ALGEBRA QUALIFYING EXAM

2023 MARCH 28

Problem 1. Let $F, F^{\prime}: \mathcal{C} \rightarrow \mathcal{D}$ and $G, G^{\prime}: \mathcal{D} \rightarrow \mathcal{C}$ be four functors such that F is left adjoint to G, and F^{\prime} is left adjoint to G^{\prime}. Establish a bijection between the natural transformations $\alpha: F \Rightarrow F^{\prime}$ and the natural transformations $\beta: G^{\prime} \Rightarrow G$. [Hint: Use $G \alpha G^{\prime}: G F G^{\prime} \Rightarrow G F^{\prime} G^{\prime}$.]

Problem 2. Let p, q be distinct prime numbers and consider the number field $K=$ $\mathbb{Q}(\sqrt{p}+\sqrt{q})$. Describe all subfields of K and inclusions between them.

Problem 3. Give an example of an infinite field extension $K \subset L$ such that L has only finitely many field automorphisms fixing K.

Problem 4. Let $\mathrm{M}_{n}(K)$ be the ring of $n \times n$-matrices with coefficients in a field K, for $n \geq 1$. Describe all possible ring homomorphisms $\mathrm{M}_{n}(K) \rightarrow K$.
Problem 5. Let A be a local commutative noetherian ring and M a finitely generated A-module such that every exact sequence $0 \rightarrow M^{\prime \prime} \rightarrow M^{\prime} \rightarrow M \rightarrow 0$ remains exact after tensoring with the residue field k of A. Show that M is free.

Problem 6. Let A be a commutative ring and let $s \in A$. Let $S=\left\{1, s, s^{2}, \ldots\right\}$. Show that the following assertions are equivalent:
(a) The canonical morphism $A \rightarrow S^{-1} A$ is surjective.
(b) There is $N>0$ such that $s^{n} A=s^{N} A$ for all $n \geq N$.
(c) For n large enough, the ideal $s^{n} A$ is generated by an element e with $e^{2}=e$.

Problem 7. Let k be a field and let $A=k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$.
(a) Determine the invertible elements of A.
(b) Determine the ideals of A.
(c) Determine the principal ideals of A.

Problem 8. Let G be a finite group and let p be the smallest prime dividing the order of G. Show that a subgroup $H \leq G$ of index p must be normal.

Problem 9. Let G be a non-abelian finite group of order $p q$ where p and q are prime numbers with $q>p$. Determine the degrees of the irreducible characters of G, and determine the number of irreducible characters of a given degree.
Problem 10. Let A be an artinian ring and let M be an A-module. Let $B=$ $\operatorname{End}_{A}(M)$. Let $f \in B$ such that $f(M) \subset \operatorname{Rad}(A) \cdot M$, where $\operatorname{Rad}(A)=J(A)$ is the Jacobson radical. Show that $f \in \operatorname{Rad}(B)$.

