DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM. PLEASE USE BLANK PAGES AT END FOR ADDITIONAL SPACE.

1. (10 points) Consider $A x=b$ with

$$
A=\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
a & 0 & 1
\end{array}\right)
$$

where $a \in \mathbb{C}$. Derive the condition on a for Gauss-Seidel iterations to converge.

Qualifying Exam, Spring 2023
Optimization / Numerical Linear Algebra (ONLA)
2. (10 points) Let $B \in \mathbb{R}^{n \times m}, A=I-B B^{T}$ and $\operatorname{rank}(B)=p$. Assume we are solving $A x=b$ with Conjugate Gradient, assuming a solution exists, in at most how many iterations would convergence happen?

Qualifying Exam, Spring 2023

Optimization / Numerical Linear Algebra (ONLA)
3. (10 points) Recall that the Lanczos iteration tridiagonalizes a hermitian A by building towards

$$
T_{n}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \ddots & \\
& & \ddots & \ddots & \beta_{n-1} \\
& & & \beta_{n-1} & \alpha_{n}
\end{array}\right)
$$

The Lanczos algorithm is given by

$$
\begin{aligned}
& \beta_{0}=0, \quad q_{0}=0, \quad b=\text { arbitrary, } \quad q_{1}=b /\|b\| \\
& \text { for } n=1,2,3, \ldots \\
& \quad v=A q_{n} \\
& \quad a_{n}=q_{n}^{T} v \\
& \quad v=v-\beta_{n-1} q_{n-1}-\alpha_{n} q_{n} \\
& \quad \beta_{n}=\|v\| \\
& \quad q_{n+1}=v / \beta_{n}
\end{aligned}
$$

Assume exact arithmetic. Prove that q_{j} is orthogonal to $q_{1}, q_{2}, \ldots, q_{j-1}$.

Qualifying Exam, Spring 2023
Optimization / Numerical Linear Algebra (ONLA)
4. (10 points) Let A be a skew Hermitian matrix (i.e. $A^{*}=-A$) and let I denote the identity matrix of appropriate size. Prove that $(I-A)^{-1}(I+A)$ is unitary.

Qualifying Exam, Spring 2023
Optimization / Numerical Linear Algebra (ONLA)
5. (10 points) Suppose the matrix $M=A B$ has a QR -factorization. Prove or disprove the following:
(a) A also has a QR-factorization.
(b) B also has a QR-factorization.

Qualifying Exam, Spring 2023

Optimization / Numerical Linear Algebra (ONLA)

6. (10 points) Let A be a square diagonalizable matrix with eigenvalues $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \ldots$. Consider the Power Method for computing an eigenvector q_{1} corresponding to λ_{1}, which iterates as $z_{n+1}=A z_{n} /\left\|A z_{n}\right\|$ (with a randomly selected z_{1}).
(a) Show (by example or in words) that if $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$, the Power Method does not necessarily converge to an eigenvector of λ_{1}.
(b) Prove however, that if $\lambda_{1}=\lambda_{2}$ (notice no absolute values here!) and $\left|\lambda_{3}\right|<\left|\lambda_{1}\right|$, then the method still offers convergence to an eigenvector of λ_{1}.

Qualifying Exam, Spring 2023

Optimization / Numerical Linear Algebra (ONLA)

7. (10 points) Consider the problem to find the extremizers of

$$
x_{1}^{2}+x_{1} x_{2}^{2} \quad \text { subject to } \quad x_{2}^{3} \leq x_{1} \leq 2 .
$$

Answer the following giving a complete reasoning for the answers:
(a) Write down the KKT conditions for this problem and find all points that satisfy them.
(b) Determine whether or not the points in part (a) satisfy the second order necessary conditions for being local maximizers or minimizers.
(c) Determine whether or not the points in part (b) satisfy the second order sufficient conditions for being local maximizers or minimizers.

Qualifying Exam, Spring 2023

Optimization / Numerical Linear Algebra (ONLA)

8. (10 points)
(a) Consider a linear program in the standard form. Let x be a basic feasible solution. Show that if the reduce cost of every nonbasic variable is positive, then x is the unique solution.
Hint: Recall that a linear program in standard form takes the form minimize $c^{T} x$ subject to $A x=b, x \geq 0$; a basic feasible solution is an extreme point of the feasible set defined in linear algebraic form; the reduce cost is the unit change in the objective along edge directions.
(b) Use duality to prove the following statement: Consider the problem minimize $c^{T} x, x \in \mathbb{R}^{n}$, subject to $x \geq 0$. A solution exists if and only if $c \geq 0$. Moreover, if a solution exists, then 0 is a solution.

Qualifying Exam, Spring 2023

Optimization / Numerical Linear Algebra (ONLA)
9. (10 points) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function with $f^{*}=\inf _{x} f(x)>-\infty$. Consider the subgradient method

$$
x^{(k+1)}=x^{(k)}-\alpha_{k} g^{(k)}, \quad \text { where } \quad g^{(k)} \in \partial f\left(x^{(k)}\right)
$$

Show that if $0<\alpha_{k}<2 \frac{f\left(x^{(k)}\right)-f^{*}}{\left\|g^{(k)}\right\|_{2}^{2}}$, then

$$
\left\|x^{(k+1)}-x^{*}\right\|_{2}<\left\|x^{(k)}-x^{*}\right\|_{2}
$$

for any optimal point x^{*}.
Hint: Recall that $\partial f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle\right\}$.

