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Agent-based models of opinion dynamics have enabled researchers to examine how opinions
spread and interact on a network. One popular agent-based model is the Deffuant–Weisbuch (DW)
bounded-confidence model (BCM), in which two neighboring agents update their opinion at each
discrete time step if the opinions of the two agents are sufficiently close to each other. Researchers
have also developed mean-field equations to approximate the agent-based DW models on an infinite-
size network. The standard DW model fixes a specific confidence bound for all agents; however,
in real life, people with different opinions tend to possess different amounts of tolerance towards
opinions that differ from theirs. One can imagine that individuals with extreme opinions tend to
listen less to others, while people with moderate opinions may be more open-minded and willing to
accept different opinions. To explore this possibility, we incorporate an adaptive confidence bound
into the standard DW model. In our model, each agent’s willingness to listen to others is a function
of its current opinion. We call such a function a “confidence-bound function.” We prove that our
DW model with adaptive confidence bounds reaches a limit state in 3 cases, and we simulate both
agent-based and mean-field dynamics with our model for various graphs and confidence-bound func-
tions. In our agent-based simulations, we explore how changes in one or two parameters affect a limit
state’s behavior and how long it takes the model to terminate. For our mean-field approximation,
we adapt an partial integro-differential equation from Fennell et al. [1] and solve for the density
function that approximates the agent-based density distribution in the opinion space at different
time steps.

I. INTRODUCTION

Living in a world with a plethora of information, individ-
uals in a social network often update their opinions while in-
teracting with the world. In reality, an individual’s opinion
is difficult to model, as it can change based on new infor-
mation, media sources, one’s emotions, family and friends,
and many other factors. Using a network, we are able to
simplify the situation and simulate how agents communicate
with one another, assuming one’s opinion only changes based
on interactions.

In light of this, there is growing interest in mathemati-
cal models that study opinion dynamics on networks [2–4].
Some key components of opinion dynamics include opinion
spaces, opinion update rule, network, agents (i.e. nodes),
connections (i.e. edges), and time [4]. Opinion spaces can
be discrete or continuous. For continuous opinion spaces in
one dimension, one can represent them with an interval, such
as [0, 1]. Opinion update rules define how agents’ opinions
change when they interact. Time can be discrete or contin-

uous, but we will focus on discrete time steps in this paper.

One class of opinion dynamics models are bounded-
confidence models (BCMs), which incorporate the idea that
agents may only be willing to change their opinion when in-
teracting with another agent who has a sufficiently similar
opinion [5]. This is done by incorporating the concept of
a confidence bound. Assuming the opinion space is a one-
dimensional interval, a confidence bound gives an agent an
interval that any other agents they interact with must fall
into in order for the agent to update its opinion. Within this
class of models, there are many choices to be made about how
the agents in the model update. For example, a confidence
bound can be symmetric or asymmetric. In the symmetric
case, the confidence interval is centered around the opinion.
In the asymmetric case, the confidence interval of an agent
may not be centered around its opinion. A confidence bound
can also be homogeneous or heterogeneous. In the homoge-
neous case, all agents have the same size confidence bound.
In the heterogeneous case, they have intervals of the same or
different sizes. Another choice to be made is if agents will
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take all of their neighbors into consideration during their
update (synchronous) or if at each time step, one pair of
agents with an edge between them uses each other to update
(asynchronous). These choices are reflected in two popular
variants of BCM models: the Hegelman–Krauss (HK) model
updates synchronously [6] and the Deffaunt–Weisbuch (DW)
model updates asynchronously [7]. While many researchers
have considered homogeneous and heterogeneous confidence
bounds, less research has involved opinion-dependent confi-
dence bounds [8–11].

In this paper, we focus on incorporating confidence-bound
functions that depends on agents’ opinions. Through our
theoretical and numerical results, we explore the effect of
different confidence-bound functions on the final limit state
of opinion dynamics and convergence time.

A. Prior Work

Some existing work has incorporated heterogeneous and
adaptive confidence bounds into BCMs.

1. Changes to Confidence Bounds

Adaptive confidence bounds were considered in Li et al.
[12]. Li et al. extend the HK and DW models such that
the confidence bounds are defined to exist between each
pair of agents and to update with interactions between that
pair of agents. They prove limiting behavior of these adap-
tive confidence-bound functions and numerically explored
the limit state behavior of their model.

The idea of a heterogeneous confidence bound was first
considered in Lorenz [8]. In this model, agents are assigned
their own confidence bound from an arbitrary distribution
before the updates begin. Lorenz demonstrated numerically
that heterogeneity in confidence bounds can help a popula-
tion achieve consensus. Moreover, Lorenz showed that popu-
lations can drift to the extremes of the opinion space with low
numbers of initial extreme agents. Chen et al. [10] proved
that the heterogeneous DW model reaches a limit state with
high probability for certain compromise parameter values.
The addition of media influence to the heterogeneous DW
model is considered in Pineda et al. [9]. They showed that
in the presence of media, the limit state behavior is very
sensitive to the initial conditions of the model.

2. Changes to the Compromise Parameter

Another relevant extension of the DW model is the intro-
duction of compromise function, such as the sigmoidal com-
promise function considered in Brooks et al. [13] and the
relative agreement model proposed in Deffaunt [14] where
agents update both their opinions and their compromise pa-
rameter at the same time step. Adaptivity can also be in-

corporated into the network structure, as is done in Kozma
et al. [15]. In this model, if a pair of agents in a randomly
chosen edge have opinions outside of each other’s confidence
bound, then their edge is broken with some probability. Oth-
erwise, the agents update their opinions. They demonstrate
numerically that fragmentation and consensus occur for a
small range of confidence bound values than the standard
DW model.

3. Mean-Field Theories

Many tools employed in the study of homogeneous DW
are also relevant to our model. Specifically, mean-field theo-
ries are useful to analyze the DW model when the size of a
network tends to infinity. In Fennell et al. [1], a mean-field
theory is developed for networks where one can partition the
network into classes. They develop a degree-based mean-field
theory and a more general class-based mean-field theory.

B. Our Contribution

In this paper, we present a new adaptive-confidence model
in which an agent’s confidence bound is a function of its
current opinion. We start by introducing background in-
formation on networks and BCMs in Section II. We then
introduce our model in Section III. In Section IV, we pro-
vide theoretical results proving existence of limiting behav-
ior for our model under certain conditions regarding graph
topology and properties of the confidence-bound function
(see Section III). In Section V, we present numerical evi-
dence that supports the existence of a limit state. In ad-
dition, we present the results of simulations on a range of
networks with various confidence-bound functions. In Sec-
tion VII, we adapt the degree-based mean-field model from
[1] to our model. Through agent-based and mean-fields
simulations, we demonstrate the behavior of our adaptive-
confidence model.

II. BACKGROUND

A. Networks

A network (i.e., a graph) is a set of vertices (i.e., nodes)
and a set of edges that connect the nodes. One can define
a graph G = (V,E), where V is a set of nodes and E is
a set of edges. There are undirected and directed graphs.
In undirected graphs, an edge {x, y}, between node x and
node y, is the same as {y, x}. In directed graphs, however,
edges are ordered pairs. Therefore, an edge (x, y) from x to
y is not equivalent to the edge (y, x) from y to x. Through-
out this paper, we will use the terms network and graph in-
terchangeably, and assume all graphs are undirected unless
stated otherwise.
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We say that a directed graph G = (V,E) is weakly con-
nected if, for any nontrivial partition {H,V \H} of V , there
exists a directed edge in E either from H to V \H or vice
versa.

B. The Standard DW Model

The standard DW model is an asynchronous BCM with
a continuous opinion space where the population is homoge-
neous in confidence bound [7]. The standard setting involves
a graph G = (V,E). For a node i ∈ V , we denote the opin-
ion of node i as xi and denote the vector of opinions of all
agents at time t as x(t) = [x1(t), x2(t), . . . , xN (t)]. We assign
all opinions uniformly at random from an opinion space [0, 1].
Equations (1) and (2) are a mathematical representation of
the update rule.

xi(t+ 1) =

{
xi(t) + µ∆ji(t) , if |∆ij(t)| < c

xi(t) , otherwise ,
(1)

xj(t+ 1) =

{
xj(t) + µ∆ij(t) , if |∆ij(t)| < c

xj(t) , otherwise ,
(2)

where c ∈ [0, 1] is the confidence bound, µ ∈ (0, 1) the
compromise parameter, and ∆ij = xi − xj is the discor-
dance between agents i and j. At each time step t, we uni-
formly randomly selects an edge from the network. If the
pair of nodes in the selected edge have opinions whose dif-
ference is less than the confidence bound, the agents update
their opinion by the product of the compromise parameter
and the discordance. We could equivalently check that each
agent is within the confidence interval of the other, that is
j ∈ [xi(t) − c, xi(t) + c] and i ∈ [xj(t) − c, xj(t) + c]. For
µ > 0.5, agents i and j over-compromise; the standard choice
of µ is in the range (0, 0.5].

III. OUR MODEL

Suppose that an agent’s opinion influences its openness to
consider opinions that differ from its own. This relaxation
allows flexibility in the model and a feedback loop between
an individual’s opinion and their willingness to listen.

To incorporate this idea into the DW model, we propose
the following model. Consider a graph G = (V,E). We
assign each agent an opinion randomly from some distribu-
tion. In the numerical section, we will consider only a uni-
form distribution for assigning initial opinions. However, for
the analysis in the limit states section, we will need to con-
sider arbitrary initial distributions. Once the opinions are
assigned, each agent’s confidence bound is determined by a
function c(xi) : [0, 1] → [0, 1], which we call a confidence-
bound function. The confidence-bound function maps the

opinion of an agent to a confidence bound. The update rule
then becomes

xi(t+ 1) =

{
xi(t) + µ∆ji(t) , if |∆ij(t)| < c(xi(t))

xi(t) , otherwise ,
(3)

xj(t+ 1) =

{
xj(t) + µ∆ij(t) , if |∆ij(t)| < c(xj(t))

xj(t) , otherwise ,
(4)

where µ ∈ (0, 1) and ∆ij = xi − xj are defined as in the
standard DW model. At each time step, we select an edge
e = {i, j} uniformly at random from E. As with the standard
DW, we then check that agent j holds an opinion that is
within agent i’s confidence interval and update the opinion of
node i according to Equation (3). We then repeat the process
for j, while checking if i has an opinion within the confidence
interval of j and update the opinion of node j according to
Equation (4). If the opinion of an agent has been updated,
the confidence bound of the agent also changes.

In our model our opinion updates are not necessarily sym-
metric. We define an asymmetric update as an update
where only one of the following occur: xi(t) ̸= xi(t+ 1) or
xj(t) ̸= xj(t+ 1). We define a symmetric update as an up-
date where both xi(t) ̸= xi(t+ 1) and xj(t) ̸= xj(t+ 1) oc-
cur. We define the effective digraph Geff = (V,E′) as:

(i, j) ∈ E′ if {i, j} ∈ E and |∆ij | < c(xj).

That is, the effective digraph contains an edge (i, j) if and
only if node i can influence node j. In other words, (t) =
(V,Eeff(t)), where Eeff(t) ⊆ E and for all i, j ∈ V . Note as
well that

(i, j) ∈ Eeff(t) ⇔ |xi(t)− xj(t)| < c(xi(t)) and {i, j} ∈ E.

A cluster is then defined as a strongly connected component
in Geff.
More explicitly, we define our model as the following:

Definition III.1. Consider a graph G = (V,E) with n
nodes, a confidence-bound function c : [0, 1] → [0, 1], and
a convergence parameter µ. For any i ∈ V and any non-
negative integer t ∈ Z≥0, let xi(t) denote the opinion of node
i at time t. In addition, let x(t) = (x1(t), x2(t), ..., xn(t))
denote the vector of all opinions at time t. Finally, let D de-
note a probability distribution on the space [0, 1]n of possible
opinion vectors.

The adaptive-confidence DW model is defined as the fol-
lowing stochastic process: we randomly sample x(0) from D,
i.e x(0) ∼ D. For any t ∈ Z≥0, at time t + 1, an edge
(i, j) ∈ E is selected uniformly at random, after which nodes
i and j update their opinions according to Equation (3) and
Equation (4).
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IV. LIMIT STATES

In studying models of opinion dynamics, the limiting behavior of the model gives a great deal of parsable information
such as whether or not the network reaches consensus or fragments into multiple opinion clusters. For many models in
opinion dynamics, Lorenz [16] proved results that guarantee existence of a limit state for the model, including the standard
DW model. For our adaptive DW model, we cannot use this result given the presence of asymmetric updates which breaks
assumption (2) in Theorem (2) of [16].

In this section, we present results guaranteeing limiting behavior for certain cases of confidence functions for our adaptive
DW model. However, we cannot guarantee existence of a limit state for general c(x). Consider the confidence function:

c(x) =

{
0 , if x ∈ {0, 1}
1 , otherwise .

Let G be a complete graph with 3 nodes, with x(0) = [0, 0.5, 1]. For these initial conditions we have
P (lim∞

t=0 x(t) does not exist) = 1.
We will present results for both complete graphs and for general graph topologies. For complete graphs, we guarantee

existence of a limit state almost surely for any confidence function with c(x) > 1
2+µ . For general graph topologies, we guarantee

existence of a limit state for monotone confidence functions and almost surely guarantee a limit state for confidence functions
with infx∈[0,1] c(x) > 0 and either x− c(x) or x+ c(x) nondecreasing. We begin with some definitions.

Definition IV.1. For fixed graph topology, µ, c, and initial opinions x, and edge choices, we say the adaptive DW model,
on a graph with N nodes, converges to a limit state if

there exists x∗ ∈ [0, 1]N such that lim
t→∞

x(t) = x∗ .

Definition IV.2. For fixed graph topology, µ, c, and initial opinions x(0), we say that the DW model, on a graph with N
nodes, converges to a limit state almost surely if

P (there exists x∗ ∈ [0, 1]N such that lim
t→∞

x(t) = x∗) = 1 .

Definition IV.3. Let xmin(t) denote the minimum opinion at time t and let imin(t) denote a node with the minimum opinion
at time t. Analogously, let xmax(t) and imax(t) denote the maximum opinion and the corresponding node at time t.

A. Complete Graphs

In this subsection we discuss results regarding sufficient conditions for a limit state to exist for the adaptive DW model on
complete graphs. Lemma IV.1 and Lemma IV.2 will be used to show Theorem IV.1.

Lemma IV.1. Fix an edge sequence {(it, jt)}∞t=0. Then xmin(t) is nondecreasing and xmax(t) is nonincreasing, and both are
convergent as t → ∞.

Proof. Because µ ∈ [0, 1], we have that

min{xit(t+ 1), xjt(t+ 1)} ≥ min{xit(t), xjt(t)}) ,
max (xit(t+ 1), xjt(t+ 1)) ≤ max (xit(t), xjt(t)) .

For each node v ∈ V \{it, jt}, we have that xv(t) = xv(t+1). Therefore, xmax(t) is nonincreasing and xmin(t) is nondecreasing.
Consequently, as both sequences are bounded in [0, 1], we have that xmin(t) and xmax(t) converge as t → ∞ .

Lemma IV.2. Let c(x) : [0, 1] → [0, 1] with c(x) ≥ b > 0 for all x ∈ [0, 1]. Then, the probability of the following event is 0:
there exists i ∈ V such that for all t ∈ N , there exists s > t such that

xi(s) ̸∈ [xmin(s), xmin(s) + b) and xi(s+ 1) ∈ [xmin(s+ 1), xmin(s+ 1) + b)

or xi(s) ̸∈ (xmax(s)− b, xmax(s)] and xi(s+ 1) ∈ (xmax(s+ 1)− b, xmax(s+ 1)] .
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Proof. We restrict to the case that xi(s) ̸∈ (xmax(s)−b, xmax(s)] and that xi(s+ 1) ∈ (xmax(s+ 1)− b, xmax(s+ 1)]. The proof
for xmin(t) is analogous. Suppose for sake of contradiction that there exists i ∈ V such that for all t ∈ N there exists s > t
such that xi(s) ̸∈ (xmax(s)−b, xmax(s)] and that xi(s+1) ∈ (xmax(s+1)−b, xmax(s+1)]. Then, either xmax(s) ̸= xmax(s+1)
or xi(s) ̸= xi(s+ 1). One of these two cases must occur infinitely often.

Case 1: If xmax(s) ̸= xmax(s + 1) infinitely often, we label such time steps {tk}∞k=0. Given that xmax(t) must remain
within [0, 1], we have that there exists k′ such that for all k ≥ k′ we have xmax(tk)− xmax(tk + 1) < min{(1− µ)bµ, b/2}.
Let k > k′. Therefore, at time tk, it cannot be the case that i has a symmetric update with imax(tk)
because xmax(tk)− xmax(tk + 1) < (1− µ)bµ. Therefore, because xi(tk) ̸∈ (xmax(tk)− b, xmax(tk)], we have that
xi(tk + 1) ∈ (xmax(tk + 1)− b, xmax(tk + 1)] and xmax(tk + 1)− xi(tk + 1) ≥ b/2.
At time tk + 1, we label the set of all nodes with opinions in [xi(tk + 1), xmax(tk + 1)] as

Q(tk + 1). Then, with probability at least 1
E|Q(tk+1)| , the following sequence of edge selections occurs:

{(i, imax(tk + 1)), (imax(tk + 1), ji), . . . , (imax(tk + 1), j|Q(tk+1)|)} for all jl ∈ Q(tk + 1). Because the opinions of all of
these nodes are within b of each other, all of these edge selections result in symmetric updates, which cannot increase
the maximum opinion. Notice that the first edge selection makes the value of ximax(tk+1) decrease by at least (1 − µ)bµ.
Therefore, after the sequence of edge selections, we have that

xmax(tk + 1)− xmax(tk + |Q|+ 2) ≥ (min{1− µ, µ})|Q(tk+1)|bµ

2
.

Because the probability that this occurs is at least 1
E|Q(tk+1)| , we have that P (limt→∞ xmax(t) < 0) = 1 .

Case 2: If xi(s) ̸= xi(s + 1) infinitely often, denote such time steps {tk}∞k=0. We have already proven the case that
xmax(tk) ̸= xmax(tk + 1), (see Case 1) so we can assume that i and ia(tk) do not interact with a symmetric update at time
tk. We see that xi(tk + 1)− xmax(tk + 1) ≥ min{1− µ, µ}b.

At time tk+1, we label the set of all nodes with opinions in [xi(tk+1), xmax(tk+1)] as Q(tk+1). Then, with probability at
least 1

E|Q(tk+1)| , the following sequence of edge selections occurs: {(i, imax(tk + 1)), (imax(tk + 1), ji), . . . , (imax(tk + 1), j|Q|)}
for all jl ∈ Q(tk + 1).
Notice that the first edge selection makes the value of ximax(tk+1)(tk + 1) decrease by at least (1 − µ)bµ. Therefore, after

the sequence of edge selections, we have that

xmax(tk + 1)− xmax(tk + |Q(tk + 1)|+ 2) ≥ (min{1− µ, µ})|Q|bµ .

Because the probability that this occurs is at least 1
E|Q(tk+1)| , we have that P (limt→∞ xmax(t) < 0) = 1. Therefore,

P (there exists i ∈ V | for all t ∈ N, there exists s > t | xi(s) ̸∈ (xmax(s)− b, xmax(s)], xi(s+1) ∈ (xmax(s)− b, a(s)]) = 0 .

Theorem IV.1. For c(x) : [0, 1] → [0, 1] with c(x) > 1
2+µ for all x ∈ [0, 1], our adaptive DW model converges to a limit state

almost surely.

Proof. We know that, if eventually only symmetric updates occur, by the work of Lorenz, [16] our model converges
to a limit state. Therefore, we will show, almost surely, that asymmetric updates eventually stop occurring. Sup-
pose that asymmetric updates never stop occurring. Therefore, there exists some i ∈ V such that i updates asym-
metrically an infinite number of times. Denote the time steps where i updates asymmetrically as {s}∞s=0. Let
Imin(t) = [xmin(t), xmin(t) + b), Imax(t) = (xmax(t)− b, xmax(t)], and Imid(t) = [xmin(t), xmax(t)]\(Imin(t) ∪ Imax(t)). Note
that for all t ∈ N [xmin(t), xmax(t)] = Imin(t) ∪ Imax(t) ∪ Imid(t). Note as well that xi(tk) ̸∈ Imin(tk) ∩ Imax(tk) for all k ∈ N
because a node must have opinion with distance at least b from a node in order to have an asymmetric update with it.
Let {js}∞k=0 be the sequence of nodes with which i updates with for each s ∈ Z+. For any s, if xi(s) ∈ Imin(s)

then xjs(s) ∈ Imax(s) ∪ Imid(s). Also, if xi(s) ∈ Imax(s) then xjs(s) ∈ Imin(s) ∪ Imid(s). Finally, if xi(s) ∈ Imid(s) then
xjs(s) ∈ Imin(s) ∪ Imax(s). We know as well that each asymmetric update causes xi to change by at least µb. Suppose
for sake of contradiction that xi remains in one of these intervals forever. If xi(s) ∈ Imid(s) then xi(s+ 1) ̸∈ Imid(s+ 1) as
len(Imid(t)) < µb , for all t ∈ N.
Without loss of generality, suppose that there exists some T ∈ N such that xi(t) ∈ Imax(t) for all t > T . The case for

Imin(t) is analogous. Then there exists s′ ∈ N such that s′ > T . Then at time s′ + 1, as xi(s
′) must have decreased, we

have that xmax(s
′ + 1)− xi(s

′ + 1) ≥ µb. Then, we label the set of all nodes with opinions in [xi(s
′ + 1), xmax(s

′ + 1)] by
Q(s′ + 1). Then with probability at least

1

E|Q(s′+1)| ,

the following sequence of edge selections occurs: {(i, imax(s
′ + 1)), (imax(s

′ + 1), ji), . . . , (imax(s
′ + 1), j|Q(s′+1)|)} for all

jl ∈ Q(s′ + 1) .
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Notice that the first edge selection makes the value of ximax(s+1)(s + 1) decrease by at least min{1 − µ, µ}bµ. Therefore,
after the sequence of edge selections, we have that

xmax(s+ 1)− xmax(s+ |Q(s′ + 1)|+ 2) ≥ min{1− µ, µ}|Q(s′+1)|bµ .

Because the probability that this occurs is at least 1
E|Q| and for each k ≥ k′ this choice of edge sequence has probability at

least 1
E|Q(s+1)| of occurring, we have that P (limt→∞ xmax(t) < 0) = 1.

Therefore, xi stays within either Imax or Imin forever with probability 0. Thus, with probability 1 xi must alternate between
Imax and Imin (as it cannot remain within Imid) which happens with probability 0 by Lemma IV.2. Therefore, the system
converges to a limit state almost surely.

Corollary IV.2.1. For any c(x) : [0, 1] → [0, 1] with c(x) ≥ b > 0, for all x ∈ [0, 1], if there exists t ∈ N such that
b(2 + µ) > xmax(t)− xmin(t), our adaptive DW model converges to a limit state almost surely.

On complete graphs, we now have one class of functions, in addition to constant functions, [16] for which our model almost
surely convergences to a limit state.

B. General Graphs With Monotone Confidence

For this subsection, we move to a more general case. First, let G = (V,E) be a graph. Lemma IV.3, Lemma IV.4, and
Lemma IV.5 are used to show Theorem IV.2.

Lemma IV.3. Suppose c : [0, 1] → [0, 1] is a nondecreasing confidence function for our adaptive DW model. Then, if edge
(i, j), where xi(t) ≤ xj(t) is selected at time t, then one of the following is true:

1. xi(t+ 1) = xi(t) ,
xj(t+ 1) = xj(t) ,

2. xi(t+ 1) = xi(t) + µ(xj(t)− xi(t)) ,
xj(t+ 1) = xj(t) + µ(xi(t)− xj(t)) ,

3. xi(t+ 1) = xi(t) ,
xj(t+ 1) = xj(t) + µ(xi(t)− xj(t)) .

Proof. If edge (i, j) is selected at time t, then either xi(t+ 1) = xi(t) or xi(t+ 1) = xi(t) + µ(xj(t)− xi(t)). Similarly,
either xj(t+ 1) = xj(t) or xj(t+ 1) = xj(t) + µ(xi(t)− xj(t)). Therefore, if xj(t+ 1) = xj(t) + µ(xi(t)− xj(t)), we have the
desired result.

Now, we must show that if xj(t+1) = xj(t), then xi(t+1) = xi(t). Suppose that xj(t+1) = xj(t), in which case we know
that xi(t) must lie outside the confidence bound of node j at time t. Therefore, xi(t) ̸∈ [xj(t)− c(xj(t)), xj(t) + c(xj(t))],
and because xi(t) ≤ xj(t), we conclude that xi(t) < xj(t)− c(xj(t)). Additionally, because c is monotonically increasing,
c(xj(t)) ≥ c(xi(t)), so

xi(t) < xj(t)− c(xj(t)) ≤ xj(t)− c(xi(t)) or xj(t) > xi(t) + c(xi(t)) .

Therefore, xj(t) lies outside the confidence bound of node i at time t. Based on Definition III.1, we conclude that
xi(t+ 1) = xi(t), as desired.

Note that an analogous result is true for c(x) nonincreasing.

Lemma IV.4. For a vector y ∈ Rn, let f(y) =
∑

1≤i<j≤n max{yi, yj}. Suppose that c : [0, 1] → [0, 1] is monotone, and fix

the edge choices of the DW model as {(it, jt)}∞t=0. Then f(x(t)) is strictly decreasing with t. In particular, for δ > 0, if at
time t, |xit(t)− xjt(t)| ≥ δ and x(t) ̸= x(t+ 1), then

f(x(t+ 1)) ≤ f(x(t))−mδ ,

where m := min{µ, 1− µ} .
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Proof. There are two cases: asymmetric updates, and symmetric updates. For an asymmetric update, without loss of
generality, say that xjt(t) ̸= xjt(t+ 1). Therefore, xjt(t) > xit(t). This implies that xjt(t+ 1) = xjt(t) + µ(xit(t)− xjt(t)).
So xjt(t+ 1) ≤ xjt(t)− γδ. Therefore,

max{xit(t+ 1), xjt(t+ 1)} ≤ max{xit(t), xjt(t)} −mδ .

Thus, as no other nodes changed their opinions at this time step, for all i, j ∈ V , max{xi(t+ 1), xj(t+ 1)} ≤ max{xi(t), xj(t)}.
Therefore, f(x(t+ 1)) ≤ f(x(t))−mδ.
For the symmetric update case, without loss of generality, assume that xit(t) < xjt(t). Then, the symmetric update causes

xit to increase and xjt to decrease. Let r = |xit(t+ 1)− xit(t)| = |xjt(t+ 1)− xjt(t)|. Note that r > mδ. Let k ∈ V \{it, jt}.
We have that

max{xk(t+ 1), xit(t+ 1)} −max{xk(t), xit(t)} =


0 xk(t+ 1) ≥ xit(t+ 1) ,

r xk(t) ≤ xit(t) ,

r − |xk(t)− xit(t)| xk(t) > xit(t) and xk(t+ 1) < xit(t+ 1) ,

max{xk(t+ 1), xjt(t+ 1)} −max{xk(t), xjt(t)} =


0 xk(t) ≥ xjt(t) ,

−r xk(t) ≤ xjt(t+ 1) and xk(t) ≤ xjt(t+ 1) ,

−|xk(t)− xjt(t)| xk(t) < xit(t) and xk(t+ 1) > xit(t+ 1) .

From these cases, we see that if

max{xk(t+ 1), xit(t+ 1)} > max{xk(t), xit(t)} ,

then either max{xk(t+ 1), xit(t+ 1)}+max{xk(t+ 1), xjt(t)} = 0 or

max{xk(t+ 1), xit(t+ 1)}+max{xk(t+ 1), xjt(t)} = r − |xk(t)− xit(t)| − |xk(t)− xjt(t)|
= r − |xit(t)− xjt(t)|
< 0 .

If max{xk(t+ 1), xit(t+ 1)} ≯ max{xk(t), xit(t)}, we have that max{xk(t+ 1), xit(t+ 1)} −max{xk(t), xit(t)} = 0 and
max{xk(t+ 1), xjt(t+ 1)} −max{xk(t), xjt(t)} < 0 . Therefore

max{xk(t+ 1), xit(t+ 1)}+max{xk(t+ 1), xjt(t+ 1)} < max{xk(t+ 1), xit(t)}+max{xk(t+ 1), xjt(t)} .

We also have that

max{xit(t+ 1), xjt(t+ 1)} < max{xit(t), xjt(t)} −mδ .

Therefore, f(x(t+ 1)) ≤ f(x(t))−mδ, as desired.

Lemma IV.5. Suppose the confidence function c : [0, 1] → [0, 1] is nondecreasing. In addition, fix the edge choices of the
DW model as {(it, jt)}∞t=0. Additionally, let {(itk , jtk)}∞k=0 denote the subsequence of edges where x(tk) ̸= x(tk + 1). Let
m := min{µ, 1− µ}. It then follows that,

∑
k≥1

∣∣xitk
(tk)− xjtk

(tk)
∣∣ ≤ m−1 · f(x(t1 + 1)) < ∞ .

Proof. First, notice that
∑

k≥1

∣∣xitk
(tk)− xjtk

(tk)
∣∣ is either convergent to some quantity in [0,∞) or diverges to ∞ since it

is a formal sum of nonnegative values. It remains to show that the sum converges to a finite value.
Define f : [0, 1]n → R by f(y) =

∑
1≤i<j≤n max{yi, yj}, and fix k ≥ 2.. We have by Lemma IV.4 that
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f(x(tk + 1)) ≤ f(x(tk))−m|xitk
(tk)− xjtk

(tk)| .

In addition, f is nonincreasing and tk ≥ tk−1 + 1, so f(x(tk)) ≤ f(x(tk−1 + 1)), so

f(x(tk + 1)) ≤ f(x(tk−1 + 1))−m|xitk
(tk)− xjtk

(tk)| .

Therefore,for k ≥ 1, it follows that

f(x(tk + 1)) ≤ f(x(t1 + 1))−
k−1∑
q=0

m|xitk
− xjtk

| = f(x(t1 + 1))−m

k−1∑
q=0

|xitk
− xjtk

| .

Recall that f is nonnegative, so for all k ≥ 2, f(x(t1 + 1))−m
∑k−1

q=0 |xitk
− xjtk

| ≥ 0. This implies that

k−1∑
q=0

|xitk
− xjtk

| ≤ m−1 · f(x(t1 + 1)) ⇒
∑
k≥1

∣∣xitk
(tk)− xjtk

(tk)
∣∣ ≤ m−1 · f(x(t1 + 1)) ,

as desired.

Theorem IV.2. Suppose the confidence function c : [0, 1] → [0, 1] is monotone. In addition, fix the edge choices of the DW
model as {(it, jt)}∞t=0, and let {(itk , jtk)}∞k=0 denote the subsequence of edges where x(tk) ̸= x(tk + 1). Then the adaptive DW
model with given confidence and edge choices converges to a limit state x∗ as t → ∞.

Proof. Without loss of generality, let c(x) be nondecreasing. Recall from Lemma IV.5 that∑
k≥1

∣∣xitk
(tk)− xjtk

(tk)
∣∣ = m−1 · f(x(t1 + 1)). We will use this to show that

∑
t≥1

∣∣xit(t)− xit(t− 1)
∣∣ ≤ d for any

i ∈ V . We first show that |xi(t)− xi(t− 1)| ≤ |xit(t− 1)− xjt(t− 1)|. There are two cases:

1. First, if i ̸= it and i ̸= jt, then we immediately have |xi(t+ 1)− xi(t)| = 0 ≤ |xit(t)− xjt(t)| .

2. Second, suppose that i = it or i = jt. Because µ < 1 we have

xit(t+ 1), xjt(t+ 1), xit(t), xjt(t) ∈ [xit(t), xjt(t)] ,

so xi(t+ 1), xi(t) ∈ [xit(t), xjt(t)]. It then follows that |xi(t+ 1)− xi(t)| ≤ |xit(t)− xjt(t)| .

Next, observe that
∑

t≥1

∣∣xi(t+ 1)− xi(t)
∣∣ is a sum of nonnegative terms, and hence is either convergent to a value in

[0,∞) or diverges to ∞. We know that if t ̸= tk for any k ≥ 1 (i.e. x(t+ 1) = x(t)) then |xi(t+ 1)− xi(t)| = 0. This allows
us to drop terms with t ̸= tk for any k, yielding

∑
t≥1

∣∣xi(t+ 1)− xi(t)
∣∣ =∑

k≥1

∣∣xi(tk + 1)− xi(tk)
∣∣ .

Because |xi(tk + 1)− xi(tk)| ≤ |xitk
(tk)− xjtk

(tk)|, we have an analogous relation for the sums of these terms. That is,

∑
k≥1

∣∣xi(tk + 1)− xi(tk)
∣∣ ≤∑

k≥1

∣∣xitk
(tk)− xjtk

(tk)
∣∣ ≤ γ−1 · f(x(t1 + 1)) .

This implies that ∑
t≥1

∣∣xi(t+ 1)− xi(t)
∣∣ =∑

k≥1

∣∣xi(tk + 1)− xi(tk)
∣∣ ≤ γ−1 · f(x(t1 + 1))

is finite, so {xi(t)}∞t=0 is a Cauchy sequence and therefore converges to some x∗
i ∈ R.
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TABLE I: Defining notation used in Section IVC.

Notation Definition

m min{µ, 1− µ}

{Ai}ki=1 a sequence of statements∨k
i=1 Ai statement that at least one of the Ai is true, also known as the logical disjunction

¬A logical negation of the statement A∧k
i=1 Ai the statement that all of the Ai are true, also known as the logical conjunction

The possible graph: Gpos(t)
the graph will all edges which ever appear within the effective graph at and after time t; formally,
(V,

⋃
t′≥t Eeff(t))

{et}∞t=0 the sequence of edges chosen in DW

The observed graph: Gobs(t) the graph of all edges which are selected at and after time t; formally, (V, {et′ |t′ ≥ t})

sep(e, t) the statement that the graph intersection Gobs(t) ∩Gpos(t) is not weakly connected

et is effective et ∈ Eeff(t)

sep(e) the event that sep(e, t) is true for some t, formally sep(e) :=
∨

t≥0 sep(e, t)

conn(e) conn(e) = ¬sep(e) =
∧

t≥0 ¬sep(e, t)

f = {ft}
tf
t=0 a sequence of edge selections which can be finite or infinite.

same(f, s, e) the statement that the first s edge choices {et}st=0 of DW match the edges in f

stab(e) the statement that every node in DW has a limit opinion

dif(ϵ, d, s0, s, e)
the event that after the edge selections {et}st=0, there are at least d nodes at time s whose opinions
are at least xmin(s0) + ϵ and that there are fewer than d such nodes at any time s′ < s

DIF(ϵ, d, s, T, e) the event that there exists t ≤ T such that dif(ϵ, d, s, t, e)

consensus the event such that limt→∞ xi(t) = k for all i ∈ V

C. General Graphs with Monotone Lower Bound

Let G = (V,E) be a graph. In this section, we consider an adaptive DW model DW as in Definition III.1, where we
further assume that the function x − c(x) is nondecreasing with x. As mentioned before, we claim an analogous result for
x+ c(x) nondecreasing; for this case, see Remark IV.2. In Table I, we provide a list of definitions and notation which will be
used throughout the section:

The approach in this section will be to treat randomness as a control protocol; the idea of this control protocol will be
used in proving Lemma IV.6. This is inspired by previous work on other opinion dynamic models have used this approach
to prove consensus or the existence of a limit state [10, 17].

Lemma IV.6. Let ϵ ∈ (0,mb], time s0, s ≥ 0 and 0 < d < N . Then there exists a time T ≥ s such that

PDW(DIF(mϵ, d+ 1, s0, T, e)|dif(ϵ, d, s0, s, e)) ≥
1

2|E|v
· PDW(conn(e)|dif(ϵ, d, s0, s, e)) ,

where

v :=

⌈
ln b

ln(1− µ)

⌉
.

Proof. Let H denote the set of nodes i ∈ V such that xi(s) ≥ xmin(s0) + ϵ. Assume dif(ϵ, d, s0, s, e) and suppose there exists
some minimum t ≥ s for which et is an effective edge between a node i ∈ H and a node j ∈ V \H. Note that this second
statement would be implied by ¬sep(e, s) .
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Because t is minimal, all previous effective edge choices et′ with s < t′ < t are either in H ×H or (V \H)× (V \H) . An
edge choice from either of these sets preserves the properties that minl∈Hxl(t

′) ≥ ϵ and maxl∈V \Hxl(t
′) < ϵ . Thus, xi(t) ≥ ϵ

and xj(t) < ϵ . There are two cases:

• Case 1: We assume xi(t) < xj(t) + c(xj(t)), so that node i is in the confidence interval of j at time step t. After edge
et = (i, j) is selected we know that

xj(t+ 1) = (1− µ)xj(t) + µxi(t)

≥ (1− µ)xmin(t) + µxi(t)

≥ xmin(t) + µϵ ≥ xmin(s0) + µϵ , (5)

xi(t+ 1) = (1− µ)xi(t) + µxj(t)

≥ (1− µ)xi(t) + µxmin(t)

≥ xmin(t) + (1− µ)ϵ ≥ xmin(s0) + (1− µ)ϵ . (6)

Because no other elements of H change their opinions between time steps t and t + 1, we conclude from (4) that all
elements of H have opinions of at least xmin(s0) + (1 − µ)ϵ . Because there are ≥ d elements of H, there must be at
least d+ 1 nodes whose opinion at time t+ 1 is at least

minxmin(s0) + µϵ, xmin(s0) + (1− µ)ϵ = xmin(s0) + bϵ .

Therefore, dif(mϵ, d+ 1, s, t+ 1, e) is true, and therefore DIF(mϵ, d+ 1, s, t+ 1, e) is true.

• Case 2: We assume that xi(t) ≥ xj(t) + c(xj(t)), so that i is not in the confidence bound of j at time step t. Then,

for t′ > t such that xi(t
′) ≥ xj(t

′) + c(xj(t
′)), we can repeatedly select edge (i, j) t′− t times with probability 1/|E|t′−t .

Because x − c(x) is an increasing function, we know that, during this selection, node j always remains inside the
confidence bound of node j . This implies that

xi(t
′) = xj(t

′ − 1) + (1− µ) · (xi(t
′ − 1)− xj(t

′ − 1))

= xj(t) + (1− µ)t
′−t(xi(t)− xj(t)) .

There is then some positive number u of selections of the edge (i, j), where

u ≤
⌈
ln b− ln(xi(t)− xj(t))

ln(1− µ)

⌉
(7)

such that xi(t+u) ≤ xj(t)+b ≤ xj(t)+c(xj(t)) = xj(t+u)+c(xj(t+u)) . By construction, because xi(t+u−1) > xj(t)+b,
we know xi(t+ u) > xj(t) + b(1− µ) ≥ xmin(t) + b(1− µ) ≥ xmin(s0) + ϵ . By assumption, the first selection of (i, j) is
given, so this happens with probability 1/|E|u−1.

From here, we use the work from Case 1 to see that, with a total probability of at least 1/|E|u we get dif(mϵ, d +
1, s, t+ u, e) is true. We also know that xi(t)− xj(t) ≤ 1. Thus, substituting into (7) yields u ≤ v. Finally, this lets us
conclude DIF(mϵ, d+ 1, s, t+ v, e′) is true with probability at least 1/|E|v .

We see that, with probability at least 1/|E|v, at least one of DIF(mϵ, d+ 1, s, t+ 1, e) or DIF(mϵ, d+ 1, s, t+ v, e) is true.
Since DIF(mϵ, d+1, s, t+1, e) ⇒ DIF(mϵ, d+1, s, t+v, e), we conclude that DIF(mϵ, d+1, s, t+v, e) is true with probability
at least 1/|E|v.

Our initial assumption on e was that dif(ϵ, d, s0, s, e) is true and there exists some minimum t ≥ s for which et is an
effective edge between a node i ∈ H and a node j ∈ V \H. We also noted that the second statement is implied by ¬sep(e, s).
For a fixed e satisfying ¬sep(e, s), let te denote the minimum t ≥ s for which et is an effective edge between a node in H and
a node in V \H. Letting t ≥ s be given, we conclude that

PDW(DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e),¬sep(e, s), te = t) ≥ 1

|E|v
. (8)

From (8), we obtain

PDW(¬sep(e, s), te = t,DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e))
= PDW(DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e),¬sep(e, s), te = t)× PDW(¬sep(e, s), te = t|dif(ϵ, d, s0, s, e))

≥ 1

|E|v
PDW(¬sep(e, s), te = t|dif(ϵ, d, s0, s, e (9)
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Now, let T ≥ s be given. We use conditional probability and (9) to obtain the following:

PDW(¬sep(e, s), te ≤ T,DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e))

=

T∑
t=s

PDW(¬sep(e, s), te = t,DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e))

≥
T∑

t=s

1

|E|v
PDW(¬sep(e, s), te = t|dif(ϵ, d, s0, s, e))

=
1

|E|v+1
· PDW(¬sep(e, s), te ≤ T |dif(ϵ, d, s0, s, e)) . (10)

Recall that if ¬sep(e, s) is true, then te ≤ ∞. Therefore we know

¬sep(e, s) ∧ dif(ϵ, d, s0, s, e) =

∞∨
t=s

[¬sep(e, s) ∧ te = t] ∧ dif(ϵ, d, s0, s, e) .

By the lower continuity of measure, there exists some T ≥ s for which

PDW

(
T∨

t=s

[¬sep(e, s) ∧ te = t] ∧ dif(ϵ, d, s0, s, e)|dif(ϵ, d, s0, s, e)

)
≥ 1

2
PDW(¬sep(e, s) ∧ dif(ϵ, d, s0, s, e)|dif(ϵ, d, s0, s, e)) ,

or in other words,

PDW(¬sep(e, s), te ≤ T |dif(ϵ, d, s0, s, e)) ≥
1

2
PDW(¬sep(e, s)|dif(ϵ, d, s0, s, e)) . (11)

Combining (10) and (11), we get that

PDW(¬sep(e, s), te ≤ T,DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e)) ≥
1

2|E|v+1
· PDW(¬sep(e, s)|dif(ϵ, d, s0, s, e)) .

Finally, recall that conn(e) ⇒ ¬sep(e, s) by definition, and that

¬sep(e, s), te ≤ T,DIF(mϵ, d+ 1, s, te + v, e) ⇒ DIF(mϵ, d+ 1, s, T + v, e) .

Then we have the following chain of inequalities

PDW(DIF(mϵ, d+ 1, s, T + v, e)|dif(ϵ, d, s0, s, e)) ≥ PDW(¬sep(e, s), te ≤ T,DIF(mϵ, d+ 1, s, te + v, e)|dif(ϵ, d, s0, s, e))

≥ 1

2|E|v+1
· PDW(¬sep(e, s)|dif(ϵ, d, s0, s, e))

≥ 1

2|E|v+1
· PDW(conn(e)|dif(ϵ, d, s0, s, e)) ,

so that T + v is our desired time step. This completes the proof.

In subsequent proofs, we will denote q := 1
2|E|v for brevity. With some work, one can get from Lemma IV.6 the following

result, whose proof we defer to Appendix B.3.

Lemma IV.7. For a finite choice of possible initial opinions x(0), and a fixed ϵ > 0, suppose PDW(conn(e)) > 0 and that
for all t ≥ 0, PDW(a(t)− n(t) ≥ ϵ|conn(e)) ≥ δ > 0. Then there exists some T ≥ 0 such that

EDW[xmin(T )] > EDW[xmin(0)] +
1

8
(mq)N−1ϵδ · PDW(conn(e)) .

Our next major objective is to use Lemma IV.7 to show that the probability of DW satisfying conn(e) and not coming to
consensus is 0. The intuition behind Lemma IV.7 is that if a certain violation of consensus never stops occurring, then we
can expect xmin to increase without bound.
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Lemma IV.8. For initial opinion x(0), and a fixed ϵ > 0, suppose P (conn(e)) > 0. Then we have that

lim
t→∞

PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) = 0 .

Proof. Recall from Lemma IV.1 that xmax(t) − xmin(t) is nonincreasing with t, which implies that
PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) is nonincreasing with t. Therefore, PDW(xmax(t) − xmin(t) ≥ ϵ|conn(e)) has a
limit at some δ ≥ 0. Suppose for sake of contradiction that δ > 0. This implies that PDW(xmax(t)−xmin(t) ≥ ϵ|conn(e)) ≥ δ
for all t ≥ 0. Let EDW[xmin(∞)] denote the limit of EDW[xmin(t)] as t → ∞. In particular, there exists t∗ ≥ 0 so that

EDW[xmin(t
∗)] > EDW[xmin(∞)]− 1

8
(mq)N−1ϵδ · PDW(conn(e)) .

Let DW′ denote the DW process where the initial opinion x′(0) is distributed as x(t∗). We know that

PDW′(conn(e)) = PDW(conn(e)) > 0

and that for all t ≥ 0

PDW′(xmax(t)− xmin(t) ≥ ϵ|conn(e)) = PDW(xmax(t+ t∗)− xmin(t+ t∗) ≥ ϵ|conn(e)) ≥ δ .

Then by Lemma IV.7, there exists some T ∗ ≥ 0 such that

EDW′ [xmin(T
∗)] ≥ EDW′ [xmin(0)] +

1

8
(mq)N−1ϵδ · PDW(conn(e)) .

Therefore,

EDW[xmin(T
∗ + t∗)] ≥ EDW[xmin(t

∗)] + ϵ · (mq/2)N−1 · PDW(conn(e))

> EDW[xmin(∞)]− 1

8
(mq)N−1ϵδ · PDW(conn(e)) +

1

8
(mq)N−1ϵδ · PDW(conn(e))

= EDW[xmin(∞)] .

Because xmin(t) is nondecreasing with t, EDW[xmin(t)] is nondecreasing with t. We therefore know EDW[xmin(∞)] ≥
EDW[xmin(t

∗)], which contradicts the above inequality, as desired.

Using Lemma IV.8, we show the following corollary:

Corollary IV.8.1. For any model DWof the form in Definition III.1, suppose that P (conn(e)) > 0. We then have that

PDW(consensus|conn(e)) = PDW(stab|conn(e)) = 1 .

In particular, this implies that, for any model DW of the form in Definition III.1,

PDW(stab|conn(e))PDW(conn(e)) = PDW(conn(e)) .

Proof. We have that that PDW(consensus|conn(e)) < 1 if and only if there exists some ϵ > 0 for which

lim sup
t→∞

PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) > 0 .

Because PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) is nonincreasing with t, we conclude that PDW(consensus|conn(e)) < 1 if and
only if

lim
t→∞

PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) > 0 .

Because P (conn(e)) > 0, Lemma IV.8 implies that

lim
t→∞

PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) = 0 ,

so PDW(consensus|conn(e)) = 1, as desired.
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We have shown that the adaptive-confidence DW model comes to consensus almost surely in the cases where conn(e) holds.
In particular, consensus is an example of a limit state. Now we need to study the existence of a limit state in the case in
which sep(e) holds. We state the following lemma, whose proof we defer to the Appendix B.4

Lemma IV.9. Let n0 be some positive integer. Suppose that any model of the form in Definition III.1, with N < n0,
converges to a limit state almost surely. Then for any model of the form in Definition III.1 with N = n0, we further have
PDW(stab, sep) = PDW(sep).

We are now ready to prove almost sure existence of a limit state in general.

Theorem IV.3. For a fixed x(0) ∈ [0, 1], let c be such that c(x) ≥ b > 0 for all x ∈ [0, 1]. Suppose further that x − c(x) is
nondecreasing with respect to x. Then our adaptive-confidence DW model in Definition III.1 converges to a limit state almost
surely.

Proof. Let stab({ei}∞i=0) denote the statement that the DW model has a limit opinion state for the edge sequence {ei}∞i=0.
We prove this by induction on the number of nodes. Observe that, for c(x) and an adaptive-confidence DW model with 1
node, the model converges to a limit state, and thus almost surely converges to a limit state.

Now suppose that, for all m ∈ {1, . . . ,m0}, an adaptive-confidence DW model on a network of m nodes, with confidence
c and convergence parameter µ, achieves a limit state almost surely. We now consider an adaptive-confidence DW model
DWwith a graph topology consisting of m0+1 nodes. By Lemma IV.9, we know that P (stab, conn) = P (conn). Additionally,
recall from Lemma IV.8.1 that P (stab, conn) = P (conn). Combining these two facts, we obtain the following:

P (stab) = P (stab, conn(e)) + P (stab, sep)

= P (conn(e)) + P (sep(e))

= 1 .

This completes the proof.

Remark IV.1. In Lemma IV.6, the only assumptions on the confidence-bound function c(x) is that infx∈[0,1] c(x) > 0 and
that if the confidence-bound of node i decreases if the opinion of node i decreases (that is, if c(xi) decreases then xi decreases).
However, we need not assume every node has the same confidence function; in particular, our model in Definition III.1 could
be modified so that each node i has its own confidence-bound function, ci : [0, 1] → [0, 1]. Lemmas IV.7– IV.9 make no further
use of c. As a result, Theorem IV.3 holds for any adaptive-confidence DW model with a heterogeneous confidence-bound as
long as, for all i, infx∈[0,1] ci > 0 and x − ci(x) is nondecreasing in x. This generalizes the result from Chen et al. in [10,
Theorem 1, Part i].

Remark IV.2. All the results in this section also hold in the case that x + c(x) is nondecreasing in x. This case only
requires small adaptations to the proofs. For Lemma IV.6 one would need to adapt the definition of dif(ϵ, d, s0, s, e) and
DIF(ϵ, d, s, T, e) to reflect xmax rather than xmin. Lemma IV.7 would be adapted to show that

EDW[xmax(T )] < EDW[xmax(0)] +
1

8
(mq)N−1ϵδ · PDW(conn(e)) .

From there, the above equation can be used to adapt the proof of Lemma IV.8. Subsequent results hold without any change.

D. Conjectures

In regards to confidence functions that do not lead to convergence to a limit state with probability one, the only functions
that we have found that lead to such behavior are those that allow for one node to always have two nodes with confidence 0
within it’s confidence interval. This observation leads us to the following conjectures:

Conjecture IV.1. For any graph topology and for a fixed x(0) ∈ [0, 1], let c be such that infx∈[0,1] c(x) > 0. Then our
adaptive-confidence DW model in Definition III.1 converges to a limit state almost surely.

Conjecture IV.2. For any graph topology and for a fixed x(0) ∈ [0, 1], let c be continuous. Then our adaptive-confidence
DW model in Definition III.1 converges to a limit state almost surely.

V. DETAILS OF AGENT-BASED SIMULATIONS

In Section IV, we presented theoretical results for the
existence of limiting behavior for our model described in

Equations (3) and (4) with three types of confidence-bound
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TABLE II: Summary of the definitions of the types of networks on which we study our adaptive-confidence DW model. The
black solid lines represent deterministic edges, the dashed colored lines represent nondeterministic edges, where different
colors indicate different probabilities. We give a more detailed definition of the SBM in Section VIB 3.

Network Definition Example Parameters

C(N) A complete graph C(N) with N pairwise adjacent nodes N ∈ {10, 50, 100, 500, 1000}

G(N, p)
An Erdős–Rényi (ER) graph in which we choose each of the
possible edges with independent, homogeneous probability p
[18, 19]

N = 100, p ∈ {0.1, 0.25, 0.5}

G(N,P)

A 2-community stochastic-block-model (SBM) graph, with
nodes assigned to 2 communities with sizes sA, sB
(N = sA + sB) and probability matrix P ∈ R2×2 for choosing
possible edges between and within communities [20]

Specification 1: Specification 2:
sA = 25, sB = 75 sA = 50, sB = 50
PAA = 0.7 PAA = 0.5
PAB = 0.002 PAB = 0.002
PBB = 0.5 PBB = 0.5

C2(N) A cycle graph with N nodes N ∈ {100, 500}

S(N)
A star graph with N nodes; the central node has degree
N − 1 and the other nodes are adjacent only to this central
node

N ∈ {100, 500}

T (N)
A tree graph, which is connected and acyclic, chosen
uniformly at random from the set of all trees with N nodes

N ∈ {100, 500}

functions. First, on a complete graph, our model with any
confidence-bound function with c(x) > 1

2+µ has probability

1 of reaching a limit state. Second, on any graph, when the
confidence-bound function is monotone, our model is guar-
anteed to reach a limit state. Finally, on any graph, if the
confidence-bound function has the property that x− c(x) is
increasing, then the model converges to a limit state with
probability 1.

With an understanding of the existence of a limit state
for our model in certain cases, we now wish to understand
how our model behaves at the limit state. To develop an
understanding of our model’s limit state behavior, we sim-
ulate our model using various graph types and confidence-
bound functions. In this section, we specify the networks
and confidence-bound functions we use in our experiments.
In Section VI, we discuss our results and observations.

A. Network Structures

To study the behavior at limit state of our adaptive-
confidence model on different network topologies, we numer-
ically simulate the model described by Equations (3) and (4)
on complete graphs, Erdős–Rényi (ER) graphs, stochastic-
block-model (SBM) graphs, star graphs, and ring graphs. We
also numerically simulate our model on different confidence-
bound functions; some of them have one parameter and oth-
ers have two parameters. For each network on which we run
simulations, we provide its definition, a graphical example,
and its parameter specifications in Table II.
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TABLE III: The one-parameter confidence-bound functions on which we run simulations.

Confidence-Bound Function Description Parameter Example

a exp
(

−(x−0.5)2

2(0.1)2

)
+ 0.5

An adjusted Gaussian with mean 0.5,
standard deviation 0.1, and height a a ∈ [−0.5, 0.5]
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0.5 sech2 (a(x− 0.5))

A concave down bell curve with its peak
at (0.5, 0.5) - where a lower a corresponds
to a flatter bell a ∈ [0, 10]
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B. Confidence-Bound Functions

We employ two categories of confidence-bound func-
tions: one-parameter confidence-bound functions and two-
parameter confidence-bound functions. In Table III, we spec-
ify the one-parameter confidence-bound functions, which in-
clude two hyperbolic-secant functions and an adjusted Gaus-
sian function. In Table IV, we specify the two-parameter
confidence-bound functions, which include a parabolic, a
cosine, and a piecewise-linear function. In Tables III and
IV, the “Parameter(s)” columns indicate the range of values
tested for each parameter. For a parameter p ∈ [l, r], we
choose a discrete set, P , of parameter values in the range:

P = {pn : pn = l + n∆s , n ∈ {0, 1, . . . , 29} ,

where ∆s = r−l
29 . For each confidence-bound function, we

run our numerical simulations using these 30 equally spaced
values within the given range for each parameter.

C. Simulation Specifics

To highlight the role of the confidence-bound function, we
set the compromise parameter to µ = 0.5 throughout all of
our numerical experiments. In our adaptive-confidence DW-
model simulations on a network with N nodes, we terminate
our simulations when the opinions of all nodes change by less
than 0.02 for 10N iterations in a row. That is, the simulation
terminates if |xi(t) − xi(t + 1)| < 0.02 for all xi ∈ V for
t ∈ {tk, tk + 1, . . . , tk + 10N}.

One of the major goals of our numerical simulations is to
measure whether the system comes to consensus (1 opinion
cluster), polarization (2 opinion clusters), or fragmentation
(more than 2 opinion clusters). We calculate two quantities

to measure this. Following Li and Porter [12], we calcu-
late the Shannon entropy of the system at termination time.
Suppose that the system contains K final opinion clusters
labeled Sr with r ∈ {1, 2, 3, . . . K}. Shannon entropy is

H = −
K∑
r=1

|Sr|
N

ln

(
|Sr|
N

)
. (12)

Intuitively, a low entropy suggests consensus and high en-
tropy indicates fragmentation. When H = 0, the model is at
consensus; when H > ln(2) ≈ 0.6931, the model is guaran-
teed to reach fragmentation; when 0 < H < ln(2), the model
can be either be in a polarized state or fragmented state.
When we want to focus on whether or not a population

reaches consensus, we measure the ratio of size of the largest
opinion cluster to the total number of nodes:

R =
maxr |Sr|

N
. (13)

since our model is inherently stochastic, we are unable
to definitively say when a simulation of our model us-
ing confidence-bound function surely comes to consensus.
Rather, we say that an experiment results in likely consensus
if the resulting mean value of R for an experiment is within
one standard deviation of R = 1.
To determine the final opinion clusters, we develop an al-

gorithm that accounts for both the final opinions and the un-
derlying network structure. We account for the asymmetry
in our update rule (Equations (3) and (4)) by first generating
a directed graph i.e. a digraph G′ = (V,E′), where we re-
place every edge {i, j} ∈ E with two edges (i, j), (j, i) ∈ E′.
For each edge, (i, j), in the digraph we remove the edge from
the graph if |∆i,j | < c(xj(ttermination)) where ttermination is
the time step that we terminate the simulation at. We de-
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TABLE IV: The two-parameter confidence-bound functions on which we run simulations.

Confidence-Bound Function Description Parameters Example

−m−e
2

cos (2πx) + m+e
2

A cosine wave with period 1, with
c(0.5) = m and c(0) = c(1) = e

m, e ∈ [0.01, 0.5]
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−4(m− e)x2 + 4(m− e)x+ e A parabola, with c(0.5) = m and
c(0) = c(1) = e

m, e ∈ [0.01, 0.5]
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2|x− 0.5|(e−m) +m a piecewise-linear function, with
c(0.5) = m and c(0) = c(1) = e

m, e ∈ [0.01, 0.5]
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fine a cluster as a strongly connected component within this
digraph.

VI. AGENT-BASED SIMULATION RESULTS

A. One-Parameter Confidence-Bound Functions

In our experiments, we restrict our attention to functions
that are symmetric about x = 0.5. This restriction allows us
to explore a scenario in which the opinion of the agents de-
pends on their distance from the center of the opinion space.
With this restriction in mind, we first explore confidence-
bound functions whose behavior is dependent on a single
parameter, a. For these one-parameter functions, we are in-
terested in determining a region for a where consensus is
guaranteed. We list the functions and their descriptions in
Table III. To determine these regions of guaranteed consen-
sus, we choose a graph structure and simulate our adaptive-
confidence DW model 10 times. For the adjusted Gaussian
function, we test a ∈ [−0.5, 0.5]; for the hyperbolic-secant
function, we test value of a ∈ [0, 10]. We track the mean and
standard deviation of ratio, R (as defined in Equation (13)),
of the size of the largest opinion cluster to the total number
of nodes across these 10 runs.

We first consider the adjusted Gaussian confidence-bound

function family. For this family of functions, the parame-
ter a corresponds to the value at the middle of the opinion
space. In Figure 1a, we plot the results of our numerical ex-
periment; the different colored curves represent the results of
our experiments using different graph structures. For each
curve, we display the mean value of R that we observed with
a marker. We also display a shaded region that indicates one
standard deviation in either direction of the mean for that
experiment. For all the a values we use in our simulations, we
observe likely consensus everywhere except a = −0.5 for all
three networks. The standard deviation for all three curves
is not noticeable, implying that the likelihood of achieving a
simulation achieving non-consensus using an adjusted Gaus-
sian confidence-bound function with a ̸= 0 is small.

The results of the experiments on the Gaussian confidence-
bound function family suggest that the ability of the system
to come to consensus is not very sensitive to the value of the
confidence bound toward the center of the opinion space.
This outcome may have been different had the extremes of
the opinion space had different confidence bounds, which is
a possibility we explore in Section VIB.

To test the sensitivity of consensus formation at a limit
state to the confidence bounds at the extremes of the opin-
ion space, we explore the hyperbolic-secant confidence-bound
function family. For this family of functions, we fix the con-
fidence bound of the center of the opinion as c(0.5) = 0.5.
When a = 0, the confidence-bound function is the line
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c(x) = 0.5. I.e., when a = 0, we are simulating the standard
DW model with a confidence bound of 0.5. As we increase
a, the magnitude of the slope increases and the confidence
bound at the extremes of the opinion space decreases. We
display the results of this experiment in Figure 1b. We ob-
serve that as the function approaches a spike at x = 0.5, the
size of the largest opinion cluster decreases. Since the size of
the largest opinion cluster is decreasing as a increases, but
the number of agents is held constant at N = 100, we must
have more opinion clusters forming as a increases. Thus we
observe increased levels of fragmentation as a increases.

B. Two-Parameter Confidence-Bound Functions

We experiment with three two-parameter confidence-
bound functions in Table IV and with all six graph types
in Table II. We now consider confidence-bound functions
that are characterized by the confidence bound at the center
of the opinion space (m) and at the extremes of the opin-
ion space (e) in our simulations. Let S be a set of thirty
evenly spaced points in the interval [0.01, 0.5]. For each sim-
ulation of our adaptive-confidence DW model, we generate
10 graphs; for each of these graphs, we uniformly randomly
sample x(0) from [0, 1]100. For each point (m, e) ∈ S2, we
simulate our adaptive-confidence DW model until termina-
tion (see Section VC). We then calculate the mean Shannon
entropy across these simulations. We indicate the observed
mean entropy in a heatmap. Each cell in the heatmap shows
the results of an experiment that was run using the corre-
sponding m and e values. We also track the mean time until
our simulations terminated and display them in a similar
fashion to the entropy.

1. The Complete Graph

To explore the behavior at limit state for our adaptive DW
model, we begin by performing numerical simulations on a
complete graph. It has been demonstrated numerically on
a complete graph that the standard DW model undergoes a
transition from the limit state being in a polarized or frag-
mented state when c < 0.5 to the limit state being at consen-
sus when c ≥ 0.5 [21]. Here, we are interested in if our system
undergoes a similar transition from a fragmented/polarized
state to consensus for certain choices of our parameters, m
and e.

In Figure 2, we show the mean Shannon entropy for 10
simulations of our adaptive-confidence DW model on a com-
plete graph, using the two-parameter confidence-bound func-
tions and parameter values described in Table IV. Along the
diagonal of the heatmap in Figure 2 is the observed mean
entropy of our numerical simulations using confidence-bound
functions where m = e. All of the two-parameter confidence-
bound functions that we experiment with are horizontal lines
when m = e. Hence, the diagonal of our heatmaps in this

section correspond to the mean entropy that we observed for
standard DW model where the confidence bound, c, is such
that c = m = e.

Figure 2 shows that the mean entropy is not symmetric
across the line m = e. For any of the three confidence-bound
function families, we observe the highest mean entropy oc-
curs when both m and e are less than approximately 0.09.
When e is less than approximately 0.09 andm is greater than
roughly 0.35, the piecewise-linear family yields a lower mean
entropy than the cosine and parabolic families. We note that
for the cosine confidence-bound function, the region where
e is less than approximately 0.09 does not have any obvious
groups of low mean entropy results (i.e., there are no groups
of black cells in this region). Similarly, for the parabolic
confidence-bound function, we observe no obvious groups of
low entropy when e is approximately less than 0.18. We also
see that for m values lower than roughly 0.26, there are no
clear groups of low entropy results for experiments performed
with either the cosine and piecewise-linear confidence-bounds
functions.

The existence of regions where no we observe almost no
groups of low entropy results suggests that for all of our two-
parameter confidence-bound functions, there are minimum
values of bothm and e that are required for the our adaptive-
confidence model to achieve consensus. However, the fact
that the regions where we are unable to find groups of low
entropy are different for different confidence-bound functions
suggests that the threshold values for m and e are not the
same across different confidence-bound functions.

In Figure 2, we are also able to analyze the “fronts” of con-
sensus. Loosely, a consensus front is the boundary between
zero and nonzero entropy. In Figure 2, this is the edges
between a purple cell and a black cell. The fronts of consen-
sus for both the parabolic and piecewise-linear confidence-
function family appear roughly linear. We observe that the
front for the piecewise-linear confidence-function family has
a steeper slope than the parabolic confidence-function family.
The cosine front appears to be nonlinear.

We show the mean time until we terminated our simula-
tions for different values of m and e in Figure 3. We ob-
serve that the cosine confidence-bound function family con-
verges in fewer steps than the piecewise-linear or parabolic
confidence-bound function family. We also notice that, as
was the case for the mean entropy results, the mean time un-
til termination is not symmetric across the line m = e. For
any fixed value of m, we observe a decrease in mean time un-
til convergence as e increases. Similarly, for any fixed value of
e, we observe a decrease in the mean time until convergence
as m increases.

2. Erdős–Rényi (ER) Graphs

On Erdős–Rényi (ER) graphs, it is known that for stan-
dard DW model the transition points for the confidence
bound are the same as for complete graphs, but that con-



18

(a) Gaussian confidence-bound function (b) Concave down hyperbolic-secant confidence-bound function

FIG. 1: The mean ratio R of the size of the largest opinion cluster and total node count versus the parameter a for the
one-parameter confidence-bound functions from Table III. Each point is the mean value of R over 10 simulations. The shaded
region corresponds to one standard deviation in each direction from the mean. For each confidence-bound function family, we
test 30 uniformly spaced values of a within the intervals from Table III. Each curve corresponds to a different graph topology
and uses the notation from Table II.

FIG. 2: Mean Shannon entropy at limit state for simulations of our adaptive-confidence DW model on a 100-node complete
graph using the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-bound function families. For each
confidence-bound function family, we consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. Each cell indicates
the mean Shannon entropy across 10 simulations of our adaptive-confidence DW model.

vergence times of DW simulations using ER graphs are often
lower than for DW simulations using the complete graph [5].
We demonstrate that similar trends exist for our adaptive
DW model.

Figure 4 shows the mean Shannon entropy we observed for
numerical simulations of our adaptive-confidence DW model
on ER graphs using two different connection probabilities
and the confidence-bound function families in Table IV. In
Figure 4, we observe much larger entropy when p = 0.1 than
we do when p = 0.5 or for the complete graph (i.e. p = 1).
We suspect that this is because of the definition of an opinion

cluster. In our definition of an opinion cluster, all nodes of an
opinion cluster must be in a strongly connected component
of the effective graph (described in Section III). Therefore,
the number of opinion clusters is upper bounded by the num-
ber of strongly connected components in the digraph that is
created by replacing all edges in the graph that we simulate
our adaptive-confidence model on with two edges facing op-
posite directions. Since ER graphs with p = 0.1 are likely
to have less edges than ER graphs with a greater value of
p, we also expect ER graphs with p = 0.1 to have a smaller
upper bound on the number of opinion clusters at the limit
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FIG. 3: Mean number of steps until termination for simulations of our adaptive-confidence DW model on a 100 node complete
graph using the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-bound function families. For each
confidence-bound function family, we consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. Each cell displays
the mean time until termination across 10 simulations of our adaptive-confidence DW model.

state. We also note that while we observe lower mean entropy
values for simulations using ER graphs than for simulations
using a complete graph, we also observe that the consensus
fronts across all confidence-bound families appear similar to
the fronts we observed for the complete graph experiments in
Figure 2. Thus, our results for the mean entropy suggest that
the values of m and e required for consensus when simulating
our adaptive-confidence model on an ER graph are similar to
the values of m and e required for consensus when simulating
our adaptive-confidence model on a complete graph.

As we did for complete graphs, we study the convergence
times for our simulations using ER graphs. We show the
mean time until termination for our numerical simulations
in Figure 5. As is true for the standard DW model, we ob-
serve smaller convergence times for smaller choices of p. For
p = 0.1, the convergence heatmaps differ from the heatmaps
in Figure 3. The values of m and e that result in long conver-
gence time are now more concentrated around regions where
either m or e is small (less than approximately 0.09). When
p = 0.5, the fronts follow the patterns that we observed in
the complete graph experiments in Figure 3.

We observe from Figure 5 that as p decreases, we observe
longer times until termination (indicated by brighter colors
across each of the three heatmaps). However, we also no-
tice for experiments that used e = 0.01, the maximum mean
time until termination is smaller for the experiments using
an ER graph with p = 0.1 than for the experiments that use
an ER graph with p = 0.5. This phenomenon is interesting
because it suggests that there exists confidence-bound func-
tions that violate the pattern observed in the standard DW
model where lower values of p increases the time until our
adaptive-confidence model converges.

3. Stochastic-Block-Models graphs

A stochastic block model (SBM) is a generative model
that produces random graphs, which tend to have underly-
ing community structures. We focus on 2-community SBMs
in this paper, community A and B. Let the number of nodes
in community A be sA and the number of nodes in commu-
nity B be sB . We construct our SBM by specifying sA, sB ,
and a probability matrix P. For an undirected SBM with
n communities, its probability matrix is symmetric and has
size n × n. Each element in the probability matrix defines
the edge probability between a node in one community and
a node in the other community. That is, the diagonal entries
of the block probability matrix are the edge probabilities
within communities and the rest are the edge probabilities
between communities. In our experiments, we employ 2 com-
binations of community sizes and block probability matrices.
The probability matrix is symmetric with 4 elements:

P =

(
PAA PAB

PBA PBB

)
,

where PAB = PBA.
As we indicated in Table II, we have 2 specifications for

SBM graphs and both have 100 nodes. Specification 1 has
communities with sA = 25 nodes and sB = 75 nodes, with
PAA = 0.7, PAB = 0.002, and PBB = 0.5. Let the SBM
graph with the first specification be SBM1. Specification 2
has communities with sA = 50 nodes and sB = 50 nodes,
with PAA = 0.5, PAB = 0.002, and PBB = 0.5. Let the SBM
graph with the second specification be SBM2.
In Figure 6, we observe that the entropy heatmaps for

(top) SBM1 and (bottom) SBM2 are similar to each other
for each confidence-bound function. In Figure 6, we notice
that there are more cells of different colors that border one
another in the results of our experiments that use SBM1 than



20

FIG. 4: Mean Shannon entropy at limit state for 10 simulations of our adaptive-confidence DW model on 100 node ER
graphs. Here we test (top) p = 0.1 and (bottom) p = 0.5. For confidence-bound functions, we use the (left column) cosine,
the (center column) parabolic, and the (right column) piecewise-linear confidence-bound function families. We consider 30
evenly spaced values of m and e in the interval [0.01, 0.5]. Each cell indicates the mean Shannon entropy across 10 simulations
of our adaptive-confidence DW model.

there are in the results of our experiments that use SBM2.
As we observed for ER graphs, entropy is generally higher
for graphs where the density of edges within the graph is
higher. This is supported by the observation that the mean
entropy is generally lower in results using the SBM1 graph
than in the results using the SBM2 graph and each entry in
the probability matrix in SBM1 (PAA = 0.7, PAB = 0.002,
and PBB = 0.5) is greater than or equal to the entry in the
probability matrix in SBM2 (PAA = 0.5, PAB = 0.002, and
PBB = 0.5).

Unfortunately, we cannot draw many further conclusions
from this comparison because the 2 specifications not only
have different number of nodes in the 2 communities, but
also have different probability matrices. In the future, we
plan to conduct more experiments where we only change the
probability matrix or the partition of nodes.

When comparing with the complete and ER graphs, we
see that the overall trend remains the same, but the mean
Shannon entropy is higher overall. In the future, we plan to
track the number of edges our SBM and ER graphs have so
that we can have a more direct comparison of the 2 graph
types and how the number of edges may affect the final mean
Shannon entropies.

The convergence times for the SBM in Figure 7 do not re-
semble the results for convergence times of experiments that
use any other of the graph types that we have examined thus
far. We are unable to observe any clear pattern for the con-
vergence times of the cosine, parabolic, or piecewise-linear
functions. We do still observe higher convergence times for
the SBM with lower probabilities of connection (SBM2). The
transition of mean time until termination from low to high
is also much less smooth than in past graph types. The
parabolic confidence-bound function has a region of very lit-
tle change in mean time until termination for small e (be-
tween roughly 0.09 and 0.18), which is not true for the cosine
or piecewise-linear confidence-bound function families.

4. Cycle Graph

For each type of graph thus far, we have observed the
same general patterns for Shannon entropy and consensus
fronts. This perhaps suggests that the the confidence-bound
function is more influential than the graph topology on the
limit-state behavior. However, this is not always the case.
One graph type where we observe different behavior is a cycle
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FIG. 5: Mean number of steps until termination for 10 simulations of our adaptive-confidence DW model on 100 node ER
graphs. We again test (top) p = 0.1 and (bottom) p = 0.5 and the (left) cosine, (center) parabolic, and (right) piecewise-linear
confidence-bound function families. For each confidence-bound function, we consider 30 evenly spaced values of m and e in
the interval [0.01, 0.5]. Each cell indicates the mean time until termination across 10 simulations of our adaptive-confidence
DW model.

graph. In Figure 8, we show the entropy at limit-state for
our numerical simulations using a cycle graph and the two-
parameter confidence-bound functions in Table IV.

In Figure 8, the consensus front does not at all resem-
ble those in the previous types of graphs. We also observe
much less variation in behavior across the confidence-bound
function families, which suggests that graph types can sig-
nificantly influence limit-state behavior. While the results
using the cosine and piecewise-linear confidence-bound func-
tion families are more similar to each other than they are to
the results for the parabola confidence-bound function fam-
ily, the differences between all three confidence-bound fami-
lies’ results are more difficult to observe than they have been
in the results that used the previous graph types.

The results of the termination time (see in Figure 9) for
a cycle graph also does not resemble any of the converge
time results seen so far. The largest convergence times for
simulations using the cycle graph occur when either m or
e are large, which is the opposite of the results found for
experiments using the complete and ER graphs (Figures 3
and 5).

5. Star Graph

We now consider a star graph. In Figure 10, we demon-
strate the results of our entropy experiments using a star
graph and the confidence-bound functions from Table IV.
We observe that the Shannon entropy at any cell is often
much higher than the Shannon entropy at the cell in the
same position in the heatmaps of our results of experiments
using the complete or ER graphs. The behavior of the fronts
also differs from the behavior of the fronts observed in our
experiments on the previous graph types. While the fronts in
Figure 10 do resemble the fronts in Figure 2, there are numer-
ous differences. We observe that while the fronts in Figure
2 often exist between purple and black cells, the fronts in
Figure 10 are between both purple and black cells as well as
orange and black cells. Moreover, we notice that the mean
entropy results for the piecewise-linear and cosine confidence-
bound families show a region of purple cells protruding into
a region of black cells.

We display the mean time until we terminated our simu-
lations in Figure 11. The termination time results suggest
that simulations that use a parabolic confidence-bound func-
tion take longer to converge than simulations that use either
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FIG. 6: Mean Shannon entropy at limit state for 10 simulations of our adaptive-confidence DW model on 100 node SBM
graphs. Here we specifically test (top) SBM1 with community sizes of 25 and 75, with PAA = 0.7, PAB = 0.002, and
PBB = 0.5 and (bottom) SBM2 with community sizes of 50 and 50, with PAA = 0.5, PAB = 0.002, and PBB = 0.5. For
confidence-bound functions we use the (left column) cosine confidence-bound function family, the (center column) parabolic
confidence-bound function family, and the (right column) piecewise-linear confidence-bound function family. We consider
30 evenly spaced values of m and e in the interval 0.01 and 0.5. Each cell indicates the mean Shannon entropy across 10
simulations of our adaptive-confidence DW model.

a cosine or piecewise-linear confidence-bound function. We
observe in the results of our experiments that use any of
three confidence-bound function families that as e increases,
the resulting termination time increases. However, for val-
ues of e that are close to 0.5, we notice that termination
time tends to decrease with an increase in m. However, for
e values that are close to 0, the termination time tends to
increase with an increase in m.

6. Tree Graphs

Finally, we explore random tree graphs. In Figure 12,
we plot the results of the entropy experiments for all 3
confidence-bound functions in Table IV.

In Figure 12, we increase the color bar maximum to be 4.5
instead of 4 because the limit-states of the 10 simulations
on random tree graphs produce a higher mean Shannon en-
tropy than simulations that use complete, ER, SBM, or star
graphs. If we consider all 6 graph types we used in our ex-
periments, the heatmaps for random tree graphs (Figure 12 )

and cycle graphs (Figure 8) are the most similar. While the
entropy gradually decreases as m and e increase, the tran-
sition to consensus does not occur until we approach high
m and e values. Comparing the effect of confidence-bound
functions on the mean entropy for experiments using ran-
dom tree graphs, we observe that the simulations that use
parabola or piecewise-linear functions have similar entropy
results, where their entropies decrease to values close to 0
as m approaches 0.5 even with small e values. However, the
cosine function is much more sensitive to high m values than
the other 2 confidence-bound functions. Unlike our previous
observations where the parabola tends to be the one standing
out, our random tree graphs tell us a different story.

The confidence-bound functions affect the mean time un-
til termination (Figure 13) similarly to the mean Shannon
entropies. The heatmaps for experiments using parabolic
and the piecewise-linear confidence functions resemble each
other, but the cosine graph takes much longer to converge
for low values of m. With low values of e, however, the
parabola and the piecewise-linear take much longer to con-
verge. For all three plots in Figure 13, we observe a slight
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FIG. 7: Mean number of steps until termination for 10 simulations of our adaptive-confidence DW model on 100 node SBM
graphs. We again test (top) SBM1 with community sizes of 25 and 75, with PAA = 0.7, PAB = 0.002, and PBB = 0.5 and
(bottom) SBM2 with community sizes of 50 and 50, with PAA = 0.5, PAB = 0.002, and PBB = 0.5 and the (left) cosine,
(center) parabolic, and (right) piecewise-linear confidence-bound function families. For each confidence-bound function, we
consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. Each cell displays the mean time until termination
across 10 simulations of our adaptive-confidence DW model.

decrease in mean time until convergence when m and e are
both near 0.26, which is essentially the standard DW model
with a constant confidence bound of 0.26. In previous graphs,
even when entropy heatmaps look similar, such as the ER
and SBM graphs, their convergence time look very differ-
ent. However, by comparing Figure 9 and Figure 13, we
see that the heatmaps for convergence also share similar fea-
tures: higher e values correspond to high mean time until
termination.

VII. A MEAN-FIELD THEORY FOR THE
ADAPTIVE-CONFIDENCE DW MODEL

A mean-field theory allows us to approximate a stochastic
model and gain insight into the overall behavior of such a
model [22]. For the DW model, instead of simulating indi-

vidual interactions at each time step with edge selections, the
mean-field model considers an “average” interaction among
all agents in a continuous time range [23]. The model is help-
ful for understanding the behavior of dynamical processes on
networks as the network size tends towards infinity.

We adapt the degree-based mean-field equations of Fennell
et al. [1] to our adaptive-confidence DWmodel. At each time
step, a node’s confidence bound c(x) updates based on some
function of the node’s opinion. The mean-field equation is an
equation of motion for a probability density function (PDF)
P (x, t) : [0, 1] → R, which maps the opinion space to R.
By definition, at each time step t, the area under the entire
curve of the PDF is equal to 1. In this section, we discuss
the master equation that governs the opinion densities; we
give the full derivation in Appendix A.

The degree-class k is defined as all the nodes with degree
k. For every degree-class k, we have the partial integro-
differential equation

∂Pk(x, t)

∂t
=
∑
l

2qkqlπkl

γ

(∫
|x−y|<c(y)µ

1

µ
Pk(y, t)Pl

(
y +

1

µ
(x− y), t

)
dy −

∫
|x−y|<c(x)

Pk(x, t)Pl(y, t)dy

)
. (14)
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FIG. 8: Mean Shannon entropy at limit state for 10 simulations of our adaptive-confidence DW model on a 100-node cycle
graph. For confidence-bound functions we use the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-
bound function families. We consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. We show the mean
Shannon entropy across 10 simulations in each cell. Note here that the y-limits are from 0 to 4.5 rather than the usual 0 to
4.

FIG. 9: Mean number of steps until termination for 10 simulations of our adaptive-confidence DW model on a 100-node cycle
graph. We test the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-bound function families. For each
confidence-bound function, we consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. Each cell indicates the
mean Shannon entropy across 10 simulations.

Equation (14) uses the following notation:

• Pk(x, t): the density of nodes with opinion x at time t
among the degree-k nodes.

• qk: the probability that a node chosen uniformly at
random has degree k.

• πkl: the probability that an edge exists between a
node chosen uniformly at random from all degree-k
nodes and a node chosen uniformly at random from
all degree-l nodes.

• N : the number of nodes.

• E: the set of edges.

• γ = 2|E|
N2 : graph density (with γ = 1 on a complete

graph).

• µ: compromise parameter.

Suppose that a network has K degree classes. We can then
write

P (x, t) =

K∑
k=1

qkPk(x, t) . (15)

A. Numerical Solver

To solve the partial integro-differential equation (14) nu-
merically, we discretize in both time t and the opinion space
x. Following [1], each time step has duration ∆t = 2

N , where
N is the number of nodes in a network. Each spatial step is
∆x = 0.0001.
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FIG. 10: Mean Shannon entropy at limit state for 10 simulations of our adaptive-confidence DW model on a 100 node star
graph. For confidence-bound functions we use the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-
bound function families. We consider 30 m and e values evenly spaced in the interval [0.01, 0.5]. Each cell indicates the mean
Shannon entropy across 10 simulations.

FIG. 11: Mean number of steps until termination for 10 simulations of our adaptive-confidence DW model on a 100 node
star graph. We test the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-bound function families. For
each confidence-bound function, we consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. Each cell indicates
the mean time until termination across 10 simulations.

See Algorithm 1 for an overview of our solver algorithm.
We are able to solve our partial-integro differential equation
using a technique from numerical ordinary differential equa-
tions. To best match our notation with convention from
numerical ordinary differential equations then, we denote
Pk(x, t) as P

t
k(x). We denote the spatial discretization as

X = {xn : xn = n∆x , n ∈ {0, 1, . . . , 10000}} .

(In the following explanations, we use the phrases “spatial
discretization” and “mesh points” interchangeably). Using
this discretization in space, we can approximate P t+1(xi)
using Equation (14) and knowledge of P t. We then use an
Adams–Bashforth method [24] to yield a solution to (14). To
follow convention from numerical ordinary differential equa-
tions, we then refer to the right-hand side of Equation (14)
for some fixed value of tn as f(tn, P

tn
k ).

We start with a uniform density equation as the initial

Algorithm1 Numerical Solver of Equation (14)

initialize function interpolations P t
k for all degree classes k

while 90% of P t
k(X) are greater than or equal to the density

threshold do
for k in degree classes do

try
compute f(t, P t

k) at mesh points
with P t

k and f(t, P t
k), get P

t+1
k at mesh points using

Adams–Bashforth
catch Overflow

return
∑

k qkP
t
k

end try
end for
set P t

k = P t+1
k at mesh points for all degree classes k

update P t
k(X)

end while
return

∑
k qkP

t
k
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FIG. 12: Mean Shannon entropy at limit state for 10 simulations of our adaptive-confidence DW model on 100 node ran-
dom tree graphs. For confidence-bound functions we use the (left) cosine, (center) parabolic, and (right) piecewise-linear
confidence-bound function families. We consider 30 evenly spaced m and e values in the interval [0.01, 0.5]. Each cell indicates
the mean Shannon entropy across 10 simulations. Note here that the y-limits are from 0 to 4.5 rather than the usual 0 to 4.

FIG. 13: Mean number of steps until termination for 10 simulations of our adaptive-confidence DW model on 100 node
random tree graphs. We test the (left) cosine, (center) parabolic, and (right) piecewise-linear confidence-bound function
families. For each confidence-bound function, we consider 30 evenly spaced values of m and e in the interval [0.01, 0.5]. Each
cell indicates the mean time until termination across 10 simulations.

condition. That is,

P 0(x) =

{
1 , x ∈ [0, 1]

0 , otherwise .

We then use a third-order Adams–Bashforth method to de-
termine the values of P tn+1(xi) for all xi ∈ X. The Adams–
Bashforth method requires the following inputs:

y′ = f(t, y) , y(t0) = y0 ,

which, when applying our notation, is

∂P t
k

∂t
= f(t, P t

k), P 0
k = P0 .

Evaluating the value of f(t, P t
k) requires an integration,

which we perform with a modified trapezoidal rule. For each

point xi in our spatial discretization we compute the region

D = X
⋂

{y : |xi − y| < c(y)µ} .

We then compute the true bounds of integration

a = inf{y : |xi − y| < c(y)µ}
b = sup{y : |xi − y| < c(y)µ}

We define P̃ t
k(x) to be the result of linearly interpolating the

set P t
k(X), and we let S be the result of performing the trape-

zoid rule on the function 1
µ P̃

t
k(y)P̃

t
l (y+

1
µ (xi − y)) using the

points in D. Let the first integral in the parenthesis on the
right-hand side of Equation (14) be RHS1. We approximate
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RHS1 as

RHS1 = S +
1

µ
P̃ t
k(a)P̃

t
l

(
a+

1

µ
(xi − a)

)
|min
x∈D

x− a|

+
1

µ
P̃ t
k(a)P̃

t
l

(
b+

1

µ
(xi − b)

)
|max
x∈D

x− b| .

We compute the second integral similarly. During our inte-
gration computation, we may encounter points outside of the
interval [0, 1]. Since the opinion space is [0, 1], we know that
any point outside of the interval [0, 1] must have a value of
0. Hence, we add 50 ghost points of value 0 on either side
of the opinion space. After we compute the values of f at
our mesh points, we note that because we are working with
a density function, we require that∫ 1

0

f(t, P t
k)(x)dx = 0 .

To ensure this, we reset the values of f as

f(t, P t
k)(x) := f(t, P t

k)(x)−
∑

x∈X f(t, P t
k)(x)

|X|

after we compute the value of f(t, P t
k) at each point in the

discretization. In all of our simulations, the density of each
degree class converged to a sum of delta functions. Thus,
we repeat this time-stepping process until a sufficiently low
number of points in the set P t

k(X) are below the density
threshold. In our experiments, we set the density threshold
to be 0.1 and required that 90% of the points in P t

k(X) fall
below the density threshold. That is, we terminate the mean-
field simulation when

|{y ∈ P t
k(X) : y < 0.1}|
|P t

k(X)|
≤ 0.1 .

B. Experiment Details and Results

We examine our mean-field model (14) on complete
graphs and configuration-model graphs with the three two-
parameter confidence-bound functions (see Table IV) and
a constant function c(x) = 0.1, which corresponds to the
standard DW model with a confidence bound of 0.1. We
set m = 0.3 and e = 0.1 for all of the confidence-bound
functions. We first run agent-based simulations on complete
graphs and track the time until the simulations terminate
using the termination criteria that we stated in SectionV.
As mentioned earlier, each time step in our simulations of
our mean-field approximation is ∆t = 2

N . Since we approx-
imate our mean-field equation for the density of opinions at
a tenth of the time until termination, halfway to termina-
tion, and then at termination, we need the corresponding
time step in agent-based simulations. To convert the time,
we calculate

density time = discrete time · 2

N
.

1. Complete Graph

For a complete graph with N nodes, all nodes have de-
gree N − 1, which simplifies the partial integro-differential
equation in Equation (14) to the following equation:

∂P (x, t)

∂t
=

∫
|x−y|<c(y)µ

1

µ
P (y, t)P

(
y +

1

µ
(x− y), t

)
dy

−
∫
|x−y|<c(x)

P (x, t)P (y, t)dy . (16)

We use both 500-node and 1000-node complete graphs.
Figure in 14 we show the results for constant confidence func-
tion c(x) = 0.1 which corresponds to the approximation of
the standard DW model. We define the agent-based density
as the number of nodes in the agent-based simulation within
each interval ∆t. At a tenth of the time to termination and
halfway to termination, we observe that the mean-field model
fits the actual agent-based density relatively well. At termi-
nation, we see an overestimation in density at more extreme
opinion values and a mismatch in density peaks.

This overestimation occurs in almost all of our simulations
at termination, regardless of confidence-bound functions. We
believe this overestimation is due to a finite-size effect. One
derives the mean-field model as the number N of nodes tends
to infinity, whereas we consider networks withN = 500 nodes
in our simulations. The mismatch of peaks also appears in
many of our simulations. Stochasticity plays an important
role in determining the agent-based density. Therefore, we
expect that the peaks do not match up perfectly in opinion.
However, the number of peaks is the same in the agent-based
and mean-field simulations. In Figures 15, 16, and 17, we
observe that simulations with any of the three confidence-
bound functions have higher densities at the halfway point
and at the time of termination than in our simulations of
the standard DW model. For all confidence-bound functions,
the agent-based simulations have asymmetric density distri-
butions in the opinion space while the our mean-field model
generate symmetric density functions. We suspect that is
also due to a finite size effect.

We also run the same set of experiments on a complete
graph with 1000 nodes. Similar to the 500-node cases (see
Figures 14, 15, 16, and 17), the mean-field densities approx-
imate the agent-based density results well at a tenth of the
way to termination for the 1000-node case (see Figures 18, 19,
20, and 21). For all confidence-bound functions except the
cosine confidence-bound function, the mean-field approxima-
tion approximates the behavior of the agent-based at halfway
to termination better than the experiments with 500-node
graphs. This supports our hypothesis that the overshoot er-
ror is a result of finite size.

The mean-field approximation underestimates the num-
ber of peaks at the limit state for the parabolic and stan-
dard confidence-bound functions. However, for the other
confidence-bound functions, the mean-field approximation
correctly estimates the number of peaks at the limit state.
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FIG. 14: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for a standard DW
model with confidence bound of 0.1 on a 500-node complete graph. We run the agent-based model until no node changes
their opinion by more than 0.02 for 50000 time steps. We plot our mean-field approximation and the densities of opinions
observed in the agent-based simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at
(right) termination.

FIG. 15: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for an adaptive-

confidence DW model with a cosine confidence-bound function c(x) = − (m−e)
2 cos(2πx)+ m+e

2 on a 500-node complete graph,
with m = 0.3 and e = 0.1. We run the agent-based model until no node changes their opinion by more than 0.02 for 50000
time steps. We plot our mean-field approximation against the densities of opinions observed in the agent-based simulation
at (left) a tenth of the time to termination, (center) halfway to termination, and at (right) termination.

Interestingly, the cosine confidence-bound function is the
only situation in which we observe a peak that is smaller
than the agent-based simulation.

2. Configuration-Model Graphs

Now we study our mean-field approximation on a config-
uration model [25]. Here we restrict ourselves to the case of
100 node configuration models where each node is assigned a

degree from the set {5, 10} uniformly at random. Generating
a configuration-model network often a yields a multigraph
for finite values of N . In our adaptive-confidence model, we
consider a graph, so we must make some alterations to the
configuration-model network if a multigraph is produced. If
a multigraph is produced, we cut all self edges and paral-
lel edges. This cutting procedure often creates nodes that
do not have a degree from {5, 10}, which our mean-field ap-
proximation does not account for. Once we create our graph,
we follow the experimental procedure from Section VIIB 1.
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FIG. 16: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for an adaptive-
confidence DW model with a parabola confidence-bound function c(x) = −4(m−e)x2+4(m−e)x+e on a 500-node complete
graph, with m = 0.3 and e = 0.1. We run the agent-based model until no node changes their opinion by more than 0.02
for 50000 time steps. We plot our mean-field approximation against the densities of opinions observed in the agent-based
simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at (right) termination.

FIG. 17: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for an adaptive-
confidence DW model with a piecewise-linear confidence-bound function c(x) = 2|x−0.5|(e−m)+m on a 500-node complete
graph, with m = 0.3 and e = 0.1. We run the agent-based model until no node changes their opinion by more than 0.02
for 50000 time steps. We plot our mean-field approximation against the densities of opinions observed in the agent-based
simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at (right) termination.

We show the results of this experiment in Figure 22.

At a tenth of the way to convergence, the configuration
model produces density values are less than what we observe
in the agent-based simulation at some points. However, be-
cause we only use 100 nodes in this simulation, we believe
this is a finite-size effect. Because there are finitely many
nodes, we observe spikes in density at certain opinions and
zeros at others; this is not possible for our mean-field ap-
proximation since the approximation is continuous. We also
observe that at the limit state, the mean-field approxima-

tion produces the same number of peaks as the agent-based
simulations.

VIII. CONCLUSION

We studied an adaptive confidence-bound model (BCM)
that we constructed by generalizing the classical DW model.
Our model incorporated confidence-bound functions and
asymmetric updates to the classical DW model. The
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FIG. 18: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for a standard DW
model with confidence bound of 0.1 on a 1000-node complete graph. We run the agent-based model until no node changes
their opinion by more than 0.02 for 100000 time steps. We plot our mean-field approximation against the densities of opinions
observed in the agent-based simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at
(right) termination.

FIG. 19: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for an adaptive-

confidence DW model with a cosine confidence-bound function c(x) = − (m−e)
2 cos(2πx) + m+e

2 on a 1000-node complete
graph, with m = 0.3 and e = 0.1. We run the agent-based model until no node changes their opinion by more than 0.02
for 100000 time steps. We plot our mean-field approximation against the densities of opinions observed in the agent-based
simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at (right) termination.

confidence-bound functions take an agent’s opinion at time t
as input and outputs its confidence at the same time step. In
real life, an individual’s willingness to listen to other often de-
pends on their opinion, and our model’s adaptive confidence
bound incorporates this idea. Moreover, in real-life conver-
sations, it is not always the case that both sides compromise,
as some individuals may be more open-minded than others.
Our asymmetric update rule also reflects this phenomenon.

We found that in our adaptive DW model, convergence to
a limit state is not guaranteed in general. We derived suffi-

cient conditions for almost sure convergence to a limit state
on both complete and general graph topologies. Further-
more, we showed for any graph topology hat our adaptive
DW model with a monotone confidence function converges
to a limit state. The methods we used to obtain these results
take inspiration from the methods in [10] and [17].

We conducted numerical experiments of our agent-based
adaptive-confidence DW model for 6 graph structures and
5 confidence-bound functions. We started with 2 one-
parameter functions to examine how changing one parameter
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FIG. 20: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for an adaptive-
confidence DW model with a parabola confidence-bound function c(x) = −4(m−e)x2+4(m−e)x+e on a 1000-node complete
graph, with m = 0.3 and e = 0.1. We run the agent-based model until no node changes their opinion by more than 0.02
for 100000 time steps. We plot our mean-field approximation against the densities of opinions observed in the agent-based
simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at (right) termination.

FIG. 21: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (16) for an adaptive-
confidence DW model with a piecewise-linear confidence-bound function c(x) = 2|x−0.5|(e−m)+m on a 1000-node complete
graph, with m = 0.3 and e = 0.1. We run the agent-based model until no node changes their opinion by more than 0.02 for
100000 time steps and stored the total number of time steps. We plot our mean-field approximation against the densities of
opinions observed in the agent-based simulation at (left) a tenth of the time to termination, (center) halfway to termination,
and at (right) termination.

affects the ratio of the size of the largest opinion cluster to
the number of nodes at a limit state. We also considered 3
two-parameter functions, where we calculated Shannon en-
tropy for final states and examined the effects of varying the
middle value m and the extreme values e.

We also derived and examined a mean-field approxima-
tion of our model. This approximation comes in the form
of a partial integro-differential equation that approximates
the density of every degree-class k. For this equation, we de-

veloped a solver that uses Adams–Bashforth to advance the
density solution in time.

IX. ACKNOWLEDGEMENTS

We thank our mentors S. Tymochko and M. A. Porter for
continuous support and guidance throughout the REU pro-
gram, W. Chu and A. Dubovskaya for helpful comments and



32

FIG. 22: Density distribution for agent-based (blue) and mean-field (orange) simulations of Equation (14) with an adaptive-
confidence DW model with a parabolic confidence-bound function c(x) = −4(m − e)x2 + 4(m − e)x + e on a 100-node
configuration model, with m = 0.3 and e = 0.1. We run the agent-based model until no node had changed their opinion
by more than 0.02 for 10000 time steps. We plot our mean-field approximation against the densities of opinions observed
in the agent-based simulation at (left) a tenth of the time to termination, (center) halfway to termination, and at (right)
termination.
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Appendix A: Mean-field Derivation

1. Assumptions

• The graph is from a configuration model [25]. That is, the degree of each node is fixed.

• At each time step, we track the degree of each node and cut all edges in the graph. We assign k “stubs” to each node,
where k is the degree of the node. For each stub, we uniformly randomly select another stub and draw an edge between
these two stubs.

• The network is sufficiently dense (we are doing this in a loose way without defining asymptotic bounds).

2. Notation

• Pk(x, t): the density of nodes w opinion x at time t among degree-k nodes.

• Pk(x, t)dx: the probability that a degree-k node has an opinion found in the interval [x, x+ dx).

• ql: the probability that a node chosen uniformly at random has degree l.

• N : number of nodes.

• E: the set of edges.

• Nqk: asymptotic expected number of degree-k nodes as N → ∞.

• γ = 2|E|
N2 : graph density (γ = 1 for a complete graph).

• πkl: the probability that an edge exists between a node chosen uniformly at random from all degree-k nodes and a node
chosen uniformly at random from all degree-l nodes.

3. Derivation

The expected change in Pk(x, t)dx over a time increment dt is

Expected number of degree-k nodes entering [x, x+ dx)− Expected number of nodes leaving [x, x+ dx) . (A1)

To compute the positive contribution, we follow the work of Fennell et al. [1]. Consider a degree-k node i with opinion y.
The probability that we choose node i for interaction with a degree-l node in dt is

Nqlπkl

|E|
=

2|E|
Nγ · qlπkl

|E|
=

2qlπkl

Nγ
. (A2)

We see that Nqlπkl is the expected number of edges between nodes of degree-k and nodes of degree-l. Hence, when we
divide Nqlπkl by |E|, we get the probability of selecting an edge between an degree-k node and a degree-l node. Substituting
into the graph density equation (A2), we get that this probability is 2qlπkl

Nγ . Node i will change it’s opinion only if the degree-l

node it was selected to update with has opinion z ∈ (y− c(y), y+ c(y)). Node i will then update it’s opinion to y+ µ(z− y).

The updated opinion will be in the interval [x, x+dx) only if z ∈
[
y + 1

µ (x− y), y + 1
µ (x− y) + dx

µ

)
. To have z ∈ [x, x+dx),

this implies y + µ(z − y) > x and y + µ(z − y) < x+ dx. Therefore,

y + µ(z − y) > x

µz > x− y + µy

z > y +
1

µ
(x− y)

y + µ(z − y) < x+ dx

µz < x+ dx− y + µy

z < y +
1

µ
(x− y) +

dx

µ
.
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The density of degree-l nodes such as z is Pl(y +
1
µ (x− y), t)dxµ , so the probability that node i has an opinion in [x, x+ dx)

after the time-step dt is ∑
l

2qlπkl

Nγ

1

µ
Pl

(
y +

1

µ
(x− y), t

)
dx

µ
.

The expression for the probability that any degree-k node has an opinion in [x, x + dx) after time step dt is analogous.
Observe that we expect there to be NqkPk(y, t)dy degree-k nodes with opinion y. Therefore, the probability of a degree-k
node with opinion y updating it’s opinion into [x, x+ dx) is:∑

l

2qkqlπkl

γ

1

µ
Pk(y, t)Pl

(
y +

1

µ
(x− y), t

)
dx

µ
. (A3)

For a node i with opinion y to update its opinion to the interval [x, x+ dx) after an update with a node of opinion z, we

require z ∈
[
y + 1

µ (x− y), y + 1
µ (x− y) + dx

µ

)
. For z to be a valid update partner for y, we require that z ∈ (y−c(y), y+c(y)).

Therefore, we require that

y − c(y) < y +
1

µ
(x− y) ,

y +
1

µ
(x− y) +

dx

µ
< y + c(y) .

These inequalities yield the bounds

−c(y)µ < x− y < c(y)µ− dx .

Thus, to determine the positive contribution in equation (A3), we integrate over all nodes with opinions that may update to
the interval [x, x+ dx) to obtain∑

l

2qkqlπkl

γ

∫
−c(y)µ<x−y<c(y)µ−dx

1

µ
Pk(y, t)Pl

(
y +

1

µ
(x− y), t

)
dxdy . (A4)

We then calculate the negative contribution, which is the expected number of degree-k nodes whose opinions move outside
[x, x+ dx) in a time step dt. Consider a node j with an opinion in [x, x+ dx) with degree k. It will update its opinion if it
interacts with a node within its confidence bound (i.e. when |x− y| < c(x)). Therefore, the probability that node j updates
its opinion during the time step is ∫

|x−y|<c(x)

∑
l

2qlπkl

Nγ
Pl(y, t)dy .

We seek to get the expected number of degree-k nodes whose opinions move outside [x, x+dx) in dt. Additionally, as dx → 0,
the probability that node j leaves the interval [x, x + dx) during the time step is equivalent to the probability that node j
interacts during the time step. The number of degree-k nodes whose opinion is in [x, x+ dx) is NqkPk(x, t)dx. Therefore,

NqkPk(x, t)dx ·
∫
|x−y|<c(x)

∑
l

2qlπkl

Nγ
Pl(y, t)dy =

∫
|x−y|<c(x)

∑
l

2qlπkl

Nγ
Nqk · Pl(y, t)dy · Pk(x, t)dx

=
∑
l

2qkqlπkl

γ

∫
|x−y|<c(x)

Pk(x, t)Pl(y, t)dydx . (A5)

Combing (A4) and (A5) yields

NqkPk(x, t+ dt)dx−NqkPk(x, t)dx =
∑
l

2qkqlπkl

γ

(∫
−c(y)µ<x−y<c(y)µ−dx

1

µ
Pk(y, t)Pl

(
y +

1

µ
(x− y), t

)
dxdy

−
∫
|x−y|<c(x)

Pk(x, t)Pl(y, t)dxdy

)
.

(A6)

Taking dx → 0 and then dt → 0, we obtain

∂Pk(x, t)

∂t
=
∑
l

2qkqlπkl

γ

(∫
|x−y|<c(y)µ

1

µ
Pk(y, t)Pl

(
y +

1

µ
(x− y), t

)
dy −

∫
|x−y|<c(x)

Pk(x, t)Pl(y, t)dy

)
. (A7)
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TABLE V: Defining notation used in Appendix B.

Notation Definition

The possible graph: Gpos(t1, t2)
the graph containing all edges which ever appear within the effective graph between (not strictly)
times t1 and t2; formally, Gpos(t1, t2) := (V,

⋃
t′≥t1,t′≤t2

Eeff(t)) )

The observed graph: Gobs(t1, t2)
the graph of all edges which are selected between (not strictly) times t1 and t2; formally, it is equal
to (V, {et′ |t1 ≤ t′ ≤ t2})

sep(e, t1, t2) the statement that the graph intersection Gobs(t1, t2) ∩Gpos(t1, t2) is not weakly connected

sepS(e, t)
for a subset S ⊂ V , the statement that the graph intersection Gobs(t)∩Gpos(t) does not contain any
edges in S × (V \S) ∪ (V \S)× S .

sepS(e) for a subset S ⊂ V , the event that sepS(e, t) is true for some t, i.e sepS(e) :=
∨

t≥0 sep(e, t) .

same(A, s, e)
for a set A containing edge sequences of length s, the statement that the first s edge choices {et}st=0

of DW match the edges in f for some f ∈ A.

Appendix B: Various Lemmas and their Proofs

In this section, we use the notation from Section IV that is defined in Table I as well as some additional notation defined
in Table V. First, we prove a lemma that builds upon Lemma IV.6, no longer using the the event dif. From this lemma,
using recursion on d, we get Corollary B.1.1.

Lemma B.1. For some ϵ ∈ (0,mb], time s0, s ≥ 0 and let 0 < d < N . Then there exists a time T ≥ s such that

PDW(DIF(mϵ, d+ 1, s0, T, e)|DIF(ϵ, d, s0, s, e)) ≥
1

2|E|v+1
· PDW(conn(e)|DIF(ϵ, d, s0, s, e)) ,

where

v :=

⌈
ln b

ln(1− µ)

⌉
.

Further, letting q := 1
2|E|v+1 , we have that

PDW(DIF(md−1ϵ, d, s0, T, e)) ≥ qPDW(DIF(md−2ϵ, d− 1, s0, s, e))− qPDW(sep(e)) .

Proof. Recall that DIF(ϵ, d, s0, s, e) means that there exists t ≤ T such that dif(mϵ, d + 1, s, t, e) . Then, we can study
PDW(DIF(mϵ, d+ 1, s, T, e)|DIF(ϵ, d, s0, s, e)) by doing casework on the time t ≤ T such that dif(mϵ, d+ 1, s, t, e):

PDW(DIF(mϵ, d+ 1, s0, T, e)|DIF(ϵ, d, s0, s, e))

=

s∑
t=0

PDW(DIF(mϵ, d+ 1, s0, T, e)|dif(ϵ, d, s0, t, e)) · PDW(dif(ϵ, d, s0, t, e)|DIF(ϵ, d, s0, s, e)) . (B1)

For a given 0 ≤ t ≤ s, by Lemma IV.6 there is a time Tt ≥ t ≥ 0 such that

PDW(DIF(mϵ, d+ 1, s0, Tt, e)|dif(ϵ, d, s0, t, e)) ≥
1

2|E|v+1
· PDW(conn(e)|dif(ϵ, d, s0, t, e)) .

In addition, observe that, for any T ≥ Tt, DIF(mϵ, d+ 1, s0, Tt, e) ⇒ DIF(mϵ, d+ 1, s0, T, e), so

PDW(DIF(mϵ, d+ 1, s0, T, e)|dif(ϵ, d, s0, t, e)) ≥
1

2|E|v+1
· PDW(conn(e)|dif(ϵ, d, s0, t, e)) . (B2)
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Define T ∗ := max0≤t≤s Tt . We have by (B2) that

s∑
t=0

PDW(DIF(mϵ, d+ 1, s0, T
∗, e)|dif(ϵ, d, s0, t, e)) · PDW(dif(ϵ, d, s0, t, e)|DIF(ϵ, d, s0, s, e))

≥
s∑

t=0

1

2|E|v+1
· PDW(conn(e)|dif(ϵ, d, s0, t, e)) · PDW(dif(ϵ, d, s0, t, e)|DIF(ϵ, d, s0, s, e))

=
1

2|E|v+1

s∑
t=0

PDW(conn(e),dif(ϵ, d, s0, t, e)|DIF(ϵ, d, s0, s, e))

=
1

2|E|v+1
PDW(conn(e),DIF(ϵ, d, s0, s, e)|DIF(ϵ, d, s0, s, e))

=
1

2|E|v+1
PDW(conn(e)|DIF(ϵ, d, s0, s, e)) . (B3)

Finally, combining (B1) and (B3), we get

PDW(DIF(mϵ, d+ 1, s0, T
∗, e)|DIF(ϵ, d, s0, s, e)) ≥

1

2|E|v+1
PDW(conn(e)|DIF(ϵ, d, s0, s, e)) , (B4)

as desired. This proves the first part of the lemma.
To prove the second part of the lemma, observe the following:

PDW(DIF(mϵ, d+ 1, s0, T
∗, e)) ≥ PDW(DIF(mϵ, d+ 1, s0, T

∗, e),DIF(ϵ, d, s0, s, e))

= PDW(DIF(mϵ, d+ 1, s0, T
∗, e)|DIF(ϵ, d, s0, s, e)) · PDW(DIF(ϵ, d, s0, s, e))

≥ qPDW(conn(e)|DIF(ϵ, d, s0, s, e)) · PDW(DIF(ϵ, d, s0, s, e)) , (B5)

where the last part is true by (B4). Then, since conn(e) is the negation of sep ,

qPDW(conn(e)|DIF(ϵ, d, s0, s, e)) · PDW(DIF(ϵ, d, s0, s, e))

= q(1− PDW(sep(e)|DIF(ϵ, d, s0, s, e))) · PDW(DIF(ϵ, d, s0, s, e))

= qPDW(DIF(ϵ, d, s0, s, e))− qPDW(sep(e)|DIF(ϵ, d, s0, s, e)) · PDW(DIF(ϵ, d, s0, s, e))

= qPDW(DIF(ϵ, d, s0, s, e))− qPDW(sep(e),DIF(ϵ, d, s0, s, e))

≥ qPDW(DIF(ϵ, d, s0, s, e))− qPDW(sep(e)) . (B6)

Combining (B5) and (B6) gives us

PDW(DIF(mϵ, d+ 1, s0, T
∗, e)) ≥ qPDW(DIF(ϵ, d, s0, s, e))− qPDW(sep(e)) ,

which completes the proof.

Inducting from d = 1 in the above lemma, we obtain the following corollary:

Corollary B.1.1. For some ϵ ∈ (0,mb], and time s0 ≥ 0, there exists a sequence of times s0 = T0 ≤ T1 ≤ T2 ≤ ... ≤ TN

such that, for any 0 < d ≤ N

PDW(DIF(md−1ϵ, d, s0, Td, e)|DIF(ϵ, 1, s0, s0, e)) ≥
(

1

2|E|v+1

)d−1 d−1∏
k=1

PDW(conn(e)|DIF(mk−1ϵ, k, s0, Tk, e)) ,

where

v :=

⌈
ln b

ln(1− µ)

⌉
.

Further,

PDW(DIF(md−1ϵ, d, Td−1, Td, e)) ≥ qd−1PDW(DIF(ϵ, 1, s0, s0, e))− PDW(sep(e))

(
qd − q

q − 1

)
.
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Now, define γd(δ, p) := qd−1δ − p
(

qd−q
q−1

)
. This will be a useful function to keep track of in the subsequent analysis.

Notably, the last line of Corollary B.1.1 becomes

PDW(DIF(md−1ϵ, d, s0, Td, e)) ≥ γd(PDW(DIF(ϵ, 1, s0, s0, e)), PDW(sep(e))) .

Notice that, for a fixed choice of δ > 0, limp→0 γd(δ, p) = qd−1δ . In addition, γd(δ, p) is an increasing function in δ and a
decreasing function in p. Choosing p sufficiently close to 0 gives us the following observation:

Observation B.1. Fix some d ∈ {1, . . . , N} . For any δ > 0, there exists a pδ > 0 such that, for any (δ′, p′) ∈ [δ,∞)× [0, pδ]
we have γd(δ

′, p′) > qN−1δ/2 .

We now prove a result that is, at first, disconnected from the previous results in this appendix. However, it is a key
component in the proofs of Lemma IV.7 and Lemma IV.9. Intuitively, the following lemma’s goal is to allow us to reduce
our study of stability to 2 cases: when sep(e) is extremely likely, and when conn(e) is extremely likely ..

Lemma B.2. Suppose that PDW(conn(e)) > 0 and PDW(sep(e)) > 0 . At a time step t, denote by At the set of edge
sequences of length t, or in other words

At := {{et′}t−1
t′=0|et′ ∈ E} .

Then for any q > 0, there exists a time tq ≥ and a partition {Btq , Ftq} of Atq such that the following are true:

• PDW(conn(e)|same(Btq , tq, e)) > 1− q ,

• PDW(same(Btq , tq, e)|conn(e)) > 1− q ,

• PDW(sep(e, tq)|same(Ftq , tq, e)) > 1− q , and

• PDW(same(Ftq , tq, e)|sep(e)) > 1− q .

Proof. Notice that if t′1 ≤ t1 and t2 ≤ t′2 then sep(e, t′1, t
′
2) ⇒ sep(e, t1, t2) . In addition, sep(e, t1,∞) = sep(e, t1) . In

particular, we observe that, for a fixed t1, the sequence of events {sep(e, t1, t2)}t2>t1 is decreasing, and the conjunction of
every event in the sequence is equal to sep(e, t1).
Now, let r > 0 be given such that r < PDW(sep(e)) . By the lower continuity of measure, there exists a t1 ≥ 0 such that

PDW(sep(e))− PDW(sep(e, t1)) < r/2 . Additionally, by the upper continuity of finite measures, there exists a t2 > t1 such
that PDW(sep(e, t1, t2)) − PDW(sep(e, t1)) < r/2 . Notably, we have that PDW(sep(e, t1)) > PDW(sep(e))/2 > 0 , and in
addition PDW(sep(e, t1, t2)) ≥ PDW(sep(e, t1)) > 0 .
Our goal from here is to show that PDW(conn(e)|¬sep(e, t1, t2)) is bounded below by a continuous function in r that tends

to 1 as r → 0 . First, observe that

PDW(sep(e), sep(e, t1, t2)) = PDW(sep(e), sep(e, t1, t2), sep(e, t1)) + PDW(sep(e), sep(e, t1, t2),¬sep(e, t1))
= PDW(sep(e, t1, t2), sep(e, t1))− PDW(sep(e, t1, t2), sep(e, t1),¬sep(e))

+ PDW(sep(e), sep(e, t1, t2),¬sep(e, t1))
= PDW(sep(e, t1))− PDW(sep(e, t1, t2), sep(e, t1),¬sep(e))

+ PDW(sep(e), sep(e, t1, t2),¬sep(e, t1))
≤ PDW(sep(e, t1)) + PDW(sep(e, t1, t2),¬sep(e, t1))
< PDW(sep(e)) + r/2 .

Then we have that

PDW(conn(e)|sep(e, t1, t2)) = PDW(conn(e), sep(e, t1, t2))/PDW(sep(e, t1, t2))

= 1− PDW(sep(e), sep(e, t1, t2))/PDW(sep(e, t1, t2))

> 1− (PDW(sep(e)) + r/2)/PDW(sep(e, t1))

> 1− (PDW(sep(e)) + r/2)/PDW(sep(e)− r/2) .
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In addition,

PDW(conn(e)|¬sep(e, t1, t2)) = PDW(conn(e),¬sep(e, t1, t2))/PDW(¬sep(e, t1, t2))
= (PDW(conn(e))− PDW(conn(e), sep(e, t1, t2)))/PDW(¬sep(e, t1, t2))

>
PDW(conn(e))− PDW(sep(e, t1, t2))(1− (PDW(sep(e)) + r/2)/PDW(sep(e)− r/2))

1− PDW(sep(e, t1, t2))

= 1− PDW(sep(e)) + r/2

PDW(sep(e)− r/2)
+

PDW(conn(e))− 1 + (PDW(sep(e)) + r/2)/PDW(sep(e)− r/2)

1− PDW(sep(e, t1, t2))

> 1− PDW(sep(e)) + r/2

PDW(sep(e)− r/2)
+

PDW(conn(e))− 1 + (PDW(sep(e)) + r/2)/PDW(sep(e)− r/2)

1− PDW(sep(e)) + r/2
.

The right hand side of the final line is a continuous function in r when r ∈ [0,∞) . In addition, when r = 0, the right hand
side is equal to 1. Thus, as r → 0, PDW(conn(e)|¬sep(e, t1, t2)) → 1 . Second, notice that

PDW(sep(e), sep(e, t1, t2)) =PDW(sep(e), sep(e, t1, t2), sep(e, t1)) + PDW(sep(e), sep(e, t1, t2),¬sep(e, t1))
=PDW(sep(e, t1, t2), sep(e, t1)) + PDW(sep(e), sep(e, t1, t2),¬sep(e, t1))
=PDW(sep(e, t1))− PDW(sep(e, t1, t2), sep(e, t1),¬sep(e))
+ PDW(sep(e), sep(e, t1, t2),¬sep(e, t1))

≥PDW(sep(e, t1))− PDW(sep(e, t1),¬sep(e))
>PDW(sep(e))− r/2 .

Therefore,

PDW(sep(e, t1, t2)|conn(e)) = PDW(conn(e), sep(e, t1, t2))/PDW(conn(e))

= PDW(sep(e, t1, t2))/PDW(conn(e))− PDW(sep(e), sep(e, t1, t2))/PDW(conn(e))

< (PDW(sep(e)) + r/2)/PDW(conn(e))− (PDW(sep(e))− r/2)/PDW(conn(e))

= r/PDW(conn(e)) .

In addition,

PDW(¬sep(e, t1, t2)|conn(e)) = 1− PDW(sep(e, t1, t2)|conn(e))
> 1− r/PDW(conn(e)) .

Observe that the right hand side of the final line is continuous for r ∈ [0,∞) . In addition, when r = 0, the right hand side
equals 1. Thus, as r → 0, PDW(conn(e)|¬sep(e, t1, t2)) → 1 . Third, notice that

PDW(sep(e, t2)|sep(e, t1, t2)) =
PDW(sep(e, t2), sep(e, t1, t2))

PDW(sep(e, t1, t2))

=
PDW(sep(e, t1))

PDW(sep(e, t1, t2))

>
PDW(sep(e))− r/2

PDW(sep(e)) + r/2
.

Observe that the right hand side of the final line is continuous for r ∈ [0, 2 ·PDW(sep(e))). In addition, when r = 0, the right
hand side equals 1. Thus, as r → 0, PDW(sep(e, t2)|sep(e, t1, t2)) → 1 . Fourth, observe that

PDW(sep(e, t1, t2)|sep(e)) =
PDW(sep(e), sep(e, t1, t2))

PDW(sep(e))

>
PDW(sep(e))− r/2

PDW(sep(e))
.

Observe that the right hand side of the final line is continuous for r ∈ [0,∞) . In addition, when r = 0, the right hand side
equals 1. Thus, as r → 0, PDW(sep(e)|sep(e, t1, t2)) → 1 . Thus, there exists some r and corresponding t1, t2 such that the
following statements are true:
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• PDW(conn(e)|¬sep(e, t1, t2)) > 1− q ,

• PDW(¬sep(e, t1, t2)|conn(e)) > 1− q ,

• PDW(sep(e, t2)|sep(e, t1, t2)) > 1− q , and

• PDW(sep(e, t1, t2)|sep(e)) > 1− q ..

Then define tq := t2 and define Btq as the set of edge sequences {ft}t2−1
t=0 which satisfy ¬sep(f, t1, t2) . Then same(Btq , tq, e) ⇔

¬sep(e, t1, t2) . Additionally, define Ftq := Atq\Btq , so that Atq is partitioned by {Btq , Ftq}. Observe that, since
same(Btq , tq, e) ⇔ ¬sep(e, t1, t2), we have same(Ctq , tq, e) ⇔ sep(e, t1, t2) . Thus, the following are all true:

• PDW(conn(e)|same(Btq , tq, e)) > 1− q ,

• PDW(same(Btq , tq, e)|conn(e)) > 1− q ,

• PDW(sep(e, tq)|same(Ftq , tq, e)) > 1− q , and

• PDW(same(Ftq , tq, e)|sep(e)) > 1− q .

This completes the proof.

We are now ready to prove Lemma IV.7, which we first restate here:

Lemma B.3. For a finite choice of possible initial opinions x(0), and a fixed ϵ > 0, suppose PDW(conn(e)) > 0 and that
for all t ≥ 0, PDW(xmax(t)− xmin(t) ≥ ϵ|conn(e)) ≥ δ > 0 . Then there exists some T ≥ 0 such that

EDW[xmin(T )] > EDW[xmin(0)] +
1

8
(mq)N−1ϵδ · PDW(conn(e)) .

Proof. For r > 0, let T (r) denote a time where, according to Lemma B.2, we can partition AT (r) into {BT (r), FT (r)} such
that

PDW(conn(e)|same(BT (r), T (r), e)) > 1− r

and

PDW(same(BT (r), T (r), e)|conn(e)) > 1− r .

For brevity, we will write the event same(BT (r), T (r), e) as BT (r) in the rest of this proof.
Now, we restrict our attention to the event space given by BT (r). Notice that each edge in the sequence {et}∞t=T (r)|BT (r)

is distributed uniformly across E. In addition, {x(t)}∞t=T (r)|BT (r) is determined by {et}∞t=T (r)|BT (r) in accordance with the

update rules in Definition III.1. Hence,

({x(t)}∞t=T (r)|BT (r), {et}∞t=T (r)|BT (r), G, c, µ)

is an adaptive-confidence DW model. We denote this model by DW1 . Observe that

DIF(ϵ, 1, t, t, e) ⇔ xmax(t)− xmin(t) ≥ ϵ ,

so PDW(DIF(ϵ, 1, t, t, e)|conn(e)) ≥ δ for all t ≥ 0 . Next, we have that for all t ≥ 0,

PDW1(DIF(ϵ, 1, t, t, e)|conn(e)) := PDW(DIF(ϵ, 1, t+ T (r), t+ T (r), e)|conn(e), BT (r))

≥ PDW(DIF(ϵ, 1, t+ T (r), t+ T (r), e), BT (r)|conn(e))
≥ PDW(DIF(ϵ, 1, t+ T (r), t+ T (r), e)|conn(e)) + PDW(BT (r)|conn(e))− 1

> δ − r .

Additionally, by construction, we have PDW1(conn(e)) > 1− r . so combining the above 2 statements we obtain

PDW1(DIF(ϵ, 1, t, t, e)) = PDW1(DIF(ϵ, 1, t, t, e)|conn(e))× PDW1(conn(e))

> (δ − r)(1− r) .



40

Recall from Observation B.1 that there exists a pδ/2 > 0 such that, for any (δ′, p′) ∈ [δ/2,∞) × [0, pδ/2], γ(δ′, p′) ≥
qN−1(δ/2)/2 . Now fix some r ≤ min{pδ/2, 1/2} such that (δ − r0)(1− r0) ≥ δ/2 . Since r0 < pδ/2, we know

PDW1(sep) = 1− PDW1(conn(e)) < r0 ≤ pδ/2 .

Since (δ − r0)(1− r0) ≥ δ/2 we also know that PDW1
(DIF(ϵ, 1, t, t, e)) ≥ δ/2 for all t ≥ 0 . Then we conclude

(PDW1(DIF(ϵ, 1, 0, 0, e)), PDW1(sep(e))) ∈ [δ/2,∞)× [0, pδ/2] ,

and by corollary B.1.1, there is a time TN ≥ 0 such that

PDW1
(DIF(mN−1ϵ,N, 0, TN , e)) ≥ γN (PDW1

(DIF(ϵ, 1, 0, 0, e)), PDW1
(sep(e))) .

This implies that

PDW1(DIF(mN−1ϵ,N, 0, TN , e)) ≥ 1

4
qN−1δ .

Observe that if DIF(mN−1ϵ,N, 0, TN , e) is true then every node i satisfies xi(TN ) ≥ xmin(0) + mN−1ϵ. Therefore if
DIF(mN−1ϵ,N, 0, TN , e) is true then xmin(TN ) ≥ xmin(0) +mN−1ϵ. Thus,

PDW1
(xmin(TN ) ≥ xmin(0) +mN−1ϵ) ≥ 1

4
qN−1δ .

Recall that in all cases, xmin(TN ) ≥ xmin(0). Now, taking expectation, we have that

EDW1
(xmin(TN )) =EDW1

(xmin(TN )|xmin(TN ) ≥ xmin(0) +mN−1ϵ)× PDW1
(xmin(TN ) ≥ xmin(0) +mN−1ϵ)

+ EDW1
(xmin(TN )|¬xmin(TN ) ≥ xmin(0) +mN−1ϵ)× PDW1

(¬xmin(TN ) ≥ xmin(0) +mN−1ϵ)

≥(EDW1(xmin(0)) + +mN−1ϵ)× PDW1(xmin(TN ) ≥ xmin(0) +mN−1ϵ)

+ EDW1(xmin(0))× PDW1(¬xmin(TN ) ≥ xmin(0) +mN−1ϵ)

=EDW1
(xmin(0)) +mN−1ϵ · PDW1

(xmin(TN ) ≥ xmin(0) +mN−1ϵ)

≥EDW1
(xmin(0)) +

1

4
(mq)N−1ϵδ .

Equivalently, the above statement reads as EDW(xmin(TN )|BT (r)) ≥ EDW(xmin(0)|BT (r)) +
1
4 (mq)N−1ϵδ. Now, taking

expectation in DW, we get

EDW(xmin(TN )) = EDW(xmin(TN )|BT (r))PDW(BT (r)) + EDW(xmin(TN )|¬BT (r))PDW(¬BT (r))

≥ (EDW(xmin(0)|BT (r)) +
1

4
(mq)N−1ϵδ)PDW(BT (r)) + EDW(xmin(0)|¬BT (r))PDW(¬BT (r))

= EDW(xmin(0)) +
1

4
(mq)N−1ϵδ · PDW(BT (r)) .

Now we will compute a lower bound on PDW(BT (r)):

PDW(BT (r)) ≥ PDW(BT (r), conn(e)) = PDW(BT (r)|conn(e))× PDW(conn(e))

> (1− r)PDW(conn(e))

≥ 1

2
PDW(conn(e)) ,

where the last step is true because r ≤ 1/2 by construction. Finally, we may conclude

EDW(xmin(TN )) ≥ EDW(xmin(0)) +
1

4
(mq)N−1ϵδ · (1

2
PDW(connxmin(e)))

= EDW(xmin(0)) +
1

8
(mq)N−1ϵδ · PDW(conn(e)) ,

as desired.
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We are almost ready to prove Lemma IV.9, but we first make the following observation:

Observation B.2. We have that sep(e, t) =
∨

S⊂V,S ̸=� sepS(e, t) .

Proof. By definition, Gobs(t) ∩Gpos(t) is not weakly connected if and only if there exists some nonempty proper subset S of
V for which Gobs(t)∩Gpos(t) does not contain any edges in S× (V \S)∪ (V \S)×S. Thus, sep(e, t)

∨
S⊂V,S ̸=� sepS(e, t) .

We are now ready to prove Lemma IV.9. We first restate the Lemma here as B.4, and then show the proof.

Lemma B.4. Let n0 be some positive integer. Suppose that any model of the form in Definition III.1, with N < n0,
converges to a limit state almost surely. Then for any model of the form in Definition III.1 with N = n0, we further have
PDW(stab, sep) = PDW(sep) .

Proof. Suppose that PDW(sep) = 0. Then PDW(stab, sep) = 0 = PDW(sep) and we have our result.
Otherwise, we have PDW(sep) > 0. Let q ∈ (0, 1) given. We will show PDW(stab|sep) > 1 − q. By Lemma B.2, there

exists a time tq ≥ 0 and a subset Ctq of Atq such that

PDW(sep(e, tq)|same(Ctq , tq, e)) > 1− q , (B7)

and

PDW(same(Ctq , tq, e)|sep) > 1− q . (B8)

Now let e be an edge sequence that satisfies same(Ctq , tq, e). In addition, let S be a nonempty and proper subset of V . Let

GS denote the induced subgraph of G corresponding to S. In other words, GS := (S, S2 ∩E). Let lS ∈ Z≥0 ∪∞ denote the
number of times t ≥ tq such that et ∈ S2. In particular, PDW(lS = ∞|same(Ctq , tq, e)) = 1 because each edge independently

lies in S2 with some fixed nonzero probability. Let eS denote the subsequence of {et}∞t=tq only containing edges in S2, and let

{tl}lSl=1. Denote by DWS the adaptive-confidence DW model on GS with initial opinion distribution x(tq)|same(Ctq , tq, e)
and edge choice e. In other words,

DWS = (GS , c, µ,x(tq)|same(Ctq , tq, e), eS) .

In what follows, we will refer to both the opinions in DWS and DW. For clarity, we denote xDW(t) as the opinion vector
at time t in DW, and denote xDWS (t) as the opinion vector at time t in DWS .
Now suppose that sepS(e, tq) is true for DW, so the opinions of nodes in S only change in DW at time tl for 0 ≤ l ≤ lS .

In particular, for any t ≥ tq we get that xDW
S (t) = xDW

S (tl) for some 0 ≤ l ≤ lS . In addition, the sequence {xDW
S (tl)}∞l=0 is

equal to {xDWS (t)}∞l=0; this is because xDW
S (tl+1) is obtained from xDW

S (tl+1 − 1) = xDW
S (tl) by updating opinions along

edge etl .
We know that DWS has a limit state with probability 1. This is because S is a proper subset of V , so the number of nodes

in GS is strictly less than in G and we may apply our initial assumptions from the Lemma statement. Thus, {xDWS (t)}∞l=0
has a limit, so {xDW

S (tl)}∞l=0 has a limit. Finally, this implies {xDW
S (t)}∞t=0 has a limit.

In summary, {xDW
S (t)}∞t=0 has a limit with probability 1 if same(Ctq , tq, e), sepS(e, tq), and lS = ∞ all hold. This implies

that

PDW( lim
t→∞

xDW
S (t) exists, sepS(e, tq)|same(Ctq , tq, e), lS = ∞)

= PDW(sepS(e, tq)|same(Ctq , tq, e), lS = ∞)× PDW( lim
t→∞

xDW
S (t) exists|sepS(e, tq), same(Ctq , tq, e), lS = ∞)

= PDW(sepS(e, tq)|same(Ctq , tq, e), lS = ∞). (B9)

Using this, we are able to obtain the following result:

PDW( lim
t→∞

xDW
S (t) exists, sepS(e, tq)|same(Ctq , tq, e))

≥ PDW(lS = ∞, lim
t→∞

xDW
S (t) exists , sepS(e, tq)|same(Ctq , tq, e))

= PDW( lim
t→∞

xDW
S (t) exists, sepS(e, tq)|same(Ctq , tq, e), lS = ∞)× PDW(lS = ∞|same(Ctq , tq, e))

= PDW(sepS(e, tq)|same(Ctq , tq, e), lS = ∞)× PDW(lS = ∞|same(Ctq , tq, e))

= PDW(sepS(e, tq), lS = ∞|same(Ctq , tq, e)) by (B9)

= PDW(sepS(e, tq)|same(Ctq , tq, e)) (B10)
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where the last step comes from the fact that PDW(lS = ∞|same(Ctq , tq, e)) = 1.
Additionally, by applying the above logic to V \S, which is also a nonempty and proper subset of V , we obtain

PDW( lim
t→∞

xDW
V \S(t) exists, sepV \S(e, tq)|same(Ctq , tq, e)) = PDW(sepV \S(e, tq)|same(Ctq , tq, e)) . (B11)

Notice that sepV \S(e, tq) ⇔ sepS(e, tq). Therefore (B11) can be rewritten as

PDW( lim
t→∞

xDW
V \S(t) exists, sepS(e, tq)|same(Ctq , tq, e)) = PDW(sepS(e, tq)|same(Ctq , tq, e)) . (B12)

Combining (B10) and (B12), we obtain

PDW( lim
t→∞

xDW
S (t) exists, lim

t→∞
xDW
V \S(t) exists, sepS(e, tq)|same(Ctq , tq, e)) = PDW(sepS(e, tq)|same(Ctq , tq, e)) . (B13)

Notice that limt→∞ xDW
S (t) exists and limt→∞ xDW

V \S(t) exists if and only if limt→∞ xDW(t) exists, or equivalently stab(e)

holds. Thus,

PDW(stab(e), sepS(e, tq)|same(Ctq , tq, e)) = PDW(sepS(e, tq)|same(Ctq , tq, e)) . (B14)

This also implies that

PDW(¬stab(e), sepS(e, tq)|same(Ctq , tq, e)) = 0 . (B15)

Now recall from Observation B.2 that sep(e) =
∨

S⊂V,S ̸=� sepS(e). Therefore

PDW(¬stab(e), sep(e, tq)|same(Ctq , tq, e)) ≤
∑

S⊂V,S ̸=�
PDW(¬stab(e), sepS(e, tq)|same(Ctq , tq, e))

=
∑

S⊂V,S ̸=�
0 = 0 . (B16)

This implies that

PDW(stab(e), sep(e, tq)|same(Ctq , tq, e)) = PDW(sep(e, tq)|same(Ctq , tq, e)) . (B17)

Combining (B17) and (B7), we get

PDW(stab(e), sep(e, tq)|same(Ctq , tq, e)) > 1− q . (B18)

Using the fact that sep(e, tq) implies sep(e) we obtain

PDW(stab(e), sep(e)|same(Ctq , tq, e)) > 1− q . (B19)

Finally, combining (B19) and (B8), we obtain

PDW(stab(e)|sep(e)) ≥ PDW(stab(e), same(Ctq , tq, e)|sep(e))

=
PDW(stab(e), same(Ctq , tq, e), sep(e))

PDW(sep(e))

=
PDW(stab(e), sep(e)|same(Ctq , tq, e))× PDW(same(Ctq , tq, e))

PDW(sep(e))

> (1− q)
PDW(same(Ctq , tq, e))

PDW(sep(e))

≥ (1− q)
PDW(same(Ctq , tq, e), sep(e))

PDW(sep(e))

= (1− q)PDW(same(Ctq , tq, e)|sep(e))
> (1− q)2 .

Notably, the last step holds because q ∈ (0, 1) so 1−q > 0. Thus, for any 0 < q < 1, PDW(stab(e)|sep(e)) > (1−q)2. Because
(1− q)2 → 1 as q → 0, we conclude that PDW(stab(e)|sep(e)) ≥ 1, so PDW(stab(e)|sep(e)) = 1, and PDW(stab(e), sep(e)) =
PDW(sep(e)). This completes the proof.
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