ALGEBRA QUALIFYING EXAM

2023 MARCH 28

Problem 1. Let $F, F': \mathcal{C} \to \mathcal{D}$ and $G, G': \mathcal{D} \to \mathcal{C}$ be four functors such that F is left adjoint to G, and F' is left adjoint to G'. Establish a bijection between the natural transformations $\alpha: F \Rightarrow F'$ and the natural transformations $\beta: G' \Rightarrow G$. [Hint: Use $G\alpha G': GFG' \Rightarrow GF'G'$.]

Problem 2. Let p, q be distinct prime numbers and consider the number field $K = \mathbb{Q}(\sqrt{p} + \sqrt{q})$. Describe all subfields of K and inclusions between them.

Problem 3. Give an example of an infinite field extension $K \subset L$ such that L has only finitely many field automorphisms fixing K.

Problem 4. Let $M_n(K)$ be the ring of $n \times n$ -matrices with coefficients in a field K, for $n \ge 1$. Describe all possible ring homomorphisms $M_n(K) \to K$.

Problem 5. Let A be a local commutative noetherian ring and M a finitely generated A-module such that every exact sequence $0 \to M'' \to M' \to M \to 0$ remains exact after tensoring with the residue field k of A. Show that M is free.

Problem 6. Let A be a commutative ring and let $s \in A$. Let $S = \{1, s, s^2, \ldots\}$. Show that the following assertions are equivalent:

- (a) The canonical morphism $A \to S^{-1}A$ is surjective.
- (b) There is N > 0 such that $s^n A = s^N A$ for all $n \ge N$.
- (c) For *n* large enough, the ideal $s^n A$ is generated by an element *e* with $e^2 = e$.

Problem 7. Let k be a field and let $A = k[X, Y]/(X^2, XY, Y^2)$.

- (a) Determine the invertible elements of A.
- (b) Determine the ideals of A.
- (c) Determine the principal ideals of A.

Problem 8. Let G be a finite group and let p be the smallest prime dividing the order of G. Show that a subgroup $H \leq G$ of index p must be normal.

Problem 9. Let G be a non-abelian finite group of order pq where p and q are prime numbers with q > p. Determine the degrees of the irreducible characters of G, and determine the number of irreducible characters of a given degree.

Problem 10. Let A be an artinian ring and let M be an A-module. Let $B = \text{End}_A(M)$. Let $f \in B$ such that $f(M) \subset \text{Rad}(A) \cdot M$, where Rad(A) = J(A) is the Jacobson radical. Show that $f \in \text{Rad}(B)$.