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Abstract. We consider a combined restarting and adaptive backtracking strategy for the pop-5
ular Fast Iterative Shrinking-Thresholding Algorithm [11] frequently employed for accelerating the6
convergence speed of large-scale structured convex optimization problems. Several variants of FISTA7

enjoy a provable linear convergence rate for the function values F (xn) of the form O(e−K
√

µ/L n)8
under the prior knowledge of problem conditioning, i.e. of the ratio between the ( Lojasiewicz) param-9
eter µ determining the growth of the objective function and the Lipschitz constant L of its smooth10
component. These parameters are nonetheless hard to estimate in many practical cases. Recent11
works address the problem by estimating either parameter via suitable adaptive strategies. In our12
work both parameters can be estimated at the same time by means of an algorithmic restarting13
scheme where, at each restart, a non-monotone estimation of L is performed. For this scheme, theo-14

retical convergence results are proved, showing that a O(e−K
√

µ/Ln) convergence speed can still be15
achieved along with quantitative estimates of the conditioning. The resulting Free-FISTA algorithm16
is therefore parameter-free. Several numerical results are reported to confirm the practical interest17
of its use in many exemplar problems.18

1. Introduction. The Fast Iterative Soft-Thresholding Algorithm (FISTA) has19

been popularized in the work of Beck and Teboulle [11] as an extension of previ-20

ous works by Nesterov [33, 34] where improved O(1/n2) convergence rate was shown21

upon suitable extrapolation of the algorithmic iterates. In [34], such rate is shown to22

be optimal for the class of convex functions, outperforming the one of the classical23

Forward-Backward algorithm [19]. In its vanilla form, FISTA is indeed an efficient24

strategy for computing solutions of convex optimization problems of the form25

(1.1) min
x∈RN

F (x) := f(x) + h(x),26

where F : RN → R ∪ {+∞} belongs to HL, the class of composite functions with f27

convex and differentiable with L-Lipschitz gradient and h convex, proper and lower28

semicontinuous (l.s.c.) with simple (i.e. easily computable) proximal operator. We29

also assume: X∗ := arg minx F (x) ̸= ∅.30

Due to its wide use in many areas of signal/image processing, many extensions of31

FISTA enjoying monotonicity [10], general extrapolation rules [4], inexact proximal32

point evaluations [42], variable metrics [14] and improved o(1/n2) convergence rate [5]33

were proposed along with a large number of FISTA-type algorithms addressing specific34

features (e.g., FASTA [24], Faster-FISTA [29] to name a few). The question on the35

convergence of iterates of FISTA was solved in [17] whose results were then further36

investigated in several other papers, see, e.g., [28, 29]. The algorithmic convergence37
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of FISTA relies on an upper bound on the algorithmic step-size, which depends on38

the inverse of the Lipschitz constant L. Practically, the estimation of L may be39

pessimistic and/or costly, which may result in unnecessary small step-size values.40

To avoid this, several backtracking strategies have been proposed based either on41

monotone (Armijo-type) [11] or adaptive updates [41].42

Interestingly, when the function F satisfies additional growth assumptions such43

as strong convexity or quadratic growth, first-order methods may provide improved44

convergence rates. Under such hypotheses, Heavy-Ball type methods provide the45

fastest convergence rates1. Such methods rely on a constant-in-time inertial coefficient46

which is chosen according to κ = µ
L where µ > 0 is the parameter appearing in the47

growth condition. In fact, κ is the inverse of the condition number and knowing its48

value is crucial for these methods to reach rates of the form O
(
e−K

√
κn
)

for some49

real constant K > 0. We refer the reader to [6, Table 2] for further details and50

comparisons. Note that in such a setting the Forward-Backward method guarantees51

in fact a decay of the error in O (e−κn) which is much slower since κ≪ 1 in general.52

Different approaches requiring the explicit prior knowledge of both strong convexity53

parameters µf and µh of the functions in (1.1) have been studied in [15, 18, 22] and54

endowed with possible adaptive backtracking strategies.55

In [7] it has been shown that unlike Heavy-Ball methods, FISTA does not signif-56

icantly benefit from growth-type assumptions. The presence of an inertial coefficient57

growing with the iterations amplifies the effect of inertia, so the scheme can generate58

oscillations when the function F is sharp. From a theoretical viewpoint, the decay59

of the error cannot be better than polynomial although the finite-time behavior of60

FISTA is close to the one of Heavy-Ball methods. Restarting FISTA for functions61

satisfying some growth condition is a natural way of controlling inertia, which allows62

to accelerate the overall convergence. The main idea consists in reinitializing to zero63

the inertial coefficient based on some restarting condition. Elementary computations64

show that by restarting every k∗ iterations for some k∗ depending on
√
κ, the worst-65

case convergence improves to O
(
e−K

√
κ n
)

for some K > 0 [21,31,43]. Nonetheless,66

such restarting rule requires the knowledge of κ and provides slower worst-case guar-67

antees than Heavy-Ball methods. On the other hand, adaptive restarting techniques68

allow the adaptation of the inertial parameters to F without requiring any knowledge69

on its geometry (apart from L). In [37], the authors propose heuristic restart rules70

based on rules involving the values of F or ∇F at each iterate. These schemes are71

efficient in practice as they do not require any estimate of κ, but they do not enjoy72

any rigorous convergence rate. Fercoq and Qu introduce in [20] a restarting scheme73

achieving a fast exponential decay of the error when only a (possibly rough) estimate74

of µ is available. In [1–3], Alamo et al. propose strategies ensuring linear convergence75

rates only using information on F or the composite gradient mapping at each iterate.76

Roulet and d’Aspremont propose in [40] a restarting scheme based on a grid-search77

strategy providing a fast decay as well. Note that by restarting FISTA an estimate of78

the growth parameter can be done as shown by Aujol et al. in [8], where fast linear79

convergence is shown.80

Adaptive methods exploiting the geometry of F without knowing its growth pa-81

rameter µ are useful in practice since estimating µ is generally difficult. In the same82

1We call Heavy-Ball methods the schemes that are derived from the Heavy-Ball with friction
system which includes Polyak’s Heavy-Ball method [38], Nesterov’s accelerated gradient method for
strongly convex functions [34], iPiasco [36] or V-FISTA [9, Section 10.7.7]
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spirit, numerical schemes for strongly convex functions where the growth parameter83

is unknown are provided by Nesterov in [35, Section 5.3] and by Gonzaga and Karas84

in [25]. In the case of strongly convex objectives, Lin and Xiao introduced in [30] an85

algorithm achieving a fast exponential decay of the error by automatically estimating86

both L and µ at the same time.87

In this paper we consider a parameter-free FISTA algorithm (called Free-FISTA)88

with provable accelerated linear convergence rates of the form O(e−K
√
κn) for func-89

tions satisfying the quadratic growth condition:90

(1.2) (∃µ > 0) s.t. (∀x ∈ RN )
µ

2
d(x,X∗)2 ≤ F (x)− F ∗,91

assuming that both the growth parameter µ > 0 and the Lipschitz smoothness pa-92

rameter L > 0 of ∇f are unknown. By a suitable combination of existing previous93

work combining an adaptive restarting strategy for the estimation of µ [8] and a non-94

monotone estimation of L performed via adaptive backtracking at each restart [15,41],95

Free-FISTA adapts its parameters to the local geometry of the functional F , thus re-96

sulting in an effective performance on several exemplar problems in signal and image97

processing. The proposed strategy relies on an estimate κj of κ which is rigorously98

showed to provide a restarting rule that guarantees fast convergence.99

2. Preliminaries and notations. We are interested in solving the convex, non-100

smooth composite optimization problem (1.1) under the following assumptions:101

• The function f : RN → R+ is convex, differentiable with L-Lipschitz gradient:102

(∃L ≥ 0) (∀x, y ∈ RN ) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.103

• The function h : RN → R+ ∪{+∞} is proper, l.s.c. and convex. Its proximal104

operator will be denoted by:105

(2.1) proxh(z) = arg min
w∈RN

h(w) +
1

2
∥w − z∥2, z ∈ RN .106

For this class of functions a classical minimization algorithm is the Forward-107

Backward algorithm (FB) whose iterations are described by:108

xk+1 = proxτh(xk − τ∇f(xk)), τ ∈
(

0,
2

L

)
.109

To define in a compact way the Forward-Backward iteration performed on y ∈ RN110

with a step-size τ > 0, we will use the notation Tτ (y) = proxτh(y−τ∇f(y)). while for111

assessing optimality via a suitable stopping criterion, we will consider a condition of112

the form 0 ∈ ∂F (y), or, equivalently, gτ (y) = 0 with the composite gradient mapping113

being defined by:114

gτ (y) :=
y − Tτ (y)

τ
=

1

τ
(y − proxτh (y − τ∇f(y))) , y ∈ RN .115

This last formulation is convenient for defining an approximate solution to the com-116

posite problem, and thus to deduce a tractable stopping criterion:117

Definition 2.1 (ε-solution). Let ε > 0 and τ > 0. An iterate y ∈ RN is said to118

be an ε-solution of the problem (1.1) if: ∥gτ (y)∥ ⩽ ε.119
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Given an estimation L̂ > 0 of L and a tolerance ε > 0, the exit condition considered120

will then read ∥g1/L̂(y)∥ ⩽ ε. As a shorthand notation, we also define the class of121

functions satisfying (1.2):122

Definition 2.2 (Functions with quadratic growth, G2µ). Let F : RN → R∪{+∞}123

be a proper l.s.c. convex function with X∗ := arg min F ̸= ∅. Let F ∗ := inf F . The124

function F satisfies a quadratic growth condition G2µ for some µ > 0 if:125

(2.2) (∀x ∈ RN ),
µ

2
d(x,X∗)2 ⩽ F (x)− F ∗.126

Condition (2.2) can be seen as a relaxation of strong convexity. As shown in [13,23]127

in a convex setting such condition is equivalent to a global  Lojasiewicz property128

with an exponent 1
2 . In particular, the following lemma states an implication that is129

required in the later sections.130

Lemma 2.3. Let F : RN → R ∪ {+∞} be a proper, l.s.c. and convex function131

with a non-empty set of minimizers X∗. Let F ∗ = inf F . If F satisfies G2µ for some132

µ > 0, then F has a global  Lojasiewicz property with an exponent 1
2 :133

(∀x ∈ RN ),
µ

2
(F (x)− F ∗) ⩽ d(0, ∂F (x))2.134

3. Free-FISTA. In this paper we propose a parameter-free restart algorithm135

based on the original FISTA scheme proposed by Beck and Teboulle in [10]:136

yk = xk +
tk − 1

tk+1
(xk − xk−1), xk+1 = proxτh(yk − τ∇f(yk)),137

where the sequence (tk)k∈N is recursively defined by: t1 = 1 and tk+1 = (1 +138 √
1 + 4t2k)/2. For the class of convex composite functions, the convergence rate of139

the method is given by [10,33]:140

(∀k ∈ N), F (xk)− F ∗ ⩽
2L∥x0 − x∗∥2

(k + 1)2
.141

When L is available, a classical strategy introduced in [32] is to restart the algorithm142

at regular intervals. Necoara and al. [31] propose an optimized restart scheme, proving143

that restarting Nesterov accelerated gradient every ⌊2e
√

L
µ ⌋ iterations ensures that144

F (xk)−F ∗ = O
(
e−

1
e

√
µ
Lk
)

for the class of µ-strongly convex functions. This restart145

scheme and its convergence analysis can be extended to composite functions satisfying146

some quadratic growth condition G2µ [31, 37].147

In this paper we consider the case when both the Lipschitz constant L and the148

growth parameter µ are unknown. The first main ingredient of our parameter-free149

FISTA algorithm is the use of an adaptive backtracking strategy used at each restart to150

provide a non-monotone estimation of the local Lipschitz constant L. More precisely,151

we propose a backtracking variant of FISTA (FISTA-BT), widely inspired by the152

one proposed in [15] and described in Section 3.1. The second main ingredient is an153

adaptative restarting approach, described in Section 3.2, taking advantage of the local154

estimation of the geometry of F (via online estimations of the parameter κ = µ
L ) for155

avoiding oscillations due to inertia. The main steps of Free-FISTA are the following:156

at each restart, given a current iterate rj−1, a fixed number of iterations nj−1 and a157

current estimation L+
j−1 of the Lipschitz constant L,158
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1. Compute rj a new iterate and Lj a new estimation of L by performing nj−1159

iterations of FISTA-BT algorithm parameterized by the estimate L+
j−1.160

2. Compute an estimation κj of the geometric parameter κ = µ
L .161

3. Update the number nj of iterations of FISTA-BT for the next restart loop.162

It depends on nj−1 and on κj .163

The whole algorithm is carefully described in Section 3.3 and its convergence is proven.164

All technical proofs are reported in a dedicated Appendix A.165

3.1. Adaptive backtracking. In order to provide at each restart of Free-FISTA166

an estimation of L adapted to the current estimate of the growth parameter, we167

describe in the following an instance of FISTA endowed with non-monotone back-168

tracking previously considered, e.g., in [41, Algorithm 2] and [15, Algorithm 2] with169

µ = 0. Differently from standard approaches following an Armijo-type (i.e. mono-170

tone) backtracking rule [11], the use of a non-monotone strategy further allows for a171

local decreasing of the estimated valued L̂ of L (equivalently, an increasing of τ w.r.t.172

to the optimal 1/L) in the neighborhoods of “flat” points of the function f (i.e. where173

L is small), thus improving practical performances.174

Following [15], the proposed adaptive backtracking strategy is derived from the175

classical descent condition holding for FISTA at x+ := Tτ (x) with x ∈ RN , which176

reads: for any y ∈ RN ,177

(3.1) F (x+) +
∥y − x+∥2

2τ
+

(
∥x+ − x∥2

2τ
−Df (x+, x)

)
≤ F (y) +

∥y − x+∥2

2τ
,178

which is defined in terms of the Bregman divergence Df : RN ×RN → R+ associated179

to f and defined by: Df (x, y) = f(x)−f(y)−⟨∇f(y), x−y⟩. Choosing y = x in (3.1),180

the descent of F between two iterates x and x+ = Tτ (x) is at least of:181

(3.2) F (x+)− F (x) ⩽ −∥x
+ − x∥2

2τ
, provided that Df (x+, x) ≤ ∥x

+ − x∥2

2τ
.182

This last condition is true whenever 0 < τ ≤ 1/L. When only a local estimate Lk183

of L is available, the idea is to enforce (3.2) by applying a backtracking strategy t184

by τk = 1
Lk

: testing a tentative step-size τk = τk−1/δ with δ ∈ (0, 1) greater than185

the one τk−1 considered at the previous iteration, decrease the step τk by a factor186

ρ ∈ (0, 1) as long as condition (3.2) is not satisfied. This condition can be rewritten187

as
2Df (x

+,x)
∥x+−x∥2 > ρ

τk
= ρLk, where τk/ρ denotes the last step before acceptance. Note188

that by the condition above, for all k ≥ 0 there holds:189

(3.3) τk ≥
ρ

L
⇔ Lk ≤

L

ρ
,190

which can be used to get the desired convergence result.191

The algorithm FISTA adaBT is reported in Algorithm 1. The parameter Lmin > 0192

provides a lower bound of the estimated Lipschitz constants at any k, i.e Lk = 1
τk

⩾193

Lmin. This property will be needed to prove the theoretical asymptotic convergence194

rate of the global restarting scheme. Such parameter has to satisfy the condition195

Lmin < L. However, since this value should be taken as small as possible this condition196

is not restrictive and it practically does not affect the choice (3.4). We observe that197

whenever δ < 1, the increasing of the algorithmic step-size is attempted at each outer198

iteration of Algorithm 1, while, when δ = 1, the same value τk estimated at the199

This manuscript is for review purposes only.
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Algorithm 1 FISTA + adaptive backtracking, FISTA adaBT(x0, n, L0, Lmin; ρ, δ)

Initializations: τ0 = 1/L0, ρ ∈ (0, 1), δ ∈ (0, 1], x−1 = x0 ∈ X , t0 = 1, Lmin

sufficiently small.

for k = 0, 1, . . . , n do

(3.4) τ0k+1 = min

{
τk
δ
,

1

Lmin

}
;

i = 0;
repeat

τk+1 = ρi τ0k+1;

tk+1 =
1 +

√
1 + 4 τk

τk+1
t2k

2
;(3.5)

βk+1 =
tk − 1

tk+1
;

yk+1 = xk + βk+1(xk − xk−1);

xk+1 = proxτk+1h
(yk+1 − τk+1∇f(yk+1));

i = i+ 1;

until Df (xk+1, yk+1) ≤ ∥xk+1 − yk+1∥2/2τk+1

end for
Return (xk+1, Lk+1 = 1

τk+1
)

previous iterations is used. In both cases, a standard Armijo-type backtracking is200

then run to adjust possible over-estimations.201

Convergence of Algorithm 1 is stated in the following Theorem, which is a special202

case of [15, Theorem 4.6] suited for the particular case µ = 0 (no strong-convexity).203

Theorem 3.1 (Convergence of Algorithm 1 [15]). Let n ∈ N. The sequence204

(xk)k=0,...,n generated by the Algorithm 1 satisfies for all k = 0, . . . , n:205

(3.6) F (xk+1)− F ∗ ≤ 2L̄k+1

(k + 1)2
∥x0 − x∗∥2,206

where, by setting Li := 1/τi the quantity L̄k+1 is defined by:207

(3.7) L̄k+1 :=

 1
1

k+1

∑k+1
i=1

1√
Li

2

.208

The (harmonic) average appearing in (3.6) depends only on the estimates of L209

performed along the iterations of Algorithm 1. In particular, it does not depend on210

the unknown value of the Lipschitz constant L. However, recalling (3.3), we have for211

all k = 1, . . . , n, ρL̄k+1 ⩽ L, hence the following bound:212

(3.8)
2L̄k+1

(k + 1)2
≤ 2L

ρ(k + 1)2
213

This manuscript is for review purposes only.
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which, plugged in (3.6), entails the well-known convergence rate for FISTA endowed214

with Armijo-type backtracking showed, e.g., in [11].215

Remark 3.2. Regarding the choice of the extrapolation rule (3.5), we remark that216

in [8] a different update based on [17] was considered to guarantee the convergence of217

the iterates of the resulting FISTA scheme. Since the convergence result in Theorem218

3.1 cannot be adapted to this different choice in a straightforward manner, we consider219

in this work a Nesterov-type update, inspired by previous work [15,41].220

We can now state the main proposition (whose proof is detailed in Appendix A.1)221

which will be used in the following to formulate the proposed adaptive restarting222

strategy described in Subsection 3.2:223

Proposition 3.3. Let F be a function satisfying HL and G2µ for some L > 0 and224

µ > 0. If Lmin ∈ [0, L), then for any fixed n ∈ N∗, the sequence (xk)k=0...n provided225

by Algorithm 1 satisfies for all k ∈ N:226

(i) F (xk+1)− F ∗ ⩽
4L

ρµ(k + 1)2
(F (x0)− F ∗) ,(3.9)227

(ii) F (xk+1) ⩽ F (x0),(3.10)228229

3.2. Adaptive restarting. Having provided an estimate of L after one algo-230

rithmic restart j ≥ 1, intuitively, let us now describe the strategy of Free-FISTA.231

The structure of the algorithm relies on two main ingredients: a tractable stopping232

criterion suitable to cope with the hypothesis that the Lipschitz constant L is not233

available, and a strategy to approximate the unknown value of the conditioning pa-234

rameter κ = µ
L by a sequence (κj)j whose values will be needed to define the number235

nj of inner FISTA-BT iterations to be performed at each restart.236

3.2.1. A tractable stopping criterion. Let ε > 0 be the expected accuracy237

and (rj , Lj) be the j − th output of Algorithm 1 for nj−1 iterations at the j − th238

restart. When the Lipschitz constant L is available, the notion of ε-solution can be239

seen as a good stopping criterion for an algorithm solving the composite optimization240

problem for three reasons: first it is numerically quantifiable. Secondly controlling241

the norm of the composite gradient mapping is roughly equivalent to having a control242

on the values of the objective function. Lastly, it will enable to analyze and compare243

algorithms in terms of the number of iterations needed to reach the accuracy ε.244

Algorithm 2 Forward-Backward step
with Armijo-backtracking, FB BT(r, L0; ρ)

Require: r ∈ RN , L0 > 0, ρ ∈ (0, 1).

i = 0
repeat

τ = ρi

L0

r+ = Tτ (r)
i = i+ 1

until Df (r+, r) ⩽ ∥r+ − r∥2/2τ
Return r+, L+ = L0

ρi−1

When only estimations Lj of L are avail-245

able at each restart, there is no guaran-246

tee that the condition ∥g1/Lj
(rj)∥ ⩽ ε247

will enable to control the values of the248

objective functions. To get a tractable249

stopping criterion, we propose to add250

a Forward-Backward step with Armijo251

backtracking before the next restart.252

Such an algorithm, denoted by FB BT,253

is detailed in Algorithm 2. This extra254

step ensures that the following condition255

holds for all j ⩾ 1:256

(3.11) Df (r+j , rj) ⩽
L+
j

2
∥r+j − rj∥

2,257
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where (r+j = T1/L+
j

(rj), L
+
j ) denote the outputs of Algorithm 2, and g1/L+

j
(rj) =258

L+
j (rj−r+j ) with, by construction: L+

j ⩾ Lj . Note that the computational cost of the259

composite gradient mapping g1/L+
j

(rj) is therefore very low. The stopping criterion260

of Free-FISTA thus reads:261

(3.12) ∥g1/L+
j

(rj)∥ ⩽ ε.262

The condition (3.12) is a “good” stopping criterion in the sense that it enables to263

control the values of the objective function along the iterations. Our analysis relies264

on the following Lemma whose proof is detailed in Appendix A.3:265

Lemma 3.4. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.266

Then for all x ∈ RN and τ > 0 we have:267

F (Tτ (x))− F ∗ ⩽
2(1 + Lτ)2

µ
∥gτ (x)∥2.268

Applying Lemma 3.4 to the iterate rj , we get:269

F (r+j )− F ∗ ⩽
2(1 + L/L+

j )2ε2

µ
,270

where, importantly, does not require the computation of F ∗. In addition, remembering271

that the parameter Lmin ∈ (0, L) from Algorithm 1 provides a lower bound on the272

estimates Lj and that L+
j ⩾ Lj , we necessarily have: L+

j ⩾ Lmin and thus:273

F (r+j )− F ∗ ⩽
2(1 + L/Lmin)2ε2

µ
.274

Remark 3.5. An alternative choice for Lj following from (3.6) is Lj = L̄j with275

L̄j =

(
1

1
nj−1

∑nj−1

k=1
1√
Lk

)2

276

being the average (3.7) estimated at the j-the restart. Nonetheless, we prefer Lj =277
1

τnj−1
⩽ L

ρ , as the last estimation of L at the j-th restart approximates the local278

smoothness of the functional. Moreover, its value is in general smaller than the value279

L̄j , which, when used for the next call of Algorithm 1 is expected to require fewer280

adjustments, thus improving the overall efficiency.281

3.2.2. Estimating the geometric paramater κ. Once the stopping criterion282

is well defined, the next issue is to determine the number of FISTA-BT iterations to283

perform at each restart. The global principle of our restart scheme is as follows: at284

the j-th restart,285

• Compute (rj , Lj) = FISTA adaBT(r+j−1, nj−1, L
+
j−1, Lmin; ρ, δ) where rj is286

the iterate computed after nj−1 iterations of FISTA adaBT and Lj the asso-287

ciated estimate of the Lipschitz constant L.288

• Perform an extra step of backtracking Forward-Backward:

(r+j , L
+
j ) = FB BT(rj , Lj ; ρ).

• Update the number of iterations nj for the next restart.289
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Inspired by [8], the update of the number nj of iterations relies on the estimation of290

the inverse κ = µ
L of the conditioning at each restart loop by comparing the values291

F (rj) − F ∗ and F (rj−1) − F ∗ at each restart j. More precisely, applying the first292

claim of Proposition 3.3 at the j-th restart, we have: for all j ∈ N∗293

F (rj)− F ∗ ⩽
4L

ρµ(nj−1 + 1)2
(
F (r+j−1)− F ∗) ⩽ 4L

ρµ(nj−1 + 1)2
(F (rj−1)− F ∗) ,294

observing that by the property (3.11), we have: F (r+j ) ⩽ F (rj) as explained in295

Subsection 3.1. We thus deduce:296

(3.13) (∀j ∈ N∗), κ ⩽
4

ρ(nj−1 + 1)2
F (rj−1)− F ∗

F (rj)− F ∗ .297

Since F ∗ is often not known in practice and noticing that the application u 7→298
F (rj−1)−u
F (rj)−u is non decreasing on [F ∗, F (rj)] (since F (rj) ⩽ F (rj−1)), we deduce:299

(∀j ∈ N∗), κ ⩽
4

ρ(nj−1 + 1)2
F (rj−1)− F (rj+1)

F (rj)− F (rj+1)
.300

Using such inequality, it is thus possible to get a sequence (κj)j estimating κ at each301

restart j ⩾ 2 by comparing F (rj−1)− F (rj) and F (rj−2)− F (rj) by defining:302

(3.14) (∀j ⩾ 2), κj := min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
.303

By construction the sequence (κj)j∈N is non-increasing along the iterations :304

Lemma 3.6. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.305

Then the sequence (κj)j⩾2 defined by (3.14) satisfies306

(3.15) (∀j ⩾ 2), κj ⩾ κj+1 > κ.307

308

3.3. Free-FISTA: structure and convergence results. Free-FISTA is de-309

tailed in Algorithm 3. Note that the ‘free’ dependence on parameters stressed here310

relates to the two smoothness and growth parameters, L and µ, respectively. The311

hyperaparameters ρ ∈ (0, 1), δ ∈ (0, 1], Lmin > 0 required by Free-FISTA to perform312

adaptive backtracking and to assess the expected precision (0 < ε≪ 1) do not affect313

its convergence properties.314

To summarize, Free-FISTA Algorithm 3 relies on a few sequences:315

• the sequence (rj)j∈N corresponds to the (outer/global) iterates. For all j > 0,316

rj is the output of the j-th execution of Algorithm 1 after one extra applica-317

tion of Algorithm 2.318

• the sequence (nj)j∈N refers to the number of estimated iterations of Algo-
rithm 1 to be performed at the j-th restart. For all j ⩾ 0 we thus have:

(rj+1, Lj) = FISTA adaBT(r+j , nj ;L
+
j , Lmin; ρ, δ),

where (r+j , L
+
j ) is obtained after an extra Forward-Backward step with back-319

tracking applied to (rj , Lj).320

• the sequence (Lj)j estimating L at each restart.321
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Algorithm 3 Free-FISTA: parameter-free FISTA with adaptive backtracking and
restart

require: r0 ∈ RN , j = 1, L0 > 0, Lmin > 0, ρ ∈ (0, 1), δ ∈ (0, 1], 0 < ε≪ 1
n0 = ⌊2C⌋
(r1, L1) =FISTA adaBT(r0, n0, L0, Lmin; ρ, δ)
n1 = ⌊2C⌋
(r+1 , L

+
1 ) = FB BT(r1, L1; ρ)

repeat

j = j + 1
(rj , Lj) =FISTA adaBT(r+j−1, nj−1, L

+
j−1, Lmin; ρ, δ)

κj = mini<j
4

ρ(ni−1+1)2
F (ri−1)−F (rj)
F (ri)−F (rj)

if nj−1 ≤ C
√

1
κj

then

nj = 2nj−1

else
nj = nj−1

end if
(r+j , L

+
j ) = FB BT(rj , Lj ; ρ)

until ∥g1/L+
j

(rj)∥ ⩽ ε

return r = r+j

• the sequence (κj)j⩾2 estimating at each restart the true problem conditioning322

κ = µ/L by comparing the cost function F at three different iteration points.323

Let us finally explain our strategy to update the number nj of iterations required324

by Algorithm 1 at the j-th restart. Once an estimate κj is computed, the strategy325

performed by Free-FISTA consists in updating nj using a doubling condition that326

depends on a parameter C > 0 to be defined:327

(3.16) nj−1 ≤ C

√
1

κj
328

Thus, Free-FISTA checks whether such condition is fulfilled: if it holds true, then nj−1329

is considered too small and doubled so that nj = 2nj−1. Otherwise, the number of330

iterations is kept unchanged. By construction, the sequence (nj)j∈N is non-decreasing,331

and satisfies the following lemma.332

Lemma 3.7. Let F be a function satisfying HL and G2µ for some L > 0 and µ > 0.333

Then the sequence (nj)j∈N provided by Algorithm 3 satisfies334

∀j ∈ N, nj ⩽ 2C

√
1

κ
.335

Note that for all j ⩾ 2, the number of iterations nj is defined according to nj−1,336

κj and the predefined parameter C > 0. The proof of Lemma 3.7 is straightforward337

by induction: first observe that n0 = ⌊2C⌋ ⩽ 2C ⩽ 2C
√

1
κ . Assume that nj−1 ⩽338

2C
√

1/κ. By construction, either (3.16) is satisfied and nj = 2nj−1 ⩽ 2C
√

1
κj

⩽339

2C
√

1
κ , by monotonicity of (κj)j∈N (see Lemma 3.6), or (3.16) is not satisfied, and340

nj = nj−1 ⩽ 2C
√

1/κ by assumption.341
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We can now state the main convergence results of Free-FISTA. Their proof can342

be found in Appendix A.5 and Appendix A.6, respectively.343

Theorem 3.8. Let F be a function satisfying HL and G2µ for some L > 0 and µ >344

0. Let (rj)j∈N and (nj)j∈N be the sequences provided by Algorithm 3 with parameters345

C > 4/
√
ρ and ε > 0. Then, the number of iterations 1+

∑j
i=0 ni required to guarantee346

∥g1/L+
j

(rj)∥ ⩽ ε is bounded and satisfies347

j∑
i=0

ni ⩽
4C

log
(

C2ρ
4

− 1
)√

L

µ

(
2 log

(
C2ρ

4
− 1

)
+ log

(
1 +

16

C2ρ− 16

2L(F (r0) − F ∗)

ρε2

))
.348

Corollary 3.9. Let F be as above. If C > 4/
√
ρ, ε > 0 and Lmin ∈ (0, L), then349

the sequences (rj)j∈N and (nj)j∈N provided by Algorithm 3 satisfy350

F (r+j )− F ∗ = O

e
−

log

(
C2ρ
4

−1

)
4C

√
κ

j∑
i=0

ni

 .351

Moreover, the trajectory of total number of FISTA iterates has a finite length and the352

method converges to a minimizer x∗ ∈ X∗.353

Specifically, if C maximizes
log

(
C2ρ
4 −1

)
4C , namely C ≈ 6.38/

√
ρ, then there exists K >354

1
12 such that the sequences (rj)j∈N and (nj)j∈N satisfy355

F (r+j )− F ∗ = O

e
−√

ρK
√
κ

j∑
i=0

ni

 .356

357

Corollary 3.9 states that the Free-FISTA algorithm 3 provides asymptotically a358

fast exponential decay. This convergence rate is consistent with the one expected for359

functions F satisfying HL and G2µ where both the parameters L and µ are unknown360

a priori. Note that in this setting Forward-Backward algorithm provides a low ex-361

ponential decay The variation of Heavy-Ball method introduced in [6], the FISTA362

restart scheme introduced in [20] and fixed restart of FISTA require to estimate the363

growth parameter to ensure a fast exponential decay. FISTA algorithm has the same364

fast decay as Free-FISTA in finite time (see [7]), but with a smaller constant.365

4. Numerical experiments. In this section, we report several applications of366

the Free-FISTA Algorithm 3 showing how an automatic estimation of the smoothness367

parameter L and the growth parameter µ can be beneficial. The combined approach368

is compared with vanilla FISTA [11], FISTA with restart [8] and FISTA with adaptive369

backtracking (Algorithm 1) [15]. The first two examples show the advantages of Free-370

FISTA in comparison with other schemes, while the last example highlights some371

existing limitations of restarting methods. The codes that generate the figures are372

available in the following GitHub repository: https://github.com/HippolyteLBRRR/373

Benchmarking Free FISTA.git374

4.1. Logistic regression with ℓ2-ℓ1-regularization. As a first example, we375

focus on a classification problem defined in terms of a given dictionary A ∈ Rm×n376

This manuscript is for review purposes only.
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Figure 1: Convergence rates w.r.t. the number of total iterations (backtracking iter-
ations are not taken in account) for problem (4.1).

and labels b ∈ {−1, 1}m. We consider the minimization problem:377

(4.1) min
x∈Rn

F (x) :=
λ1

2∥AT b∥∞

m∑
j=1

log
(

1 + e−bja
T
j x
)

+
λ2
2
∥x∥2︸ ︷︷ ︸

:=f(x)

+ ∥x∥1︸︷︷︸
:=h(x)

,378

where aj = (Ai,j)j ∈ Rm is the j-th row of A, λ1 > 0 and λ2 > 0. By definition,379

the value x∗ minimizing F is expected to satisfy P(bi = 1|ai) = 1

1+e−aT
i

x∗ for any380

i ∈ J1,mK. Note that the ℓ2 term aims to smooth the objective function while the381

ℓ1 regularization sparsfies the solution which helps preventing from overfitting. An382

upper estimation of L can easily be computed:383

(4.2) L̂ =
λ1∥AT b∥2

8∥AT b∥∞
+ λ2,384

which may be large whenever ∥AT b∥ ≫ 1. We note that the function F satisfies the385

assumption G2µ for some growth parameter µ > 0 whose estimation is not straightfor-386

ward. We solve this problem for a randomly generated dataset with n = 30000 and387

m = 100. We compare the following methods:388

• FISTA [11] with a fixed stepsize τ = 1
L̂

;389

• FISTA restart [8] with a fixed stepsize τ = 1
L̂

,390

• FISTA adaBT (Algorithm 1) with ρ = 0.8 and δ = 0.95,391

• Free-FISTA (Algorithm 3) with ρ = 0.8 and δ = 0.95.392

We set λ1 = 10, λ2 = 3 and x0 ← U ([−1, 1]). We get that L̂ ⩾ 9 · 105 is an upper393

bound of L. An estimate of the solution of (4.1) is pre-computed by running Free-394

FISTA for a large number of iterations. This allows us to compute for all methods395

log
(
F (rj)− F̂

)
with F̂ ≈ F ∗.396

In Figure 1 the convergence rates of each algorithm are compared w.r.t. the total397

number of iterations without taking into account the inner iterations required by the398

backtracking loops. We observe that the use of the adaptive backtracking accelerates399

both FISTA and FISTA restart. The improved efficiency provided by the combination400
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Figure 2: Convergence rates w.r.t. CPU times for problem (4.1).

of restarting and backtracking strategies is highlighted since Free-FISTA is the fastest401

method. Note, however, that an exhaustive information on the efficiency of each402

method can not directly be deduced by this plot as the computational burdens required403

by the use of the inner backtracking routines are not reported. We thus complement404

our considerations with Figure 2 which allows us to compare the methods w.r.t. the405

computation time. One can observe that the additional computations required by the406

backtracking strategy do not prevent the corresponding schemes from being faster.407

Figure 3 shows the convergence rate of Free-FISTA w.r.t. the computation time408

for several parameter choices. We take ρ = 0.8, δ ∈ {0.95, 0.995} and L0 ∈ {1, L̂}409

where L̂ is the upper estimation of the Lipschitz constant of ∇f given in (4.2) and410

1 is an arbitrary value. This graph shows that Free-FISTA is not highly sensitive to411

parameter variations in this example. Note that the choice δ = 0.95 seems to perform412

better than δ = 0.995. Indeed, as the Lipschitz constant of ∇f in this problem is413

poorly estimated, taking a small δ allows the scheme to explore different choices more414

efficiently. The value of L0 has a small influence on the overall efficiency of the scheme.415

Figure 4 gives an overview of the estimations of the Lipschitz constant w.r.t. to416

FISTA iterations for each parameter choice. We can see that the theoretical upper417

bound L̂ ⩾ 9·105 is significantly large compared to the estimations computed by Free-418

FISTA for any set of parameters (the last estimates are approximately equal to 3000).419

This explains the substantial performance gap between schemes involving a constant420

stepsize and backtracking methods (see Figure 1) as a lower Lipschitz constant allows421

larger stepsizes. In addition, Figure 4 shows that a lower value of δ encourages larger422

variations of estimates of L per FISTA iteration, allowing for greater flexibilty.423

In Figure 5, we compare the differences observed between choosing a lower or an424

upper estimation L0 of the Lipschitz constant L. Setting L0 as a lower estimate forces425

the backtracking routine to compute a significant number of backtracking iterations426

before finding an estimate L̃ such that the stepsize 1
L̃

is admissible. Once this is427

done, this estimation is generally tight and the number of backtracking iterations428

decreases critically. By taking L0 as an upper estimate, we observe that the total429

number of backtracking iterations is smaller, but the estimation of L stays poor for430

several Free-FISTA iterations (see Figure 4). Both approaches are equally efficient431

for this example because the high cost of the backtracking routines in the first case is432

compensated by the small stepsizes in the first FISTA iterations of the second case.433
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Figure 3: Convergence rates of Free-FISTA for several choices of parameters ρ, δ and
L0 w.r.t. CPU time for problem (4.1).

Figure 4: Estimation of the Lipschitz constant of ∇f according to the number of
FISTA iterations for problem (4.1).

Algorithm ρ δ Time (s)

FISTA - - 28594

FISTA restart - - 12825

FISTA adaBT 0.85 0.95 3292
0.8 0.95 2348

Free-FISTA 0.85 0.95 1173
0.8 0.95 989

Table 1: CPU times (mean over 5 runs) of
different algorithms solving (4.1) for the
dataset dorothea (n = 106 and m = 800),
λ1 = 10, λ2 = 0.9097 and ε = 10−5.

We now follow the experiments pro-434

vided in [20] and consider the dataset435

dorothea (n = 100000 and m = 800)436

with λ1 = 10 and λ2 = λ1∥AT b∥2

80∥AT b∥∞n
=437

0.9097. Table 1 compares the efficiency438

of the backtracking and restarting strate-439

gies for this example evaluated in terms of440

the CPU time required to satisfy the stop-441

ping condition with ε = 10−5. One can442

observe that methods involving adaptive443

backtracking are significantly faster. Al-444

gorithm 3 is the most efficient algorithms,445

being, in addition, fully automatic. Some446

sensitivity to parameters ρ and δ is observed, which, however, does not seem to sig-447

nificantly impact the overall computational gains.448
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Figure 5: Number of backtracking calls per total FISTA iterations for problem (4.1).

Figure 6: Data for problem (4.3): the
damaged image y (left) and an inpainted
result (right).

Figure 7: Data for problem (4.5):
ground-truth SMLM ISBI13 frame (left),
and low-resolution data (right).

4.2. Image inpainting. We now consider the problem of retrieving an image449

x̂ ∈ RN from incomplete measurements y = Mx̂ where M ∈ RN×N is a masking450

operator. We consider the regularized approach:451

(4.3) arg min
x

F (x) := f(x) + h(x) =
1

2
∥Mx− y∥2 + λ∥Tx∥1,452

where T ∈ RN×N is an orthogonal transformation ensuring that T x̂ is sparse. For453

this example we consider x̂ to be piece-wise smooth, so that T can be chosen as454

an orthogonal wavelet transform. The function F satisfies the growth condition G2µ455

for some µ > 0 which is not easily computable. In this case, it is trivial to show456

that an estimate of the Lipschitz constant of ∇f is L = 1. Therefore, applying a457

backtracking strategy may seem superfluous as it involves additional computations.458

Nonetheless, we apply the methods previously introduced to test their performance459

with/without restarting. These tests are done on a picture with a resolution of 225×460

225 pixels, considering the wavelet Daubechies 4 and λ = 2. Figure 8 shows that461

the backtracking procedure slightly improves the convergence of plain FISTA and462

FISTA restart w.r.t. the total number of FISTA iterations. Observe that the benefits463

of backtracking are not as significant as in the previous example since the estimate464

of the Lipschitz constant L = 1 is here accurate. In Figure 9 we observe that the465

additional backtracking loops do not affect the efficiency of the schemes in terms of466

CPU time. In this example, evaluating f is indeed not expensive which explains their467

low computational costs. In Figure 10 we compare the performance of Free-FISTA for468

different values of δ and in comparison with ADLR. We observe that δ should be taken469
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Figure 8: Convergence rates in function values VS. total number of FISTA iterations
(backtracking iterations are not taken in account) for problem (4.3).

Figure 9: Convergence rates in function values w.r.t the CPU time for problem (4.3).

rather large in this case. Contrary to the previous example, if δ is small (δ = 0.95),470

Free-FISTA performs many unnecessary backtracking iterations to compensate for471

the over-estimation of the step-sizes, which results in longer CPU times. This can be472

observed in Figure 11 and Figure 12. By taking δ = 0.99, a more gentle estimation473

with less variability of L is observed over time, with fewer backtracking iterations per474

FISTA iteration.475

Figure 12: Number of backtracking calls per total FISTA iterations for problem (4.3).
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Figure 10: Convergence rates in function valuesw.r.t the CPU time for problem (4.3).

Figure 11: Estimation of the Lipschitz constant of ∇f according to the number of
FISTA iterations for problem (4.3).

4.3. Poisson image super-resolution with ℓ1 regularization. As a last476

example, we consider the image super-resolution problem for images corrupted by477

Poisson noise, a problem encountered, for instance, in fluorescence microscopy appli-478

cations [27, 39]. Given a blurred and noisy image z ∈ Rm
+ , the problem consists in479

retrieving a sparse and non-negative image x ∈ Rn
+ from z = P(MHx + b) ∈ Rm480

with m = q2n, q > 1, where M ∈ Rm×n is a q-down-sampling operator of factor,481

H ∈ Rn×n is a convolution operator computed for a given point spread function482

(PSF), b = b̄em ∈ Rm
>0 is a positive constant background term2 and P(w) denotes483

a realization of a Poisson-distributed m-dimensional random vector with parameter484

w ∈ Rm
+ . To model the presence of Poisson noise in the data, we consider the gener-485

alized Kullback-Leibler divergence functional [12] defined by:486

(4.4) f(x) = KL(MHx+ b; z) :=

m∑
i=1

(
zi log

zi
(MHx)i + b̄

+ (MHx)i + b̄− zi
)
,487

2We use the notation ed to denote the vector of all ones in Rd.
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and where the convention 0 log 0 = 0 is adopted. We enforce sparsity by means of a ℓ1488

penalty and impose non-negativity of the solution using the indicator function ι≥0(·)489

of the non-negative orthant, so as to consider:490

(4.5) min
x∈Rn

F (x) := KL(MHx+ b, z) + λ∥x∥1 + i≥0(x).491

We can compute ∇f(x) = (MH)T em−(MH)T
(

z
MHx+b

)
. Following [26,39], we have492

that ∇f is Lipschitz continuous on {x : x ≥ 0} and its Lipschitz constant L can be493

overestimated by:494

(4.6) L =
max zi
b̄2

max((MH)T em) max(MHen).495

The theoretic estimation of L in (4.6) may be significantly large in particular,496

when b̄ ≪ 1. Furthermore, as showed in [16], the Kullback-Leibler functional (4.4)497

is (locally) 2-conditioned, hence F satisfies G2µ for some unknown µ > 0. The use of498

the Free-FISTA Algorithm 3 thus seems appropriate. Results are showed in Figure499

13. For this problem, a clear advantage in the use of Free-FISTA in comparison500

with FISTA with adaptive backtracking cannot be observed. We observe that FISTA501

with adaptive backtracking is indeed faster in terms of iterations and consequently502

in terms of complexity (Free-FISTA requires additional computations being based on503

restarts). We argue that the inefficiency of the restarting strategy can be explained504

here by the geometry of F in (4.5). The lack of any oscillatory behavior of FISTA505

endowed with adaptive backtracking suggests indeed that the function F is flat, or,506

in other words, that µ is significantly small. Since restarting methods aim to handle507

the excess of inertia and oscillations, it appears not pertinent to apply such a method508

in this context.509

Figure 13: Convergence rates in function values VS. CPU time for problem (4.5).

Appendix A. Proofs of the main results.510

A.1. Proof of Proposition 3.3. (i) As F satisfies HL for some L > 0, Theo-511

rem 3.1 combined with (3.8) states that the sequence (xk)k=1,...,n provided by Algo-512

rithm 1 satisfies for all k = 1, . . . , n513

F (xk+1)− F ∗ ≤ 2L

ρ(k + 1)2
∥x0 − x∗∥2,514
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for all x∗ ∈ X∗, whence515

(A.1) F (xk+1)− F ∗ ⩽
2L

ρ(k + 1)2
d(x0, X

∗)2.516

Since F further satisfies G2µ (2.2), we deduce (3.9) by combining (2.2) and (A.1).517

(ii) At each iteration k ≥ 0 of Algorithm 1, the following condition is satisfied:518

Df (xk+1, yk+1) ⩽
∥xk+1 − yk+1∥2

2τk+1
.519

As a consequence, the descent condition (3.1) becomes:520

F (xk+1) +
∥xk+1 − xk∥2

2τk+1
⩽ F (xk) +

∥yk+1 − xk∥2

2τk+1
521

⩽ F (xk) +
(tk − 1)2

t2k+1

∥xk − xk−1∥2

2τk+1
⩽ F (xk) +

(tk − 1)2

t2k+1

τk
τk+1

∥xk − xk−1∥2

2τk
.(A.2)522

523

By definition, there holds τk+1tk+1(tk+1 − 1) = τkt
2
k. Hence:524

(tk − 1)2

t2k+1

τk
τk+1

=
(tk − 1)2tk+1(tk+1 − 1)

t2kt
2
k+1

⩽ 1,525

hence, from (A.2) we get:526

F (xk+1) +
∥xk+1 − xk∥2

2τk+1
⩽ F (xk) +

∥xk − xk−1∥2

2τk
527

for all k ≥ 0, whence we deduce (3.10).528

A.2. Proof of Lemma 3.6. Let (κj)j⩾2 be the sequence defined by529

∀j ⩾ 2, κj := min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
.530

We prove in this section that (κj)j⩾2 is non increasing and bounded from below by531

the true inverse of the conditioning of the considered optimization problem.532

First of all, according to Proposition 3.3, remember that we have (3.13) i.e.

∀i ∈ N∗, κ ⩽
4

ρ(ni−1 + 1)2
F (ri−1)− F ∗

F (ri)− F ∗ .

Since the application u 7→ F (ri−1)−u
F (ri)−u is non decreasing on [F ∗, F (ri)] (since F (ri) ⩽533

F (ri−1)), we deduce that for all i ∈ N∗,534

∀i < j, κ ⩽
4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
.535

Hence, for a given j ∈ N∗ and taking the infimum over the indexes i ∈ N∗ such that536

i < j, we get: κ ⩽ κj . To complete the proof, we have that for all j ≥ 2:537

κj+1 = min
i∈N∗
i<j+1

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
⩽ min

i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
538
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by simply observing that in (A.2) the minimum is taken over a larger set. By now539

applying (3.10) at the j + 1 restart iteration we have that F (rj+1) ⩽ F (rj). As540

a consequence the function defined by y 7→ F (ri−1)−y
F (ri)−y is an increasing homographic541

function which implies that for all j ≥ 2:542

κj+1 ⩽ min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj+1)

F (ri)− F (rj+1)
⩽ min

i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
= κj .543

A.3. Proof of Lemma 3.4. Suppose that F satisfies HL and G2µ for some L > 0544

and µ > 0. Then, by Lemma 2.3545

∀x ∈ RN , F (x)− F ∗ ⩽
2

µ
d(0, ∂F (x))2.546

Let now x ∈ RN and τ > 0. By definition (2.1), x+ = Tτx is the unique minimizer547

of the function defined by z 7→ h(z) + 1
2τ ∥z − x+ τ∇f(x)∥2. Thus, Tτx satisfies548

0 ∈ ∂h(Tτx) +

{
1

τ
(Tτx− x) +∇f(x)

}
,549

which entails: gτ (x) − ∇f(x) +∇f(Tτx) ∈ ∂F (Tτx). By the L-Lipschitz continuity550

of ∇f we can now deduce551

∥gτ (x)−∇f(x) +∇f(Tτx)∥ ⩽ ∥gτ (x)∥+ ∥∇f(Tτx)−∇f(x)∥552

⩽ ∥gτ (x)∥+ L∥Tτx− x∥ ⩽ (1 + Lτ)∥gτ (x)∥.553554

By combining all these inequalities we conclude that555

F (Tτx)− F ∗ ⩽
2

µ
d(0, ∂F (Tτx))

2 ⩽
2

µ
∥gτ (x)−∇f(x) +∇f(Tτx)∥2 ⩽

2(1 + Lτ)2

µ
∥gτ (x)∥2.556

A.4. Sketch of the proof of Theorem 3.8. Since the proof is rather technical,557

we split it into the following two parts:558

1. We show that there is at least one doubling step every T iterations for a559

suitable T . In particular:560

(a) We suppose that there is no doubling step from j = s+ 1 to j = s+ T561

for s ≥ 1.562

(b) We show a geometrical decrease of (F (rj−1) − F (rj))j∈Js+1,s+T K where563

the factor represents the gain of the j-th execution of Algorithm 1.564

(c) We state and apply Lemma A.1 (whose proof is given in Subsection A.7)565

to show that there exists an upper bound for ∥g1/L+
j−1

(rj−1)∥ depending566

on F (rj−1)− F (rj) for all j ∈ Js+ 1, s+ T K.567

(d) We show that the geometrical decrease in (b) entails that the exit con-568

dition ∥g1/L+
j−1

(rj−1)∥ ≤ ε is satisfied for j = s+ T .569

2. We use 1. to show that the total number of restarting iterations
∑j

i=0 ni570

is necessarily bounded by 2Tnj . The conclusion of Theorem 3.8 thus comes571

from Lemma 3.7 providing an upper bound of nj .572

A.5. Proof of Theorem 3.8. Let C > 4√
ρ and ε > 0. We first define573

T := 1 +


log
(

1 + 16
C2ρ−16

2L(F (r0)−F∗)
ρε2

)
log
(

C2ρ
4 − 1

)
 .574
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We claim that a doubling step is performed at least every T iterations.575

For s ⩾ 1, assume that there is no doubling step for T − 1 iterations from j = s + 1576

to j = s+ T . This means:577

(A.3) ∀j ∈ Js+ 1, s+ T K, nj−1 > C

√
1

κj
,578

whence:579

(A.4) ∀j ∈ Js, s+ T K, nj = ns,580

where the case j = s trivially holds. We deduce that ∀j ∈ Js+ 2, s+ T K:581

κj = min
i∈N∗
i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
⩽ min

i∈N∗
s<i<j

4

ρ(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
582

⩽ min
i∈N∗
s<i<j

4

ρni−1
2

F (ri−1)− F (rj)

F (ri)− F (rj)
⩽ min

i∈N∗
s<i<j

4

ρns
2

F (ri−1)− F (rj)

F (ri)− F (rj)
583

⩽
4

ρns
2

min
i∈N∗
s<i<j

F (ri−1)− F (rj)

F (ri)− F (rj)
,584

585

due to (A.4). Using (3.10), we deduce that:586

(A.5) ∀j ∈ Js+ 2, s+ T K, κj ⩽
4

ρns
2

F (rj−2)− F (rj)

F (rj−1)− F (rj)
.587

Combining now (A.3) with (A.4) and (A.5) we get:588

ns > C

√
1

4
ρns

2

F (rj−2)−F (rj)
F (rj−1)−F (rj)

= ns
C
√
ρ

2

√
F (rj−1)− F (rj)

F (rj−2)− F (rj)
589

which leads to590

F (rj−2)− F (rj) >
C2ρ

4
(F (rj−1)− F (rj)),591

which further entails592

F (rj−2)− F (rj−1) >

(
C2ρ

4
− 1

)
(F (rj−1)− F (rj)).593

Since C > 4√
ρ >

2√
ρ we now get the following geometric functional decrease.594

(A.6) F (rj−1)− F (rj) <
4

C2ρ− 4
(F (rj−2)− F (rj−1)).595

We now consider the case j = s+ 1:596

κs+1 = min
i∈N∗
i<s+1

4

ρ(ni−1 + 1)2
F (ri−1)− F (rs+1)

F (ri)− F (rs+1)
⩽

4

ρ(ns−1 + 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
597

⩽
4

ρ(ns

2 + 1)2
F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
⩽

16

ρns
2

F (rs−1)− F (rs+1)

F (rs)− F (rs+1)
,598

599
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since ns ⩽ 2ns−1. By reapplying C > 4√
ρ , similar computations show that600

(A.7) F (rs)− F (rs+1) <
16

C2ρ− 16
(F (rs−1)− F (rs)).601

To carry on with the proof, we now state Lemma A.1 which links the composite602

gradient mapping g to the function F . The proof is reported in Appendix A.7:603

Lemma A.1. Let F satisfy the assumption HL for some L > 0. Then the sequence604

(rj)j∈N provided by Algorithm 3 satisfies605

∀j ⩾ 1,
ρ

2L
∥g1/L+

j
(rj)∥2 ⩽ F (rj)− F (rj+1),606

where L+
j is an estimate of L provided by Algorithm 2.607

By Lemma A.1 and recalling inequalities (A.6) and (A.7), we can thus obtain the608

following sequence of inequalities609

ρ

2L
∥g1/L+

s+T−1
(rs+T−1)∥2 ⩽ F (rs+T−1)− F (rs+T )610

⩽
4

C2ρ− 4
(F (rs+T−2)− F (rs+T−1))611

⩽

(
4

C2ρ− 4

)T−1(
16

C2ρ− 16

)
(F (rs−1)− F (rs))612

⩽

(
4

C2ρ− 4

)T−1(
16

C2ρ− 16

)
(F (r0)− F ∗)613

⩽

(
4

C2ρ− 4

)
log

(
1+ 16

C2ρ−16

2L(F (r0)−F∗)

ρε2

)
log

(
C2ρ
4

−1

)
( 16

C2ρ− 16

)
(F (r0)− F ∗)614

⩽

(
4

C2ρ− 4

) log

(
1+ 16

C2ρ−16

2L(F (r0)−F∗)

ρε2

)
log

(
C2ρ
4

−1

) (
16

C2ρ− 16

)
(F (r0)− F ∗)615

⩽
1

1 + 16
C2ρ−16

2L(F (r0)−F∗)
ρε2

(
16

C2ρ− 16

)
(F (r0)− F ∗) ⩽

ρε2

2L
.616

617

As a consequence, if there are T consecutive restarts without any doubling of the618

number of iterations, then the exit condition ∥g1/L+
j

(rj)∥ ⩽ ε is eventually satisfied.619

This means that there exists a doubling step at least every T steps and that for all620

s ⩾ 1 there exists j ∈ Js+ 1, s+ T K such that621

nj−1 < C

√
1

κj
,622

which implies that nj = 2nj−1. Now, since (nj)j∈N is an increasing sequence, we get623

that ns+T ⩾ nj = 2nj−1 ⩾ 2ns, so that624

(A.8) ns ⩽
ns+T

2
, ∀s ⩾ 1.625

Let us now rewrite j as j = m + nT where 0 ⩽ m < T and n ⩾ 0. By monotonicity626
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of (nj)j∈N we have627

j∑
i=0

ni =

m+nT∑
i=0

ni =

m∑
i=0

ni +

n−1∑
l=0

T∑
i=1

nm+i+lT ⩽ T

n∑
l=0

nm+lT = T

n∑
l=0

nj−lT .628

According to equation (A.8) we have nj−T ⩽ nj

2 , that is629

nj−lT ⩽

(
1

2

)l

nj , ∀l ∈ [[0, n]].630

We thus obtain the following inequalities631

(A.9)

j∑
i=0

ni ⩽ T

n∑
l=0

nj−lT ⩽ T

n∑
l=0

(
1

2

)l

nj ⩽ T

∞∑
l=0

(
1

2

)l

nj = 2Tnj .632

Combining (A.9) with Lemma 3.7 we thus finally get the desired result for j > 0633

j∑
i=0

ni ⩽ 2Tnj ⩽ 4C

√
L

µ
T ⩽ 4C

√
L

µ

1 +


log

(
1 + 16

C2ρ−16

2L(F (r0)−F∗)
ρε2

)
log

(
C2ρ
4

− 1
)


634

⩽
4C

log
(

C2ρ
4

− 1
)√L

µ

(
2 log

(
C2ρ

4
− 1

)
+ log

(
1 +

16

C2ρ− 16

2L(F (r0)− F ∗)

ρε2

))
.635

636

A.6. Proof of Corollary 3.9. Let F satisfy HL and G2µ for some L > 0 and637

µ > 0. Let (rj)j∈N and (nj)j∈N be the sequences provided by Algorithm 3 with638

C > 4/
√
ρ, ε > 0 and let Lmin ∈ (0, L). We consider the case where the exit639

condition ∥g1/L+
j

(rj)∥ ⩽ ε is satisfied at first for at least 8C
√

1
κ iterations. We define640

the function ψµ : R∗
+ →

(
8C
√

1
κ ,+∞

)
by:641

ψµ : γ 7→ 4C

log
(

C2ρ
4

− 1
)√L

µ

(
2 log

(
C2ρ

4
− 1

)
+ log

(
1 +

16

C2ρ− 16

2L(F (r0)− F ∗)

ργ

))
.642

By Theorem 3.8, the number of iterations required to ensure ∥g1/L+
j

(rj)∥ ⩽ ε satisfies643 ∑j
i=0 ni ⩽ ψµ(ε2). As ψµ is strictly decreasing and

∑j
i=0 ni > 8C

√
L
µ , we deduce:644

ψ−1
µ

(
j∑

i=0

ni

)
⩾ ε2,645

where ψ−1
µ is the inverse function of ψµ. By now applying Lemma 3.4 and since by646

construction L+
j ⩾ Lmin, we get:647

F (r+j )− F ∗ ⩽
2

(
1 + L

L+
j

)2

µ
∥g1/L+

j
(rj)∥2 ⩽

2
(

1 + L
Lmin

)2
µ

ψ−1
µ

(
j∑

i=0

ni

)
.(A.10)648

649

Elementary computations show that:650

ψ−1
µ : n 7→ 2L

ρ

16

C2ρ− 16

1

e−2 log(C2ρ
4 −1)e

log(
C2ρ
4

−1)

4C

√
µ
Ln − 1

(F (r0)− F ∗),651
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hence from (A.10), we get:652

F (r+j )−F
∗ ⩽

4L
(
1 + L

Lmin

)2

ρµ

16

C2ρ− 16

1

e−2 log(C2ρ
4

−1)e
log(

C2ρ
4

−1)

4C

√
µ
L

∑j
i=0 ni − 1

(F (r0)−F ∗)653

We can thus conclude that654

F (r+j )− F ∗ = O

(
e−

log(
C2ρ
4

−1)

4C

√
κ
∑j

i=0 ni

)
.655

We can further maximize the function C 7→ log(C2ρ
4 −1)

4C to obtain the optimal value656

Ĉ ≈ 6.38/
√
ρ. This choice leads to the desired convergence rate:657

F (r+j )− F ∗ = O
(
e−

√
ρ

12

√
κ
∑j

i=0 ni

)
.658

To conclude the proof, let now (xk,j)k∈J0,njK and (τk,j)k∈J0,njK denote the iterates659

of Algorithm 1 following the j-th restart and the corresponding step-sizes, respectively.660

Note that in particular we have x0,j = r+j−1 and xnj ,j = rj . By applying standard661

arguments as in the proof of Proposition 3.3 (see Section A.1) we deduce that for any662

j ⩾ 0 and every k > 0:663

F (xk,j) +
∥xk,j − xk−1,j∥2

2τk,j
⩽ F (x0,j).664

Such inequality thus entails:665

∥xk,j − xk−1,j∥2 ⩽ 2τk,j
(
F (r+j )− F ∗) ⩽ 2

Lmin

(
F (r+j )− F ∗) .666

By applying the first claim of this Corollary on the right hand side of the inequality667

above, we guarantee the existence of M > 0 such that for j large enough:668

∀k ∈ J1, njK, ∥xk,j − xk−1,j∥2 ⩽
2M

Lmin
e−

log(
C2ρ
4

−1)

4C

√
κ
∑j

i=0 ni ,669

which implies that
∑

j,k ∥xk,j − xk−1,j∥ < +∞, showing that the trajectory of the670

total number of FISTA iterates has finite length.671

A.7. Proof of Lemma A.1. Since by definition (r+j , L
+
j ) = FB BT(rj , Lj ; ρ),672

for all j ⩾ 1 there holds: Df (r+j , rj) ⩽
L+

j

2 ∥r
+
j − rj∥2, with r+j = T1/L+

j
(rj) which673

allows us to specialize the descent condition (3.1) as:674

F (r+j ) +
L+
j

2
∥r+j − x∥

2 ⩽ F (x) +
L+
j

2
∥rj − x∥2,675

for all x ∈ RN . By choosing x = rj and by definition of g1/L+
j

we get:676

1

2L+
j

∥g1/L+
j
rj∥2 ⩽ F (rj)− F (r+j ).677
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Since by (3.3), we further deduce L+
j ⩽ L

ρ ,678

ρ

2L
∥g1/L+

j
(rj)∥2 ⩽ F (rj)− F (r+j ).679

Inequality (3.10) ensures F (rj+1) ⩽ F (r+j ) which finally entails.680

ρ

2L
∥g1/L+

j
(rj)∥2 ⩽ F (rj)− F (rj+1).681
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