ADE Exam, Spring 2023 Department of Mathematics, UCLA

1. [10 points]
(a) Consider the dynamical system

$$
\begin{align*}
& \frac{d x}{d t}=y, \\
& \frac{d y}{d t}=-x-\epsilon x^{2} y, \quad(x, y) \in \mathbb{R}^{2}, \tag{1}
\end{align*}
$$

where $\epsilon \geq 0$ is a parameter.
Determine the stability of the equilibrium point at $(0,0)$.
(b) Consider the dynamical system

$$
\begin{align*}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=x-x^{3}-\delta y+x^{2} y, \quad(x, y) \in \mathbb{R}^{2}, \tag{2}
\end{align*}
$$

where $\delta>0$ is a constant.
Determine the equilibrium points of (2), and use linear stability analysis to classify their type and (when possible) their stability. Show that the two vertical lines $x= \pm \sqrt{\delta}$ divide the phase plane into three regions such that a periodic orbit cannot exist entirely in one of these regions.
2. [10 points] Consider the Legendre equation

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\ell(\ell+1) y=0, \quad-1 \leq x \leq 1, \tag{3}
\end{equation*}
$$

where $\ell \geq 0$ is an integer. Let P_{ℓ} denote the solution of (3) that satisfies $P_{\ell}(1)=1$.
(a) Show that $x=1$ is a regular singular point. Find the indicial equation and indicial exponents, and find the leading terms of the series expansion at $x=1$ for two linearly independent solutions. Use them to explain why the condition $P_{\ell}(1)=1$ is sufficient to uniquely determine P_{ℓ}.
(b) Derive a recursion relation for the coefficients of the series expansion $y(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ for solutions of (3). Using this relation, show that P_{ℓ} is a polynomial that (i) consists only of even powers when ℓ is even and (ii) consists only of odd powers when ℓ is odd.
(c) Using the Rodrigues formula

$$
\begin{equation*}
P_{\ell}(x)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d x^{\ell}}\left[\left(x^{2}-1\right)^{\ell}\right] \tag{4}
\end{equation*}
$$

or otherwise, show that P_{ℓ} satisfies the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{1} P_{\ell}(x) P_{m}(x) d x=0 \tag{5}
\end{equation*}
$$

and determine the value of the integral (5) when $\ell=m$.
3. [10 points] Consider the energy functional $E[u]$, which is defined for $u \in \mathcal{C}^{2}(D)$ by

$$
E[u]=\frac{1}{2} \int_{D}\left(|\nabla u|^{2}+u^{2}\right) d^{n} x
$$

where $D \subset \mathbb{R}^{n}$ is a bounded and open set. Assume that $u=g(x)$ is known on ∂D.
(a) Derive the partial differential equation that is satisfied by the minimizer of E. Starting from the minimization principle, prove that solutions of this PDE are unique.
(b) Suppose that $n=1, D=(-1,1)$, and $u(-1)=u(1)=1$. Find an approximate solution of your PDE from (a) that takes the form $u=1+A\left(1-x^{2}\right)$. That is, find the value of A that minimizes the energy functional.
4. [10 points] Consider the nonlinear partial differential equation

$$
u_{t}=\Delta u-u^{3}, \quad x \in D, \quad 0<t<T
$$

where $D \subset \mathbb{R}^{n}$ is a bounded and open set. You may assume that solutions exist and are $\mathcal{C}^{2,1}(D \times(0, T)) \cap \mathcal{C}(\bar{D} \times[0, T])$. Show that the solutions of the PDE are unique.
5. [10 points] Consider the one-dimensional partial differential equation

$$
u_{t}+\frac{1}{2} u_{x}^{2}=0, \quad-\infty<x<\infty
$$

with initial condition

$$
u(x, 0)=0, \quad x<0 ; \quad u(x, 0)=1, \quad x>0
$$

and boundary conditions

$$
u \rightarrow 0 \text { as } x \rightarrow-\infty \quad \text { and } \quad u \rightarrow 1 \text { as } x \rightarrow \infty
$$

(a) Show that the PDE does not have a traveling-wave solution that is compatible with these boundary conditions, even when the derivatives are interpreted in the sense of distributions.
(b) Derive the weak solution of the PDE.
[Note: You do not need to derive the Hopf-Lax formula, but you should state the formula carefully if you use it.]
6. [10 points] Consider the partial differential equation

$$
u_{t}+u u_{x}=-u
$$

with initial condition

$$
u(x, 0)=1, x<0 ; \quad u(x, 0)=0, x>0
$$

(a) Show that for a smooth solution, the PDE can be written in terms of the "characteristic" variable $x=\xi(t)$ as

$$
\frac{d}{d t} u(\xi(t))=-u(\xi(t)) ; \quad \frac{d \xi}{d t}=u
$$

(b) Suppose that $u(0,0)$ takes values $\alpha \in(0,1)$. Solve for the characteristics $\xi_{\alpha}(t)$ starting from $x=0$ with the initial value $u=\alpha$.
(c) Using the result from (b), solve the Riemann problem with the initial condition above. Write your answer in terms of the Eulerian variables x and t.
7. [10 points] Consider the Korteweg-de Vries (KdV) equation

$$
u_{t}+u_{x x x}+6 u u_{x}=0, \quad x \in \mathbb{R}, t>0, \quad u(x, 0)=f(x)
$$

Assume that the function $u(x, t)$ and all of its derivatives vanish as $|x| \rightarrow \infty$.
(a) Show that the following are conserved quantities in time:

$$
\left.\int_{-\infty}^{\infty} u^{2}(x, t) d x ; \quad \int_{-\infty}^{\infty}\left[\frac{1}{2} u_{x}^{2}(x, t)-u^{3}(x, t]\right)\right] d x
$$

(b) Show that the KdV equation does not preserve positivity of the solution by constructing an initial condition f that is nonnegative for which the solution becomes negative at a later time.
[Hint: Consider a local minimum for which the third derivative in space is nonzero.]
8. [10 points] Solve the initial-value problem

$$
u_{t t}-2 u_{x t}-15 u_{x x}=0
$$

with $u(x, 0)=g(x)$ and $u_{t}(x, 0)=h(x)$.
[Hint: Consider factoring the differential operator.]

