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Abstract. This work introduces a moving anchor acceleration technique to extragradient
algorithms for smooth structured minimax problems. The moving anchor is introduced
as a generalization of the original algorithmic anchoring framework, i.e. the EAG method
introduced in [32], in hope of further acceleration. We show that the optimal order of con-
vergence in terms of worst-case complexity on the squared gradient, O(1/k2), is achieved
by our new method (where k is the number of iterations). We have also extended our
algorithm to a more general nonconvex-nonconcave class of saddle point problems using
the framework of [14], which slightly generalizes [32]. We obtain similar order-optimal
complexity results in this extended case. In both problem settings, numerical results illus-
trate the efficacy of our moving anchor algorithm variants, in particular by attaining the
theoretical optimal convergence rate for first order methods, as well as suggesting a bet-
ter optimized constant in the big O notation which surpasses the traditional fixed anchor
methods in many cases. A proximal-point preconditioned version of our algorithms is also
introduced and analyzed to match optimal theoretical convergence rates.

1. Introduction

Minimax, min-max, or saddle point problems of the form

min
x∈Rn

max
y∈Rm

L(x, y) (1.1)

have received considerable attention from optimization researchers and, in particular, ma-
chine learning practitioners because of applications including but not limited to Game The-
ory, Online Learning, GANs [9], [3], adversarial learning [18], and reinforcement learning
[7]. Measuring the duality gap supy∗∈Rm L(x, y∗)− infx∗∈Rn L(x∗, y) on averaged (ergodic)
iterates or last-iterates of algorithms is one natural way to measure the suboptimality of
methods designed to solve (1.1). This is a clear analog to measuring suboptimality for algo-
rithms for minimization problems. On the other hand, such a measurement is not as natural
to consider when (1.1) is nonconvex-nonconcave, and as will be discussed, the convergence
guarantees for this kind of measure may be limiting.

When problem (1.1) is differentiable, another meaningful measure of suboptimality is
the squared gradient norm or Hamiltonian of L, HamL(x, y) = ∥∇L(x, y)∥2. (Sometimes
this includes an extra factor of 1

2 , which is not included in this paper. No physical in-
terpretation of this quantity is used here.) This suboptimality measure retains meaning
for nonconvex-nonconcave problems and convergence rates on the squared gradient-norm
have only recently attained order-optimal convergence rates in these problem settings. This
is especially important, as many machine learning settings involve neural networks which
result in problems that are inherently nonconvex-nonconcave - and as our results indicate,
there may still be room for numerical improvements.

The EAG (extra-anchored gradient) class of algorithms, first introduced in [32], combines
extragradient and the more recently developed anchoring methods in a single framework
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to tackle smooth-structured convex-concave minimax problems. With the primary assump-
tions being R−smoothness and convexity-concavity of (1.1), EAG achieved O(1/k2) =
Ω(1/k2) convergence rates on the squared gradient-norm; that is, the algorithm is order-
optimal. This achievement has inspired a flurry of research activity in recent years [13], [28],
[32]. To show optimality, the authors of [32] adapt arguments from [21], [22] to construct a
worse-case analysis for a large class of algorithms that contain EAG.

As anchoring is relatively new compared to extragradient, much of the literature written
as a direct consequence of these results emphasizes anchoring and other Halpern adjacent
techniques [15], [30], [29]. However, the EAG class is not without limitations. The two
sub-variants of EAG, EAG-V with varying step-size and EAG-C with constant step-size,
have difficult convergence analyses and are both relegated to the convex-concave class of
smooth functions. Addressing some of these issues, the authors of [14] introduced the Fast
ExtraGradient Method, or FEG. This method generalizes the results of EAG and EG+
[6] to introduce the order-optimal pairing of the extragradient anchor to the setting of
certain nonconvex-nonconcave problems (specifically, negative comonotone) and introduces
an analysis dependent on terms that are less difficult to work with. Furthermore, their work
improves upon the bounding constant attained in EAG in convex-concave problems while
retaining optimal convergence rates for a broader class of problems that are of particular
importance to machine learning practitioners, among many others.

In the spirit of these previous works, our contributions are as follows.

(1) We introduce a new technique, the ‘moving anchor,’ into the algorithmic settings
of EAG-V and FEG under minimal assumptions. We demonstrate that in both
settings, introducing the moving anchor retains order-optimal O(1/k2) convergence
rates across a range of parameter choices that using the moving anchor gives one
access to. One may recover the original fixed-anchor algorithms via parameter
tuning, so our algorithms generalize much of the current anchoring literature.

(2) For both the EAG-V moving anchor and the FEG moving anchor, we run a variety of
numerical examples by comparing multiple versions of our moving anchor algorithms
with their fixed anchor counterparts. These numerical examples demonstrate the
efficacy of our algorithm, as in all cases, a moving anchor algorithm variant in each
example is the fastest algorithm by a constant or is comparable-to-better for all
iterations. In addition, in many cases the fastest moving anchor algorithm appears
to have a massive initial oscillation towards the fixed point that the fixed point
algorithms seem to lack - this may be beneficial for reaching certain stopping criteria
very quickly.

(3) We develop a theoretical version of the moving anchor algorithms (in both the
convex-concave EAG-V and nonconvex-nonconcave FEG) with a proximal anchoring
step with fruitful implications for future research.

2. Literature Review & Preliminaries

2.1. Halpern iteration and anchoring.
Introduced in 1967 and inspired by Browder’s classical fixed point theorem, the Halpern

iteration [11] is an algorithm built for approximating fixed point(s) of nonexpanding maps
in a Hilbert space. Its convergence has been studied in [16], and it is extensively used in
monotone inclusion-type problem settings [5], [30], [2]. A recent paper [29] draws an explicit
connection between Halpern-inspired methods and Nesterov’s AGM [23], linking two very
active strains of acceleration literature.

Directly inspired by Halpern, algorithmic anchoring was recently introduced in the lit-
erature [27] and has since been utilized to establish optimal O(1/k2) convergence rates for
smooth-structured convex-concave minimax problems [32]. Since then, these methods have
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been extended to the nonconvex-nonconcave, negative comonotone problem setting [14] and
analogous settings for composite problems in a multi-step framework [15]. Interestingly, this
latter framework introduces ‘semi’-anchoring, where only one part of the descent-ascent step
is anchored, and a unique anchor occurs at each step of the multi-step. To our knowledge,
this is the first instance of an anchoring method that goes beyond a single fixed anchor. In
[30], the authors develop an anchored Popov’s scheme and a splitting version of the EAG
developed in [32], with a similar analysis.

2.2. Extragradient methods. The extragradient method first appeared in [12] and has
since been an important acceleration method extensively studied in the optimization litera-
ture [1], [31], [17], especially in the context of generative adversarial networks [9], [3] and ad-
versarial training [18]. A classical result regarding these methods is that if X ∈ Rn, Y ∈ Rm

are compact domains, then for the duality gap maxy∗∈Y L(x, y∗) − minx∗∈X L(x∗, y), the
ergodic iterate of extragradient-type methods [19], [24] have an O(1/k) rate, which is order-
optimal [25], [20]. Recently, it was shown that the last iterate convergence rate for ex-
tragradient also attains O(1/k) convergence [10], with only monotonicity and Lipschitz
assumptions. This closes the gap between the last-iterate and ergodic-iterate convergence
rates for extragradient discussed in [8]. Another recent interesting result was attained in
[6], where the authors developed the Extragradient+ method, a variant of extragradient
extended to various nonconvex-nonconcave problem settings.

On the other hand, when the problem at hand has certain smoothness properties, the
squared gradient norm ∥∇L∥2 for extragradient-type algorithms recently achieved order-
optimal convergence of O(1/k2) [32], [14], thanks in part to the synthesis with anchoring.
This breaks the bound of the SCLI class of algorithms discussed in [8], which contains
the unmodified extragradient, because EAG is not SCLI, but specifically 2-CLI or in an
extended class of 1-CLI algorithms. See Appendix D.2 of [32] for a best-iterate (NOT last
iterate, at the time of writing this quantity doesn’t seem to be known) convergence analysis
of extragradient and Appendix E of [32] and [8] for more details on the relationships between
these classes of algorithms. We conclude this discussion by remarking that for smooth
problems, the bound on the squared gradient norm is meaningful in nonconvex-nonconcave
problem settings, and as demonstrated in this and recent works, has room for numerical
improvement.

2.3. Preliminaries. A saddle function L : Rn × Rm → R is (non)convex-(non)concave if
it is (non)convex in x for any fixed y ∈ Rm and (non)concave in y for any fixed x ∈ Rn.
A saddle point (x̂, ŷ) ∈ Rn × Rm is any point such that the inequality L(x̂, y) ≤ L(x̂, ŷ) ≤
L(x, ŷ) for all x ∈ Rn and y ∈ Rm. Solutions to (1.1) are defined as saddle points.

Throughout this paper, we assume the differentiability of L, and we are especially inter-
ested in the so-called saddle operator associated to L,

GL(z) =

[
∇xL(x, y)
−∇yL(x, y)

]
(2.1)

where the L subscript is omitted when the underlying saddle function is known. When
our problem is convex-concave, the operator (2.1) is known to be monotone [26], meaning
⟨GL(z1) − GL(z2), z1 − z2⟩ ≥ 0 ∀z1, z2 ∈ Rn × Rm. We assume that this operator GL is
R-Lipschitz, or has certain stronger Lipschitz properties we detail later; this is sometimes
referred to as L being R-smooth. With these properties in mind, one may introduce an
assumption that generalizes monotonicity: let ρ ∈ (− 1

2R ,+∞). In this paper, we assume
that when GL is not monotone, it satisfies

⟨GL(z1)−GL(z2), z1 − z2⟩ ≥ ρ∥GL(z1)−GL(z2)∥2 ∀z1, z2 ∈ Rn × Rm.
3



When ρ > 0, this is called co-coercivity; when ρ = 0, this recovers monotonicity; when
ρ < 0, this is called negative comonotonicity. This latter condition on (2.1) allows one
to consider certain nonconvex-nonconcave problems L, and is also going to be a central
focus of this work. Note, however, that these assumptions need not cover all smooth
nonconvex-nonconcave problems of interest. Figure 1, Table 1, and Example 1 of [14] illus-
trate broader problem classes than negative comonotonicity that retain smoothness while
being nonconvex-nonconcave.

Finally we state that although ∇L ̸= GL, we have ∥∇L∥ = ∥GL∥, so we may use these
expressions interchangeably.

3. Original Algorithm, EAG-V

The Extragradient Anchored Algorithm, or EAG with varying step size (EAG-V) has a
simple statement and a relatively simple proof of convergence:

zk+1/2 = zk + βk(z
0 − zk)− αkG(zk)

zk+1 = zk + βk(z
0 − zk)− αkG(zk+1/2)

αk+1 =
αk

1− α2
kR

2

(
1− (k + 2)2

(k + 1)(k + 3)
α2
kR

2

)
= αk

(
1− 1

(k + 1)(k + 3)

α2
kR

2

1− α2
kR

2

)
with α0 ∈ (0, 1/R), and R a predetermined constant. Here, G is the so-called saddle

operator, G := (∇xL,−∇yL) and L is a convex-concave saddle function in a minimax
optimization problem. It is a nontrivial fact that G is monotone [32]. The structure of the
αk’s and βk’s are detailed below alongside auxiliary sequences Ak and Bk. We state the
convergence of this algorithm as a theorem and relay the details of its convergence via a
specific Lyapunov functional as a lemma. For more details, including a version of EAG with
a non-varying step size, see [32].

Theorem 3.1 (EAG-V convergence rate [32]). Assume L : Rn × Rm → R is an R-smooth
convex-concave function with a saddle point z∗. Assume further that α0 ∈ (0, 3

4R) and define
α∞ = limk→∞ αk. Then EAG-V converges, with rate

||∇G(zk)||2 ≤ 4(1 + α0α∞R2)

α2
∞

||z0 − z∗||2

(k + 1)(k + 2)

where G = (∇L|x∈Rn ,−∇L|−y∈−Rm).

Since z∗ is the saddle point, this theorem demonstrates O(1/k2) convergence of the
algorithm. To derive this order of convergence, the following lemma is necessary.

Lemma 3.2 (EAG Lyapunov Functional [32]). Let {βk}k≥0 ⊆ (0, 1) and α0 ∈ (0, 1
R) be

given. Consider the following sequences defined by the given recurrence relations for k ≥ 0 :

Ak =
αk

2βk
Bk

Bk+1 =
Bk

1− βk

αk+1 =
αkβk+1(1− α2

kR
2 − β2

k)

βk(1− βk)(1− α2
kR

2)
(3.1)
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where B0 = 1. Assume that αk ∈ (0, 1
R) holds for all k ≥ 0, and that L is R−smooth and

convex-concave. Then the sequence {Vk}k≥ defined as

Vk := Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z0⟩ (3.2)

is non-increasing.

Within (3.2), choosing βk = 1
k+2 yields Bk = k + 1, Ak = αk(k+2)(k+1)

2 , and the construc-

tion of αk+1 in (3.1).

4. EAG-V with moving anchor

In this section, we construct and analyze a new version of the EAG-V algorithm. Here,
the anchoring point moves at each time step. We call this the moving anchor algorithm;
it utilizes a similar extragradient step. Further down, we demonstrate comparable rates of
convergence to the original EAG algorithm with varying step-size.

For the k − th iterate of z0 ∈ Rn × Rm, the EAG-V with moving anchor is defined as

z0 = z̄0

zk+1/2 = zk +
1

k + 2
(z̄k − zk)− αkG(zk) (4.1)

zk+1 = zk +
1

k + 2
(z̄k − zk)− αkG(zk+1/2) (4.2)

z̄k+1 = z̄k + γk+1G(zk+1) (4.3)

The major structural difference here is the introduction of the regularly-updating z̄k,
analogous to the role of z0 in the EAG-V detailed in the previous section. (4.3) is the regular
update for this anchor; it depends on the algorithm update (4.2) rather than exclusively on
itself. All previously defined terms are the same as in the fixed anchor algorithm, now with

ck+1 ≤
ck

1 + δk
, (4.4)

γk+1 ≤
Bk+1

ck+1(1 +
1
δk
)
. (4.5)

We choose δk so that

∞∑
k=0

log(1 + δk) < ∞. The ck terms are part of the definition of the

Lyapunov functional we use in our analysis; these come in handy when we use γk to absolve
terms. Let c∞ := limk→∞ ck = c0

∏∞
k=0

1
1+δk

. As a general rule, one wishes to choose c0
so that c∞ satisfies some specified convergence constraint; these constraints will appear
throughout the major convergence theorems in this section and the next section. While the
choice of c0 is therefore limited to according to certain problem/algorithm constraints, in
general there seems to be much freedom in choosing c0 and the sequence {δk}. For the rest
of this article, we take (4.4) and (4.5) to be given with equal signs instead of inequalities.
Before we proceed with the analysis, we emphasize that the original EAG-V algorithm may
be recovered simply by setting γk+1 := 0 for all k.

Now, we give the definition of the Lyapunov functional and show that it is nonincreasing:

Lemma 4.1. The Lyapunov functional

Vk := Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩+ ck∥z∗ − z̄k∥2,

where all constants have been previously defined, is nonincreasing.
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Proof. First we reorganize some of the algorithm statements and label them for use later.

zk − zk+1 = βk(z
k − z̄k) + αkG(zk+1/2) (4.6)

zk+1/2 − zk+1 = αk(G(zk+1/2)−G(zk)) (4.7)

z̄k − zk+1 = (1− βk)(z̄
k − zk) + αkG(zk+1/2) (4.8)

z̄k − z̄k+1 = −γk+1G(zk+1) (4.9)

(4.6) comes from rearranging (4.2), (4.7) comes from taking the difference between (4.1)
and (4.2), (4.8) is z̄k minus (4.2), and (4.9) is (4.3) rearranged. The overall goal of this
proof is to show that the difference Vk − Vk+1 is nonnegative.

Vk − Vk+1

≥Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2+Bk⟨zk − z̄k, G(zk)⟩︸ ︷︷ ︸
I

−Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩︸ ︷︷ ︸
II

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

−Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩︸ ︷︷ ︸

III

Notice that the last term above, III, is not part of the definition of Vk nor Vk+1. It has been
introduced to aid in the proof and is nonnegative by the monotonicity of G. We would like
to absolve any terms containing the z̄k, z̄k+1 terms. To accomplish this, our next goal is to
focus on turning the labeled parts (I, II, III) of the above line into

αkBk+1⟨G(zk+1/2, G(zk+1)⟩+ Bk+1

γk+1
∥z̄k − z̄k+1∥2 − αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩︸ ︷︷ ︸

IV

.

We now detail this process. The term I does not change. For II, on the other hand, we have

−Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩︸ ︷︷ ︸
II

= Bk+1⟨z̄k − zk+1, G(zk+1)⟩ −Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩ (4.10)

= Bk+1⟨(1− βk)(z̄
k − zk) + αkG(zk+1/2), G(zk+1)⟩ −Bk+1⟨−γk+1G(zk+1), G(zk+1)⟩

(4.11)

where the first equality comes from recognizing zk+1 − z̄k+1 = zk+1 − z̄k + z̄k − z̄k+1 and
the second comes from substituting in equality (4.8) and (4.9). For III,

−Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩︸ ︷︷ ︸

III

= −Bk

βk
⟨zk − zk+1, G(zk)⟩+ Bk

βk
⟨zk − zk+1, G(zk+1)⟩ (4.12)

= −Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk)⟩+ Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk+1)⟩,
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where the last equality is a result of substituting in (4.6) in each of the first arguments of
the two terms in (4.12). Now, we can begin simplify everything we’ve done to obtain IV.

⟨zk − z̄k, G(zk)⟩︸ ︷︷ ︸
I

(4.13)

⟨(1− βk)(z
k − z̄k)− αkG(zk+1/2)− γk+1G(zk+1), G(zk+1)⟩︸ ︷︷ ︸

II

(4.14)

−Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk)⟩︸ ︷︷ ︸

III

(4.15)

+
Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk+1)⟩︸ ︷︷ ︸

III

(4.16)

From here, we’ll use two facts. First, Bk+1 = Bk
1−βk

. This allows us to combine and cancel

the very first component of (4.14) with the βk(z
k − z̄k) component of (4.16). Additionally,

(4.13) cancels with the βk(z
k − z̄k) component of (4.15). This leaves us with

=αkBk+1⟨G(zk+1/2), G(zk+1)⟩+Bk+1⟨γk+1G(zk+1), G(zk+1)⟩︸ ︷︷ ︸
II

−Bkαk

βk
⟨G(zk+1/2), G(zk)⟩+ Bkαk

βk
⟨G(zk+1/2), G(zk+1)⟩︸ ︷︷ ︸

III

=αkBk+1⟨G(zk+1/2), G(zk+1)⟩+ Bk+1

γk+1
∥z̄k − z̄k+1∥2︸ ︷︷ ︸

IV

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩︸ ︷︷ ︸

IV

,

where the last equality is a result of applying the anchor update to get the norm squared
term, and combining the latter two terms while leaving G(zk+1/2) fixed.

Thus, we’ve shown

Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2

+Bk⟨zk − z̄k, G(zk)⟩ −Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2 − Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩

=Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩ (4.17)

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩ (4.18)

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2 + Bk+1

γk+1
∥z̄k − z̄k+1∥2 (4.19)

Now, we continue on with our goal of absolving terms. From Cauchy, we have that

||z∗ − z̄k+1∥2 ≤ (1 + δk)∥z∗ − z̄k∥2 + (1 +
1

δk
)∥z̄k − z̄k+1∥2 (4.20)
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and from the algorithm definition,

ck+1 =
ck

1 + δk
, γk+1 =

Bk+1

ck+1(1 +
1
δk
)
. (4.21)

We apply (4.20) to (4.19) to obtain

≥Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩+ ck∥z∗ − z̄k∥2

−ck+1

(
(1 + δk)∥z∗ − z̄k∥2 + (1 +

1

δk
)∥z̄k − z̄k+1∥2

)
+

Bk+1

γk+1
∥z̄k − z̄k+1∥2

and now we apply (4.21):

≥Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩+ ck∥z∗ − z̄k∥2

−ck∥z∗ − z̄k∥2 − Bk+1

γk+1
∥z̄k − z̄k+1∥2 + Bk+1

γk+1
∥z̄k − z̄k+1∥2

=Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩+ 0.

At this point, showing that the remaining terms are nonnegative is nontrivial, but directly
follows the arguments made in the proof of Lemma 2 in [32]. Specifically, following (29)
onwards in [32], one will find that

Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩

≥ 0,

which completes the proof. □

Now we have the primary result of this section.

Theorem 4.2. The EAG-V algorithm with moving anchor, described above, together with
the Lyapunov functional described in Lemma 4.1, has convergence rate

∥G(zk)∥2 ≤ 4(α0R
2 + c0)∥z0 − z∗∥2

α∞(k + 1)(k + 2)

as long as we assume c∞α∞ ≥ 1.

Proof. For the most part, this argument parallels the analogous argument found in [32].
We use the Lyapunov functional to isolate and bound ∥G(zk)∥2.

Vk ≤ V0 = α0∥G(z0)∥2 + c0∥z0 − z∗∥2 (4.22)

≤ (α0R
2 + c0)∥z0 − z∗∥2
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by R−smoothness. On the other hand,

Vk = Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩+ ck∥z∗ − z̄k∥2

≥ Ak∥G(zk)∥2 +Bk⟨G(zk), z∗ − z̄k⟩+ ck∥z∗ − z̄k∥2

≥ Ak

2
∥G(zk)∥2 + (ck −

B2
k

2Ak
)∥z∗ − z̄k∥2

=
αk(k + 1)(k + 2)

4
∥G(zk)∥2 + (ck −

k + 1

αk(k + 2)
)∥z∗ − z̄k∥2

≥ α∞
4

(k + 1)(k + 2)∥G(zk)∥2 + (c∞ − 1

α∞
)∥z∗ − z̄k∥2

≥ α∞
4

(k + 1)(k + 2)∥G(zk)∥2

As long as c∞ ≥ 1
α∞

, the second to last line above is positive, and we may focus on the
inequality given to us by the last line above:

α∞
4

(k + 1)(k + 2)∥G(zk)∥2 ≤ (α0R
2 + c0)∥z0 − z∗∥2.

Dividing both sides by the constant α∞
4 (k + 1)(k + 2) gives the desired result. □

4.1. Proof of convergence for −γk. We next show that, for a slightly restricted choice
of γk, our proof works for −γk in place of γk. This is of interest as numerical results indicate
that certain problem settings favor −γk in terms of convergence speed by a constant, while
+γk seems to be favored in other settings.

Lemma 4.3. In the setting of Lemma 4.1, replace γk with −γk in the definition of the EAG-

V algorithm with moving anchor, and suppose γk+1 = min
Bk+1

ck+1(1 +
1
δk
)
,

ek+1

2Bk+1∥G(zk+1)∥2
,

where
∑

ek < ∞. Then our Lyapunov functional is nonincreasing, and we attain the same
order of convergence in our algorithm.

Proof. First, note that the anchor update (4.3) has been modified to become

−γk+1 ≥ − Bk+1

ck+1(1 +
1
δk
)
, (4.23)

resulting in the following modification to (4.9):

z̄k − z̄k+1 = γk+1G(zk+1). (4.24)

We see the first adjustment in the previous lemma in the transition from line (4.10) to
(4.11); note that we focus only on the terms dependent on (4.24):

−Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩

= −Bk+1⟨γk+1G(zk+1), G(zk+1)⟩

= −Bk+1⟨(2γk+1 − γk+1)G(zk+1), G(zk+1)⟩

= −Bk+1⟨2γk+1G(zk+1), G(zk+1)⟩+Bk+1⟨γk+1G(zk+1), G(zk+1)⟩. (4.25)

The latter term in line (4.25) will go on and cancel in a quadratic form as in the proof of the
original lemma. Continuing, one will be left over with the term−Bk+1⟨2γk+1G(zk+1), G(zk+1)⟩.

At this point, if we proceed as in Lemma 4.1, we end up with the inequality

Vk − Vk+1 ≥ −2γk+1Bk+1∥G(zk+1)∥2

or, after rearranging,

Vk − Vk+1 + 2γk+1Bk+1∥G(zk+1)∥2 ≥ 0.
9



By construction, the left-hand side of the inequality should remain nonnegative. Now,
because

γk+1 ≤
ek+1

2Bk+1∥G(zk+1)∥2
,

when we proceed as in the proof of Theorem 4.2 to show convergence, getting to the line
(4.22), we get the inequality

Vk ≤V0 +
k−1∑
j=1

2γjBj∥G(zj)∥2

≤V0 +
k−1∑
j=1

ej

≤V0 +
∞∑
j=1

ej

=CV0,

where C is a constant. This completes the proof that our algorithm has both a nonincreasing
Lyapunov functional and the O(1/k2) convergence under the assumption of a (slightly
restricted) negative γk term. □

It is worth noting that zk+1 is computed before γk+1 within the algorithm, so the re-
striction in Lemma 4.3 and others like it may not be too restrictive to work with. Our
toy numerical tests allowed us to simply put a negative sign in front of the γk terms to
attain convergence matching the optimal rate, and which is in some cases markedly faster.
Unfortunately, these results do not give much of an indication as to how exactly the tuning
of γk benefits numerical convergence rates. We leave the theoretical exploration of this
phenomena to future work.

5. Moving anchor in nonconvex/nonconcave minmax problems

In [14], the methods in [32] are expanded to a broader class of smooth structured
nonconvex-nonconcave minimax problems at the same accelerated O(1/k2) convergence
rate. This new algorithm is called the FEG, or Fast ExtraGradient method. We bring the
idea of the moving anchor to this more general setting, and show that a moving anchor with
more or less the same conditions in the convex-concave setting is also a feasible approach
in this class of problems. Below we give the explicit definition of this FEG modified via a
moving anchor, and state its convergence results via a nonincreasing Lyapunov functional
and a theorem bounding the squared gradient norm.

The FEG with moving anchor, following [14], is given as

zk+1/2 = zk + βk(z̄
k − zk)− (1− βk)(αk + 2ρk)G(zk)

zk+1 = zk + βk(z̄
k − zk)− αkG(zk+1/2)− (1− βk)2ρkG(zk)

z̄k+1 = z̄k + γk+1G(zk+1)

ck+1 =
ck

1 + δk

γk+1 =
Bk+1

ck+1(1 +
1
δk
)

10



where {δk} is chosen so that

∞∑
i=0

log(1 + δi) < ∞, with {γk}, {ck}, and c∞ chosen in the

same method given in the EAG-V with moving anchor, and, as before, z̄0 = z0. Before we
state the results, two remarks are needed:

Remark 5.1. For some ρ ∈
(
− 1

2R ,∞
)
, ⟨G(z)−G(z′), z − z′⟩ ≥ ρ∥G(z)−G(z′)∥2 ∀z, z′ ∈

Rm × Rn. (Note z, z′ are vectors, not matrices.) This is known as ρ−comonotonicity, and
has three sub-conditions. For ρ > 0, we have cocoercivity; for ρ = 0, we have monotonicity;
and with ρ < 0 we have (negative) comonotonicity. This condition will hold whenever any
FEG variant is discussed throughout this work.

Remark 5.2. As in the EAG with moving anchor, one may recover the original fixed anchor
FEG by setting γk = 0 for all k. This allows us to state our algorithm while also offering
an easy reference point for the original fixed anchor version.

Lemma 5.3. Suppose that the sequences {αk}k≥0, {βk}k≥0, and {Rk}k≥0 ⊂ (0,∞), and
{ρk}k≥0 ⊂ R satisfy α0 ∈ (0,∞), αk ∈ (0, 1

Rk
), β0 = 1, {βk}k≥1 ⊆ (0, 1) for all k. Addition-

ally, assume that the following bound, Lipschitz conditions, and comonotonicity conditions
respectively hold for all k ≥ 0 :

(1− βk+1)

2βk+1
(αk+1 + 2ρk+1)− ρk ≤ 1

2βk
(αk + 2ρk)− ρk

∥G(z1)−G(z0)∥ ≤ R0∥z1 − z0∥

∥G(zk+1)−G(zk+1/2)∥ ≤ Rk∥zk+1 − zk+1/2∥

⟨G(zk+1)−G(zk), zk+1 − zk⟩ ≥ ρk∥G(zk+1)−G(zk)∥2.

If also A0 =
α0(L

2
0α

2
0 − 1)

2
, B0 = 0, B1 = 1, and

Ak =
Bk(1− βk)

2βk
(αk + 2ρk)−Bkρk, Bk+1 =

Bk

1− βk
,

then the Lyapunov functional

Vk := Ak∥G(zk)∥2 −Bk⟨G(zk), z̄k − zk⟩+ ck∥z∗ − z̄k∥2,

where z∗ is a saddle point, is nonincreasing.

Proof. This proof proceeds similarly to that of the convex-concave, monotone case in the
previous section. First, we write out some relations which will be used shortly:

zk+1 − zk =
βk

1− βk
(z̄k − zk+1)− αk

1− βk
G(zk+1/2)− 2ρkG(zk) (5.1)

zk+1 − zk = βk(z̄
k − zk)− αkG(zk+1/2)− 2ρk(1− βk)G(zk) (5.2)

zk+1 − zk+1/2 = αk((1− βk)G(zk)−G(zk+1/2)) (5.3)

z̄k − z̄k+1 = −γk+1G(zk+1) (5.4)

11



As in the proof in the convex-concave case of EAG-V with moving anchor, we introduce a
term to the difference of two arbitrary consecutive functionals in our sequence:

Vk − Vk+1

≥Ak∥G(zk)∥2 −Bk⟨G(zk), z̄k − zk⟩ −Ak+1∥G(zk+1)∥2 +Bk+1⟨G(zk+1), z̄k+1 − zk+1⟩

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

−Bk

βk

(
⟨G(zk+1)−G(zk), zk+1 − zk⟩ − ρk∥G(zk+1)−G(zk)∥2

)
=Ak∥G(zk)∥2 −Bk⟨G(zk), z̄k − zk⟩ −Ak+1∥G(zk+1)∥2 +Bk+1⟨G(zk+1), z̄k+1 − zk+1⟩

(5.5)

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

−Bk

βk
⟨G(zk+1), zk+1 − zk⟩+ Bk

βk
⟨G(zk), zk+1 − zk⟩+ Bkρk

βk
∥G(zk+1)−G(zk)∥2

From here, we first simplify the introduced term further and then substitute (5.1) into the
inner product which has a Bk out front, and then substitute (5.2) into the inner product
with a Bk+1 out front; each of these is in line (5.5). After some computation, this leads to

Vk − Vk+1

≥
(
Ak −

2Bkρk(1− βk)

βk

)
∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk

βk(1− βk)
⟨G(zk+1), G(zk+1/2)⟩

+
2ρkBk

βk
⟨G(zk+1), G(zk)⟩ − αkBk

βk
⟨G(zk), G(zk+1/2)⟩+Bk+1⟨G(zk), z̄k+1 − z̄k⟩

+
Bkρk
βk

∥G(zk+1)−G(zk)∥2 + ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

=
(
Ak −

Bkρk(1− 2βk)

βk

)
∥G(zk)∥2 −

(
Ak −

Bkρk
βk

)
∥G(zk+1)∥2 + αkBk

βk(1− βk)
⟨G(zk+1), G(zk+1/2)⟩

(5.6)

−αkBk

βk
⟨G(zk), G(zk+1/2)⟩+Bk+1⟨G(zk+1), z̄k+1 − z̄k⟩+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2.

(5.7)

Next, let’s focus on the last three terms in (5.7): Bk+1⟨G(zk+1), z̄k+1− z̄k⟩+ ck∥z∗− z̄k∥2−
ck+1∥z∗ − z̄k+1∥2. By Cauchy-Schwartz,

∥z∗ − z̄k+1∥2 ≤ (1 + δk)∥z∗ − z̄k∥2 + (1 +
1

δk
)∥z̄k − z̄k+1∥2.

Second, by construction

Bk+1⟨G(zk+1), z̄k − z̄k+1⟩ = Bk+1

γk+1
∥z̄k − z̄k+1∥2

and

ck+1 ≤
ck

1 + δk
, γk+1 ≤

Bk+1

ck+1(1 +
1
δk
)
.

12



Applying these facts to the three terms we’re considering, we get that

Bk+1⟨G(zk+1), z̄k+1 − z̄k⟩+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

≥Bk+1

γk+1
∥z̄k+1 − z̄k∥2 + ck∥z∗ − z̄k∥2 − ck+1

(
(1 + δk)∥z∗ − z̄k∥2 + (1 +

1

δk
)∥z̄k − z̄k+1∥2

)
≥Bk+1

Bk+1
ck+1(1 +

1

δk
)∥z̄k − z̄k+1∥2 + ck∥z∗ − z̄k∥2

− ck+1(1 + δk)∥z∗ − z̄k∥2 − ck+1(1 +
1

δk
)∥z̄k − z̄k+1∥2

≥ck∥z∗ − z̄k∥2 − ck+1(1 + δk)∥z∗ − z̄k∥2 ≥ ck∥z∗ − z̄k∥2 − ck∥z∗ − z̄k∥2 ≥ 0.

While this takes care of the latter three terms in lines (5.6) to (5.7), that everything else
is nonnegative is a nontrivial argument. However, it directly follows the proof of Lemma
7.1 in [14], so as before we refer to their proof, and then our Lyapunov functional is also
nonincreasing. □

Theorem 5.4 (O(1/k2) convergence rate for FEG with moving anchor). For the R−Lipschitz
continuous and ρ−comonotone operator G where ρ > − 1

2R , z∗ ∈ Z∗(G), Z∗(G) := {z∗ ∈
Rd : G(z∗) = 0}, and c∞ − 1

1
R
+2ρ

≥ 0, the sequence {zk}k≥0 generated by FEG with moving

anchor satisfies

∥G(zk)∥2 ≤ 4c0∥z0 − z∗∥2

k2( 1
R + 2ρ)

for all k ≥ 1.

Proof. Under the same assumptions as Lemma 5.3, we take αk = 1/R, βk = 1
k+1 , Rk = R,

which satisfy the conditions in the statement for all k greater than or equal to 0. These give

us Bk = k,Ak = k2

2 (
1
R + 2ρ)− kρ.

From here,

c0∥z∗ − z0∥2 = V0 ≥ Vk =

(
k2

2
(
1

R
+2ρ)− kρ

)
∥G(zk)∥2 − k⟨G(zk), z̄k − zk⟩+ ck∥z∗ − z̄k∥2,

so then

k2

2
(
1

L
+ 2ρ)∥G(zk)∥2 + ck∥z∗ − z̄k∥2

≤k⟨G(zk), z̄k − zk⟩+ kρ∥G(zk)∥2 + c0∥z∗ − z0∥2

≤k⟨G(zk), z̄k − z∗⟩+ c0∥z∗ − z0∥2 (by comonotonicity condition)

≤k∥G(zk)∥∥z̄k − z∗∥+ c0∥z∗ − z0∥2

≤k2

2δ
∥G(zk)∥2 + δ

2
∥z̄k − z∗∥2 + c0∥z∗ − z0∥2.

From here, define 1
δ = 1

2R + ρ. Then we have that

k2

2

(
1

R
+ 2ρ− 1

2R
− ρ

)
∥G(zk)∥2 +

(
c∞ − 1

1
R + 2ρ

)
∥z̄k − z∗∥2 ≤ c0∥z∗ − z0∥2,

and as long as the constant c∞ − 1
1
R
+2ρ

≥ 0, we obtain the desired result by dividing both

sides of the inequality

k2

2

(
1

2R
+ ρ

)
∥G(zk)∥2 ≤ c0∥z∗ − z0∥2
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by k2

2

(
1
2R + ρ

)
. □

See [14]’s proof of Theorem 4.1 for the analogous result with a fixed anchor. Next, we
show that having −γk+1 in place of γk+1 may also, with some additional assumptions,
provide a convergent algorithm.

Lemma 5.5. In the setting of Lemma 5.3, replace γk with −γk in the definition of the FEG

algorithm with moving anchor, and suppose γk+1 = min
Bk+1

ck+1(1 +
1
δk
)
,

ek+1

2Bk+1∥G(zk+1)∥2
,

where
∑

ek < ∞. Then the Lyapunov functional described in Lemma 5.3 is nonincreasing,
and we attain the same order of convergence for the FEG with moving anchor and −γk.

Proof. The proof proceeds in exactly the same manner as that in Lemma 4.3. □

As in the EAG-V with moving anchor case, we suspect this restriction is not too major a
restriction based off of numerical results, and that there is a ‘better’ way to show that the
−γk version of our algorithm converges.

6. Introducing a proximal term

6.1. Modified EAG-V with moving anchor. Throughout these notes, each of the algo-
rithms thus far developed are explicit in nature. In this section we introduce and develop a
version of these moving anchor algorithms that features a proximal term, and discuss this
as a potential future avenue of exploration. We begin with developing the proximal version
of the EAG-V with moving anchor.

Definition 6.1 (Modified EAG-V with moving anchor). In the setting of EAG-V with
moving anchor, consider equation (4.9) from the proof of Lemma 4.1:

z̄k − z̄k+1 = −γk+1G(zk+1)

and now let us consider the same equation with an additional term introduced:

z̄k − z̄k+1 = −γk+1G(zk+1)− tk(H(z̄k)−H(z̄k+1)), (6.1)

where H is a monotone operator and tk is nonnegative. This only modifies the anchor
update within the algorithm itself, and it does so in the following way:

z̄k+1 = (I + tkH)−1(z̄k + γk+1G(zk+1) + tkH(z̄k)). (6.2)

This is the modified EAG-V with moving anchor.

Lemma 6.2. Under the same conditions as Lemma 4.1 and with H any monotone opera-
tor, tk a nonnegative parameter, the Lyapunov functional for the modified EAG-V algorithm
with moving anchor is nonincreasing. Specifically, replacing the previous z̄k+1 update in the
unmodified EAG-V moving anchor algorithm with equation (6.2) still results in a nonin-
creasing Lyapunov functional.

Proof. Within the proof of Lemma 4.1 recall the following line:

−Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩

= Bk+1⟨z̄k − zk+1, G(zk+1)⟩ −Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩.
14



Within this proof that the functional is nonincreasing, the primary change is that we must
use equation (6.1) for substituting G(zk+1). This results in

−Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩

= −Bk+1

〈
z̄k − z̄k+1,

z̄k − z̄k+1 + tk(H(z̄k)−H(z̄k+1))

−γk+1

〉
=

Bk+1

γk+1

(
∥z̄k − z̄k+1∥2 + tk⟨z̄k − z̄k+1, H(z̄k)−H(z̄k+1⟩

)
.

The term
Bk+1

γk+1
∥z̄k − z̄k+1∥2 will be utilized elsewhere (see Lemma 4.1) so we don’t need

to worry about it here, and the term
Bk+1

γk+1
tk⟨z̄k − z̄k+1, H(z̄k)−H(z̄k+1⟩ is nonnegative by

monotonicity and the fact that tk is also nonnegative. This completes the proof. □

Theorem 6.3. The modified EAG-V algorithm with moving anchor has convergence rate
O(1/k2).

Remark 6.4. While H may be any monotone operator, in practice one may wish to take
H = G.

6.2. Modified FEG with moving anchor.

Definition 6.5 (Proximal FEG with moving anchor). In the setting of FEG with moving
anchor, consider (5.4) from the proof of Lemma 5.3:

z̄k − z̄k+1 = −γk+1G(zk+1)

and now let’s consider the same term with a proximal term introduced:

z̄k − z̄k+1 = −γk+1G(zk+1)− tk(H(z̄k)−H(z̄k+1)),

where H is a monotone operator just as before. This modification affects the anchor update
in the same way as in the previous case:

z̄k+1 = (I + tkH)−1(z̄k + γk+1G(zk+1) + tkH(z̄k)) (6.3)

Lemma 6.6. Under the same conditions as Lemma 5.3 and with H any monotone opera-
tor, tk nonnegative for all k, the Lyapunov functional for the modified FEG algorithm with
moving anchor is nonincreasing. Specifically, replacing the previous z̄k+1 update in the un-
modified FEG moving anchor algorithm with (6.3) still results in a nonincreasing Lyapunov
functional.

Proof. The proof proceeds in the same manner as in that of Lemma 6.2. The only minor
difference is that in this case, we begin with Bk+1⟨G(zk+1), z̄k+1− z̄k⟩. We still obtain from
this the terms

Bk+1

γk+1
∥z̄k − z̄k+1∥2 + Bk+1

γk+1
tk⟨z̄k − z̄k+1, H(z̄k)−H(z̄k+1⟩,

where the first term is utilized elsewhere in the larger proof of the functional being nonin-
creasing and the latter term is monotone, thus nonnegative. □

Theorem 6.7. The modified FEG algorithm with moving anchor has convergence rate
O(1/k2).
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7. Numerical experiments

In this section we detail several numerical experiments. First, we visualize two thousand
iterations of EAG-V and FEG, each moving anchor versus the fixed anchor, on a toy ‘almost
bilinear’ example. Next, we look at the log of the grad norm squared versus the log of
iterations for the EAG examples. Note that this error graph is an example in the monotone
convex-concave case. We then run a nonconvex-nonconcave negative comonotone example
for FEG variants, where some interesting convergence behaviors among the moving anchor
variants are exhibited. Finally, we study monotone FEG variants (moving and fixed anchor)
on a nonlinear two player game. Throughout all of these examples, c1 = π2/6, ck =
ck−1

1+δk−1
(k = 2, 3, ...), and in all except for the last example, δk is chosen to be exp(k2)− 1.

Figure 1. The first two thousand iterations of the EAG algorithm with
varying step-size, or EAG-V, compared to the first two thousand iterations
of the moving anchor EAG-V algorithm.

Figure 1 compares the iterations of EAG-V with a fixed anchor to the iterations for the
moving anchor EAG-V. Figure 1, Figure 2, and Figure 3 all display iterations where the

function used is the ‘almost bilinear’ function f : R2 → R, f(x, y) = ϵ∥x∥
2

2 + ⟨x, y⟩ − ϵ∥y∥
2

2 .
Here, ϵ is small, for these experiments set to 0.01, and the straightforward nature of the
example allows for ease of visualizing the iterations as well as their differences when it comes
to comparing convergence rates. In particular, the unique saddle-point is (0, 0).

Figure 2. The two moving anchor EAG-V variants compared in red, along
with their anchors in green.

Figure 2 compares, via the same function as Figure 1, the two moving anchor variants
of EAG-V. When the γk parameter is positive, the anchor iterations moves away from the
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saddle and the algorithm updates very rapidly. When γk has only its sign changed to
negative, the anchor (seen in green) seems to stay much closer to the iterations and the
saddle-point. The iterations appear to converge at a markedly faster rate (by a constant)
for this latter case over both the fixed anchor and the positive γk setting, an observation
that is confirmed below.

Figure 3. The two moving anchor FEG variants compared in red, along
with their anchors in green.

Figure 3 compares the two moving anchor version of the FEGmethod, in the same manner
as the comparison shown in Figure 2: red dots are the algorithm updates, green dots are
the anchor updates, and the function is the ‘almost bilinear’ one previously described. Note
that in both cases, the iterations seem to zone in on and converge to the saddle point in a
much faster manner. In [14], the authors established that even on convex-concave problems,
FEG performs at the same optimal order of convergence as EAG, but at a significantly faster
rate. This behavior seems to have carried over to our algorithm where we introduce the
moving anchor to these frameworks.

Figure 4. Comparison of the grad-norm squared of three EAG-V variants
of interest on a toy ‘almost bilinear’ problem.

Figure 4 captures the behavior of ∥G(zk)∥2 across all three convex-concave algorithms of
interest: EAG-V, moving anchor EAG-V with positive γk, and moving anchor EAG-V with
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negative γk. Each algorithm attains the optimal order of convergence, while the negative γk
algorithm is markedly faster than both algorithms by a constant. Identical behavior occurrs
under the same problem setting with the FEG and FEG with moving anchors (positive and
negative γk), with the negative γk algorithm again being the fastest, so we do not include
this figure here.

Figure 5. Comparison of the errors of three FEG variants in a nonconvex-
nonconcave setting. Note the positive γ converges fastest by a constant.

Figure 5 captures the error of FEG across all three anchor variants in a numerical example
that is explicitly comonotone and nonconvex-nonconcave:

L(x, y) =
ρR2

2
x2 +R

√
1− ρ2R2xy − ρR2

2
y2

with L : R2 → R, R = 1, ρ = −1/3 1−smooth and −1/3-negative comonotone. Inter-
estingly, this is the only numerical example where the moving anchor with positive γk -
of any variant - was the fastest of all three algorithms. The intuition is that the positive
γk functions as negative γk in the monotone, convex-concave problem settings, pulling the
iterations closer to the saddle. More examples in this vein may verify that this behavior
with positive γk occurs only in the negative comonotone problem setting. More theoretical
work to verify this observed numerical behavior will be one of our goals in a future work.

The final figure, Figure 6, compares three different monotone FEG variants on a particular
nonlinear game that was studied extensively in [4]:

min
x∈∆n

max
y∈∆m

1

2
⟨Qx, x⟩+ ⟨Kx, y⟩

where Q = ATA is positive semidefinite for A ∈ Rk×n which has entries generated indepen-
dently from the standard normal distribution, K ∈ Rm×n with entries generated uniformly
and independently from the interval [−1, 1], and ∆n,∆m are the n− and m−simplices,
respectively:

∆n :=
{
x ∈ Rn

+ :
n∑

i=1

xi = 1
}
, ∆m :=

{
y ∈ Rm

+ :
m∑
j=1

yj = 1
}
.

One may interpret this as a two person game where player one has n strategies to choose
from, choosing strategy i with probability xi (i = 1, ..., n) to attempt to minimize a loss,
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Figure 6. log of iterations versus log of the gradient norm-squared for
monotone (that is, ρ = 0) FEG variants studied on a particular nonlinear
game.

while the second player attempt to maximize their gain among m strategies with strategy
j chosen with probability yj (j = 1, ...,m). The payoff is a quadratic function that depends
on the strategy of both players. For this example, we used FEG fixed and moving anchor
variants in the monotone (that is, ρ = 0) setting of the algorithm. We compare 20, 000
iterations of the log of the grad norm squared of the fixed anchor versus the same for a
negative γk variant where the parameter δ is scaled by 1/10 and a negative γk variant where
δ is scaled by 1/100. This is the first numerical example where we tune δ, a parameter used
in controlling the step size. We chose m = 500, k = 1000, and n = 2500.

We remark that, initially, it seems the 1
10δ variant is fastest by a constant, and then

is overtaken by the 1
100δ variant and then the fixed anchor while the initially faster 1

10δ

‘flattens out’ rather quickly. For much of this experiment, it appears that the 1
100δ variant

and the fixed anchor very closely parallel one another - there seems to be a slight advantage
to the 1

100δ moving anchor for the majority of the experiment after between two and three
dozen iterations, and then at the tail end of the experiment the fixed anchor may have a
marginal lead.

8. Conclusion

The moving anchor acceleration methods retain optimal convergence rates and also
demonstrate superior-to-comparable numerical performance with some parameter tuning.
The optimal order of convergence is obtained across different problem settings, from convex-
concave to negative co-monotone problems. Interestingly, across numerous problem settings
there exists a version of the moving anchor algorithm, parametrized by γk, that demon-
strates superior numerical performance compared to other state-of-the-art algorithms. The
variety of numerical examples demonstrates a wide array of applications for our algorithms
in both theoretical and applied settings. In addition, we develop a ‘proximal’ version of the
moving anchor in both the convex-concave and negative co-monotone problem settings and
demonstrate its convergence. Of future interest, one may consider numerical and practical
implementations of the proximal moving anchor, parallelized/asynchronous implementa-
tions of moving anchor saddle point algorithms, a tighter analysis of −γk convergence, a
theoretical understanding of how the γk and other parameters such as δ affect convergence
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rates, and the identification of problem settings which our moving anchor may exploit ef-
fectively among many other topics.
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