data fidelity term weighted by a positive constant λ, i.e.,

min
u∈Ω

J(u)

H(u)
+

λ

2
∥Au− f∥22, (1)

where both functionals J(·), H(·) are proper, convex, lower semi-continuous
(lsc), and absolutely one-homogeneous on a proper domain Ω ⊂ Rn. An
absolutely one homogeneous functional F : u ∈ Ω → R satisfies F (αu) =
|α|F (u),∀α ∈ R, u ∈ Ω. This definition implies that J(u) ≥ 0, J(0) = 0. We

further assume by convention J(0)
H(0) := 0, thus it is well-defined at 0. The least-

squares misfit between the linear operator A and the measurements f is a
standard data fidelity term when the noise Au− f is subject to the Gaussian
distribution. For other noise types, the data fidelity term is formulated differ-
ently. We give three specific signal and image processing examples that fit into
our general model (1).

Example 1 (L1/L2 sparse signal recovery). The ratio of the L1 and L2

norms was prompted as a scale-invariant surrogate to the L0 norm for sparse
signal recovery [13,15]. Defining J(0)/H(0) = 0 aligns with the L0 norm of
the zero vector. Recently, a constrained minimization problem was formulated,
i.e.,

min
u∈Rn

∥u∥1
∥u∥2

s.t. Au = f,

for the ease of analyzing the theoretical properties of the L1/L2 model [21,28]
as well as deriving a numerical algorithm [25]. Here we adopt the unconstrained
formulation [22] that is aligned with our generalized model (1)

min
u∈Rn

∥u∥1
∥u∥2

+
λ

2
∥Au− f∥22. (2)

A more general ratio of Lp over Lq (quasi-)norms for p ∈ (0, 2) and q ≥ 2 was
explored in [7].

Example 2 (L1/SK sparse signal recovery). Motivated by the truncated
L1 regularization (a.k.a partial sum) [14,19] and the L1/L2 model, Li et al. [17]
proposed the ratio of the L1 norm and K-largest sum as a sparsity-promoting
regularization with a given integer K. When K = 1, it becomes the L1 norm
over the infinity norm [8,26]. For K = n (the ambient dimension of u), L1/SK

is equivalent to L1/L2. In Figure 1, we use a 2D example to illustrate that both
L1/L2 and L1/SK can promote sparsity by approximating the L0 norm. Both
ratios give a better approximation to the L0 norm compared to the convex
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Fig. 1 A 2D illustration of L1/L2 and L1/S1 that give a better approximation to the L0

norm with a comparison to the convex L1 norm.

L1 norm, which is largely attributed to the scale-invariant property of the L0

norm and the two ratio models.
Define J(u) = ∥u∥1 and H(u) as the sum of the K-largest absolute val-

ues of entries, denoted as ∥u∥(K). As both J(·) and H(·) are absolutely one-
homogeneous, we consider the following problem

min
u∈Rn

∥u∥1
∥u∥(K)

+
λ

2
∥Au− f∥22, (3)

as a special case of (1). Note that the L1/SK regularization was formulated
in [17] as

min
u∈Rn

∥u∥1 + λ
2 ∥Au− f∥22

∥u∥(K)
, (4)

so that a fractional programming (FP) strategy [30] can be applied. We demon-
strate in our experiments that (3) outperforms (4) in terms of sparse recovery.

Example 3 (L1/L2 on the gradient for image recovery). In [23,24], the
L1/L2 functional was applied to the image gradient and combined with the
least-squares term,

min
u

∥∇u∥1
∥∇u∥2

+
λ

2
∥Au− f∥22. (5)

Specifically, Wang et al. [24] demonstrated that this model (5) yields signif-
icant improvements in a limited-angle CT reconstruction problem. With an
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additional H1-semi norm to (5) for smoothing, a segmentation model was
proposed in [27]. A modification of replacing the gradient operator ∇ in (5) by
a nonnegative diagonal matrix was explored in [16] for electrical capacitance
tomography.

Without the data fitting term, our model (1) reduces to Rayleigh quotient
problems, defined by

min
u∈Ω

R(u) :=
J(u)

H(u)
. (6)

The classic Rayleigh quotient problem in linear eigenvalue analysis [12] is
defined by

min
u∈Rn

⟨u, Lu⟩
∥u∥22

, (7)

with a symmetric matrix L ∈ Rn×n. Any critical point of (7) is an eigenvector
of the matrix L. One can replace the linear mapping Lu in (7) by a nonlinear
function, thus leading to a nonlinear eigenproblem. Nossek and Gilboa [18]
proposed a continuous flow that minimizes (6) when J(·) is absolutely one
homogeneous and H(·) is the square L2 norm. The convergence proof was
later provided in [1]. Under the same setting, a nonlinear power method was
proposed in [6] with connections to proximal operators and neural networks.
For the case when J is the total variation (TV) and H is the L1 norm, the
Rayleigh quotient (6) approximates the Cheeger cut problem [11,5]. The quo-
tient minimization (6) also appears in learning parameterized regularizations
[3] and filter functions [2].

In this paper, we propose a novel scheme to minimize the general model (1)
based on a gradient descent flow for the Rayleigh quotient minimization [9].
We then apply the proposed algorithm to the three specific examples (L1/L2,
L1/SK , and L1/L2 on the gradient). In each case, our algorithm requires mini-
mizing an L1-regularized subproblem, which can be solved efficiently using the
alternating direction method of the multiplier (ADMM) [4,10]. Our analysis
for the proposed algorithm is towards a slightly modified scheme. We establish
a subsequential convergence of the modified scheme under the uniform bound-
edness of the sequence. With some additional assumptions, the uniform bound
can be proven using a continuous flow formulation. In experiments, we demon-
strate the efficiency of the proposed algorithm over the relevant methods in
the literature. In summary, the novelties of this paper are threefold:

1. We consider a general model (1) that combines the Rayleigh quotient as
a regularization with a data fidelity term. Our model has a variety of
applications, especially in signal and image reconstruction.

2. We propose a unified algorithm with numerical insights on convergence
and the solution’s boundedness.

3. Our approach can be adapted to three case studies: (2), (3), and (5). In
each case, the proposed scheme outperforms the relevant algorithms in the
literature in terms of accuracy.
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The rest of the paper is organized as follows. Section 2 describes the pro-
posed algorithms in detail, including numerical formulation and specific closed-
form solutions for the three case studies. We provide mathematical analysis
on the numerical scheme in Section 3. Extensive experiments are conducted
in Section 4 for applications in signal and image recovery. Finally, conclusions
and future works are given in Section 5.

2 Proposed algorithms

Recall that we aim at the minimization problem

min
u

G(u) := R(u) +
λ

2
∥Au− f∥22, (8)

with R(u) = J(u)/H(u).

Theorem 1 Suppose A is an under-determined matrix, f ∈ Im(A), and R(·)
has an upper bound, i.e., R(u) ≤ M . For a sufficiently large parameter λ, the
optimal solution of (8) can not be 0.

Proof As A is an under-determined matrix and f ∈ Im(A), there exist in-
finitely many solutions satisfying Au = f, among which we denote û to be the
least norm solution, that is,

û = argmin
u

∥u∥2 such that Au = f.

It is straightforward that G(û) = R(û) ≤ M and G(0) = J(0)
H(0) + λ

2 ∥f∥
2
2. If

λ > 2M
∥f∥2

2
, then we have G(û) < G(0), which implies that 0 cannot be the

global solution to (8).

Remark: Note that all the examples listed in the introduction section satisfy
the boundedness assumption of R(·). Taking L1/L2 for an example, one has
∥u∥1

∥u∥2
≤

√
n for u ∈ Rn.

One classic method to minimize G(u) is by using a gradient descent flow,
i.e.,

ut = −∇G(u). (9)

The derivative of G can be expressed as

∇G(u) =
H(u)p− J(u)q

H2(u)
+ λAT (Ax− f)

=
p−R(u)q

H(u)
+ λAT (Au− f),

(10)

where q ∈ ∂H(u), p ∈ ∂J(u). We consider the subgradient ∂ here as J(·), H(·)
are not necessarily differentiable. Plugging the gradient expression (10) into
the flow (9) yields

ut =
R(u)

H(u)
q − p

H(u)
− λAT (Au− f),
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which can be discretized by the iteration count k,

uk+1 − uk

dt
=

R(uk)

H(uk)
qk − pk+1

H(uk)
− λAT (Auk+1 − f). (11)

Note that we consider a semi-implicit scheme in (11) such that the update of
uk+1 is obtained by the following optimization problem,

uk+1 = argmin
u

{
β

2
∥u− uk∥22 −

R(uk)

H(uk)
⟨qk, u⟩+ J(u)

H(uk)
+

λ

2
∥Au− f∥22

}
,

(12)
where β = 1

dt . In what follows, we describe the detailed algorithms for L1/L2

and L1/SK in Section 2.1 as well as the gradient model (5) in Section 2.2, all
based on the general scheme (12).

2.1 Quotient regularization for sparse signal recovery

For H(u) = ∥u∥2 and q ∈ ∂H(u), we get q = u
∥u∥2

if u ̸= 0; otherwise

q is a vector with each element bounded by [−1, 1]. As J(u) = ∥u∥1, the
minimization problem (12) at the kth iteration becomes

uk+1 = argmin
u

{
β

2
∥u− uk∥22 − ⟨hk, u⟩+ ∥u∥1

∥uk∥2
+

λ

2
∥Au− f∥22

}
, (13)

where hk = R(uk)
H(uk)

qk = ∥uk∥1

∥uk∥3
2
uk. Note that the scheme (11) becomes degenerate

if uk = 0, while this turns out not to be restrictive in, as uk = 0 never occurs
in our experiments. On the theoretical side, we know from Theorem 1 that 0
cannot be the minimizer of the objective function in the minimization problem
(12).

To solve for the L1-regularized minimization (13), we introduce an auxiliary
variable y and consider an equivalent problem

min
u,y

β

2
∥y − uk∥22 − ⟨hk, y⟩+ ∥u∥1

∥uk∥2
+

λ

2
∥Ay − f∥22 s.t. u = y. (14)

The corresponding augmented Lagrangian function is expressed as,

Lk(u, y; η) =
β

2
∥y−uk∥22−⟨hk, y⟩+ ∥u∥1

∥uk∥2
+
λ

2
∥Ay−f∥22+

ρ

2
∥u−y+η∥22, (15)

where η is a dual variable and ρ is a positive parameter. Then ADMM iterates
as follows uj+1 = argminu Lk(u, yj ; ηj)

yj+1 = argminy Lk(uj+1, y; ηj)
ηj+1 = ηj + uj+1 − yj+1,

(16)
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where the subscript j represents the inner loop index, as opposed to the super-
script k for outer iterations (12). The u-subproblem has a closed-form solution:

uj+1 = shrink

(
yj − ηj ,

1

ρ∥uk∥2

)
.

The update of y follows the computation of gradient of Lk with respect to y:

yj+1 = (λATA+ (β + ρ)I)−1(βuk + hk + λAT f + ρ(uj+1 + ηj)), (17)

which involves solving a large linear system. In the case of sparse signal re-
covery when the system matrix A ∈ Rm×n is under-determined, i.e., m ≪ n,
the closed-form solution of y can be written in an efficient way by the Sher-
man–Morrison–Woodbury formula:

yj+1 =
[
κI − λκ2AT

(
I + λκAAT

)−1
A
] [

βuk + hk + λAT f + ρ(uj+1 + ηj)
]
.

where κ = 1/(β + ρ) and the matrix I + λκAAT is in m-by-m size, which
is much smaller than inverting an n × n matrix in (17). Using the Choleskey
decomposition for I + λκAAT can further accelerate the computation.

For the L1/SK model (3), H(u) = ∥u∥(K) and its subgradient is a random
vector bounded by [−1, 1] if u = 0. In addition, when u ̸= 0, one has

qi =

{
ui

∥u∥(K)
i ∈ ΩK(u)

0 Otherwise,

where q ∈ ∂H(u) and ΩK(u) is the index set of the K-largest absolute values
of u. As a result, the algorithm for the L1/SK model (3) is the same as (13)

except that hk = ∥uk∥1

∥uk∥3
(k)

vk with

vki =

{
uk
i i ∈ ΩK(uk)

0 Otherwise.
(18)

Algorithm 1 presents a unified scheme that minimizes the L1/L2 and
L1/SK models with the least-squares fit.

2.2 Quotient regularization for image recovery

When J(u) = ∥∇u∥1 and H(u) = ∥∇u∥2, we get q = −∆u
∥∇u∥2

if ∇u ̸= 0;

otherwise q is a vector with each element bounded by [−1, 1]. Hence the min-
imization problem (12) in the k-iteration becomes

uk+1 = argmin
u

{
β

2
∥u− uk∥22 − ⟨hk, u⟩+ ∥∇u∥1

∥∇uk∥2
+

λ

2
∥Au− f∥22

}
, (19)

where hk = ∥∇uk∥1

∥∇uk∥3
2
∆uk. The subproblem (19) is a TV regularization with

additional linear and least-squares terms, which can be solved by ADMM. In



8 Chao Wang et al.

Algorithm 1 Proposed algorithm for the models of L1/L2 and L1/SK .
1: Input: a linear operator A, observed data f
2: Parameters: ρ, λ, β, κ = 1/(β + ρ), kMax, jMax, ϵ ∈ R, and K for the L1/SK model
3: Initialize: η = 0, k, j = 0 and u0

4: while k < kMax or ∥uk − uk−1∥2/∥uk∥2 > ϵ do
5: while j < jMax or ∥uj − uj−1∥2/∥uj∥2 > ϵ do

6: uj+1 = shrink
(
yj − ηj ,

1
ρ∥uk∥2

)
7: yj+1 =

[
κI − λκ2AT

(
I + λκAAT

)−1
A
] [

βuk + hk + λAT f + ρ(uj+1 + ηj)
]

8: ηj+1 = ηj + uj+1 − yj+1

9: Assign j by j + 1
10: end while
11: Set uk+1 as uj

12: Update hk+1 by hk+1 =


∥uk∥1
∥uk∥32

uk for L1/L2

∥uk∥1
∥uk∥3

(k)

vk for L1/SK

13: Assign k and j by k + 1 and 0, respectively
14: end while
15: return u∗ = uk

particular, we introduce one auxiliary variable y = ∇u upon convergence, and
formulate the augmented Lagrangian function corresponding to (13) as,

Lk(u, y; η) =
β

2
∥u−uk∥22−⟨hk, u⟩+ ∥y∥1

∥∇uk∥2
+

λ

2
∥Au−f∥22+

ρ

2
∥∇u−y+η∥22,

(20)
where η is a dual variable and ρ is a positive parameter. Then ADMM iterates
as follows uj+1 = argminu Lk(u, yj ; ηj)

yj+1 = argminy Lk(uj+1, y; ηj)
ηj+1 = ηj +∇uj+1 − yj+1.

(21)

Taking the derivative of (21) with respect to u, we get

uj+1 = (λATA− ρ∆+ βI)−1(λAT f + βuk + ρ(y − ηj) + hk). (22)

For image deblurring or the MRI reconstruction, the inverse in the u-update
(22) can be computed efficiently via the fast Fourier transform.

The update for the variable y is given by

yj+1 = shrink

(
∇uj+1 + ηj ,

1

ρ∥∇u∥2

)
.

We summarize the proposed algorithm for minimizing the L1/L2 on the gra-
dient in Algorithm 2.

3 Mathematical analysis

This section is split into two parts. In Section 3.1, we prove the convergence
of a modified scheme to the solution of the quotient model (1). To do so, we
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Algorithm 2 Proposed algorithm for the L1/L2 model on the gradient.
1: Input: a linear operator A, observed data f ,
2: Parameters: ρ, λ, β, kMax, jMax, and ϵ ∈ R
3: Initialize: η = 0, k, j = 0 and u0

4: while k < kMax or ∥uk − uk−1∥2/∥uk∥2 > ϵ do
5: while j < jMax or ∥uj − uj−1∥2/∥uj∥2 > ϵ do
6: uj+1 = (λATA− ρ∆+ βI)−1(λAT f + βuk + ρ(y − ηj) + hk)

7: yj+1 = shrink
(
∇uj+1 + ηj ,

1
ρ∥∇u∥2

)
8: ηj+1 = ηj + uj+1 − yj+1

9: Assign j by j + 1
10: end while
11: Set uk+1 as uj

12: Update hk+1 by hk =
∥∇uk∥1
∥∇uk∥32

∆uk

13: Assign k and j by k + 1 and 0, respectively
14: end while
15: return u∗ = uk

need a technical uniform bound assumption, which is analyzed in Section 3.2
based on a continuous formulation of the scheme.

3.1 Convergence of the scheme

We first show that a fully implicit version of the numerical scheme (12) con-
verges (up to a subsequence) to a solution of our original problem (1) un-
der a reasonable uniform bound assumption. In our analysis, we make use of
Lemma 1 that is related to the subdifferential of one homogeneous convex
function (see for instance [6,9]):

Lemma 1 If J is a convex one homogeneous function, then the following hold:

(i) If p ∈ ∂J(u), then J(u) = ⟨p, u⟩.
(ii) If p ∈ ∂J(u), then J(v) ≥ ⟨p, v⟩, ∀v.

Fully implicit scheme: We recall that the sequence {uk} is defined by Equation
(12). In fact, we are going to analyze a slightly different scheme, which is
referred to as a fully implicit scheme,

uk+1 = argmin
u

{
β

2
∥u− uk∥22 −

R(uk)

H(u)
⟨qk, u⟩+R(u) +

λ

2
∥Au− f∥22

}
, (23)

where the term 1
H(uk)

in (12) has been replaced by 1
H(u) . We remark that

the numerical scheme (12) is much easier to handle with the term 1
H(uk)

, but

the mathematical analysis of (23) happens to be much easier with 1
H(u) . We

establish in Theorem 2 that ∥uk+1 − uk∥2 → 0 when k → +∞.

Theorem 2 For absolutely one-homogeneous functionals J(·), H(·),
then

∑
∥uk+1−uk∥22 converges, and thus ∥uk+1−uk∥2 → 0 when k → +∞.
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Proof Define the objective function in (23) by

F (u) :=
β

2
∥u− uk∥22 −

R(uk)

H(u)
⟨qk, u⟩+R(u) +

λ

2
∥Au− f∥22. (24)

It is straightforward that

F (uk) = −R(uk)

H(uk)
⟨qk, uk⟩+R(uk) +

λ

2
∥Auk − f∥22. (25)

SinceH is absolutely one-homogeneous, we use Lemma 1 (i) to obtain ⟨qk, uk⟩ =
H(uk), thus leading to

F (uk) = −R(uk) +R(uk) +
λ

2
∥Auk − f∥22 =

λ

2
∥Auk − f∥22. (26)

It follows from Lemma 1 (ii) that H(uk+1) ≥ ⟨qk, uk+1⟩, which implies that

F (uk+1) =
β

2
∥uk+1 − uk∥22 −

R(uk)

H(uk+1)
⟨qk, uk+1⟩+R(uk+1) +

λ

2
∥Auk+1 − f∥22

≥ β

2
∥uk+1 − uk∥22 −

R(uk)

H(uk+1)
H(uk+1) +R(uk+1) +

λ

2
∥Auk+1 − f∥22

=
β

2
∥uk+1 − uk∥22 −R(uk) +R(uk+1) +

λ

2
∥Auk+1 − f∥22.

We use the fact that F (uk+1) ≤ F (uk) to deduce:

β

2
∥uk+1 − uk∥22 −R(uk) +R(uk+1) +

λ

2
∥Auk+1 − f∥22 ≤ λ

2
∥Auk − f∥22. (27)

Summing from 1 to N , we get:

β

2

N∑
k=1

∥uk+1 − uk∥22 ≤ R(u1)−R(uN+1) +
λ

2

(
∥Au1 − f∥22 − ∥AuN+1 − f∥22

)
≤ R(u1) +

λ

2
∥Au1 − f∥22,

due to R(u) ≥ 0 and ∥Au − f∥22 ≥ 0 for any u. Let N → ∞, we obtain that∑∞
k=1 ∥uk+1 − uk∥22 is bounded, which implies that ∥uk+1 − uk∥22 → 0.

Now that we have proven that ∥uk+1 − uk∥2 → 0 when k → +∞, we
are going to be able to pass the limit up to a subsequence in the optimality
condition of Problem (1).

Theorem 3 For absolutely one-homogeneous functionals J(·), H(·), if the se-
quence {uk} defined by (23) is uniformly bounded, then there exists a subse-
quence of (uk, pk, qk) that converges to (u∗, p∗, q∗). Moreover, we have

p∗ ∈ ∂J(u∗), q∗ ∈ ∂H(u∗), and 0 = λAT (Au∗−f)+
p∗ −R(u∗)q∗

H(u∗)
. (28)
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Proof Since uk is uniformly bounded, it is also the case for the subgradi-
ents pk and qk. Thus, there exists (u∗, p∗, q∗) such that up to a subsequence,
(uk, pk, qk) → (u∗, p∗, q∗). The optimality condition for (23) can be written as:

0 = β(uk+1 − uk) + λAT (Auk+1 − f)

+
R(uk)qk

H(uk+1)
− R(uk)⟨qk, uk+1⟩qk+1

(H(uk+1))2
+

pk+1 −R(uk+1)qk+1

H(uk+1)
.

Thanks to Theorem 2, we can pass to the limit in this last equation to get:

0 = λAT (Au∗ − f) +
p∗ −R(u∗)q∗

H(u∗)
, (29)

where we use Lemma 1 for ⟨q∗, u∗⟩ = H(u∗). Note that (29) is the original
optimality condition ∇G(u∗) = 0, i.e., Equation (10) for the optimization
problem (1).

3.2 Uniform boundedness of the sequence {uk}

The goal of this subsection is to explain why the technical assumption on
the uniform boundedness of the sequence {uk} is reasonable for Theorem 3.
Instead of dealing with the discrete sequence {uk}, we conduct our analysis
in a continuous setting, which enables us to have tractable computations. In
particular, we consider a differentiable function u of the continuous flow, that
is, ut = −∇G(u) in (9). Notice that uk defined by (23) can be seen as a
discretized version of u.

We show in Theorem 4 that a mapping of t 7→ ∥u∥22 is a non-increasing
function as long as ∥Au∥ ≥ ∥f∥.

Theorem 4 Suppose u(t) is a differentiable function with respect to the time
t that satisfies the flow (9), i.e.,

ut = −∇G(u) = −λAT (Au− f)− p−R(u)q

H(u)
. (30)

If ∥Au∥2 ≥ ∥f∥2, then
d

dt

(
∥u∥22

)
≤ 0. (31)

Proof Simple calculations lead to

d

dt

(
∥u∥22

)
= ⟨u, ut⟩

= −λ⟨Au− f,Au⟩ − ⟨p, u⟩ −R(u)⟨q, u⟩
H(u)

= −λ⟨Au− f,Au⟩ − J(u)−R(u)H(u)

H(u)

= −λ
(
∥Au∥22 − ⟨f,Au⟩

)
,
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where we use Lemma 1 with p ∈ ∂J(u) and q ∈ ∂H(u). It further follows from
the Cauchy-Schwartz inequality that

d

dt

(
∥u∥22

)
≤ λ∥Au∥ (∥f∥ − ∥Au∥) . (32)

Consequently, if ∥Au∥ ≥ ∥f∥, then ∥u∥22 is a non-increasing function.

We give a numerical verification of Theorem 4 in Figure 3. A direct conse-
quence of Theorem 4 leads to the following two corollaries.

Corollary 1 If A is coercive (i.e. there exists c > 0 such that ∥Au∥ ≥ c∥u∥),
then any function u satisfying the flow (30) is uniformly bounded.

The coercivity assumption on A can further be weakened. For instance, if
we write u = v + w with v ∈ Ker(A) and w ∈ (Ker(A))⊥ (notice that this
decomposition exists and is unique), then we only need a uniform boundedness
assumption on v.

Corollary 2 Suppose u(t) satisfies the flow (30). We can uniquely express
u = v + w with v ∈ Ker(A) and w ∈ (Ker(A))⊥. If v is uniformly bounded,
then u is uniformly bounded.

4 Numerical Results

In this section, we showcase the effectiveness of the proposed algorithms through
a set of numerical experiments. All of these experiments were carried out on
a typical laptop featuring a CPU (AMD Ryzen 5 4600U at 2.10GHz) and
MATLAB (R2021b).

We start with some numerical insights of the proposed scheme in Sec-
tion 4.1, followed by case studies of sparse signal recovery in Section 4.2 and
MRI reconstruction in Section 4.3. Specifically for signal recovery, we con-
duct experiments in a noisy setting, aiming to recover an underlying sparse
vector u ∈ Rn with s non-zero elements from a set of noisy measurements,
f = Au + ν, where A ∈ Rm×n is a Gaussian random matrix with each col-
umn normalized by zero mean and unit Euclidean norm, and ν is Gaussian
noise with zero mean and standard deviation σ. We fix the ambient dimen-
sion n = 512, sparsity s = 130, and noise level σ = 0.1, while varying the
number of measurements m to examine the performance of sparse signal re-
covery. Notice that fewer measurements result in a more challenging recovery
process. We use the mean-square error (MSE) metric to evaluate the recovery
performance. we can obtain the ordinary least square (OLS) solution if we
know the ground truth of the support set of Λ = supp(u), which refers to
the index set of nonzero entries in u. In this case, we can consider the mean
squared error (MSE) of OLS as the benchmark for the oracle performance, us-
ing σtr(A⊤

ΛAΛ)
−1, where AΛ refers to a submatrix of A by taking the columns

corresponding to the index set Λ.
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Fig. 2 The objective function (8) respect to the iteration counts: L1/L2 and L1/SK for
signal recovery (left) and L1/L2 on the gradient for image recovery (right). The decay in each
objective function provides empirical evidence of the convergence of the proposed scheme
(12).

4.1 Algorithm behaviors

The convergence analysis we conduct in Section 3.1 is based on a modified
model (23), as opposed to our numerical scheme (12). Here we empirically
demonstrate the convergence of the latter on the three quotient models: L1/L2,
L1/SK , and L1/L2 on the gradient. The first two models are related to signal
recovery, and we choose K = 100 for the L1/SK model in this experiment,
while the last one is stemmed from the image processing literature. The ob-
jective function for all these models is expressed in (8). We plot the objective
value R(uk)+ λ

2 ∥Auk−f∥22 with respect to k, in which uk is defined by (12). As
illustrated in Figure 2, all the objective curves decrease rapidly, which provides
strong evidence that the proposed scheme (12) is convergent. The theoretical
analysis of (12) is left for future work.

Next, we numerically verify Theorem 4 based on the L1/L2 model. Specif-
ically, we choose an initial guess of u0 such that ∥Au0∥2 − ∥f∥2 is strictly
larger than 0 as Case 1, and ∥Au0∥2 −∥f∥2 < 0 as Case 2. We plot ∥uk∥2 and
∥Auk∥2 − ∥f∥2 with respect to k in Figure 3, which validates the decrease in
∥u∥2 is attributed to ∥Auk∥2 ≥ ∥f∥2.

Lastly, we investigate the impact of the parameter K for the L1/SK model.
We consider m = 250 to 360 with an increment of 10. For each m, we gen-
erate a random matrix A, a ground-truth sparse vector u of s = 130 nonzero
elements, and a noise term ν to obtain the measurement vector f . We con-
duct 100 random realizations and record in Table 1 the average value of MSEs
between the the ground-truth u and reconstructed solutions by L1/SK with
K = 10, 100, 150, n(= 512). We use the L1 solution as the initial condition
for L1/SK , which is referred to as the baseline model in Table 1. Notice that
for K = n, the L1/SK model becomes L1/L2. Table 1 shows that the L1/SK

model exhibits a close approximation to the oracle performance when K = 100
or 150, as the ground-truth sparsity is 130. When the parameter K is close to
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Fig. 3 Numerical verification for Theorem 4 based on the L1/L2 model: if ∥Au∥ ≥ ∥f∥,
then ∥u∥2 decreases with respect to the iteration (left); otherwise, ∥u∥2 increases (right).
We plot ∥u∥2 on the top row, while ∥Au∥2 − ∥f∥2 with a baseline of 0 (red dash line) on
the bottom row.

the ground-truth level, L1/SK achieves top-notch performance at any m. For
a smaller value of m, the problem becomes more ill-posed, and hence all mod-
els lead to similar performance. If we choose K = 10 (far away from the true
sparsity), the performance of L1/SK is worse than the L1/L2 model, which
implies that K plays an important role in the success of the L1/SK model for
sparse recovery.

4.2 Signal recovery

This section investigates the signal recovery problem, in which we compare
various algorithms for the QRM model together with fractional programming
(FP). Specifically for QRM, we compare the proposed Algorithm 1 on both
L1/L2 and L1/SK (choosing K = 100) regularizations with a difference of
convex algorithm (DCA) scheme [20] implemented by ourselves. Here DCA
aims to minimize D1(u)−D2(u) with convex functionals D1, D2 by iteratively
constructing two sequences

{
uk

}
and

{
vk

}
in the following way,{

vk ∈ ∂D2

(
uk

)
uk+1 = argminu D1(u)−

〈
u, vk

〉
.

(33)
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Table 1 Impact of the parameter K on the sparse recovery via the L1/SK model. The
sensing matrix A is of size m×n, where m ranges from 250 to 360 and n = 512. The ground-
truth sparse vector contains s = 130 nonzero elements. Each recorded value is averaged over
100 random realizations. The baseline model refers to the L1 minimization, whose solution
serves as the initial condition for L1/SK . When K is chosen to be close to the true sparsity
level (e.g., K = 100, 150 versus s = 130), L1/SK yields top-notch performance; otherwise
(e.g., K = 10), L1/L2(K = n) is the best.

K

m
250 260 270 280 290 300

baseline 5.27 4.97 4.59 4.44 4.20 3.91
10 5.20 4.87 4.44 4.19 3.93 3.69
100 4.95 4.57 4.12 3.80 3.56 3.29
150 4.92 4.55 4.10 3.80 3.53 3.29
n 5.01 4.65 4.19 3.90 3.65 3.43

K

m
310 320 330 340 350 360

baseline 3.73 3.55 3.49 3.26 3.13 3.02
10 3.42 3.25 3.11 2.97 2.86 2.75
100 3.01 2.86 2.70 2.57 2.46 2.34
150 3.02 2.86 2.71 2.58 2.49 2.39
n 3.16 3.04 2.91 2.81 2.73 2.65

We consider splitting the objective function (8) into :

D1(u) = µ∥u∥1 +
λ

2
∥Au− f∥2,

D2(u) = µ∥u∥1 −R(u).
(34)

The u-subproblem in DCA (33) amounts to an L1 regularized problem, which
can be solved by ADMM.

The FP formulation (4) is defined for L1/SK , which becomes L1/L2 for
K = n. We compare to a proximal-gradient-subgradient algorithm with back-
tracked extrapolation (PGSA BE) [17] for solving (4). In addition, we imple-
ment the ADMM algorithm for the L1/L2 model under either FP or QRM
setting.

We randomly generate the matrix A of size m × 512 for m varying from
240 to 360 with an increment of 20. Since the quotient models are non-convex,
the choice of initial guess u0 significantly impacts the performance. We adopt
the restored solution via the L1 minimization as the initial guess and ter-
minate the iterations when the relative error ∥uk+1 − uk∥2/∥uk+1∥2 is less
than 10−8. This stop criterion is used for all the algorithms. Table 2 reports
the averaged MSE values over 100 random realizations. We observe that the
QRM framework always performs better than FP for the same regularization.
The L1/SK model solved by our algorithm performs the best in all the cases
when K = 100 is chosen near the true sparsity level (130), and L1/L2 without
knowing the sparsity ranks the second best. In short, the proposed algorithms
for solving two QRM models with L1/L2 and L1/SK outperform the other
relevant approaches.
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Table 2 MSEs of recovering a sparse vector of length n = 512 with s = 130 nonzero
elements from m noisy measurements (m = 240 : 20 : 360 following the MatLab’s notation).
We compare L1/L2 and L1/SK for K = 100 under the settings of FP (4) and QRM (3).
We observe QRM is a better framework than FB for sparse recovery. The best results are
consistently given by the proposed algorithm for solving the L1/SK model when the value of
K = 100 is close to the true sparsity level (130). The L1/L2 (when K = n) model achieves
the second best in performance.

model-algorithm 240 260 280 300 320 340 360

FP
L1/L2-ADMM 5.51 4.76 4.00 3.48 3.15 2.86 2.67
L1/L2-PGSA BE 11.12 8.60 6.28 4.40 3.37 2.83 2.52
L1/SK -PGSA BE 5.82 4.92 4.05 3.44 3.02 2.77 2.60

QRM

L1/L2-DCA 5.56 4.87 4.14 3.61 3.27 2.95 2.69
L1/L2-ADMM 5.53 4.75 3.96 3.45 3.12 2.86 2.68
L1/L2-proposed 5.50 4.70 3.92 3.40 3.07 2.81 2.64
L1/SK -DCA 5.52 4.77 4.01 3.48 3.15 2.86 2.67
L1/SK -proposed 5.44 4.65 3.83 3.26 2.91 2.57 2.33

4.3 Image recovery

We consider an MRI reconstruction as a proof-of-concept example in image
processing. The MRI measurements are acquired through multiple radical lines
in the frequency domain, achieved by performing the Fourier transform. In
addition, we add the Gaussian noise, with a mean of zero and standard devia-
tion σ on the MRI measurements. Intuitively, fewer radial lines and a larger σ
value bring more ill-posedness and difficulty to the problem. Here we consider
two standard phantoms, namely Shepp–Logan (SL) phantom generated using
MATLAB’s built-in command phantom and the FORBILD (FB) phantom [29].
We evaluate the performance in terms of the relative error (RE) and the peak
signal-to-noise ratio (PSNR), defined by

RE(u∗, ũ) :=
∥u∗ − ũ∥2

∥ũ∥2
and PSNR(u∗, ũ) := 10 log10

NP 2

∥u∗ − ũ∥22
,

where u∗ is the restored image, ũ is the ground truth, and P is the maximum
peak value of ũ.

Similar to the signal-recovering experiments, we regard the performance of
the L1 on the gradient, i.e., the total variation (TV), as the baseline. For L1/L2

on the gradient, we compare the proposed algorithm to a previous method
based on ADMM [21]. For three sampling schemes (7, 10, and 13 lines) and
two noise levels (σ = 0.01 and 0.05), we record RE and PSNR values of three
methods in Table 3, demonstrating significant improvements in the accuracy
of the proposed approach over the previous works.

Figures 4 and 5 present visual reconstruction results of the SL phantom
and the FB phantom, respectively, both under high additive Gaussian noise
(σ = 0.05). In particular, Figure 4 is to recover the SL phantom using 7 radial
lines. The L1 model has severe streaking artifacts due to this extremely small
number of data obtained on the radial lines. The L1/L2 minimization on the
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gradient yields significant improvements over the baseline model (TV). The
proposed algorithm outperforms the previous ADMM approach at the outer
ring and boundaries of the three middle oval shapes, which are more obvious
in the difference map to the ground truth. On the other hand, the FB phantom
has finer structures and lower image contrast compared to the SL phantom.
As a result, it requires 13 radial lines for a reasonable reconstruction. As we
observe in Figure 5, the overall geometric shapes are preserved. At the same
time, many speckle artifacts appear in the reconstructed images by L1/L2 no
matter which algorithm is used.

Table 3 MRI reconstruction from different numbers of radial lines and different noise levels.

Image σ Line
L1 L1/L2-ADMM L1/L2-proposed

RE PSNR RE PSNR RE PSNR

SL

0.01
7 46.06% 19.50 25.36% 24.09 3.74% 40.72
10 16.29% 28.66 3.41% 41.53 2.91% 42.90
13 6.85% 36.52 1.91% 46.55 1.71% 47.49

0.05
7 52.31% 18.33 43.63% 19.38 31.90% 22.10
10 33.09% 22.42 14.34% 29.04 14.08% 29.24
13 22.67% 26.10 10.50% 31.75 10.41% 31.82

FB

0.01
7 21.63% 21.49 13.80% 24.89 1.11% 26.94
10 18.14% 23.08 14.98% 24.17 12.90% 25.47
13 9.51% 28.29 1.41% 44.71 1.17% 46.31

0.05
7 26.03% 19.9 22.14% 20.78 16.50% 23.36
10 18.14% 23.08 14.98% 24.17 12.90% 25.47
13 14.48% 24.79 12.67% 25.64 12.30% 25.89

5 Conclusions

In this paper, we proposed a gradient descent flow to minimize a quotient
regularization model with a quadratic data fidelity term for signal and im-
age processing applications. We assumed the numerator and the denominator
in the quotient model are absolutely one homogeneous, which enables us to
establish the convergence in a continuous formulation. By taking the imple-
mentation details into consideration, we adopted a slightly different discretized
scheme to the one we analyze theoretically. The proposed algorithm amounts
to solving a convex problem iteratively. Experimentally, we presented the com-
parison results of three case studies of L1/L2 and L1/SK for signal recovery
and L1/L2 on the gradient for MRI reconstruction. We demonstrated that the
proposed algorithm significantly outperforms the previous methods in each
case in terms of accuracy. Future work includes the speed-up of the proposed
algorithm, e.g., trying to make a single loop rather than the double loop, and
the convergence analysis of the actual scheme.
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L1 L1/L2-ADMM L1/L2-proposed

Fig. 4 MRI reconstruction on the SL phantom with a noise level of σ = 0.05 with 7
radial lines. Top row – reconstruction results, bottom row – difference from ground truth.
The proposed algorithm outperforms the previous ADMM approach at the outer ring and
boundaries of the three middle oval shapes, better seen in the difference map.
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