# QUALIFYING EXAM 

Geometry/Topology
March 2023

Answer all 10 questions. Each problem is worth 10 points. Justify your answers carefully.

1. Let $M, N$ be smooth manifolds and $F: M \rightarrow N$ a smooth proper map.
(a) Show that $F$ maps closed sets to closed sets.
(b) Show that the set of regular values is open.
(c) Let $C \subset N$ be compact. Show that for every open set $U \subset M$ containing $F^{-1}(C)$ there is an open set $V \subset N$ containing $C$, such that $F^{-1}(V) \subset U$.
2. Consider a smooth map $F: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$.
(a) When $n$ is even show that $F$ has a fixed point.
(b) When $n$ is odd give an example where $F$ does not have a fixed point.
3. Let

$$
\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

be a 2-form defined on $\mathbb{R}^{3}-\{0\}$ and $S^{2} \subset \mathbb{R}^{3}$ the unit sphere.
(a) Compute $\int_{S^{2}} i^{*} \omega$, where $i: S \rightarrow \mathbb{R}^{3}$ is the inclusion.
(b) Compute $\int_{S^{2}} j^{*} \omega$, where $j: S^{2} \rightarrow \mathbb{R}^{3}$ is defined by $j(x, y, z)=(2 x, 3 y, 5 z)$.
4. Let $M$ be a connected compact manifold with non-empty boundary $\partial M$. Show that $M$ does not retract onto $\partial M$.
5. Let $M^{m} \subset \mathbb{R}^{n}$ be a closed connected submanifold of dimension $m$.
(a) Show that $\mathbb{R}^{n} \backslash M^{m}$ is connected when $m \leq n-2$.
(b) When $m=n-1$ show that $\mathbb{R}^{n} \backslash M^{m}$ is disconnected by showing that the mod 2 intersection number $I_{2}(f, M)=0$ for all smooth maps $f: S^{1} \rightarrow \mathbb{R}^{n}$.
6.
(a) If $X$ is a finite CW complex and $\tilde{X} \rightarrow X$ is a path-connected $n$-fold covering map, then show that the Euler characteristics are related by the formula

$$
\chi(\tilde{X})=n \chi(X) .
$$

(b) Let $X=\Sigma_{g}$ be a closed genus $g$ surface. What path-connected, closed surfaces can cover $X$ ?
7. A group $G$ is divisible if for all $n$, the map $g \mapsto g^{n}$ from $G$ to itself is surjective. Show that if $X$ is a path-connected CW-complex and if $\pi_{1}(X, x)$ is a divisible group, then the only path connected finite cover of $X$ is $X$ itself. (Hint: This can be proven directly or by first showing that a divisible group has no finite index subgroups.)
8. Let $M^{n}$ be an $n$-manifold, and consider a small disk $D^{n}$ embedded in $M^{n}$. Show that the inclusion

$$
\overline{M^{n}-D^{n}} \hookrightarrow M^{n}
$$

induces an isomorphism on $\pi_{1}$ if $n \geq 3$ and a surjection if $n \geq 2$.
9. Find, as a function of $n$ and $m$, the homology groups

$$
H_{*}\left(\mathbb{R} \mathbb{P}^{n+m}, \mathbb{R} \mathbb{P}^{n} ; \mathbb{Z}\right)
$$

10. Consider the CW-complexes $A=S^{n} \vee S^{n}, X=S^{n} \times S^{n}$, and $B=S^{n} \times[0,1] / * \times[0,1]$, where $*$ is the basepoint of $S^{n}$. There are inclusions $A \hookrightarrow X$ given by the pairs of points where at least one is the basepoint and $A \hookrightarrow B$ which takes one $S^{n}$ to $S^{n} \times 0$ and the other to $S^{n} \times 1$. Compute the homology of

$$
Y=X \cup_{A} B .
$$

