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a b s t r a c t

We predict steady-state Stokes flow of fluids within porous media at pore scales using sparse
point observations and a novel class of physics-informed neural networks, called ‘‘physics-informed
PointNet’’ (PIPN). Taking the advantages of PIPN into account, three new features become available
compared to physics-informed convolutional neural networks for porous medium applications. First,
the input of PIPN is exclusively the pore spaces of porous media (rather than both the pore and grain
spaces). This feature diminishes required computer memory. Second, PIPN represents the boundary of
pore spaces smoothly and realistically (rather than pixel-wise representations). Third, spatial resolution
can vary over the physical domain (rather than equally spaced resolutions). This feature enables users
to reach an optimal resolution with a minimum computational cost. The performance of our framework
is evaluated by the study of the influence of noisy sensor data, pressure observations, and spatial
correlation length.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

Since the late 2018s, deep learning schemes have become
opular for the study of various aspects of porous media. Ex-
mples are rock image segmentation (Da Wang, Shabaninejad,
rmstrong, & Mostaghimi, 2020; Karimpouli & Tahmasebi, 2019b;
iu, Mostaghimi, Shabaninejad, Swietojanski, & Armstrong, 2020;
han, Ruspini, & Lindseth, 2021); reconstruction and enhance-
ent of rock image resolution (DaWang, Armstrong, & Mostaghim
019; Liu & Mukerji, 2022; Niu et al., 2021; Wang, Armstrong,
Mostaghimi, 2020); prediction of geometric characteristics

uch as porosity (Alqahtani, Alzubaidi, Armstrong, Swietojanski,
Mostaghimi, 2020; Bordignon, Figueiredo, Exterkoetter, Ro-

rigues, & Correia, 2019; Graczyk & Matyka, 2020); prediction of
hysical properties such as permeability (Al-Zubaidi et al., 2023;
raczyk & Matyka, 2020; Hong & Liu, 2020; Kashefi & Mukerji,
021; Wu, Yin, & Xiao, 2018), effective diffusivity (Wu et al.,
018), wave propagation velocities (Karimpouli & Tahmasebi,
019a); and prediction of velocity and pressure fields of fluids
ithin pore spaces (Alhubail, He, AlSinan, Kwak, & Hoteit, 2022;
amrava, Sahimi, & Tahmasebi, 2021; Lu et al., 2022; Santos et al.,
020; Tartakovsky, Marrero, Perdikaris, Tartakovsky, & Barajas-
olano, 2018; Wang, Chen, Mehana, Lubbers, Bennett, & Kang,

∗ Corresponding author.
E-mail addresses: kashefi@stanford.edu (A. Kashefi), mukerji@stanford.edu

T. Mukerji).
ttps://doi.org/10.1016/j.neunet.2023.08.006
893-6080/© 2023 Elsevier Ltd. All rights reserved.
2021; Wang, Chung, Armstrong, & Mostaghimi, 2021). Our focus
in the current research is the last one-prediction of fluid velocities
and pressure. According to the literature, three main approaches
have been taken so far for predicting fluid flow fields in pore
spaces of porous media using available deep learning algorithms.

The first approach falls in the category of supervised learning,
where the deep learning frameworks used have no information
concerning the physics describing fluid flow fields within porous
media (Santos et al., 2020; Wang, Chung, et al., 2021). In this
approach, plentiful labeled data are generated using numerical
solvers (e.g., lattice Boltzmann, finite-element, finite-volume,
and fast Fourier transform methods) or collected from lab ex-
periments for training deep learning frameworks to learn an
end-to-end mapping from the geometry of a porous medium
to its velocity or pressure fields. Convolutional neural networks
(CNNs) are commonly used in this approach. The loss functions of
these deep learning frameworks are designed based on the mis-
match between values predicted by a neural network and training
labeled data (i.e., ground truth), mathematically quantified in L2
norm or other norms.

The second approach also falls in the category of supervised
learning; however, the employed deep learning frameworks are
‘‘guided’’ by the problem physics (Kamrava et al., 2021; Wang,
Chen, et al., 2021). More precisely, the loss function in this ap-
proach is similar to the one specified in the first approach with
the difference that it is regularized by extra terms representing
the L2 norm (or other norms) of the residuals of partial differ-
ntial equations (PDEs), governing the physics of fluid flow in



A. Kashefi and T. Mukerji Neural Networks 167 (2023) 80–91

p
b
c
C
c
s
(
t

c
i
a
u
n
t
d
s
c
t
i
g
a
e
d
S
c
t
F
T
s
i
T
c
t
l

v
p
p
f
o
f
&
h
L
e
n
f
m
l
u
e
t
n
m
a
h
U
o
m
a
s
d
u
a
M t
orous media. Technically, the PDEs of interest are discretized
y a finite difference scheme and then the corresponding sten-
ils are enforced into non-trainable filters in the last layer of
NNs. Compared to the first approach, the second one is faster in
onvergence, more generalizable, and lastly requires ‘‘relatively’’
maller labeled training data. One may refer to Kamrava et al.
2021) and Wang, Chen, et al. (2021) for a detailed discussion of
his comparison.

Nevertheless with the success of these two approaches, they
ome with a few shortcomings. First, both require plentiful train-
ng data. This is while generating and collecting labeled data
re computationally and experimentally expensive. Second, CNNs
sed in both approaches take the grain and pore spaces as the
etwork inputs and outputs, whereas we exclusively seek for
he network predictions only in the pore spaces of porous me-
ia where the fluid exists. The integration of the solid grain
paces into CNNs demands extra memory (i.e., RAM). Third, be-
ause these two approaches employ CNNs, labeled data used for
raining have to be in a Cartesian grid format with uniform spac-
ng. This format might lead to unrealistic representation of the
eometry of pore spaces, specifically near the pore-grain bound-
ries. Furthermore, if labeled data are generated using finite
lement/volume methods on unstructured grids, the generated
ata have to be interpolated on the uniform Cartesian grids.
uch interpolations introduce errors to the training data, and
onsequently to the network prediction. Additionally, executing
he interpolation requires extra effort even before training CNNs.
ourth, CNNs are technically designed for uniform resolutions.
hus, to increase the resolution of an area of interest in pore
paces, users of these two approaches have no choice except to
ncrease the Cartesian grid resolutions everywhere in the domain.
his inflexibility enforces high computational costs to the ma-
hine learning system of both approaches. Next, we discuss the
hird approach to resolving and improving the above mentioned
imitations.

The third approach falls in the category of weakly super-
ised learning and is mainly constructed based on the idea of
hysics-informed neural networks (PINNs). PINNs were first pro-
osed by Raissi, Perdikaris, and Karniadakis (2019) for solving
orward and inverse problems and its latter versions with vari-
us enhancements and extensions have been introduced such as
PINN (Pang, Lu, & Karniadakis, 2019), nPINN (Pang, D’Elia, Parks,
Karniadakis, 2020), B-PINN (Yang, Meng, & Karniadakis, 2021),
p-VPINN (Kharazmi, Zhang, & Karniadakis, 2021), PPINN (Meng,
i, Zhang, & Karniadakis, 2020), PIPN (Kashefi & Mukerji, 2022),
tc. In PINN-based methodology, the loss function is mainly the L2
orm (or other norms) of the residuals of governing equations of
luid flow fields of porous media, regulated by the L2 norm of mis-
atch between neural network predictions and sparse scattered

abeled data. Through the lens of porous media, PINNs have been
sed but only for predicting Darcy’s flow on field scale (Alhubail
t al., 2022; Tartakovsky et al., 2018). In the current study, for
he first time, we use the concept of physics-informed neural
etworks for the prediction of Stokes flow at pore scales in porous
edia. Specifically, we use PIPN (Kashefi & Mukerji, 2022) as
n advanced version of PINNs. Remarkable advantages of PIPN
ave been addressed in detail by Kashefi and Mukerji (2022).
sing the PIPN technology, all the above mentioned shortcomings
f the first two approaches are obviated. Based on the funda-
ental mathematics of PIPN, only sparse scattered labeled data
re required. We exclusively discretize the pore space with a
et of scattered point cloud, where the spatial density of point
istribution can vary freely over the space. Such freedom allows
sers to represent the geometry of the pore space and its bound-
ries smoothly and realistically. Additionally, the PIPN (Kashefi &

ukerji, 2022) framework can conveniently be integrated with

81
unstructured grids, and no data interpolation is needed. In the
rest of this article, we illustrate these features practically. In
addition, we explore some practical issues in applying PIPN such
as (i) the effect of the type of data available at the sparse sensors
(with and without pressure data); (ii) the effects of noisy sensor
data; and (iii) the impact of sparsity in the sensor locations.

2. Physics-informed PointNet (PIPN) for stokes flows in porous
media

2.1. Governing equations and mathematical definition

We first describe the partial differential equations govern-
ing the physics of fluid flow fields in porous media at pore
scales. The conservation of mass and momentum of an incom-
pressible steady creeping (Stokes) flow of a Newtonian fluid are
respectively written as

∇ · u = 0 in V , (1)

∇p − µ∆u = 0 in V , (2)

where u and p indicate respectively the velocity vector and pres-
sure of the fluid with the dynamic viscosity of µ. The pore space
of a porous medium is denoted by V . We further show the x
and y components of the velocity vector by u and v, respectively.
Note that one may alternatively consider the full Navier–Stokes
equations (see e.g., Hassanizadeh & Gray, 1987). The permeability
(K) of the porous media in the x direction is computed as Berg
(2014), Darcy (1856) and Eshghinejadfard, Daróczy, Janiga, and
Thévenin (2016)

K = −
µŪ

∆p/L
, (3)

where Ū is the average x velocity over the entire space of porous
media. The term of ∆p/L denotes the applied constant pressure
gradient over the length L in the x direction of the porous media.

Mathematically, our goal is to solve an inverse problem of
the Stokes flow using PIPN. It can be described as follows: given
no slip boundary condition on the wall boundaries and a set of
sparse labeled data of the velocity and pressure fields at sensor
locations, find the full velocity and pressure fields at inquiry
points. Moreover, we compute the permeability of the porous
media using the predicted velocity fields.

2.2. Physics-informed PointNet (PIPN)

Historically, Kashefi, Rempe, and Guibas (2021) used Point-
Net (Qi, Su, Mo, & Guibas, 2017) for the first time for super-
vised deep learning of incompressible flows on irregular ge-
ometries. The successes of applying PointNet (Qi et al., 2017)
to the area of computational mechanics motivated Kashefi and
Mukerji (2022) for proposing physics-informed PointNet (PIPN),
which is a weakly supervised deep learning framework for in-
compressible flows. The PIPN methodology has been expressed
in detail by Kashefi and Mukerji (2022). Here we illustrate the
PIPN framework from a general point of view and explain how
to specialize it for the porous medium applications. Fig. 1 depicts
the general flowchart of PIPN. Accordingly, the space of a porous
medium (V ) is represented by N points such that each point has
the spatial x and y coordinates. In the next stage, we feed the
constructed point clouds into PointNet (Qi et al., 2017), while the
outputs of PointNet (Qi et al., 2017) are the velocity (u, v) and
pressure (p) values at the corresponding input points. Afterwards,
we take spatial derivatives of outputs (u, v, p) with respect to
he corresponding inputs (x, y) using the automatic differentiation
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Fig. 1. Schematic flowchart of Physics-informed PointNet (PIPN) for Stokes flow in porous media. A full description of the loss function is presented in Eqs. (5)–(11).
w

technology of TensorFlow (Abadi et al., 2016). Finally, we build up
the loss function of PIPN as the summation of residuals of gov-
erning equations (Eqs. (1)–(2)) as well as the mismatch between
predicted outputs and sparse labeled data, all quantified in L2
orm. Similar to the original version of PIPN proposed by Kashefi
nd Mukerji (2022), we use the hyperbolic tangent activation
unction defined as

tanh(λ) =
exp(2λ) − 1
exp(2λ) + 1

, (4)

in all the layers of PIPN. Note that due to the presence of second-
order derivatives of velocity fields in Eq. (2), choosing an ac-
tivation function with a well-defined second-order derivative
is essential. The hyperbolic tangent activation function satisfies
this criterion. Audiences interested in details of PIPN may refer
to Kashefi and Mukerji (2022).

The residuals of conservation of mass (rcontinuity), conserva-
tion of momentum in the x−direction (rmomentumx ) and in the
y−direction (rmomentumy ), no slip boundary condition of the veloc-
ity (rvelocitywall ), sparse observations of the velocity field (rvelocityobs )
and pressure field (rpressureobs ) are respectively written as

rcontinuity =
1
M1

M1∑
k=1

(
δũ′

k

δx̃k
+

δṽ′

k

δỹk

)2

, (5)

rmomentumx =
1
M1

M1∑
k=1

(
δp̃′

k

δx̃k
− µ̃

(
δ

δx̃k

(
δũ′

k

δx̃k

)
+

δ

δỹk

(
δũ′

k

δỹk

)))2

,

(6)

rmomentumy =
1
M1

M1∑
k=1

(
δp̃′

k

δỹk
− µ̃

(
δ

δx̃k

(
δṽ′

k

δx̃k

)
+

δ

δỹk

(
δṽ′

k

δỹk

)))2

,

(7)

rvelocitywall =
1
M2

M2∑
k=1

((
ũ′

k − 0
)2

+
(
ṽ′

k − 0
)2)

, (8)

velocityobs =
1
M3

M3∑
k=1

((
ũ′

k − ũk
)2

+
(
ṽ′

k − ṽk
)2)

, (9)

pressureobs =
1
M3

M3∑
k=1

(
p̃′

k − pk
)2

, (10)

here δ stands for the automatic differentiation operator in the
TensorFlow software (Abadi et al., 2016). The number of interior
points, points located on wall boundaries, and virtual sensors
measuring velocity and pressure values are respectively indicated
by M1, M2, and M3. Note that M1 + M2 = N .

We normalize the output of the velocity and pressure fields
because the output of the hyperbolic activation function (see
Eq. (4)) only covers the range of [−1, 1]. The scaled ground truth
velocity and pressure values are shown by (ũ, ṽ, p̃), while the
predicted velocity and pressure fields by PIPN are denoted by (ũ′,
82
ṽ′, p̃′). Additionally, the spatial coordinates of x and y (as the PIPN
input) are scaled in the range of [−1, 1] and are shown by x̃ and
ỹ, respectively. Moreover, µ̃ is the scaled viscosity. In this sense,
the final form of the loss function (J ) is determined as

J = λ1rcontinuity + λ2rmomentumx + λ3rmomentumy + λ4rvelocitywall

+λ5rvelocityobs + λ6rpressureobs ,

(11)

here λi (1 ≤ i ≤ 6) are the corresponding weights of each
component of the loss function, while they take the inverse of
the units of their associated residuals as their own unit. In this
way, the loss function (J ) is unitless. These weights (λi; 1 ≤

i ≤ 6) are, indeed, hyperparameters that need to be tuned
for reaching the highest possible performance of PIPN. In this
study, λi are kept constant during training; however, one may
use adaptive techniques for online tuning of λi as the network
is trained (Xiang, Peng, Zheng, Zhao, & Yao, 2021).

2.3. Computational setting

For the numerical examples in the following, dynamic viscos-
ity of µ = 0.001 Pa·s, a pressure difference of ∆p = 0.1 Pa
over a length of L = 0.0064 m are set. We generate two-
dimensional synthetic binary (pore-grain) media with the length
(L) of 0.0064 m in both dimensions and three different spatial
correlation lengths (lc) of 0.0005 m, 0.0009 m, and 0.0017 m
using the algorithm of truncated Gaussian simulation (Lantuéjoul,
2001; Xu & Journel, 1993). Practically, we first generate a two-
dimensional array (64 by 64) of random numbers from the nor-
mal distribution with the mean parameter of 0.0 and the standard
deviation of 1.0. Next, we filter the array using a two-dimensional
Gaussian smoothing kernel with the standard deviation of 2.0
with a filter size equivalent to a desired spatial correlation length
(e.g., 5, 9, or 17). Finally, we make the resulting array binary using
a threshold such that the porosity falls in the range of [0.25, 0.40].
For these purposes, we use the MATLAB software. Afterward,
we convert the resulting image (i.e., the two-dimensional array)
to the standard tessellation language (STL) format such that it
becomes readable by the COMSOL software. By decreasing the
spatial correlation length, the geometry of a porous medium be-
comes more complicated and the number of points representing
the space of the corresponding porous medium in the point cloud
likewise increases, imposing higher computational costs on the
PIPN system. In this sense, the PIPN capability is validated for a
variety of complexity levels.

Table 1 provides a fraction of sensor points to the total num-
ber of point cloud points (M3/N) as well as the average spatial
distance of sensors from each other (ds). Note that the sensor
locations (see Fig. 2) are sparser than the point cloud (see Fig. 3)
inputs of PIPN. Additionally, the point cloud (see Fig. 3) has a spa-
tially varying density of points with denser points at boundaries
and narrow pore throats.

Generally speaking, since the flow at the wall moves with zero
velocity (i.e., no slip condition), rvelocitywall must have less weights
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Fig. 2. Sensor locations for porous media with the spatial correlation lengths of 1.7 mm, 0.9 mm, and 0.5 mm.
Fig. 3. Point clouds representing porous media with the spatial correlation lengths of 1.7 mm, 0.9 mm, and 0.5 mm.
Table 1
Computational setup for the porous media considered in this study.
Spatial correlation length (lc ) 1.7 mm 0.9 mm 0.5 mm
Number of inquiry points (N) 4231 8727 17661
Number of virtual sensors (M3) 514 458 1120
Rough percentage of observation (i.e., M3/N) 12% 5% 6%
Average spatial distance of sensors (ds) 0.237 mm 0.237 mm 0.16 mm
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compared to other residuals; otherwise, PIPN converges to the
superficial solution of zero everywhere for all the fields. In this
sense, for the porous media under investigation in this study, we
set λ1 = 100 s, λ2 = 100 m3/N, λ3 = 100 m3/N, λ5 = 100 s/m,
6 = 100 m2/N, and λ4 = 1 s/m.
We use the Adam optimizer (Kingma & Ba, 2014) for training

he PIPN configuration and set its associated hyperparameters as
ollows: β1 = 0.9, β2 = 0.999, and ϵ̂ = 10−6. One may refer
o Kingma and Ba (2014) for the definition of these hyperpa-
ameters. Furthermore, a constant learning rate of α = 0.0003
s chosen for all the porous media considered in this research
etter. Training of PIPN is executed until satisfying the condition
f J ≤ 0.0025. Machine learning computations are executed on
TESLA V100 graphic card with a memory clock rate of 1.38 GHz.
o validate predictions of PIPN and generate sparse labeled data
t virtual sensor locations, we employ the COMSOL software
see e.g., Azad, Li, Verba, Ideker, & Isgor, 2016; Jafari, Vahab,
roumand, & Khalili, 2023; Pirnia, Duhaime, Ethier, & Dubé, 2019;
hi, Rui, Xu, Wang, & Wang, 2022) to solve Eqs. (1)–(2) using
finite element method (see e.g., Kashefi, 2020; Kashefi & Sta-
les, 2018). Alternatively, sparse observations can be practically
btained by lab experimental techniques (Bultreys et al., 2022;
arlsons et al., 2022; Sabbagh, Kazemi, Soltani, & Nobes, 2020).
dditionally, grid vertices of the generated finite element meshes
re taken to construct point clouds as the input of PIPN.
Finally, we address two points. First, PIPN was primarily de-

igned for predicting the solutions of desired PDEs on multiple
ets of irregular geometries, simultaneously. In this research;
83
owever, we employ PIPN for predicting the porous medium
lows on a single geometry. Conceptually, one may even use
egular PINNs for this purpose. Nevertheless, Kashefi and Mukerji
2022) showed that PIPN was more stable and required fewer
nquiry points (N) even for training on a single geometry, com-
ared to a regular PINN. These two features reduce computational
osts by default. One may refer to Section 4.1.6 of Kashefi and
ukerji (2022) for a comprehensive comparison between PIPN
nd regular PINNs. Second, the size of PIPN is scalable and can
e conveniently adjusted depending on the size of inquiry points
N). In this study, for example, we use a relatively larger PIPN for
orous media with smaller spatial correlation lengths.

. Results and discussion

.1. General analysis

A visual comparison between the ground truth and the PIPN
rediction for the velocity and pressure fields is made for the
orous media with spatial correlation lengths (lc) of 1.7 mm,
.9 mm, and 0.5 mm respectively in Figs. 4–6. All in all, a good
greement between the prediction and ground truth at the point
loud locations is observed. In all three cases, the maximum local
rrors for the velocity fields happen in the narrowest bottlenecks,
here the flow accelerates. This observation highlights the im-
ortance of conducting precise measurements with a sufficient
umber of sensors in these locations. Technically; however, this
s possible only if the space in the narrowest channels is yet
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Fig. 4. Comparison between the ground truth by COMSOL and the prediction by PIPN for the velocity and pressure fields of the porous medium with the spatial
correlation length of lc = 1.7 mm.
Table 2
Error analysis of the velocity, pressure, and permeability predicted by PIPN for porous media with
three different spatial correlation lengths; The L2 norm is indicated by ∥ · · · ∥ and the absolute norm
is shown by | · · · |.
Spatial correlation length (lc ) 1.7 mm 0.9 mm 0.5 mm
∥u−ũ∥
∥u∥ 1.51927E−1 1.54239E−1 1.79362E−1

∥v−ṽ∥

∥v∥
1.84293E−1 1.47009E−1 1.79883E−1

∥p−p̃∥
∥p∥ 1.63618E−2 7.34894E−3 9.96776E−3

|K−K̃|

|K|
4.21557E−2 8.88220E−3 3.29516E−2

Number of iterations (i.e., epochs) 113141 149819 162145
Wall time per iteration (i.e., epoch) 31.4 s 32.3 s 33.6 s
large enough. Presumably, if this was not the case for a specific
situation, we would suggest a potential technique to handle this
challenge as follows. After obtaining the velocity field predicted
by PIPN, one may use this predicted solution as an initial guess
for a numerical classical solver (e.g., COMSOL) and execute the
solver. Note that because the prediction by PIPN experiences a
low level of errors (as shown in Figs. 4–6) it might only take a
few iterations for the solver to converge with an improvement in
the accuracy of the velocity fields in the narrowest bottlenecks.

The order of accuracy of the velocity fields for all three porous
edia is approximately the same due to the fact that PIPN is
nforced to satisfy the same criterion (i.e., J ≤ 0.0025). Never-

theless, the porous media with shorter spatial correlation lengths
(l ) requires a higher number of iterations due to having a higher
c

84
number of inquiries and more complicated geometry, as listed
in Table 2. Note that the wall time consumed per epoch is ap-
proximately equal for all three porous media under investigation.
This is because the TensorFlow (Abadi et al., 2016) software
constructs the computation graph only once at the beginning of
the training and uses it in the rest of the training for calculations.
In fact, although the computation graph becomes more complex
by decreasing the spatial correlation length, the computation per
iteration (i.e., per epoch) only slightly (a few seconds) enhances,
as TensorFlow (Abadi et al., 2016) simply updates numbers in the
previously constructed graph to calculate the loss value.

To validate more precisely the PIPN performance, we tabulate
the relative pointwise error (L2 norm) of the PIPN prediction in
Table 2. Accordingly, the relative error of the velocity fields is
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Fig. 5. Comparison between the ground truth by COMSOL and the prediction by PIPN for the velocity and pressure fields of the porous medium with the spatial
correlation length of lc = 0.9 mm.
approximately in the range of 15% to 19%. In all the cases, the
predicted velocity fields experience a higher level of errors com-
pared to the pressure one due to the fact that the pressure simply
linearly decreases in the x-direction, whereas the velocity pattern
is more complicated. Additionally, the velocity vector is involved
in both the mass and momentum balances, while the pressure
only plays a role in the momentum equation (Eq. (2)). According
to Table 2, the relative error of the obtained permeability (see
Eq. (3)) of the porous media as a result of the predicted velocity
field is less than 5% for all three cases. Note that the average
spatial distance of sensors from each other (ds) indicates the level
of information that we observe for each porous medium. For
the porous media with lc = 1.7 mm and lc = 0.9 mm, ds =

0.237 mm, while for the porous medium with lc = 0.5 mm, ds =

0.16 mm. Hence, we observe more information for the medium
with lc = 0.5 mm compared to the two others. As mentioned
earlier, these reported ds are the maximum possible distance for
satisfying the convergence criterion in PIPN (i.e., J ≤ 0.0025).

3.2. Effect of sparse pressure observations

Next, we investigate the influence of the pressure observation
on the prediction accuracy of PIPN. This investigation is important
and critical because sparse observations of the pressure field may
not be available for various reasons such as technical difficulties
or expensive lab experiments. To this end, we modify the loss
85
function by dropping the pressure observation residual rpressureobs ,
in the loss function yielding

J = λ1rcontinuity + λ2rmomentumx + λ3rmomentumy + λ4rvelocitywall

+λ5rvelocityobs .

(12)

Similar to the previous subsection, we set λ1 = 100 s, λ2 =

100 m3/N, λ3 = 100 m3/N, λ5 = 100 s/m, and λ4 = 1 s/m. We
carry out this machine learning experiment for the porous media
with the spatial correlation length of lc = 1.7 mm, lc = 0.9 mm,
and lc = 0.5 mm; and the outcomes are tabulated in Table 3.

For example, let us discuss the results obtained for the porous
medium with the spatial correlation length of lc = 1.7 mm.
As a consequence of this modification, the relative error of the
predicted velocity field in the x and y directions and the predicted
pressure field become 1.43444E−1, 1.71549E−1, and 1.25499,
respectively. We observe that although the relative error of the
predicted pressure field increases enormously (by 667.024%), the
accuracy of the predicted velocity field remains approximately
unchanged. A similar observation has been reported by Kashefi
and Mukerji (2022) for the natural convection problem. Reasons
for this evidence have been articulated in detail both from applied
mathematics and machine learning perspectives in Section 4.2.1
of Kashefi and Mukerji (2022). But in a nutshell, it can be ex-
plained as follows. PIPN is able to preserve the accuracy of the
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Fig. 6. Comparison between the ground truth by COMSOL and the prediction by PIPN for the velocity and pressure fields of the porous medium with the spatial
correlation length of lc = 0.5 mm.
Table 3
Investigation of the effect of the absence of the pressure measurements in the loss function (see
Eq. (12)) and the resulting relative errors of the velocity, pressure, and permeability predicted by
PIPN for porous media with three different spatial correlation lengths; The L2 norm is indicated by
∥ · · · ∥.
Spatial correlation length (lc ) 1.7 mm 0.9 mm 0.5 mm
∥u−ũ∥
∥u∥ 1.43444E−1 1.99840E−1 1.99135E−1

∥v−ṽ∥

∥v∥
1.71549E−1 1.87410E−1 1.84841E−1

∥p−p̃∥
∥p∥ 1.25499 7.05858E−1 6.64332E−1

Number of iterations (i.e., epochs) 15519 32601 41426
Wall time per iteration (i.e., epoch) 30.9 s 31.5 s 33.4 s
f
w

t
f
p

3

t
t

pressure gradient in the absence of pressure observations in the
Stokes equations (Eqs. (1)–(2)). This feature of PIPN relies on the
fact that pressure is an implicit variable in the steady Stokes
equations (Timmermans, Minev, & Van De Vosse, 1996). Similar
information can be observed and realized for the porous media
with the spatial correlation length of lc = 0.9 mm and lc =

.5 mm, as can be inferred in Table 3.
By comparing the information presented in Tables 2 and 3,

he number of required iterations (i.e., epochs) for convergence
atisfaction decreases for the current test cases. This is because
he PIPN loss function becomes less restricted by dropping the
ressure observation residual (rpressureobs ) from the loss function.
dditionally, since the pressure term is omitted from the PIPN
oss function, the computation graph associated with the loss
 f

86
unction becomes slightly less complex, and consequently, the
all time expended per iteration (i.e., epoch) slightly lessens.
All in all, the outputs discussed in this subsection show that

he PIPN methodology successfully reliably predicts the velocity
ields of the porous media even in the absence of the sparse
ressure data.

.3. Effect of noisy data

Sensor measurements are usually polluted by noises. To mimic
his scenario, for instance, we add 5% random Gaussian noise
o the velocity and pressure observations at all sensor locations
or the porous media with the spatial correlation length of l =
c
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Table 4
Error analysis of the velocity, pressure, and permeability predicted by PIPN for porous media with
three different spatial correlation lengths when the observed data is polluted with 5% Gaussian
noise; The L2 norm is indicated by ∥ · · · ∥.
Spatial correlation length (lc ) 1.7 mm 0.9 mm 0.5 mm
∥u−ũ∥
∥u∥ 1.76658E−1 2.04158E−1 2.03771E−1

∥v−ṽ∥

∥v∥
1.97164E−1 2.16941E−1 1.88708E−1

∥p−p̃∥
∥p∥ 2.04703E−2 2.58180E−2 2.30487E−2

Number of iterations to reach a plateau 212401 240231 230171
Fig. 7. Relative pointwise error (L2 norm) as a function of the average spatial distance of sensors (ds) for the porous media with the spatial correlation lengths (lc )
of 17 mm, 9 mm, and 5 mm.
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1.7 mm, lc = 0.9 mm, and lc = 0.5 mm. The results and error
analysis are tabulated in Table 4.

As can be realized from the information of Table 4, the error
of the predicted velocity and pressure field increases as a result
of adding noise to the sparse data. For example, considering
the porous medium with the spatial correlation length of lc =

.7 mm, the relative pointwise error (L2 norm) of the predicted
component of the velocity, v component of the velocity, and
ressure fields become respectively 2.04158E−1, 2.16941E−1,
nd 2.58180E−2, indicating 16.278%, 6.983%, and 25.110% in-
rease compared to the results obtained with noise-free data (see
ables 2 and 4).
Due to the presence of noise, the PIPN loss function is unable

o satisfy the convergence criterion (i.e., J ≤ 0.0025) and this
s why the PIPN predictions come with a higher level of errors
ompared to the deep learning experiment with the noise-free
ata (see Tables 2 and 4). In practice, we continue the training
rocedure until the loss value reaches a plateau. The correspond-
ng number of iterations for each porous medium is listed in
able 4. By comparing Tables 2 and 4, it is realized that the
umber of iterations for reaching even a plateau (in the case of
he noisy data) is greater than the number of required iterations
or satisfying the convergence criterion (in case of the clean data),
emonstrating that the noisy data demands more computational
osts for the PIPN deep learning solver. Having said that, the
elative pointwise error (L2 norm) is less than approximately 22%
or the velocity and pressure variables for all the porous media
entioned in Table 4. By and large, it is concluded that the PIPN
ethodology is robust even in the presence of noisy sensor data
bserved in the porous media.

.4. Effect of the average spatial distance of sensors

In this section, the effect of the average spatial distance of
ensors (ds) on the PIPN prediction accuracy is investigated. To
his end, we plot the relative pointwise error (L2 norm) as a
unction of ds for the porous media with the spatial correlation
ength of l = 17 mm, l = 9 mm, and l = 5 mm in Fig. 7. As can
c c c

87
e observed in Fig. 7, by increasing ds (i.e., decreasing the number
f sensors), the relative pointwise error (L2 norm) increases. For
nstance, by increasing ds from 0.237 mm to 0.534 mm in the
orous medium with the spatial correlation length (lc) of 17 mm,
he relative pointwise error (L2 norm) of the velocity in the x
irection, the velocity in the y direction, and the pressure field
pproximately increases by 270%, 212%, and 132%. In fact, the
esults shown plotted in Fig. 7 reflects the importance of the role
f sparse observations in the accuracy of the PIPN outputs.
Now, the question is by increasing ds how the prediction error

patially grows in the porous medium domain? To answer this
uestion, we show the absolute pointwise errors of the velocity
nd pressure fields predicted by the PIPN methodology for dif-
erent values of ds, for example, for the porous media with the
patial correlation length (lc) of 17 mm and 9 mm, respectively,
n Figs. 8 and 9. Furthermore, the sensor locations associated with
ach ds are exhibited in Figs. 8 and 9. In all the cases, maximum
ocal errors happen in areas where the fluid flows, specifically
ith higher accelerations. By increasing ds (i.e., decreasing sensor
umbers), both the absolute value of the pointwise errors as
ell as the spatial areas polluted with significant errors in the
orous media increase. After performing this machine learning
xperiment, at the first glance, it seems that one should set more
ensors in the area where fluid flows and accelerates. However,
he issue with this strategy is that these specific areas are un-
nown to us before executing the PIPN solver. Consequently, it
s reasonable to spread the sensors at equal distances from each
ther throughout the entire space of a porous medium of interest.

. Conclusions and future directions

In this research letter, we applied PIPN (Kashefi & Mukerji,
022) as an innovative physics-informed deep learning strategy
or the prediction of the velocity and pressure fields of two-
imensional steady incompressible flows in porous media, while
nly a sparse scattered set of labeled data were observed. Using
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Fig. 8. Absolute pointwise error of the velocity and pressure fields predicted by PIPN for the porous medium with the spatial correlation length (lc ) of 17 mm when
he average spatial distance of sensors (ds) is 0.290 mm, 0.376 mm, and 0.534 mm. The solution by COMSOL is considered as the reference ground truth to compute
he absolute pointwise error.
IPN, first, we lessened the required computational memories
y not taking the grain spaces of porous media into the ma-
hine learning framework. Second, the point cloud allowed us to
epresent the geometry of pore spaces of porous media more real-
stically. Third, we had the freedom to vary the spatial resolution
f pores spaces to optimize the computational costs. Specifically,
he effect of noisy sensor data, pressure observations, and spatial
orrelation lengths was investigated through visual results and
uantitative error analysis.
One of our outlook projects is the extension of PIPN to three-

imensional and multiphase flows in porous media. More specifi-
ally, there are currently serious challenges for three-dimensional
88
modeling (e.g., see Saxena et al., 2017). By switching to a three-
dimensional space, the number of points (N) in point clouds
of porous media significantly increases and it leads to more
complicated and lengthier computation graphs in PIPN, requiring
larger GPU memories and longer wall clock time for running the
PIPN platform. Additionally, it is conjectured that the accuracy
of predictions by PIPN may be more sensitive to the number
of sensors and the spatial distribution of sensors for the in-
verse problem in a three-dimensional space. One approach to
overcome these barriers is to moderate the associated compu-
tational costs via parallel computing and domain decomposition
techniques (Shukla, Jagtap, & Karniadakis, 2021).
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Fig. 9. Absolute pointwise error of the velocity and pressure fields predicted by PIPN for the porous medium with the spatial correlation length (lc ) of 9 mm when
he average spatial distance of sensors (ds) is 0.290 mm, 0.376 mm, and 0.534 mm. The solution by COMSOL is considered as the reference ground truth to compute
he absolute pointwise error.
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• Developer and contact address: Ali Kashefi (kashefi@stanford
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• Year first available: 2022
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• Program size: 600 lines
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