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Abstract

Hamilton-Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics,
optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-
based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle point
problems. We remark that the saddle point formulation for HJ equations is aligned with the primal-dual
formulation of optimal transport and potential mean-field games (MFGs). This connection enables us
to extend MFG techniques and design numerical schemes for solving HJ PDEs. We employ the primal-
dual hybrid gradient (PDHG) method to solve the saddle point problems, benefiting from the simple
structures that enables fast computations in updates. Remarkably, the method caters to a broader range
of Hamiltonians, encompassing non-smooth and spatiotemporally dependent cases. The approach’s ef-
fectiveness is verified through various numerical examples in both one-dimensional and two-dimensional
examples, such as quadratic and L' Hamiltonians with spatial and time dependence.

1 Introduction

Hamilton-Jacobi (HJ) partial differential equations (PDEs) find applications in various fields such as physics
[5, 15, 16, 25, 69], optimal control [7, 37, 44, 45, 74], game theory [9, 14, 42, 58], imaging sciences [26, 29,
32, 31], and machine learning [21]. In existing literature, a variety of approaches have been explored to
numerically address HJ PDEs. In lower dimensions, high-order grid-based techniques such as essentially
nonoscillatory schemes (ENO) [80], weighted ENO scheme [61], and discontinuous Galerkin method [54] are
commonly employed, while in higher dimensions, strategies have been proposed to manage the challenges
arising from the curse of dimensionality. These works include, but are not limited to, max-plus algebra
methods [74, 1, 2, 35, 43, 48, 75, 76, 77], dynamic programming and reinforcement learning [3, 10], tensor
decomposition techniques [34, 53, 86|, sparse grids [11, 47, 64], model order reduction [4, 66], polynomial
approximation [62, 63], optimization methods [26, 29, 32, 88, 24, 22, 23] and neural networks [28, 6, 33, 60,
51, 56, 57, 68, 78, 82, 83, 85, 30, 27].

In this study, we introduce an innovative optimization-based methodology for tackling time-implicit
computation of HJ PDEs. Our approach formulates the HJ PDE as a min-max problem by introducing a
Lagrange multiplier. We then employ the primal-dual hybrid gradient (PDHG) method [20] for finding the
saddle point, which corresponds to the HJ PDE solution. In particular, the saddle point formulation of the
HJ equations connects to the primal-dual formulation of optimal transport and potential mean-field games.
Mean-field games (MFGs), introduced in [70, 55] are a mathematical framework employed for modeling and
analyzing the equilibrium state of strategic interactions within a large population. This framework has found
widespread application in various domains [67, 50, 49, 18, 17, 65, 36, 71]. The MFG system can be described
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using a system of coupled PDEs: a Fokker-Planck equation evolves forward in time, and an HJ equation
evolves backward in time. In this study, we leverage this relationship to address HJ PDEs. Using this
connection, techniques developed for solving MFGs can be seamlessly extended to tackle the computation
of the solution to HJ PDEs with initial conditions. For instance, PDHG method has been applied to
numerically solve potential MFGs that can be cast into a saddle point formulation [81, 13, 12]. We adapt
such methodology to our proposed saddle point problem, which in turn enables us to effectively address the
original HJ PDEs. When compared to other grid-based methods, our current approach, while possessing a
first-order accuracy level, attains numerical unconditional stability through the utilization of implicit time
discretization. This feature enables us to adopt larger time steps. Compared to other optimization-based
methods, our technique boasts the capability to handle a broader range of Hamiltonian functions, including
those that exhibit non-smooth behavior and dependence on both x and ¢. Furthermore, our algorithm
benefits from its straightforward saddle point formulation, which allows simple updates in each iteration.
We emphasize that the updates in our method do not involve nonlinear inversion. The only non-trivial
update is managed through the proximal point operator of the Hamiltonian H, which can be computed in
parallel.

The method of transforming a PDE problem into a saddle point problem and subsequently utilizing
PDHG for its solution is used in solving reaction-diffusion equations [72, 46, 19] as well as conservation
laws [73]. These works use PDHG together with integration by parts to solve initial value problems with or
without constraints, obtaining simple implicit in time updates. It is well-known in the literature that one-
dimensional HJ PDEs and conservation laws are equivalent to each other. However, applying the method
used for solving conservation laws in [73] directly to solve HJ PDEs is not straightforward. In [73], the
key step for obtaining a saddle point problem involves employing integration by parts. The method of
integration by parts is applicable to conservation laws, as these equations entail gradients of flux functions, a
feature that is absent in HJ PDEs. Nevertheless, in this study, for convex HJ PDEs, we instead use duality
via the Fenchel-Legendre transform in lieu of integration by parts, effectively avoiding nonlinear updates.
The merit of this approach lies in the simplicity of the saddle point formulation. This simplicity facilitates
updates within our method to have either explicit formulations or be conducive to parallel computation.
It is pertinent to note that while the formulation in this work may resemble the adjoint method [40], the
proposed numerical technique and saddle point formulation differ substantially.

We show several numerical examples in one dimension and two dimensions'. These numerical examples
show the ability of this method to handle certain Hamiltonians which may depend on (x,t). In each iteration,
the updates of the functions are independent on each point, which makes it possible to use parallel computing
to accelerate the algorithm. Moreover, in the special case when the Hamiltonian H (z,t,-) is a separable and
shifted 1-homogeneous function for any (z,t), the algorithm has a simpler form, and we obtain an explicit
formula for the updates of the dual variables.

The paper is organized as follows. In Section 2, we show the saddle point problem related to the HJ
PDE and the proposed algorithm in the function space. In Section 3, we focus on the one-dimensional case
and show both semi-discrete and fully-discrete formulations of the algorithm. In Section 4, we show the
algorithm in two-dimensional case. In Section 5, we provide several numerical results which demonstrate
the ability of the algorithm to handle certain Hamiltonians which may depend on (z,t). In Section 6, we
show the summary and future work. More details about the proposed method and different saddle point
formulations with the corresponding algorithms are also shown in the appendix.

2 The saddle point formulation of HJ PDEs

In this section, we give details on the derivation of the saddle point formulation of the HJ PDEs. Furthermore,
we devise a primal-dual hybrid gradient algorithm that solves it.

1Codes are available at [todo: github page].



2.1 The saddle point formulation
In this paper, we solve the following HJ PDE in the domain Q x [0, +00)

w + H(x,t7vm¢(x,t)) = 6AI¢(x’t)7 x € Q’t € [O’T]’

d)(x,O):g(x), r €,

(1)

where Q = []i,[a;,b;] is the spatial domain in R™ with periodic boundary condition, and € > 0 is the
diffusion parameter. Note that when € = 0, equation (1) is the first-order HJ PDE. In general, we assume
that the Hamiltonian H(x,t,p) is convex with respect to p for any = € Q, ¢ € [0, 7).

To address these equations, we treat them as constraints within the following optimization problem

LN C/Q o(x, T)dx, (2)
where ¢ > 0 is a hyperparameter. In our numerical experiments, we observe that the constant ¢ can influence
the convergence of our proposed algorithm. Moreover, it is possible to formulate more intricate objective
functions in this optimization problem. The question of selecting a suitable objective function may pose an
interesting problem that requires further investigation.

Subsequently, we introduce the Lagrange multiplier p, leading to the following computation

min —c z, T)dx
¢ satisfying (1) /Q 9 )

- T 98w, 1) ) deit -
= min ms.x/o /Qp(a:,t)( g eAyp(x,t) + H (z,t, Vod(z, t)) | dedt c/;2 ¢(x, T)dz

#(2.0=g(2) (3)
T O¢(x,t *
= B r;lagn ( )m;xx/o /Q p(z,t) ( ¢E; ) _ eAgp(z,t) + max {{(v, Vad(z,t)) — H" (x,t, v)}) dxdt — C/Q ¢(x, T)dx.
2,0)=g(x

If p is non-negative, we can move the maximization with respect to v outside of the integral and formulate
the following saddle point problem.

min max L(¢,p,v),
¢(x,0)=g(z) P=0

(4)

where

T T
L(}, p,v) :/0 /Qp(a:,t) (84’5%’ t) + (v(w,t), Vad(x,t)) — eAygp(z,t) — H” (m,t,v(m,t))) dadt — /ch&(z,T)d:r. (5)

Here, H*(x,t,-) is the Fenchel-Legendre transform of H(x,t,-) for any € Q and ¢ € [0,7], defined by
H*(z,t,v) = sup,egn{(v,p) — H(z,t,p)}. For more discussion about this saddle point problem, see Ap-
pendix A.1.

Remark 2.1. The first-order optimality condition of (4) gives

8%@’“ + H(z,t, Vad(,1) < eAgip(a, t), z€Q,tel0,T],

apgi’ D 49, (ol ol 1)) + eAgplar 1) = 0, v eQtel0T],

o(@,t) = V,H (w1, Vad(z, 1)), e tel0,T) (6)
¢(x30) = g(ﬂf), p({ZZ,T) =G HARS] Qa

(a1 (‘9“’55;” T H( Vb, 1) eAz¢<x,t>) —0, reQtelnT]

This coupled system of PDEs differs slightly from the HJ PDE (1), with the distinction that the first row
entails an inequality rather than an equality. As indicated by the final row, if p(x,t) # 0 for all x,t, the



initial inequality in the first row transforms into an equality, thus yielding a solution to the HJ PDE (1).
The discrepancy between the first row and the HJ PDE (1) is attributed to the imposition of a constraint
p > 0 in the saddle point problem (4). For more details, see Appendiz A.1.

The structure of this coupled system of PDFEs closely resembles that of the coupled PDFEs encountered
in mean-field control problems. Essentially, when the density solution p associated with the corresponding
mean-field control problem maintains a positive value throughout the entire domain, the PDE system (6) gives
a solution to the HJ PDE (1). This encompasses scenarios where € > 0, as the diffusion term introduces the
Brownian motion component within the underlying stochastic process, ensuring a nonzero density function
p. In the case where € is zero, although we cannot establish a theoretical assurance, we do provide numerical
validation in Section 5.

2.2 PDHG algorithm

Within existing literature, a widely recognized approach for solving saddle point problems is PDHG algo-
rithm [20]. In this section, we provide a brief review of this method. It solves saddle point problems in the
form of

. K B
min max (K, y) + () — f(v),

where f and g are convex functions, and K represents a linear operator. This algorithm is an iterative

method, where in each iteration, the primal variable x and the dual variable y are updated separately using

the proximal point operators of g and f. With given suitable stepsizes o,7 > 0, the m-th iteration update

can be written as follows:

1
™ = argmin (z, KTg™ 1 4+ g(z) + —|jz — 2™ |%,
z€X 20
1 _
y™ = argmax (Kz™,y) — f(y) — Q*HZ/ L2,
yey T
gm o o=2y™ —ym L

The above calculation requires proximal gradient descent (ascent) steps of the primal (dual) variables. The
computation for this method has also been expanded in scope by [87] to encompass more generalized problems
where the operator K can be nonlinear.

2.3 PDHG algorithm for solving HJ PDEs

In this section, we apply PDHG algorithm to solve the saddle point problem (4). Owing to the simplicity
of (5), the primal and dual updates either possess explicit formulas or can be computed in parallel using
the proximal point operator of the function H(z,t,). This makes PDHG well-suited for solving the saddle
point problem presented in (4). Consequently, we employ this method, incorporating pre-conditioning on
¢, to solve this specific saddle point problem. The outlined algorithm is presented in Algorithm 1. Further
details about pre-conditioning and other techniques are summarized in Remark 2.2. It is important to note
that, although we have a simple formulation and updating rule in our method, in most cases, an explicit
formula for the joint update of p and v is unavailable. As a consequence, each iteration in our algorithm
involves multiple coordinate updating steps for p and v independently.

Remark 2.2. The value of the constant ¢ does not impact the solution of the HJ PDE (1), yet we have
observed its effects on the convergence during our numerical experiments. While we opt for a constant value
of ¢ in this paper, it’s noteworthy that it could potentially take on any positive function. This choice serves
as the terminal condition for p in (6). Further investigation is required to understand the influence of this
terminal condition on the convergence of the proposed method and to determine the appropriate method for
its selection.

There are several strategies to expedite the convergence of the algorithm. One approach is to modify the
penalty terms in the updates of &, p,v. Specifically, for ¢, selecting a penalty term such as |[V¢ — V¢t
can enhance computational efficiency (this technique is called pre-conditioning), as demonstrated in previous



Algorithm 1: The proposed algorithm for solving (4)

w N =

© 0 N O ;o

10

11

12
13
14
15

Inputs : Stepsize 7,0 > 0, error tolerance ¢ > 0, inner maximal iteration number Nj, .. and outer

maximal iteration number N,y iep.

Outputs: the solution to the corresponding HJ PDE (1).
Initialize the functions by ¢°(z,t) = g(x) for all x € Q and t € [0,T], p° = ¢, 2°

0.

for =0,1,..., Noyter — 1 do
Update the function ¢: Q x [0,7] — R using
. 1 _
o = argmin  L(¢,p"0") + = ||[Vo — VO IP = ¢ + T(=A) H(0ep" + Vi (0°0) + eAup”), (7)
¢:6(2,0)=g(x) 27
where V, A are differential operators with respect to both z and ¢, and (—A)~! f means the
solution to —Awu = f in  x [0, T] with periodic spatial condition, Dirichlet initial condition
u(x,0) = 0, and Neumann terminal condition dyu(x,T) = 0.
if 0,0 (2, t) + H(x,t, V0T (2,1)) — eAr¢™ (2, t)]1 < 6 then
| Return ¢**1.
end
Set ¢ft1 =291 — ¢f.
Set vfH10 = f, pi+10 — 4t
for m =0,1,..., Nipner — 1 do
Update v by
U[+1,m+1 = arg maxl:(d;[+1’pl+l,m’v) _ %”plﬂl—l,m(v _ Ul+l,m)||2
T +1,m TO+1 2
_ 3 * 14 ’ ($7t) 4+1,m vz¢ (I,t)
= argvmln/o A H*(x,t,v(x,t)) + 55 Hv(x,t) —wv (z,t) — 07p2+17m(aj7 D dxdt.
(8)
Update p by
m T m 1 m A m
P < argmax £(5 Y, p, o ) = g — o < maxu 0y, (g)
pip>0 o
where p/T1 ™+ s a function defined by p+tHm (2, t) = T (2, t) + 0 (9,0 T (2, t) +
(bt (2, 1), Vo™ (2, 1) — H (2,8, 00 (2,1)) — A6 (2, 1)),
end
Set varl _ varl,Nz‘nner’ p€+1 — pz“rlgNinnEr.

end
Return ¢Neuter,




studies [59, 13]. In our exploration, we also investigated different penalty expressions for p and v. Notably, a
quadratic penalty demonstrated its effectiveness for p, while regarding v, we observed comparable performance
between penalty terms such as ||pH™ (v — v'T1™)|12 and p* T ||lv — vFL™||2. These alternatives exhibited
more favorable results compared to the quadratic penalty. In the subsequent sections of this paper, unless
otherwise explicitly stated, we employ the notation ||f|| to signify the L* norm when f represents a function,
and to indicate the €2 norm if f is a finite-dimensional vector.

Furthermore, we adopted a time interval partitioning strategy, employing the proposed algorithm sepa-
rately within each subdivided interval. Although this necessitates solving multiple saddle point problems, the
resulting smaller dimensions of each problem substantially expedite the algorithm’s runtime, as detailed in
prior research (Algorithm 3 in [13]).

3 One-dimensional HJ PDEs

In this section, we focus on one-dimensional HJ PDEs, where the spatial domain €2 is defined as the interval
[a,b]. We begin by introducing the semi-discrete method in Section 3.1, and then proceed to explain the
fully-discrete method in Section 3.2. Throughout the rest of this paper, we employ the notation (a;)i, (a; ;).
and (ai j k)i, jk tO represent a vector, matrix, and tensor, respectively, where the elements are denoted by a;,
Qj,j, and Qg5 k-

3.1 Semi-discrete formulation

To solve the continuous HJ PDE (1), our initial step involves discretizing the spatial domain [a, b]. We define
x; as the i-th grid point on a uniformly spaced grid within the interval [a, b]. Specifically, z; is calculated as
a—+ %, where n, represents the total number of grid points. The semi-discrete approach for a general

numerical Hamiltonian H is presented as follows:
, (10)
$i(0) = g(xs), i=1,...,n,.

According to the theory of first order monotone scheme, the numerical Hamiltonian H needs to be consistent
(i.e., f[(w, t,p,p) = H(z,t,p)) and monotone (i.e., non-increasing with respect to p™ and non-decreasing with
respect to p~). For more details, we refer readers to [84]. In this paper, we use D and D to represent the
right and left finite difference approximations of the spatial derivative, respectively. Specifically, (D} ¢);(t)
is computed as W, and (D ¢);(t) is calculated as W Additionally, D,, approximates
the Laplace operator, given by (D,.¢);(t) = 4)"’““)_2226(;”@‘1(”. Here, we assume .FAI(:UZ, t,pT,p7) is jointly
convex with respect to (p*,p~) for any i = 1,...,n, and ¢t € [0, T].

Similar to the continuous version, we incorporate these formulas into the constraints of an optimization
problem and introduce the Lagrange multiplier p. Consequently, this semi-discrete equation can be solved
using the following saddle point formulation

P Vi
¢ (0)=g(z:) " . 50 (11)

_I:I*(xi,t,vj(t),vi(t))> dt — ci¢¢(T),

mn max [y 000 <¢ (8)+ v (DI 6)u(t) + 07 (A)(DF O)u(t) = e(Dred)i(1)

where ¢ > 0 is a hyper-parameter, and H *(z4,t,-,-) is the Fenchel-Legendre transform of H (z4,t,+,+). The
derivation of this saddle point formula is similar to the continuous case and is therefore omitted here. For
more details, please refer to Appendix A.2.

To solve this saddle point problem, we apply the PDHG method. Generally, deriving a direct updating
formula for the combined variables (p;, Uf ,v; ) is challenging. As a result, an inner loop is utilized in which
each iteration involves the sequential updates of (v;",v; ) and p;. Let’s denote the objective function in (11)
as Laemi((0:)is (p1)i, (0], (v;7)i). The proposed algorithm is summarized in Algorithm 2.

3 3



Remark 3.1. In practice, many numerical Hamiltonians H are separable, i.e., H satisfies H(;L‘ t,pT,p7) =
Hl(m t,p*) + Hg(x t,p”), where H1 18 non-increasing in p+, and Hg 1§ non- decreasmg in p~. In this
scenario, the Fenchel-Legendre transform obeys the relationship H* (z,t, 0T, v7) = Hl (x,t,v )+H2 (z,t,v7).
As a result, the updates of vt and v~— can be computed separately and in parallel.

3.2 Fully-discrete formulation

We proceed by introducing a fully-discrete method through time discretization. In this paper, we ad-
vocate implicit time discretization to enable the use of larger time steps and circumvent the restrictive
Courant—Friedrichs—Lewy (CFL) time step restriction for explicit methods. The time interval [0,T] is dis-
cretized into ny — 1 equi-spatial subintervals, each of length At = ntT_l. Given a function f defined on
[a,b] x [0,T], we denote f; as the function value at the grid point (x;, ty).

We adopt the backward Euler scheme (D; ¢); = % to approximate the time derivative at
(24, tr). Employing this discretization, the resulting numerical scheme is as follows:

{(Dt(b)i,k + H (23, te, (DF @)ies (Dy #)ik) = €(Duad)iy, =1, mp, k=2,...,n4, (12)
bin = g(@i), i=1,...,ng,
and the saddle point problem becomes
ng ng—1
@{Yk}{}l}’k .. wL - k; ; Pik ( Dy @)ie1 + 033 (D B)iskr1 + 07 1(Dz @)isir1 — €(Daad)ipin
¢i,1=9(w;) pi k>0 (13)

N
Fr ok + — C
—-H (xiatk-!—l»vi,kavi,k)) N E Ging-
=1

The set of equations in (12) constitutes a total of n, x (n; — 1) equations. As a result, the dual variables
Pi ks fui‘k, and v; 1, POSsess indices ranging from ¢ = 1 to n,, and k ranges from 1 to n; — 1. We apply PDHG
to solve this saddle point problem, and the details are summarized in Algorithm 3 and Appendix A.3.

The objective function in (13) is linear when considering either ¢ or p. This linearity enables us to
have explicit formulas for updating ¢ and p. When iteratively updating ¢, we effectively address a discrete
Poisson’s equation within the temporal-spatial domain through the utilization of the Fourier transform, thus
facilitating efficient computation. The only non-linear part in (13) pertains to updating (v*,v™), involving
solving the proximal point of (vF,v™) — > I* "’_ H* (2, toga, fk, ;). The element at the (i,k)
position of this proximal point corresponds to the proxnnal point of H* (xl,tk+1, ,+), facilitating parallel
updates for (v*,v™). Furthermore, When H takes the form H(:J: t,pt,p~) = Hy(x,t,pt) + Hy(x,t,p~), the
dual function simplifies to H*(z,t,v",v™) = H} (x,t,v") + Hj (2,t,v7), enabling further parallelization for
vt and v~

In specific cases where the Hamiltonian H has particular structures, it becomes possible to update the
variables (p, v, v™) simultaneously, removing the need for the inner loop. An example of this occurs when
H(x,t,p) is convex, separable, and 1-homogeneous with respect to p. For more detailed information, please
refer to Appendix B.2.

4 Two-dimensional HJ PDEs

In this section, we address the two-dimensional HJ PDEs and present the semi-discrete approach in Sec-
tion 4.1 and the fully-discrete approach in Section 4.2. Due to the similarities between the two-dimensional
and one-dimensional cases, certain details and explanations have been omitted.

4.1 Semi-discrete formulation

We apply discretization to the spatial domain [a1,b1] X [az, b2] using n, grid points in the first dimension and
n, grid points in the second dimension. The grid sizes in these dimensions are represented by Ax = bl;—‘“



and Ay = b2 %2 We denote x; as the i-th grid point in the first dimension and y; as the j-th grid point in
the second d1mens10n The semi-discrete formulation for a general numerical Hamiltonian is as follows:

i (t) + H (i, y;.t, (D 6)i (£), (Dy 0)i i (1), (Dyf )i(t), (Dy ¢)i;(t))
= €(Dys9)i i (t) + e(Dyyd)i i (1), i=1,...,n55=1,...,ny t €[0,T], (14)
¢lj() (xlvy]) 121;;"7@;]:1;"’7@

where D, D, D}, D, Dyy, and Dy, are finite difference operators defined by

_ D15 (t) = ¢i () _ by () = i1 4()

(Df )iy = o . (D7), = N 7
g 1(t) — it - g (B) = Gigat
(D ¢);; = %H(iy ¢i)  (p-g),, = Gl Az i),
% (t) — 20, (¢ i—1.q(t ; — 2d; +(t o (t
(Dmx¢)‘,j:¢+l’j() Q;;g)-i-(;ﬁ 1*3(), (D yy¢) 7J7¢J+1() Z,;g)-l-éﬁ,g 1()

Analogous to the one-dimensional case discussed in Section 3.1, we require that the numerical Hamiltonian
H exhibits both consistency, meaning that ﬁ(x,y,t,pl,pl,p%pg) = H(z,y,t,p1,p2), and monotonicity,
meaning that ﬁ(x, Y, tpf,pf,p?,p?) is non-increasing with respect to pf and pj, and non-decreasing with
respect to p; and p; .

This semi-discrete equation can be solved using the following saddle point formulation:

T Nz "y
arn.ivlzl'j / Z sz J (¢z j Uy 5 (t)(D;—¢)i,j(t) + ”z‘_,j(t)(Dz_qﬁ)i,j(t)

¢i,j(0)ig(:tiayj) wpl A, JP7l7J>O i=1j=1

" v 15

Fw; () (Dy )i, (t) + w;; ()(Dy 6)i,5(t) — €(Daw)ij () — €(Dyyd)i s (t) (15)

— T @, 3,07, (8), 07, (0w (), w )dt—CZZ@a
i=1 j=1
where ¢ > 0 is a hyper-parameter, and H*(x;,v;,t, -, -, -, -) is the Fenchel-Legendre transform of H(z;, y;,t,, -, -, -)-

For more properties of this saddle point problem and the corresponding algorithm, see Appendix A.4 and
Algorithm 4.

4.2 Fully-discrete formulation

In this section, we adopt implicit time discretization to derive a fully-discrete formulation, enabling the
selection of larger time steps to bypass the CFL condition. We represent the number of grid points in the
interval [0,7] as n;, and the spacing between consecutive grid points as At = % The fully-discrete HJ

PDE with a numerical Hamiltonian H is given by

(Df )i+ H (Cﬂz‘, Yir s (DFD)ijes (D 0)ijokes (D;@z‘,j,k, (D;@i,j,k)
:e(sz¢)i,j,k+€(Dyy¢)7j,j7k7 i:17~'~7n$;j:17"'7ny;k:27"'anta (16)
(bi,j,l:g(xiayj); i:l,...,nz;jzl,...,nw

and the saddle point problem becomes

ng My ng—1

: - + + - - + +
,, min max DD D pigk ((Dt, B)isgkt1 + 05 k(D @)igkt1 + v 55 (Dy @)ig b1 + w5 x(Dy )i kt1
N ik ,,?,,. szk“LJk gk i=1j=1 k=1
i,4,1=9(xq5)
Wi gk i,k Pk 20
ny

n
Y
— — ~ + — + _ c
+U}i,j,k(Dy ¢)7'Jyk+1 - G(Dmm¢)'i,j,k+1 - E(Dyy¢)i,j,k+1 - H" (-’Eiv Yj» tk+117)i’]’7k7 Vigkr Wi gk U)i,j,k') > Z Z bi JJamg e

(17)



This saddle point problem is solved using PDHG method. For more details about this problem and the
algorithm, we refer readers to Section A.5 and Algorithm 5.

Just like the one-dimensional scenario, the objective function’s linearity concerning ¢ or p leads to ex-
plicit update formulas for ¢ and p. On the other hand, updating (v, v~,w™,w™) necessitates solving
the proximal point of (v, v, w™,w™) — Zw,k I:I*(xi’ijthrl?U;,_j,k?vi_,j,mw:,_j,mwi_,j,k)’ which can be con-
ducted in parallel for each point (z;,y;,tk+1). Furthermore, if H is separable, i.e., it can be expressed as
H (6,95, thy 1,07 1)+ H3 (20,95, tey 1,075 )+ HE (26,05, ter, w]5 ) + H3 (24, 97, b, wy ), then updating
(v;'j’k, R w;fj7k, w, ;) can be further accomplished in parallel.

Analogous to the scenario in the one-dimensional case, if H is convex, separable, and 1-homogeneous with
respect to p, there exists a specific formula for jointly updating p,vt,v~,w™,w~. This, in turn, eliminates
the need for the inner loop. For more details, refer to Appendix B.4.

5 Numerical results

In this section, we display a range of numerical results that evaluate the performance of our proposed method.
We initially use two simple experiments in Sections 5.1 and 5.2 to present error tables, which confirm that
our method yields first-order accuracy in computing the viscosity solution for these examples. Subsequently,
we utilize more intricate cases (examples 3 and 4 in Sections 5.3 and 5.4) to demonstrate the benefits of
using larger time steps. These experiments highlight the ability of our method to handle Hamiltonians that
depend on (z,t) and exhibit non-smooth behaviors.

Among these four examples, the second one involves Hamiltonians that are shifted 1-homogeneous with
respect to p, i.e., H(xz,t,-) — H(x,t,0) is 1-homogeneous for any (x,t). For this case, we implement Al-
gorithms 6 and 7 explained in Appendices B.2 and B.4 to eliminate the necessity of the inner loop in
the proposed method. On the other hand, in the other three examples, we use Algorithms 3 and 5. In
these experiments, for one-dimensional cases, we apply Engquist-Osher scheme [79, 38, 39] and set the
numerical Hamiltonian H(x,t,pt,p~) = H_(x,t,pt) + Hy(x,t,p~), where H, is non-decreasing with
respect to p~, H_ is non-increasing with respect to p™, and they satisfy H, + H_ = H. For two-
dimensional cases, if the Hamiltonian H can be written as H(z,t,p1,p2) = Hi(x,t,p1) + Ha(z,t,p2)
for some functions H; and Hj, we handle each dimension separately and set the numerical Hamiltonian
H(z,t,py,p1,py,p5) = Hi_ (2, t,p) )+ Hy 4 (2, t,p7 )+ Ha_(z,t,p3 )+ Ho 4 (7,t,py ), where H; (i = 1,2)
is non-decreasing with respect to p; , H; — (i = 1,2) is non-increasing with respect to p;r, and they satisfy
H; 4+ H; _ = H;. Note that our approach also works for non-separable Hamiltonians. For these situations,
we define the numerical Hamiltonians based on references that will be specified for each case.

5.1 First experiment: quadratic Hamiltonian

In the first experiment, we solve the following HJ PDE:

M+l|‘vm¢(xat)||2:0ﬂ T e [O,Z]n,tE [07 1}7
ot 12 (18)
¢(z,0) = Sz — 1%, z €[0,2]".

We apply Algorithms 3 and 5 to solve this problem. We use the Engquist-Osher scheme in the saddle
point formulation. To be specific, we set the numerical Hamiltonian H(z,t,p*,p~) = H_(p") + Hy(p™)
for the one-dimensional case and H(z,t,py,py,pa,p;) = H_(p7) + Hy(p7) + H_(pf) + Hy(p;) for the
two-dimensional case, where H_(p") = 3 min{p*,0}* and H,(p~) = 4 max{p~,0}%. We provide the error
tables for both one-dimensional and two-dimensional scenarios in Table 1 and Table 2 respectively.

Each table contains two rows of error measurements. In the first row, we showcase the average absolute
value of the PDE residuals. This error is calculated using the following formula for one-dimensional cases:

Ny Nt

ﬁ DD D7 )ik + H(wi, by (DF6)igs (D D)ik) = €(Daa)ik

i=1 k=2
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Figure 1: Contours illustrating the solution of the one-dimensional HJ PDE (18) in (a) and (b), along with
the level sets for the two-dimensional HJ PDE in (c) and (d). In (a) and (c), a relatively larger time step of
At = 0.25 is applied, whereas in (b) and (d), a smaller time step of At = 0.025 is employed.
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Ng X Nt 20 x 11 40 x 21 80 x 41 160 x 81
Averaged absolute residual of HJ PDE | 9.99E-07 | 9.99E-07 | 9.89E-07 | 9.82E-07
£ relative error 5.81E-02 | 3.24E-02 | 1.68E-02 | 8.27E-03

Table 1: Error table illustrating the performance of our proposed method for solving the one-dimensional
HJ PDE (18)

Ng X Ny X Nt 20 x 20 x 11 40 x 40 x 21 80 x 80 x 41 160 x 160 x 81
Averaged absolute residual of HJ PDE 1.00E-06 1.00E-06 9.99E-07 1.00E-06
0T relative error 5.52E-02 3.00E-02 1.46E-02 6.07E-03

Table 2: Error table illustrating the performance of our proposed method for solving the two-dimensional
HJ PDE (18)

and for two-dimensional cases:

Ny Ny ng

prppgy ry— SN UDE )i + H(wiyysstey (DI @)isjiks (Dg @ik (D @)isgis (Dy 8)iik) — €(Dawd + Dyy)i k-
z My

1111k2

The residual errors observed across all cases are consistently below 10~%. Remarkably, we employ the residual
error as the termination condition for the proposed method, setting the threshold § to 1076, These errors
confirm the convergence of the our algorithm in terms of reaching an error below the specified threshold for
all tested grid sizes.

In the second row, we conduct a comparison between the numerical solution obtained through our pro-
posed method and the reference solution, which we term the “ground truth”. This reference solution,
denoted as ¢9¢, is generated using either the Lax-Oleinik formula [8, 41, 52] or the explicit Engquist-Osher
scheme [79, 38, 39] on a finely discretized grid. Consequently, the ¢! relative errors are presented. The
calculation of the error is as follows:

e For one-dimensional cases:

t
nilnt Ez 1 k 1 |¢l k= ¢f,k|
t
max { NNy ZHT ktzl |¢?,k|; 10}

e For two-dimensional cases:

nw,}ynt Z;Lil ?il 22;1 |¢i7j,k ‘ZSfJ k|
1 T n
max { NNy Nt Z?:l jil th | 1,7, k‘ L. 0}

This evaluation provides insights into the accuracy of our method when compared to well-established ref-
erence solutions. It’s noticeable that the error approximately halves when the grid size is doubled. This
behavior demonstrates a first-order error reduction rate corresponding to the increase in grid size.

Furthermore, we present the one-dimensional solution in Fig 1 (a)-(b) and the two-dimensional solution in
Fig 1 (¢)-(d). In both this example and the subsequent examples, we visualize the one-dimensional solution
through the representation of its level sets, where the z-axis corresponds to the spatial domain and the y-axis
denotes the time domain. For the two-dimensional solution, we depict the level sets at a specific time instant
(in this example, we select ¢ = 1), employing the z and y axes to denote the two dimensions of the spatial
domain.

In figures (a) and (c), we utilize a larger time step of At = = 0.25, while in figures (b) and
(d), we opt for a smaller time step of At = % = 0.025. Throughout all cases, we maintain a spatial
discretization count of n, = 80 for the one-dimensional case and n, = n, = 80 for the two-dimensional
scenario. These visual representations reveal a satisfactory performance achieved by employing the larger
time step discretization, indicating that the proposed method is not constrained by the CFL condition,
thanks to the utilization of implicit time discretization.

ng—1
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5.2 Second experiment: L' Hamiltonian

In the second example, we solve the following HJ PDE in one-dimension and two-dimensions

% + | Vaeo(z, )|l =0, z€0,2]",t€0,1],

n (19)
¢(z,0) = Zsinmvi, xz €10,2]".
i=1

The Hamiltonian in this scenario exhibits non-smooth properties. We solve this problem using Algorithms 6
and 7. Employing the same methodology as illustrated in the previous example, we calculate the error tables.
Specifically, the one-dimensional error table is presented in Table 3, while the two-dimensional error table is
displayed in Table 4.

Ng X Nt 20 x 11 40 x 21 80 x 41 160 x 81
Averaged absolute residual of HJ PDE | 5.72E-07 | 7.64E-07 | 5.96E-07 | 6.53E-07
£T relative error 1.03E-01 | 5.90E-02 | 3.20E-02 | 1.67E-02

Table 3: Error table illustrating the performance of our proposed method for solving the one-dimensional
HJ PDE (19)

Ng X Ny X Nyt 20 x 20 x 11 40 x 40 x 21 80 x 80 x 41 160 x 160 x 81
Averaged absolute residual of HJ PDE 8.62E-07 9.68E-07 9.54E-07 9.82E-07
0T relative error 1.03E-01 5.74E-02 2.93E-02 1.36E-02

Table 4: Error table illustrating the performance of our proposed method for solving the two-dimensional
HJ PDE (19)

The errors featured in the first rows of both error tables represent the averaged residual errors of the
HJ PDE. Notably, all these errors remain below the 10~ threshold. This indicates the convergence of our
method in terms of achieving an HJ PDE residual beneath the predetermined threshold of 10=¢. Turning
to the second rows of the error tables, they depict the ¢! relative errors when compared to the reference
solution. We observe that these errors reduce by approximately half as we increase the grid size by a factor
of 2. This phenomenon is in alignment with the utilization of a first-order Engquist-Osher scheme.

Furthermore, the level sets of the solution for the one-dimensional case are depicted in Fig 2 (a), while
the level sets of the solution at distinct time points (¢t = 0.25, 0.5, 0.75) are presented in Fig 2 (b)-(d). The
results of the experiments and the error analysis indicate a higher error magnitude compared to the previous
example. Consequently, we adopt a finer grid to enhance the visual representation in the figures.

5.3 Third experiment: spatially-dependent Hamiltonian

In this experiment, we solve the following HJ PDE whose Hamiltonian depends on the spatial variable x:

PHD) 1 IVabl Ol + £@) =0, € (0,271 € [0,1),

) (20)
¢(@,0) = > _sinmz, ze0.2%

i=1

where f is defined by f(z) = 3exp(—4|z — 1]|?) + 1. We utilize Algorithms 3 and 5 to solve this prob-
lem. Notably, the Hamiltonian represented in (20) is non-separable, meaning it cannot be expressed
as > ., Hi(z,t,p;) for certain functions Hy,...,H,. Under this circumstance, we adopt the numerical
Hamiltonian introduced in [79]. For one-dimensional instances, the numerical Hamiltonian is defined as
(max{p~,0}2+min{p*,0}2)1/2+ f(x), whereas for two-dimensional scenarios, it is defined as (max{p; ,0}2+
min{p;,0}? + max{p;,0}% + min{p3,0}?)'/2 + f(x).

The outcomes derived through our proposed approach are depicted in Figure 3. In Figure 3 (a), we present
the level sets of the one-dimensional solution achieved using a relatively larger time step of At = 0.25, while
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Figure 2: Visualization of the solution to the one-dimensional HJ PDE (19) in (a), and the evolution of level
sets for the two-dimensional HJ PDE solution at various time instances (¢t = 0.25, ¢ = 0.5, and ¢ = 0.75) in

(b)-(d).
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in Figure 3 (b), we display the level sets of the one-dimensional solution attained using a finer time step of
At = 0.025. The outcomes of the two-dimensional solution, obtained using a time step of At = 0.025, are
depicted in Figures 3 (c¢) and (d). Figure 3 (c) illustrates the solution at ¢ = 0.25, while Figure 3 (d) displays
the solution at ¢ = 0.75. This example demonstrates the capability of our proposed method to effectively
manage some complex Hamiltonians with spatial dependency.

16 10
0.8

0.8
0.0
-0.8 0.6
-1.6 -
o4 0.4
-3.2

0.2
-4.0
-4.8 0.0

0 00 025 050 075 100 125 150 175 2.00 0.00 025 050 075 100 125 150 175 2.00
X

(a) 1D, ny, =80, n¢ =5 (b) 1D, nge = 80, ny = 41
15 12
10 16
05 20
00 24
- 05 > 1.00 28
10 32
15 36
20 40
o T s e M
(c) 2D, t = 0.25, ny = ny = 80, ny =41 (d) 2D, t = 0.75, ny = ny = 80, ny = 41

Figure 3: Contours illustrating the solution of the one-dimensional HJ PDE (20) in (a) and (b), along with
the level sets for the two-dimensional HJ PDE in (c) and (d). In (a), a relatively larger time step of At = 0.25
is applied, whereas in (b)-(d), a smaller time step of At = 0.025 is employed.

5.4 Fourth experiment: spatiotemporally-dependent Hamiltonian

In this experiment, we solve the following viscous HJ PDE whose Hamiltonian depends on both the spatial
variable x and the time variable ¢:

00,0 | LG o, + Fat) = 0.18,(e,0), = € [0,2",t € [0, 1,
ot 21 (21)
(JS(:L’,O):—E”ZE—].HQ, YIS [072]71’

where f(z,t) = —imin{(z1 —t — 0.5)%, (z1 — t + 1.5)% (21 — t — 2.5)%} — %lz;lzg(acj — 1)2. We apply
Algorithms 3 and 5 to solve this problem. We use the Engquist-Osher scheme in the saddle point formulation.
To be specific, we set the numerical Hamiltonian H(z,t,pt,p~) = H_(p*) + Hy(p~) + f(x,t) for the one-
dimensional case and H(z,t,py,py,p3,ps) = H-(p]) + Hy(py) + H-(p3) + Hi(py) + f(x,t) for the

two-dimensional case, where H_(p™) = £ min{p*,0}? and H; (p~) = 5 max{p~,0}?
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Figure 4: Numeric solutions for the one-dimensional and two-dimensional HJ PDE (21) are depicted. In
(a), we display the level sets of the one-dimensional solution obtained using a larger time step of At = 0.25,
whereas in (b), we showcase the one-dimensional solution achieved with a smaller time step of At = 0.025.
Furthermore, level sets of the two-dimensional solution are presented at distinct time points (¢ = 0.25, 0.5,

0.75, 1.0) in (c)-(f).
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The solution is illustrated in Fig 4. In (a)-(b), we present the level sets depicting the solution to the
one-dimensional HJ PDE. In (a), a larger time step of At = 0.25 is utilized, while in (b), a smaller time
step of At = 0.025 is employed. Additionally, we provide contour plots showcasing the solution to the
two-dimensional PDE at distinct time instances (¢ = 0.25, 0.5, 0.75, 1.0) in (c¢)-(f). Due to computational
complexity, we adopt a larger time step of At = 0.25 in the two-dimensional case. This example demonstrates
the capability of our proposed method to handle intricate Hamiltonians dependent on (z,t).

6 Summary

This paper solves HJ PDEs using a saddle point formulation, which is solved using PDHG method. We
provide numerical validation that this method can compute the viscosity solutions with errors related to
the grid size. We can handle certain Hamiltonians which depend on (z,¢). Moreover, we use implicit
time discretization, which circumvents the restrictive CFL time step restriction for explicit methods. In
other words, we can choose big time step to speed up the computation. The merit of this approach lies
in the simplicity of the saddle point formulation. This simple formulation is achieved by capitalizing on
the Fenchel-Legendre transform and the duality inherent in HJ PDEs. This simplicity facilitates updates
within our method to have either explicit formulations or be conducive to parallel computation. In a special
case where the Hamiltonian H(z,t,p) is separable and 1-homogeneous with respect to p, the saddle point
formulation takes the standard form in [20], ensuring the convergence of the proposed algorithms through
PDHG theory (see Remark B.1).

Although it is a first-order method, it has the potential to serve as an initialization for more accurate
methods, particularly in applications that demand smaller errors. It may be also an interesting future
direction to combine this method with high order schemes. Moreover, this method converts an equation to
a saddle point problem which can fit pretty well under the framework of machine learning. For solving HJ
PDEs or problems related to HJ PDEs, the formulas provided in this paper can provide some ideas on design
of loss functions.
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A More details about the algorithms

A.1 DMore discussion about the continuous saddle point formula

The first order optimization condition for the saddle point problem in (3) is

O¢(x,t)
ot

WD) |G, (ol )V, (w1, V26(2. 1)) + Buplat) =0, w € Q1€ 0.7)

¢((£,O) = g(m), P(‘T,T) =G x €1,

which is similar to the mean-field control problem, except that we do not restrict p to be non-negative.
There is a gap between (3) and (4), namely, whether we require p to be non-negative or not. Although
the theoretical understanding of when this condition holds is lacking, numerically we have found that our
algorithm works and computes the viscosity solution.

Note that in the last line of (3), v is a vector, while v takes the form of a function in (4). We abuse the
notation v here. In (3), there are infinitely many finite-dimensional optimization problems, which depends
on (x,t). Upon their consolidation into a single optimization problem, the variable transforms into a function
that depends on (z,t), denoted as v(x,t) in (4), whose value corresponds to the original variable v in (3).

+ H(z,t,Vao(z,t) = eApp(z,t), x €, tel0,T],
(22)

A.2 One-dimensional semi-discrete method

To solve the semi-discrete equation (10), we propose to solve the saddle point problem (11), whose first order
optimality condition is

Gi(t) + H(wi,t, (D 0)i(1), (D5 0):lt)) < e(Daa)i(t), i=1, st e [0,7)

pilt) + (D5 (po))i(t) + (D (pv™))ill) + e(Dawp)i(t) = 0, i=1, st € [0,7)

(07 (1,07 (1)) = Vi oy H (it (DF 9)i(0), (D 6)i(1)), =1t €T (23)
6:(0) = g(ws), pi(T) =c. =1

pil®) (6(t) + H (i, t, (DF0):(1). (D7 0)i(1) = e(Dad)i() =0, i =1,....nzit € [0, 7],
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Similar to the continuous setting, if the corresponding mean-field control problem possesses a solution
with a positive p, the inequality in the first row becomes an equality. This implies that the proposed saddle
point problem addresses the semi-discrete HJ PDE (10). This inclusively covers situations where a positive
diffusion coefficient € is present. It’s important to note that by ensuring an appropriate discretization for the
two PDEs in (6), both the discretize-then-optimize and optimize-then-discretize approaches yield the same
method. These comments hold true for the following sections and we will not repeat them.

The algorithm for the proposed one-dimensional semi-discrete method is outlined in Algorithm 2, where
we denote the objective function in (11) as Lgem;-

A.3 One-dimensional fully-discrete method

To solve the fully-discrete equation (12), we propose solving the saddle point problem (13), the first-order
optimality condition of which is given by:

(Dy ®)ik + H(xi,t, (D )ik, (Dy 0)ike) < €(Daa®)iks i=1, . ng k=2, 0y,

(D )ik + (D (pv™))ik + (DF (pv7))ik + €(Dazp)ik = 0, =1, ngk=1,...,n: — 1,
(Vi 0i) = Vot o H (@i, trr1, (DEd)i ks, (D 0)iksn), i=1,....ngk=1,...,ny — 1,
din = 9(xi), pin, =, i=1,...,Ng,

Pik—1 ((D Bik + H (@i, by, (DF 0)ik, (D5 B)ik) — G(Dmci?)i,k) =0, i=1...,ny3k=2,... m.

(27)
The proposed algorithm for solving (13) is presented in Algorithm 3. Within this algorithm, we employ
L 4 to represent the objective function in (13). During the updating of ¢, the term (Dj p); ,,,—1 represents

EPemt aligning with the terminal condition for p in (27).

A.4 Two-dimensional semi-discrete method

To solve the semi-discrete equation (14), we propose solving the saddle point problem (15), whose first order
optimality condition is

i (t) + H(wi, yj,t, (DI $)i,5(t), (D 6)i (1), (D 0)is(t), (Dy 0)is (L))

< €(Daa)i () + €(Dyyd)i; (1), i=1,...,n55=1,...,my;t €[0,T],
pii () + (Dz (pv™))ig (1) + (Dif (007 )i, (8) + (Dy (pw™*))i5(t)

+(Dy (pw™))ij (t) + €(Dazp)i i (t) + (Dyyp)ii(t) =0, i=1,...,nz5=1,...,ny;t €[0,T],
(Uj,j (t)>U;j(t)7w¢+,j(t)aw;j(t)) = V(ﬁ,p;,p;p;)H(miv Yj» t,

(Dz )i, (8), (Dx 0)i,i (), (Dy )i (1), (Dy 8)i,5(1)), i=1,...,n55=1,...,my;t €[0,T],
$i,5(0) = g(zi,y5),  pii(T) =c, i=1,...,na0=1,...,ny,
pii(t) (Q'%’,j(t) + H(zi,y5,t, (DT 0)i (1), (Dg 0)is(t), (D ¢)i5(L),

(Dy 0)i.j(t)) — €(Daadp)i; (t) — €(Dyy¢>)z‘,j(t)) =0, i=1,...,nz;5=1,...,ny;t € [0, T].

(31)

The algorithm for the proposed two-dimensional semi-discrete method is outlined in Algorithm 4. For the
sake of simplicity, we use a to represent (o ;); ; for any given quantity «. This algorithm closely resembles
the one-dimensional case, and thus certain details have been omitted. We adopt the quadratic function
as the penalty term for all functions except ¢. For ¢, our choice of penalty term for preconditioning is

S (Iléi,j — B2+ (DF )i — (DF )12 + (D d)iy — (D;w)i,j”?),
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Algorithm 2: The proposed algorithm for solving (11)

Inputs : Stepsize 7,0 > 0, error tolerance > 0, inner maximal iteration number N;, ., and outer

maximal iteration number N,y e

Outputs: Solution to the saddle point problem (11).

1 For all i = 1,...,n,, initialize the functions by ¢?(¢) = g(z;),Vt € [0,T], p? = ¢, T =0T = 0.
2 for { =0,1,..., Noyter — 1 do

3 Update the functions ¢;: [0,7] = R for alli=1,...,n, by
er1y ; Ly b1 4 LSS (1 — 2 + +
(i )i= ¢-vf;-g(él)lir;(a: ) Lsemi((#i)i, (Pz)u( v, )iy (0,7 )i) + o Z (II% oill” + [[(Dz ¢)i — (Dz ¢ )ill )
Q Q Q i=1
= (60 + (=07 = Do) (5 + Da (50" 1) + DI (00" 7) + eDuui) |
(24)
where (=07 — D) 1(fi)i (here each f; is a function of t) denotes the solution (u;); to the
ODE system —ii; — (Dggpu); = f; in [0,7T] for all i = 1,...,n, with periodic spatial condition,
Dirichlet initial condition u;(0) = 0, and Neumann terminal condition ;(7") = 0.
a | A SR (167 () + H @i, (DFST)i(t), (D 6)i(#)) = €(Dawd™)i(#)[l1 < 6 then
5 ‘ Return (¢! ™);.
6 end
7 | Set it =20 — ! for all i =1,.
8 Set v /'H Ot — f+, Uf—H’O’_ = Uf’_, pf“ O =ptforalli=1,
9 forme,l,...,Ninmrfldo
10 Update v; and vy for all i = 1,...,n, by
(o THEE LT = argmax {‘“w((&f”» (o™i (o), (07)4)
v v vi
_ % ZJC (”prrl,m(U;r _ vf+l,7n,+)“2 + H/)5+1,7n(1}; _ Uf+1,7n,7)”2) }
=1
. (25)
pf“ ’“( ) Lmt (DF e
?;gvml\i{Z/ H (@i, t, 0 (1), 05 (8) + vl () — v (t)*UW
P (et (D7 \°
+ Ty (t) —v; (t) — O’W dt 3.
Update p; for allt =1,...,n, by
(P s = argmax Loemi ((65)z, (pi)i, (o105, (010, Z loi =P
piViip; >0
= (max{ul ", 0}),
(26)
where p{Th™ ! s a function defined by
I 2 T (G (1) I (1) (DG ) (6) o T (0)(D7 6)) -
H* (it 0, 7" 0F (), 07 T (1) — (D dTi(8)).
11 end
+1,4+ _  L+1,Ninner,+ , €+1,— _  L+1,Nipner,—  (+1 {+1,Ninner s
12 Set v; =, ) U; = , pﬁ =p, foralli=1,...,n,.
13 end

14 Return (pNowter);.

23



Algorithm 3: The proposed algorithm for solving (13)

Inputs : Stepsize 7,0 > 0, error tolerance > 0, inner maximal iteration number N;, ., and outer
maximal iteration number N,y e
Outputs: Solution to the to the saddle point problem (13).
1 For each i = 1,...,n,, initialize the matrices by qb?)k =g(z;) for k=1,... ny, pgk =c,
vg’,:'— ?k =0fork=1,...,n, — 1.
2 for /1 =0,1,..., Noyter — 1 do
3 Update the matrix ¢;  fori =1,...,n,; k=1,...,n; by

0 . 0 e, l,—
(G5 )ik = argmin £ ((Gin)ik, (P5x)ikes (005 ik (W57 )ik)
qbiYkVi,k
¢i,1=9(z;)

+ 0= Z > (((D;¢)i,k — (Dy ¢")in)” + (DL d)ik — (DI¢Z)i,k)2) (28)
= (¢fk)zk + 7(—=Dy — Dxac)_l (Djpg + D, (peve’+) + Di(pzvé’_) + epré) ,

where (=Dt — Dyy) ™ (fir)ix (for a matrix f with elements f;  and the linear operator
Dy f = (f‘ k— I_ZAf;QH_ﬂ 2411, k) denotes the solution u to the linear system
—(Dyw)ig+1 — (Dygp)igyr = fig forall i =1,...,n,; k=1,...,n, — 1 with periodic spatial
condition, Dirichlet initial condition u;; = 0, and Neumann terminal condition u; p,+1 = U; n,-
i 30 S, (D ¢ )ik + H (i te, (DF )ik, (D7 671)ik) — €(Dya™ )i k] < 6 then
‘ Return (¢f’+kl)i,k.
end
Set ¢Z+1—2¢£+1 (b‘ foralli=1,...,n.,k=2,...,mn4

0410+ 6+ 041,0,— b e+10 ¢ . o
Set v, T =0, U Uik P =pigloralli=1... n;;k=1,...,n —1

form—O,l,...,NmneT—ldo
10 Upda‘cev;‘,€ and v;, foralli=1,...,n,;k=1,...,ny — 1 by

© 0 N o » ok

241 1 41, 1,— T4+1 12 —
(iR hmht o bmiboyy, = argmax {cfuu«m#; Yiskes (PL ey (0 )i (07 )ike)

+ —
/Ui,k:’vi,kVL'k

ng ne—1
Z Z ( l+1 m(vI . — Ul+1 ,m, +)) + (ple m(ﬂl . vle ,m, 7))2) }
i=1 k=1

(29)

, np—1 L4+1,m

ng + 41 2
. _ p; , (DF ™ )i
) + ik + L+1,m,+ J i,k+1
= argmin {Z Z (H*(;c,i,twrl,vi,k,vj,k)-i- 20 <Ui,k_vi,k m —UW
i=1 p

v v g Vink k=1 ik

(+1,m Ze 2
4 Pik - o41,m,— (D ANkt
Gy Vik — Yik - pltTm .

ik

Update p;p foralli =1,...,n,; k=1,...,n, — 1 by

( 041, m+1) ok

i,k

= argmax  Lrun((@5 1 )ik, (pik)ik, (Wi g" " )i, (0T k)
pi,kVikip; ;>0

= LSS -ty (30)
=1 k=1

4+1,m+1 0})

= (max{p; j ik

where M@-‘rl ,m+1

£+1, +1 +1, -7 f+1 +1,4+ -
tin " =pe A+ o((Dy )ik oy " (DY) g1 +

Uf};l L (D ¢e+1)i,k+1 - A* (@i, thg1, v, “_1 mh +7Uf,—;tl’m+l’_) - G(Dwxéz+1)i,k+1)-

is a number defined by

11 end

L+1,+ _  l+1,Nipner,+ €+1 L+1,Ninner,—  0+1 L+1,Ninner © .
Set v, =k SV R = Ui s Pik =Pik foralli=1,...,ng;

k’:i,...,nt—l.

12

13 end

N 24
14 Return (¢, 7" )i k-




Algorithm 4: The proposed algorithm for solving (15)

Inputs : Stepsize 7,0 > 0, error tolerance § > 0, inner maximal iteration number Ny, and outer
maximal iteration number Nyyier-
Outputs: Solution to the saddle point problem (15).
1 Foreach i =1,...,m,; j = 1,...,m,, initialize the functions by ¢? ;(t) = g(x;,y;) for all ¢ € [0,T7,

0,+ 0 7+ 07—:
pLJ_chJ _U,J =Wy = Wi =0.

2 for £=0,1,..., Noyter — 1 do

3 Update the functions ¢; j: [0,7] = Rforalli=1,...,ny; j=1,...,ny by
6" = 6" 4+ 7(=0] = Daw — Dyy) " (6 + D7 ("0 ) + DF (00" 7) + Dy (0 w" ) + D (0 w" ) + e(Daw + D))
(32)
where (=07 — Dy — Dyyy) "1 f (here each f; ; is a function of ¢) denotes the solution u to the
ODE system —ii; j — (Dggtt + Dyyu); j = fi; in [0,T) for alli =1,...,n,; j=1,...,n, with
periodic spatial condition, Dirichlet initial condition u; ;(0) = 0, and Neumann terminal
condition %; ;(T') = 0.
. . CHL (4
a | R T DR g () +
i Yt (Dg i,5(0)s (D @777 )i 5(8), i,j(0); (y @777 )i j - ra
H(zi,y;,t (D+¢£+1) (1), (D7 ¢"F1)i 5 (1), (DF 1) 5(1), (Dy 1) 5 (1)) — €(Daad™ +
Dyy(beﬂ)i,j(t)”l < ¢ then
5 | Return ¢**1.
6 end
7 Set ¢Z+1—2¢”1 f,j foralli=1,...,n.;7=1,...,n,.
ot e flio— b 041,04 o4 . 641,01 f—  041,0
8 Set v; —v” s Vi =00 W, ; =W, W, ; =W Pi; —pf’j for all
1=1,...,n,5=1,...,n.
9 for m = 0 1,. ,Nmnw 1 do
10 Updatev”,vi_’j,wi’-andw foralli=1,...,n;;5=1,...,ny by
(1}24»1,7714»1,«}»7Ul«i»l,rn#»l.f7 Z+1,m+1,+7w€+1,m+1.7)
e Ty
= arg min {Z / H* (x4, t,v; 7(t),'ul ](t), 7: (t),w;_i(t))
/Ui‘j,'ui_j Wi w;jv' j Li=1j5=1
{+1,m -
Piy @) (DF )i (1) - .- (D 6 1)i 5 (1)
e R e N CURL R )
DT @iy, D g+t st
+ (w0 - w5 ) - 0 ZL N2 | (w0 o ) - o PO ))Q)dt}-
) P ()
(33)
Update p; j foralli =1,...,n.; 5 =1,...,ny by
p[,+1,m+1 _ (max{p“’l ym+1 L0})igs (34)
where //H ™+ s a function defined by
pihm =t U($f$1(t) + o FETEEE (D) () + ol ST T (DL 6 a5 (1)
g ST @Dy i () + wi ST @Dy i (1) = B (s, gyt 0 5 @),
o E TR (@, wiFE T (0, wi BT (1) - e(Daa @t 4 Dyy @),
11 end
12 Set vttt = ,U£+1-,Ninne1‘,+7 = = UZ+17Ninner7_’ wttht = w2+17NinneT7+7
w£+17_ — w£+17Ni7lne7‘7_7 p€+1 — p£+17Ni71ne7‘_
13 end

14 Return ¢Neuter,
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A.5 Two-dimensional fully-discrete method

To solve the fully-discrete equation (16), we propose solving the saddle point problem (17), whose first order
optimality condition is

(D @ik + H (@i, yj,thy (D3 @)igks (D @)isiks (D @)k, (Dy 6)ijk) < €(Dazd)ivjk + €(Dyyd)igons
i=1,...,ni=1,...,nk=2,...,ny,
(DY p)ijk + (Dz (pv™))i gk + (D (pv7))igik + (Dy (pw™ )ik + (Dy (pw™))i gk + €(Dawp)i i + €(Dyyp)ijk =0,

i=1,...,n5=1,...,nysk=1,...,ny — 1,
+ -+ - 3 + - + -
(Ui,j,kfui,j,kv Wi 4 k> wi,j,k) = v(p‘f,pl_,p;',pz_)H(xi’yj’tk+l’ (Dz ¢)i,j,k+17 (Da: ¢)i,j,k+17 (Dy ¢)’i,j,k+17 (Dy ¢)i7j7k+1)7
i=1,...,n75=1,...,nysk=1,...,ny — 1,

¢’i,j,1:g(xi7yj)a p’i,j,nt :C7 i:17...,nz;j:1,,..,ny,
Pik—1 ((Df¢)i,j,k + H(wi, Y5, th, (DF 8)ijk, (Di )ik, (DF )ik, (Dy 8)igik) — €(Daad)ijir — E(Dyy¢)i,]‘,k) =0,

i=1,...,n5=1,...,nyk=2,...,n.

(35)
The proposed algorithm for solving (17) is shown in Algorithm 5. In the algorithm, we use L, to denote the
objective function in (13). When updating ¢, the term (D; p); jn,—1 denotes “:"=1 which is consistent
with the terminal condition for p in (35). For simplicity, we use « to denote (v ; x)i i, for any quantity a.
This algorithm is similar to the one-dimensional case, so we omitted some details. We choose the quadratic

function for the penalty term of all functions besides ¢. For ¢, our choice of penalty term for preconditioning
is 320 500 S0 (((DF @i = (D7 6%)i i) + (DF 8)igk = (DF 65 + (D )i — (D )i j0)?).

B An equivalent formulation

Through the substitution of the variable m = pv, we obtain an alternative expression for equation (4) as
follows:
m(zx,t)

min max /OT /Q p(z,t) (a(bgz’ Y _ eAgp(x, t)) + m(z, t)Vad(z, t) — p(z, t)H" (a:, t, X)) ) dxdt — c/¢(m, T)dx. (39)

@
#(z,0)=g(x) PZ0

In contrast to the saddle point formulation (4), this revised equation conforms to the conventional PDHG-
applicable saddle point formulation (as detailed in [20]), which thereby ensures convergence for the corre-
sponding algorithm. Analogously, the semi-discrete and fully discrete counterparts discussed in Sections B.2
and B.4 also follow this structure, thereby endowing their corresponding algorithms with theoretical conver-
gence guarantees. For more details, we refer readers to the following remark and also Remark B.3.

Remark B.1. The convergence of the PDHG algorithm for equation (39), as well as its associated semi-
discrete and fully-discrete counterparts in the specialized context of separable and shifted 1-homogeneous
Hamiltonians described in Appendices B.2 and B.4, can be established based on established theory [20]. These
specific saddle point problems adhere to the conventional format outlined in [20], characterized by bilinear
interactions between primal and dual variables, while other terms exhibit convexity concerning ¢ or concavity
concerning (p,m). To be more precise, in scenarios where H exhibits separability and shifted 1-homogeneity
with respect to p, the primal and dual optimization problems in equation (47) can be reformulated as linear
programming problems involving (p,m) or ¢. Additionally, explicit updating formulas for both primal and
dual variables can be derived in this specific case (for more information, refer to Appendices B.2 and B.4).

These explicit formulas, which remove the inner loop in Algorithm 1, are attainable due to the sim-

plification of the term p(x,t)H* (m,t, 7:((;’;))) (and its corresponding nonlinear terms in both semi-discrete

and fully-discrete scenarios), resulting in linear objective functions and linear constraints. Nevertheless, in
more general cases where the intricate nonlinear term cannot be simplified, there is no feasible approach to
derive an explicit updating formula for (p,m). In such instances, Algorithm 1 and its semi-discrete and
fully-discrete variations are more suitable.
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Algorithm 5: The proposed algorithm for solving (17)

Inputs : Stepsize 7,0 > 0, error tolerance § > 0, inner maximal iteration number Ny, and outer
maximal iteration number Nyyier-
Outputs: Solution to the saddle point problem (17).
1 Foreachi=1,...,n,; j =1,...,n,, initialize the matrices by (;5” e =9(xi,y;) for k=1,...,n
pmk—c vl’fk—v?]k—wojk—w”k—Oforkz—l ne— 1
2 for /1 =0,1,..., Noyter — 1 do
3 Update the tensor element ¢; jr fori=1,...,n,7=1,...,ny;k=1,...,n; by

¢ = 6" +7(=Dut = Dus = D)™ (DF 0" 4 Dz (p"0"H) + DE (p'0"7) 36)
36
+ Dy (pewz,+) + D;r (plwl,—) + EDIIPZ + 5Dyyp£)7

where (=D — Dyy — Dyy)_1 f (for a tensor f with elements f; ; » and the linear operator
Dyf = (f””“‘l72’2;@"“+fi’-7""+1 )i,j,k) denotes the solution w to the linear system
*(Dttu)i,j,k—i-l - (Dzzu + Dyyu)i,j,k+1 = fi,j,k for all ¢ = 17 s Ny ] = 17 sy Ny
k=1,...,n; — 1 with periodic spatial condition, Dirichlet initial condition u; ;1 = 0, and
Neumann terminal condition u; jn,4+1 = Ui, jn,-
a | YT Y00 o [(D7 )ik +

H(w,y;, tr, (Diéﬁ”l)z’,j,k’ (D " )i g (D @ )iy (Dy 1) k) — €(Dapad™ +

D, 6"+1); ;4] < 6 then

| Return ¢!,
end
Set Q_SZJrl _ 2¢E+1 _ ¢Z~
Set L0+ = gl ylHL0= — b= gl 0+ — gl 10— — gyli= HlH1.0 — 4t
for m =0,1,..., Nipner — 1 do
10 Update v”,67 ik wjjk and w; g foralli=1,...,ny;7=1,...,ny; k=1,...,my — 1 by

© 00w N O wm

(1}z+1,m+1,+7 plHLmt1,— , we+1,m+1,+7 wZ+1,7n+1,7)

ng My np—1
— H 2 gl —+ _ + —
= arg min g g E H (xi,yj,thFl,vi’j_’k,vw.’k,wi‘j,k,wi’jyk)
Wi Vigk

Foam ot e e
L s i=1j=1 k=1
24+1,m + 70 — 7041
4 Pk of  _ytttmt (Do d i1 \2 4 (v —yttrm— _ (Dad igke1)2
20 ik T Vigk Fim igk T Vigk T im

Pijk Pi ik

+ A1y, 241
+ 041,m,+ (Dy ¢ Yig k41 2 - 04+1,m,— (D ¢ )i k41
+ (w —w —0—F ) +(w —w -
5,k i34,k L+1,m i3,k i3,k +1,m :
i,9,k Py Ik

11 Update p; jr foralli=1,...,n5=1,...,ny; k=1,...,n, — 1 by

o = maxp i o), (38)

l+1,m+1

where p; % is a number defined by

L41,m+1 041,m Z+1 mAltpt g+l 41, m41,—

Bk =pPijr T o((Dy ¢)1 k41 TV (D ¢ Jigk+1 U, ik (D, (15)1 k41
z+1, +1,4 At 7l+1 041, m+1,— o041

+wi 2" (Dy ¢ )1 k1 Fwg L™ (Dy )i 5 — H (@i, yj tera,

Lt 771+1 4 e4lmAl,—  elmeAld | el,medl,— - P
Vi gk Vi Gk > Wy 5k s Wi Sk ) — €(Dawd + Dyyd);  i1)-

12 end
13 | Set oftlt = L Ninert L= — L Ninners = b1t — yt+ 1 Ninnerst

we"!‘l:_ — w£+17Ninne'r;_7 pé+1 o pé“!‘l:Ninner.

14 end
15 Return ¢Veuter,
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We will now provide a summary of the relevant semi-discrete and fully-discrete formulations, along
with their corresponding algorithms, for both one-dimensional and two-dimensional cases in the upcoming
sections.

B.1 One-dimensional semi-discrete and fully-discrete methods

For the one-dimensional case, we first discretize the spatial domain [a,b] and get the following semi-discrete
saddle point problem

T Nz . . ng
gl_i\yi ma?(v./o > (pi(t)@(t) +mi(t)(DF )i (t) — Epi(t)(Dwz¢)i(t)> — L((@)irt, (pi(£)i, (ma(1)a)dt — ¢ > i (T), (40)
i P MV im1 i=1

?;(0)=g(z;) p; =0
where L: R™ x [0,400) x R™ x R™ — R is defined by

L((z)i,t, (pi)i> (Mi)s) = r{é%’;;(midi —piH (z,t,d;, di—1)).

The derivation of this formula is given as follows

ng

min —c (T
¢ satisfying (10) Z $:(T)

i=1

—  min max /OT S0 pi®) (660) + F(wi. . (D 0):(1). (D5 0)i(0) — e(Dar)i(0)) db = ¢ 3 64(T)
i=1 i=1

$iVi piYi
¢;(0)=g(x;)

bi,d; Vi piVi
¢ (0)=g(x;)
a; ()=(DF ¢); (t)

T Nx ) R g
= min max/o Zpi(t) (c/n(t) + H(z;,t,d;(t),di—1(t)) — €(DTT¢)7(t)) dt — CZ i (T)
i=1 i=1

g

T Nz . R
max /0 D pilt) (¢'i(t) + H(zi, t,di(t), di—1 (1)) — G(szdﬁ)i(t)) +mi()((DF ¢)i(t) — di(t))dt — ¢y ¢i(T)
=1 i=1

min
G5,d; Vi p;ymy Vi
¢;(0)=g(x;)

i=

T Nz . ny
= min  max /D > pi(t) (6i(t) = e(Daa)i(t)) +mi(8)(DF 6)i(B)dt — > $i(T)
=1 "

b Vi pi,m;Vi 1
b (0)=g(z;) =

T N R
- /0 max D (mi()di(t) — ps () H (i b, di(t), di—1(£)))dt
v i=1

T Nz . oz T

= g;ivni pirggz(w/o Z; pi(t) (¢i(t) - e(Dm¢>)i(t)> +mi()(DF @)i(t)dt — CZ; $:i(T) — /0 L((zi(t))ir t, (pi(1))i, (mi(t))s)dt.
¢ (0)=g(x;) = i=

(41)

As we explained in Remark 2.1 and Appendix A.2, when the corresponding mean-field control problem has

a solution including a positive density p, we can add the constraint p > 0 to the saddle point problem, from

which we obtain (40).

Remark B.2. When I:I(as, t,pT,p7) takes on a “separable” form, denoted by ﬁ(x, t,pT,p7) = ﬁl(x, t,pT)+
Hy(z,t,p™), the following equality holds:

fnax (mid; — piH (x4,t,d;, d; 1)) = Dax | (midi — pi(Hy(4,t,d;) + Ha(,t,di 1))
i=1 i=1 (42)
Ng . . Ng R .
= max ;midi — (piH1(zi,t,d;s) + pir1 Ha(2iq1,t,d;)) = ;(piHl,i,t + piv1Hoir1,6)" (M),

where ﬁlmt and I:IQJ"t denotes the functions p — H; (zi,t,p) and p — ﬁg(xi,t,p), respectively. The corre-
sponding saddle point problem becomes

T Nz A R . nx
g}i\fr}i V"i,??‘w/o > (m(t)abi(t) +mi (£)(DF )i (t) — €pi(t)(Dawd)i(t) — (pi () H1,ie + le(t)H2,i+1,t)*(m,i(t))) dt —cY_ ¢i(T).
$i(0)=g(x;) ;20 i=1 i1

(43)
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For instance, in the context of applying the Engquist-Osher scheme [79, 38, 39], the function ﬁlym cor-
responds to the mon-increasing part of H(x,t,-), while ggﬂ"t corresponds to the non-decreasing part of
H(z,t,-). Under this framework, the link between (11) and (43) involves the transformation of variables:
pivy = min{m;,0} and p;v; = max{m;_1,0}. Furthermore, if H exhibits 1-homogeneity and convezity with
respect to p, the function (p; (t)]i_\[lﬂ"t+pi+1(t)ﬁ2’i+1’t)* becomes associated with the indicator function, which
notably simplifies the computation process. For further details, please refer to Appendix B.2.

Next, we apply implicit time discretization and employ (D, ¢); ;i to estimate ¢1 .j(t). Consequently, the
saddle point formulation (58) transforms into the following expression (It’s important to observe that the
index k for p, m', and m? ranges from 1 to n; — 1, while for ¢, it spans from 1 to n;.)

ng ng—1 ng

%H;lvrik p,k%?};vfk; kz::l (Pi,k(D;d’)i,kJrl +mi (DS )i k1 — EPi,k(Dmm¢)i,k+1) — L((®)i, t) ks (Pisk)i ks (M k)ik) — At - Zdh nes
bi,1=9(x;) pi 20
R R (44)
where we abuse the notation L and define L: R x R™ x R X(m=1) 5 Rrax(ne—1) 4 R by
ng—1 ng
L((x3)is (tr)k (Pik)isks (Mik)ik) = g, max 221 z; mindi g — pipH (T, thyr, dig, dim1x)-
= 1

The discussion in Remark B.2 also applies to this fully-discrete formula with straightforward modifications.

While it is possible to decouple the formula for L with respect to k, this decoupling cannot be achieved
with respect to ¢. This discrepancy constitutes a significant limitation of this formulation when compared
0 (13), wherein the nonlinear term within the objective function can be effortlessly decoupled concerning
both 7 and k. This property facilitates the parallel computation of the updates for p,v™, v~ in Algorithm 3.
However, in certain special scenarios (such as when H is separable and shifted 1-homogeneous with respect
to p, as discussed in the subsequent section), the function L takes on a particular structure, enabling the
derivation of an explicit joint updating formula for (p, m).

B.2 One-dimensional special case: 1-homogeneous Hamiltonian

In this section, we consider the one-dimensional HJ] PDE whose Hamiltonian H is in the form of

H(x,t,p) = ~(z,t)|pl + f(z,1), (45)

with the assumption that v(z,¢) > 0 for any x € R, t € [0,7]. We apply the Engquist-Osher scheme [79,
38, 39], in which we have H’(x,t,er,p,) = I;L(m,t,er) + H'Jr(amt,p,) + f(z,t), where H',(x,up) =
~(x,t) max{—p,0} and H,(x,t,p) = ~v(z,t)max{p,0}. (Notably, these functions H, and H, draw par-
allels to the ReLU activation function within the domain of neural networks.) In this scenario, we arrive at
the following formula for the function L in (44):

ng ng—1

L((z:)i, (tk)k, (Pik)ik, (Mik)ik) = max Z Z (mi,kdix — pzkH(fL'z,tk+l7dzk7dz 1,5))
i=1

d; ERVi,k
ng ne—1 (46)
Z Z (=pif(@istisr) + I[—Pz‘,k’v(zivtlc+1)vﬂi+1,k’7(zi+1atk+1)](mi,k))v

i=1 k=1

where Io represents the indicator function of set C, which is 0 when the variable is within C, and 400
otherwise. Then, the saddle point problem becomes

ng ng—1 Ny
c
(D; ik (DF )i ki1 — €pik(Daad)ihs1 — pif (@i t - = i
¢1Hklgzlk o ax { S (pin(Di @)ikr + mi(DF d)ikr — pik(Dawd)inir — pikf (@i, tet)) Al Z Gine
¢i,1=9(x;) P7k>0 i=1 k=1 =1
—pi kY (@i, trey1) < Mk < pig1 kY (@ig1,theyr), Vi=1,.. . ngsk=1,...,n, — 1
(47)
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As elucidated in Remark B.1, the objective function within the saddle point problem (47) adheres to the
conventional form within the theory in [20]. Furthermore, the sole nonlinear term in this context is the
indicator function, resulting in explicit formulas for updating ¢, p, and m. It’s important to note that this
approach can be extended to encompass any Hamiltonian that is convex and shifted 1-homogeneous with
respect to p.

We employ the PDHG method to tackle (47). A comprehensive outline of the algorithm is encapsulated
in Algorithm 6. In the algorithm, we conveniently employ the notation Ly, to represent the objective
function in (47). During the update of ¢, the component (D p); n,—1 represents ~—x%= aligning with the
terminal condition for p. As we possess an explicit formula for the joint update of (p, m), there is no need
for an inner loop. This method is supported by a theoretical guarantee, as explained in Remark B.1, and
this is further detailed in the following remark.

Remark B.3. According to the theory in [20], the algorithm converges when the chosen step sizes T and o
adhere to the condition To|K||? < 1, where K represents the bilinear operator. In our case, we have

Ng Ne—1

Z Z (0ik (D 0)i i1 + i e (DF 0)i k1 — €pie(Daa®)ifr1)

i=1 k=1

_ 2¢
SHMWI%¢H+MWMHDI¢H+“Z;HMWDI¢H

|K((p,m), ¢)| =

2e _
<2(1435) Wm0 6. D5 )
x

Consequently, we derive |[K| < 2(1+ £%), allowing for the selection of step sizes T and o that satisfy
To < (24 25)72
Remark B.4. As elaborated in Remark B.2, the connection between (13) and (44) involves the variable
transformations pi,kvﬁ = min{m; ,0} and v;, = max{m;_1,0}. Algorithm 6 is closely related to Algo-
rithm 3, though there exist some distinctions.

The penalties pertaining to p in Algorithms 6 and 8 are identical. The primary focus is directed towards

the penalty related to m, which is Y, (mi —m§ ,)?. If both m; . and mf, are positive, the (i, k)-th term
in the summation becomes (p; v; ) — pfﬁkvf’;)a closely resembling the penalty term (pf,kv;k — ,ofykvf’l,;)2 mn

Algorithm 3. Similarly, when both m; j and mf’k are negative, (m;  — mf’k)2 becomes (pmvj:k — pf’kvf)’,j)z,

analogous to the penalty term for vt in Algorithm 3.
Therefore, if the sign of m remains constant between the previous and current steps, Algorithms 6 and 3
exhibit similarities.

The update procedure for ¢ remains as previously described. We will now detail the process of deriving
updates for p and m.
B.2.1 The detailed derivation of updating p and m in Algorithm 6

When H adheres to the conditions specified in (45), the updates for p and m require solving the subsequent
problem:

ng ne—1 ng—1 ng
- - - 1
. — 20 ¢ ¢ ¢
_ min g — Z Z (Pi,k(Dt & ikr1 + mik(DF )i kg1 — €pik(Daad™ )i ki +Pi,kf(wi,tk+1)) + 5 Z Z(sz - pi,k)2
p17k;¢;;‘,oz, i=1 k=1 7 k=1 i=t
i,kZ
1 ng—1 ng
¢ )
Ry ST i —mi )% = piry (@i ter1) < mak < piga Y (@ig1, tepr), Vi =1, ngsk =1, np — 1}~
k=1 i=1
(49)

Define z and o as in Algorithm 6, i.e., 2l =ml +0(DF " )ik, and of , = pf  + o ((Dy )i kg +
flag, tiogr) — e(sz¢e+1)i7k+1). Then, we can rewrite (49) as

. 1 :
o min o {T Z Z ((Pi,k - af,k)2 + (M, — Zf,k)Q) = pieY (@i tet1) S Mk < pit1, kY (@it1stet1), Vi=1, 0 ngsk =1, ,mg — 1 5.
Pz,k[;r;gco“ T =1 i=1
(50)
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Algorithm 6: The proposed algorithm for solving (47)

Inputs : Stepsize 7,0 > 0, error tolerance § > 0, and the maximal iteration number N.
Outputs: Solution to the saddle point problem (47).

1 For each i = 1,...,n,, initialize the matrices by q§2k =g(x;) for k=1,...,ny, P?,k =c, mgk =0 for

k:l,...,nt—l.

2 for /=0,1,...,N —1do

3

o I o » ok

Update the matrix ¢;  for i =1,...,ny; k=1,...,n4 by

(i i )ik = arg l\ffn_iil Lpur((Dik)ik (P51 )iks (00 )ik, (V07 iok)
i,k Vik
¢i,1=9(x;)

+o > Z (D7 8)ik — (D 690 + (DF )i — (DFYip?)  O)
i=1 k=
= (()bf,k)l,k + T(tht - Dzz)7 (D;Lpe + D;me -+ €Dzzpé) )

where (=Dt — Dyy) " (fik)ix (for a matrix f with elements f;  and the linear operator
Duf = (fl el QAft stS, #+1); k) denotes the solution u to the linear system
—(Dyu)i g1 — (Dagt)ipy1 = fig foralli=1,...,ng; k=1,...,n, — 1 with periodic spatial
condition, Dirichlet initial condition u;; = 0, and Neumann terminal condition w; n,+1 = Wi n,-
if Y S e, [(Df ¢ )ik + H(ws t, (DF ¢ )ik, (Dy 67 k) — €(Daad™ )i k| < 6 then
‘ Return (¢f;}'€1)i7k.
end
Set ¢ 1t =201 — ol foralli=1,... n;k=2,...,m

Update p; i foralli =1,...,ny; k=1,...,n, — 1 by

o+ e \2
pi,k *argr{;m{(yfal k) +6{Z1’ <0, —y~(z; tk+1)>z o) (y"/(xi7tk+l)+zi,k)
yeA

P 2
+6{zf71,k>0,yv(zi,tk+1)§zfilyk} <y7(zi’tk+l) B zi_l’k) }’

where z{; = m{, 4+ o(Df ") k11,
ozﬁk = pf’k +o((Dy ¢ Vi1 + f(@istis1) — €(Dyad® )i k1), and 8¢ is a function which
takes the value 1 if the constraint in C is satisfied, and 0 otherwise. This optimization problem
can be solved by comparing the function values of several candidates in .Af, i defined in (57).
For details, see Section B.2.1.

Update m; forall i=1,...,ny; k=1,...,n, —1 by

+1 . V4 /41 /41
m; . = max {mln {Zi,kapi+1,k7(xi+17tk+1)} » =Pk 7($iatk+1)} )

where zﬁk is defined in the last step.

10 end
11 Return (¢N,)i k-
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For a fixed p, the minimization for m is separable and in the following form

mﬁl = arg rﬂr{}in {(y - Zf,k)Q: Y € [—pikY(@is tpsr), Pz‘+1,k7($i+17tk+1)]} ) (51)
ye

whose solution is given by the truncation of zﬁk in the interval [—p; kY (@i, tht1)s Pit1.kY(Tit1, thg1)]:

m k= max{min{z{ ., pip1 47 (@1, tra) b —piry (@ trg) - (52)
Note that the right hand side of (52) can be seen as a function of p; j, and p;11 . After some computation,

we get

o If zf’k > 0, we have mf;};l = min{zf’k,pi+17k7(zi+1,tk+1)}, and hence mfj,tl only depends on p;41,5 in

the following form (denoting this function by G:k)

: L
Pit1 kY (Tit1s thr1), 3 piay(ivr, teyr) < 25
mik = Ghlpian) =1, . , (53)
Zi ks if pi1V(@ig1, thtr) > 25

o If Zf,k < 0, we have mszl = max{zf_’k, —pi k7Y (T, tk+1) }, and hence mf,‘};l only depends on p; ; in the

following form (denoting this function by G )

P —pikY(@istian), i = piry(wisthin) > 2,
m; = Gi(pik) =1 - ‘ ' (54)
Ziko 1 PV (Xiy tryr) < Zik-

In other words, depending on the sign of zf,k, mle is a piecewise linear (ReLU-shape) function which

depends either on p; j, or on p;41 k.
We plug these formulas into (50) to get a minimization problem of p only:

041 . o2 - £ N\2 ¢ 2
pi,JIrc = argg{)un(y —aik)” + 6{zf kSO}(Gi,k(y) —Zix) + 6{471 x>0} (Gztl,k(y) — Zi—1,)
u> 3 i—1,
2
. ¢ ¢
= arg;r;ln(y N ai!k)Q + 6{Zf o S0, —yy(@iteg1) 228 ) (y’Y(33i7 tit1) + Zi‘k) (55)
b> , ,

2
¢
+ 5{Z§f711k>0,yq(zi,l,tkﬂ)ngil’k} (y'Y(xi—l’ tht1) — Zi—l,k) .

Consequently, the objective function takes on the form of a piecewise quadratic function. With each J-
function capable of taking only values of 1 or 0, there exist four potential combinations. We consider the min-

14 3
s . s . . a; =Y (Titet1) 2
imization of each potential combination as a candidate. These candidates encompass af ks 4”;(95. t;;l;HL,& )
’ VR
L

af,kJFV(xifl,tk-%—l)Zf—l,k af,k77(xi’tk+1)zf,k+’7(zi*1’tk+1)zf—l,k Zik Zi—1,k
Y(wi—1,trg1)2+1 Y(@irthr1)2Hy(@io1,te1)?+1 Y(@i,tey1) Y(wi—1,trt1)
into the candidates, which correspond to the points at which the d-functions transition between values. Fur-

thermore, considering the constraint p > 0, we truncate all these candidates to the interval [0, 4+o00) and
additionally include 0 as another candidate. In essence, we update p employing the subsequent formula:

and

, and . We also incorporate —

041 . £oy2 s e \2
P =argmin(y — a; )" + (£ <0, —y(mitpy )22 ) yy(Ti, tet1) + 2
veal ik ] ik

(56)

¢ 2
+6{z§71,k>0.y'y(zi_l,tk+l)§zf71,k} (y’Y(Iz—l, thy1) — 27:71‘1@) )

where 'Af,k designates the set encompassing all the candidates, defined by

¢ _ ¢ af = v(@i, )2, of  +y@io, ter1)zg af g = V(@i trr)zi e+ v(@ica, b))z,
Aie =10, (ai k) J 2 ) 2 ) 2 2 )
’ "+ Y(@i, te+1)? +1 . Y(@i-1,thy1)? + 1 4 V(@i tpt1)? +v(@io1, tep1)2 + 1 N

¢ ¢
_ Zik Zi—1,k
Y(@i, teq1) +7 Y(@io1,tet1) N

(57)

Here, y4 denotes the positive part of the number y, denoted as y, := max{y, 0}.
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B.3 Two-dimensional semi-discrete and fully-discrete method

Within this section, we present the semi-discrete and fully-discrete counterparts of the two-dimensional
version of (39). The derivations closely mirror those in the one-dimensional cases, and as such, we have
omitted certain particulars. Initially, we proceed with spatial domain discretization, leading to the following
formulation:

ng "y
,min pex, / >3 (Piss (i3 (8) + mi ;()(DF 8)i 5 (1) +m? (DY 6)i.5(8) = €pi s () (D + Dy )i ()
i, V%3 pi g mg Yhi o T 5T
i, (0)=g(x;,v5) P ]>0
ng "y
—L ((@i9)igst (pis ()i (] ()i ( D)ig)dt—e> > bil
i=1j=1
R (58)
where L: R x R™ x [0, +00) x R?%= X" x R"=*"y x R"= %" — R is defined by
L ((ri)i, W3)5s s (Pis)isgs (M 3)iis (mf,j)z‘,j) =  max 3 (ml jdig+midl pi,jﬁ(miwy]'!t!d},j’d:—l,jvd?,jvdi]’—l)> .

1 2
di:j*di,jv”» 1j=1

The derivation of this formula is similar as the one-dimensional case, and hence omitted here.
Remark B.5. In the case when H(:J: y,t,pbt, pb ,p %) is “separable”, i.e., it can be written as

Y,y p) + H @,y tph) + H (0,9, 6, p2F) + B3 (2,y,t,p>), we have
&z 2 2

Fy 1 1
max ,ZZWudu +omgd s — g H iyt dy o di o d] 5075 0)

Frl Frl T2
d1 rfilzaxv ZZ(m“ b e dE s = pi g HL (e, st dy ) — pa s Hy (@i, ys, 6 di ) — pis Hi (e, y50t,d3 5) — po e H (@i, y541, 1, d5 )
=1 j=1

ng My
=>.> ((Pi,g‘fhl,i,j.t tpivrHy 5 ) (i )+ (pi HY 5y + pi’j+1H§vivj+1yt)*(m?,‘j)) ,
i=1j5=1
1 (59)
where Ha 4i,jt denotes the functions p — H) (4, yj,t,p). The corresponding saddle point problem is
ng "y
i [USES (008050 + md (DT 6105 () + md, (DT 610 (6) = 011D + Dy (0
m,j(oz)ig(zi,yj)plﬂ P11JJ>0 i7 ==t

~ (s OB g+ pir g (VB 5.0 (mb 5 0) + (pig B2 o+ P (VFR 0 )" (m25(0) )t = ¢S S0
i=1j5=1
(60)

Now, we perform the implicit time discretization and use (D; ¢); j.x to approximate gb” (t). Then, the
saddle point formula (58) becomes (note that the index k for p, m!, m? are from 1 to n; — 1, while the range
of k for ¢ is from 1 to ny)

ng My ng—1

min max S5 3 (pz 3 k(DY @)igksr +mi 1 (D @)ijnra +m2 1 (DF 6)ijkra
i, g,k Vi, Pij ks LJ ko T‘VL,L g R Vidk = 1j=1 k=1
@i,5,1=9(25.0;) by 20 (61)
ne my
- 1 2
—e€pijk(Daxd + Dyy¢)i,j,k+1) - L ((wi)m W3)i> k)i (Piygik)igks (M 5 k)i (mi,j,k)z‘,j,k) - Z > bigimes
i=1j=1

where we abuse the notation L and let L: R x R x R™ x (R”mx(m_l))B — R be defined by

ng—1 ng ny

- 1 2 1 1 2 2
L ((11:)7',, (Y3)is (tr)kes (Piyg k)i (MG 5 ) i,5,k (mi,]‘)k)i,j,k) = ;gax i SN (mi,j,kdi,j,k +mi i kdi ok
i,5,k" HIk =1 i=1j=1

1 2 2
—pigaH (@i yis tern, di oo di e 42 s di,j—l,k))'

Similar to the one-dimensional case, this formula is particularly well-suited for Hamiltonians that possess
specific structures, such as being separable and shifted 1-homogeneous with respect to p, as we will elaborate
on in the subsequent section.
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B.4 Two-dimensional special case: separable and shifted 1-homogeneous Hamil-
tonian

In this section, we consider the two-dimensional HJ PDE whose Hamiltonian is in the form of

H(z,y,t,p) =v(z,y,0)|pll + f(z,y,t) = v(z, 9, t)(Ip1| + [p2]) + f(2,y,1), (62)

with the assumption that y(z,y,t) > 0 for any (x,y) € Q, t € [0,7]. Although we consider this specific
case, the derivation can be generalized to a Hamiltonian which is separable (see Remark B.5), convex, and
1-homogeneous with respect to p.

~ We adopt the Engquist-Osher scheme [79, 38, 39], where we set f[(m,y,t,p1’+,p1’_,p2:+,p2’_) to be
H_(z,y,t,p" %) + Hy(z,y,t,p"7) + H_(z,y,t,p>%) + Hy(z,y,t,p*7) + f(z,y,t), with H_(z,y,t,p) =
~v(x,y,t) max{—p,0} and ﬁ+(z,y,t,p) = ~v(z,y,t) max{p,0}. In this context, the computation takes the

i . 1 2 2 ; . 1 2 1 2
f(.)llow.lng form .(where Pig, My, Mi;, d;;, di; are used instead of p;jk, ™M ;. Mi ;g di iy, di ;. for
simplified notation):

max Somygdi A m?dl = pi s H(mi,ysteer, df jdi_y o de g de )
dl,q2 epna Xny 7
a3 1 2 1 [y 2
= max > (m, gdi g mids = i s H (w95, tey1, d ;) — it g Ho (@i, vg, bt d ) — pig Ho (@i, 95, teyn, d2 )
dl dQERnJ;Xny 7
7 2
= pij+1Hy (T, Yj41, ey, dj 7‘) - (rz‘,y]‘,tk+1))
2
= Zf(m“yﬁtk“) Flmps (@it pign, @i 1ous by )] (M )+ Timps j1(@iwg b 1) pi, g1 7 @i 1ty )] (75,5)-
2y
(63)
Then, the saddle point problem (61) becomes
ng Ny ng—1
qun max { Z Z Z (pi,j,k(D;¢)i,j.k+1 + m;,j,k(D;r@i,j,kJrl + m?,j,k(D;r‘ﬁ)i,j,kJrl —€pij,k(Daxd + Dyyd)i,jk+1
$i,5,1=9(=;, UJ)/,JJ:; k’>"0 i=1=1 k=1
ng
—pigef (@i, Yj,te) ) ZZ@ gt = Pig kY (@i Yis tet1) S my e < pigt g eY (Tig, Ys, tet),
i=1j5=1
—pi gk Y(@is yjs teg1) < mi 0 < pigr Y (@i Uit b)), Vi =1, masi =1, nyik =1, ny — 1.
(64)

The update procedure for ¢ remains as previously described. We will now detail the process of deriving
updates for p and m.

B.4.1 The detailed derivation of updating p and m in Algorithm 7

Define z and « as in Algorithm 7. With a similar computation as in Section B.4.1, we get explicit formulas

for mﬁ}j and mgtlj using p:

1,041 . 1,0
m;’i = Mmax {mln {Zm-,k, Pi+1,5,kY (Tit1, Yy, tk+1)} s —Pig kY (Tis Yjs thy1) 66
2,0+1 } (66)

- f 2
my’s = max {mlﬂ {Zi,ma Pij+1,kY (T Yj+1s tet1) {5 —Pig kY (i Yj s tk+1)} :

In other words, we get

1 b+ oLl 1,041 .
o If 2,75, >0, m; ;. = min{z;; k,p1+17]7k7(a:1+1,y],tk_H)}, and hence m;’;;* only depends on pjt1,5,k

in the following form (denoting this function by GZ 9 k)

i+1.5.57 (2 ter1), if (z tos1) < 207
LOHL _ ALt Pi+1,5,kV\Li+15 Y55 Lk+1)s Pit 1,5,k TVLit 1, Yjs Cht1) = 24 5 oo
,]7k 1,7, k;(pl+17] k) 1,6 . 1,0 (67)
Zi3.k? if i1, kY (@i, Yjo ter1) > %k
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Algorithm 7: The proposed algorithm for solving (64)

Inputs : Stepsize 7,0 > 0, error tolerance > 0, and the maximal iteration number N.
Outputs: Solution to the saddle point problem (64).
1 Foreachi=1,...,n,; j=1,...,ny, initialize the matrices by qSZ k= = g(z;,y;) for k=1,... ny,
1,0
pwy—cmTJk—m”k:Ofork—l .,ng — 1.

2 for /=0,1,...,N—-1do

3 Update the matrix ¢; 1 for i =1,...,n,;j=1,...,ny; k=1,...,n; by
¢ = ¢+ 7(=Dit — Duyw — Dyy) ™! (Djp’f + Dym" + Dym** + €Dgup’ + eDyyp"') , (65)
where (—Dyt — Dy — Dyyy) 71 f (for a tensor f with elements f; ; x and the linear operator
Dyf = (fb LA 1_2&; CRR L} ++1), 5,k) denotes the solution u to the linear system
—(Dyw)ij k1 — (Dygu + Dyyu)z,j’k_,_l =figreforalli=1...ng j=1...,ny
k=1,...,n: — 1 with periodic spatial condition, Dirichlet initial condition u; ;1 = 0, and
Neumann terminal condition w; jn,+1 = Ui jn,-
a | AT 3 Y (D 6 )i +
H(zi, Y5, th, (D$¢é+1)i,j,k7 (Dy ¢ )i ks (D 0 1)i ks (D 1) 5ik) — €(Daadp™ +
Dyy¢[+1)i7j,k| S 6 then
5 | Return ¢**1.
6 end
- Set ¢Z+1 2¢Z+1 ¢£~
8 Update p by
1,0 2
+ 5{z,i1f1,j:k>0,yv(wi71=yj ,tk+1)§zil’fldyk}(yv(wifl’ Yirtet1) = 20 k)
T2 <o myrei gt za2t BV @0 UG b)) + i)’
2,0 2
* é{zf,’ffl,k>0«y~r<wi,yj—1«tk+1)§z?,’;71,k}(yW(Ii’ Yimntetn) = 2510
1, y 2,0 =
where Zi) j E= m1 sk + J(D$¢é+1)i’j,k+17 Zigk = m1 sk + U(D;¢é+1)i7ij+17
af jx =05k (D 6 ijker + F(@i,Yjs tern) — €(Daad™ + Dyyé™ )i j141), and d¢
denotes a function Which takes the value 1 if the constraint in C is satisfied, and 0 otherwise.
This optimization problem can be solved by comparing the function values of several candidates
in A . defined in (72). For details, see Section B.4.1.
9 | Update mj,, and m7;, for all i,5,k (k < n;) by
1,041 . 1,6 41 /41
mi}ng = mmax {mln{ ’L g,k pzil,j k’Y(ﬂfz-Ha ijtk-i-l)} ) _pi:;,k;rY(xi) Yjs tk+1)} ’
2,041 . 2, 041 041
m; g = max {mm {Zm-,k, pi:;_i,_Lk/Y(xh Yi+1 tk+1)} ; —P&w(ﬂ?i, Yj tk+1)}
where zl ¥ k and zZ ¥ k are defined in the last step.
10 end

11 Return ¢V.
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1,041
7,k

1,4+1

< 0, we have m;’ ik only depends on

OIfz”k

pijk in the following form (denoting this function by GZ ¥ )

= max{z” e —Pij, kv(x“yj,tkﬂ)} and hence m

1,041 1 —pij kY (@i Yjotevr), i — pijay (@i, vy, ter1) > 2 J k
igk = GiipPigr) =9 1, . Ny (68)
Zi,j,k’ if — Pi,j,k’Y(fia Yj, tk+l> < Z’L,j,k'

o If 22 ek > 0, we have mfle = mm{z” s Pij+1,k7(Ti, Yj+1, tk+1) }, and hence m?j;gl only depends on

pij+1,% in the following form (denoting this function by Gl ¥ k)

2,0
2,041 2.4 Pi g1,k (i Yj+1s te1), i pi gt k¥ (@0, Yiprs tern) < 2550
ik = GiinPigeie) =9 5y . 2.0 (69)
Zi gk if pi,j+1,k7(xivyj+latk+l) > 2k
o If z” < 0, we have mff'};l = max{z” s —Pij, k'y(xl,yj,tkﬂ)} and hence m; f: only depends on
pijk in the following form (denoting this function by Gl ¥ %)
2,041 2,— ) _pi,j,k')/(xivyjathrl)a if — Pi,j, k'Y(xz)y]vthrl) >z ’j k:
ik = Gik(Pigr) = 2.0 . 2,0 (70)
23k i — pigey(@is Yy ter1) < 25
Therefore, depending on the sign of zl’f 4> the minimizer ml’le is a piecewise linear function depending on

either p; ; 1 or p;y1,;k. Similarly, depending on the sign of z i k, the minimizer m; ’J'}; is a piecewise linear

function depending on either p; ;. or p; j4+1.k-
Then, we plug the minimizers m' and m? into the original updating scheme to get a minimization problem
of p only:

- oy — 21t )2 14 e
P s L= ars,;mn(y a; ,J,k) +4, kSO}(Gi,j,k:(y) zie) "+ 5{%1'_21,1,&”}( ) =20 W)’
ey — 2,+ 2
o <D}( i’j’k(y) )’ oL o k>o}(Gi,j—1,k(y) 220 )?
= - 5 oyt 1.6 2
arg;r(l)ln(y (e ,J,k) + ,’f,kﬁo’_y”’wi’yj>”k+1>221-17'f,k}(y7(m“ Yj>tht1) + zld,k) (71)
¥
oL Le >0, N (9’7(1171,yj,tk+1)—zililj W2
il1,5,6>0vY (@i 1,y . tk+1)<z vk} Vi,
§ : 2
+ {z?’fkgo RICIRTE tk+1)>z (y'Y(mu Yistht1) + z k)
e iy Yj—1st — 22t 2,
* 1 k>0 (@it 1) <5 ’j—l,k}(y’y(m“y‘] Ltkt1) = 2051 k)

Given that each d-function can adopt values of either 0 or 1, there exist a total of 16 distinct combinations,
each corresponding to a unique minimizer. We integrate the positive parts of these minimizers into our
pool of candidates, applying truncation due to the non-negativity of p. These 16 candidates comprise the
following ensemble:

£

[N > wyp)ec Yol

A= { ( >4 {o,21)€C - 1€ C{(v @iy thn)s 20 0)s (V(@im, wg ), =255 0),
1+Z(v0,v1)ec Yo +

(’Y(xzaygvthrl)v N J k) (7(x17y1717tk+1)1_ LJ71 k)}}

We also include the boundary points as in Section B.2.1 to get the following set of all candidates

1 Na 1 N4 2 N 2 N4
£ k —1 k k —1,k
‘Aiyj,k =10 - ks ) fisL, | — “d, s Fi UA;. (72)
’Y(a:'lay37tk+1) 4 "/(131—17yj7tk:+1) T ’Y(Il7yj7tk+1) n ’Y(Il7y‘7*1)tk+l) n

Then, the minimizer p % is chosen from these candidates by comparing their objective function values.
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