QUALIFYING EXAM

Geometry/Topology

March 2023

Answer all 10 questions. Each problem is worth 10 points. Justify your answers carefully.

- 1. Let M, N be smooth manifolds and $F: M \to N$ a smooth proper map.
 - (a) Show that F maps closed sets to closed sets.
 - (b) Show that the set of regular values is open.
 - (c) Let $C \subset N$ be compact. Show that for every open set $U \subset M$ containing $F^{-1}(C)$ there is an open set $V \subset N$ containing C, such that $F^{-1}(V) \subset U$.
- 2. Consider a smooth map $F : \mathbb{CP}^n \to \mathbb{CP}^n$.
 - (a) When n is even show that F has a fixed point.
 - (b) When n is odd give an example where F does not have a fixed point.
- 3. Let

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

be a 2-form defined on $\mathbb{R}^3 - \{0\}$ and $S^2 \subset \mathbb{R}^3$ the unit sphere.

- (a) Compute $\int_{S^2} i^* \omega$, where $i: S \to \mathbb{R}^3$ is the inclusion.
- (b) Compute $\int_{S^2} j^* \omega$, where $j: S^2 \to \mathbb{R}^3$ is defined by j(x, y, z) = (2x, 3y, 5z).
- 4. Let M be a connected compact manifold with non-empty boundary ∂M . Show that M does not retract onto ∂M .
- 5. Let $M^m \subset \mathbb{R}^n$ be a closed connected submanifold of dimension m.
 - (a) Show that $\mathbb{R}^n \setminus M^m$ is connected when $m \leq n-2$.
 - (b) When m = n 1 show that $\mathbb{R}^n \setminus M^m$ is disconnected by showing that the mod 2 intersection number $I_2(f, M) = 0$ for all smooth maps $f: S^1 \to \mathbb{R}^n$.

6.

(a) If X is a finite CW complex and $\tilde{X} \to X$ is a path-connected *n*-fold covering map, then show that the Euler characteristics are related by the formula

$$\chi(X) = n\chi(X).$$

(b) Let $X = \Sigma_g$ be a closed genus g surface. What path-connected, closed surfaces can cover X?

- 7. A group G is divisible if for all n, the map $g \mapsto g^n$ from G to itself is surjective. Show that if X is a path-connected CW-complex and if $\pi_1(X, x)$ is a divisible group, then the only path connected finite cover of X is X itself. (Hint: This can be proven directly or by first showing that a divisible group has no finite index subgroups.)
- 8. Let M^n be an *n*-manifold, and consider a small disk D^n embedded in M^n . Show that the inclusion

$$\overline{M^n - D^n} \hookrightarrow M^n$$

induces an isomorphism on π_1 if $n \ge 3$ and a surjection if $n \ge 2$.

9. Find, as a function of n and m, the homology groups

$$H_*(\mathbb{RP}^{n+m},\mathbb{RP}^n;\mathbb{Z}).$$

10. Consider the CW-complexes $A = S^n \vee S^n$, $X = S^n \times S^n$, and $B = S^n \times [0, 1] / * \times [0, 1]$, where * is the basepoint of S^n . There are inclusions $A \hookrightarrow X$ given by the pairs of points where at least one is the basepoint and $A \hookrightarrow B$ which takes one S^n to $S^n \times 0$ and the other to $S^n \times 1$. Compute the homology of

$$Y = X \cup_A B.$$