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Abstract

Approximating nonlinear differential equations using a neural network provides a robust
and efficient tool for various scientific computing tasks, including real-time predictions, in-
verse problems, optimal controls, and surrogate modeling. Previous works have focused
on embedding dynamical systems into networks through two approaches: learning a sin-
gle solution operator (i.e., the mapping from input parametrized functions to solutions) or
learning the governing system of equations (i.e., the constitutive model relative to the state
variables). Both of these approaches yield different representations for the same underly-
ing data or function. Additionally, observing that families of differential equations often
share key characteristics, we seek one network representation across a wide range of equa-
tions. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns
maps from multimodal inputs to multimodal outputs, capable of generating both numerical
predictions and mathematical equations. By using a transformer structure and a feature
fusion approach, our network can simultaneously embed sets of solution operators for var-
ious parametric differential equations using a single trained network. Detailed experiments
demonstrate that the network benefits from its multimodal nature, resulting in improved
prediction accuracy and better generalization. The network is shown to be able to handle
noise in the data and errors in the symbolic representation, including noisy numerical val-
ues, model misspecification, and erroneous addition or deletion of terms. PROSE provides
a new neural network framework for differential equations which allows for more flexibility
and generality in learning operators and governing equations from data.

1 Introduction

Differential equations are important tools for understanding and studying nonlinear physical
phenomena and time-series dynamics. They are necessary for a multitude of modern scientific
and engineering applications, including stability analysis, state variable prediction, structural
optimization, and design. Consider parametric ordinary differential equations (ODEs), i.e. dif-
ferential equations whose initial conditions and coefficients are parameterized by functions with
inputs from some distribution. We can denote the system by du

dt = f (u; as(t)), where u(t) ∈ Rd

are states, and as(t) is the parametric function with input parameter s. For example, as(t) could
be an additive forcing term where s follows a normal distribution. The goal of computational
methods for parametric ODEs is to evaluate the solution given a new parametric function, often
with the need to generalize to larger parameter distributions, i.e. out-of-distribution predictions.

Recently, operator learning has been used to encode the operator that maps input functions
as(−) to the solution u(−; as(−)) through a deep network, whose evaluation is more cost-efficient
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Figure 1: PROSE network illustration. The inputs and outputs (predictions) are multi-
modal, each including numerical values (data) and symbolic expressions (governing equations).
Here we include just the third term in the governing equations for simpler visualization.

than fully simulating the differential equations [11, 34, 36, 41, 69]. An advantage of operator
learning compared to conventional networks is that the resulting approximation captures the
mapping between functions, rather than being limited to fixed-size vectors. This flexibility
enables a broader range of downstream tasks to be undertaken, especially in multi-query settings.
However, operator learning is limited to training solutions for an individual differential equation.
In particular, current operator learning methods do not benefit from observations of similar
systems and, once trained, do not generalize to new differential equations.

Problem Statement We consider the problem of encoding multiple ODEs and parametric
functions, for use in generalized prediction and model discovery. Specifically, we are given N
ODEs fj , and parametric functions ajs(t), with the goal of constructing a single neural network

to both identify the system and the operator from parametric functions ajs(−) to solutions. Con-

sider a family of differential equations indexed by j = 1, · · · , N , with the form du
dt = fj

(
u; ajs(t)

)
,

where the solutions are denoted by uj(−; ajs(−)). The solution operator Gj encodes the solu-

tion’s dependence on ajs and corresponds to the jth ODE. When utilizing standard operator
learning, it becomes necessary to train separate deep networks for each of the N equations.
That approach can quickly become impractical and inefficient, especially in the context of most
nonlinear scientific problems.

This work introduces a multimodal framework for simultaneously encoding multiple operators for
use in predicting states at query locations and discovering the governing model that represents
the equations of motion describing the data. For data prediction, a novel transformer-based
approach which we call multi-operator learning is employed. This entails training the network to
learn the solution operator across a set of distinct parametric dynamical systems. In other words,
the network learns a single operator Ḡ that represents the family of mappings

{
G1, · · · , GN

}
by leveraging shared characteristics among their features. This should also allow the network to
predict new operators that share commonalities with those from the family of operators used in
training, i.e. generalize to new operators. During testing or prediction, the governing equations
(i.e. the mathematical equations defining the dynamics of dependent variables for a given data
sequence) are not known, so the algorithm also produces a symbolic expression using a generative
model. In other words, the network learns a syntax for representing and articulating differential
equations. In this way, the approach yields a network capable of evaluating dependent variables
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at query locations over wide parameter sets and also “writes” the mathematical differential
equation associated to the data. This can be viewed as a large language model for differential
equations.

Main Contributions The Predicting Operators and Symbolic Expression (PROSE) frame-
work introduces a new approach to learning differential equations from data. The key compo-
nents of the architecture are illustrated are Figure 1. The main contributions and novelty are
summarized below.

• PROSE is the first method to generate both the governing system and an operator network
from multiple distinct ODEs. It is one of the first multi-operator learning approaches.

• PROSE incorporates a new modality through a fusion structure. Unlike text modality or
labels, the symbolic expression can accurately generate the system solution.

• The network architecture introduces new structural elements, including a fusion trans-
former that connects the data and embedded symbols.

• We demonstrate accuracy in generating valid ODEs (validity is of > 99.9% on in-distribution
tests and > 97.89% on out-of-distribution predictions), showing that PROSE can generate
new ODEs from data.

2 Related Works

PROSE is both a multi-operator learning and a model discovery approach. We summarize these
two distinct research areas in this section.

Operator Learning Operator learning [10, 11, 34, 36, 41, 69] studies neural network approxi-
mations to an operator G : U → V , where U and V are function spaces. This approach holds
significant relevance in various mathematical problems, including the solution of parametric
PDEs [5,29], control of dynamical systems [37,68], and multi-fidelity modeling [1,43,70]. Oper-
ator learning has gained substantial popularity within the mathematical and scientific machine
learning community, with applications in engineering domains [46]. Currently, methods for neu-
ral operators focus on constructing a single operator, e.g. learning the map from the initial
conditions or parameters of a physical system to the solution at a terminal time.

In [10, 11], the authors extended the universal approximation theory from function approxima-
tion [3, 13, 24] to operators. This work paved the way for the modern development of deep
neural operator learning (DON) as seen in [36,41,42]. Building upon the principles of [11], [69]
further expanded this approach by constructing operator networks that remain invariant to the
input/output function discretizations. The noisy operator learning and optimization is studied
in [36]. Another operator approach is the Fourier neural operators (FNO) [34, 62], which use
Fourier transformations and their inverses in approximating operators through kernel integral
approximations. Comparative analysis can be found in [42,69].

The multi-input-output network (MioNet) [23] extends operator learning to handle multiple in-
put/output parametric functions within the single operator framework. Recently, the In-Context
Operator Network (ICON) [66] was developed for multi-operator learning using data and equa-
tion labels (one-hot encoding) as prompts and a test label during inference. This was later
extended to include multimodal inputs by allowing captions which are embedded into the input
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sequence using a pre-trained language model [67]. Multi-operator learning has significant chal-
lenges, especially when encoding the operators or when addressing out-of-distribution problems
(i.e. those that extend beyond the training dataset).

Learning Governing Equations Learning mathematical models from observations of dy-
namical systems is an essential scientific task, resulting in the ability to analyze relations be-
tween variables and obtain a deeper understanding of the laws of nature. In the works [6, 55],
the authors introduced a symbolic regression approach for learning constitutive equations and
other physically relevant equations from time-series data. The SINDy algorithm, introduced
in [7], utilizes a dictionary of candidate features that often includes polynomials and trigono-
metric functions. They developed an iterative thresholding method to obtain a sparse model,
with the goal of achieving a parsimonious representation of the relationships among potential
model terms. SINDy has found applications in a wide range of problems and formulations, as
demonstrated in [8, 21, 25, 44, 49, 56]. Sparse optimization techniques for learning partial differ-
ential equations were developed in [50] for spatio-temporal data. This approach incorporates
differential operators into the dictionary, and the governing equation is trained using the LASSO
method. The ℓ1-based approaches offer statistical guarantees with respect to the error bounds
and equation recovery rates. These methods have been further refined and extended in subse-
quent works, including [39, 51–54]. In [12], the Physics-Informed Neural Network with Sparse
Regression (PINN-SR) method for discovering PDE models demonstrated that the equation
learning paradigm can be leveraged within the PINNs [27, 31, 48] framework to train models
from scarce data. The operator inference technique [47] approximates high-dimensional differ-
ential equations by first reducing the data-dimension to a small set of variables and training a
lower-dimensional ODE model using a least-squares fit over polynomial features. This is partic-
ularly advantageous when dealing with high-dimensional data and when the original differential
equations are inaccessible.

3 Methodology

The main ingredients of PROSE include symbol embedding, transformers, and multimodal in-
puts and outputs. We summarize these key elements in this section.

Transformers A transformer is an attention-driven mechanism that excels at capturing longer-
term dependencies in data [4, 14, 61]. The vanilla transformer uses a self-attention archi-
tecture [2, 64], enabling it to capture intricate relationships within lengthy time series data.
Specifically, let us denote the input time series data as X ∈ Rn×d, where n is the number
of time steps and d is the dimension of each element in the time series. Self-attention first
computes the projections: query Q = XWQ, key K = XWK and value V = XW V , where
WQ ∈ Rd×dk , WK ∈ Rd×dk , and W V ∈ Rd×dv . It then outputs the context C ∈ Rn×dv via

C = softmax
(
QKT
√
dk

)
V , where the softmax function is calculated over all entries of each row.

Self-attention discovers relationships among various elements within a time sequence. Predic-
tions often depend on multiple data sources, making it crucial to understand the interactions
and encode various time series data (see Section 3 for details). This self-attention idea has
driven the development of the cross-attention mechanism [33, 40, 60]. Given two input time
series data X,Y , cross-attention computes the query, key, and value as Q = XWQ, K = YWK ,
and V = YW V . In the case where Y represents the output of a decoder and X represents the
output of an encoder, the cross-attention, which directs its focus from X to Y , is commonly
referred to as encoder-decoder attention [61]. Encoder-decoder attention serves as a crucial com-

4



ponent within autoregressive models [20, 33, 61]. The autoregressive model operates by making
predictions for a time series iteratively, one step at a time. To achieve this, it utilizes the pre-
vious step’s generated output as additional input for the subsequent prediction. This approach
has demonstrated the capacity for mitigating accumulation errors [19], which makes it desirable
for longer-time predictions.

Multimodal Machine Learning Multimodal machine learning (MML) trains models using
data from heterogeneous sources [33, 40, 57, 59, 65]. Of major interest in this topic are meth-
ods for the fusion of data from multiple modalities, the exploration of their interplay, and the
development of corresponding models and algorithms. For instance, consider the field of visual-
language reasoning [32,57,59], where the utilization of visual content, such as images or videos,
with the semantics of language [59] associated with these visual elements, such as captions or de-
scriptions, leads to the development of models with richer information [32]. Another illustrative
example is that of AI robots, which use multimodal sensors, including cameras, radar systems,
and ultrasounds, to perceive their environment and make decisions [18, 38]. In mathematical
applications, researchers employ multiscale mathematical models [17], where each modality is es-
sentially characterized by varying levels of accuracy, to train a single model capable of predicting
multiscale differential equations effectively.

Operator Learning Structure The authors in [11] established a universal approximation
theory for continuous operators, denoted by G. Particularly, they showed that the neural oper-
ator Gθ(u)(t) =

∑K
k=1 bk(t)pk(û) can approximate G(u)(t) for t in the output function domain

(under certain conditions). Here p(·) and b(·) are neural networks which are called the branch
and trunk [41], and û is a discretized approximation to the input function u. In our appli-
cations, these input functions u correspond to ODE solutions sampled in the input intervals,
and the output functions are solutions over larger intervals. Based on the output-discretization
invariance property of the network [42, 69], the output of the operator network can be queried
at arbitrary timepoints, allowing predictions of the solution at any location.

+

−

2.6pow

2x2

cos

×

x11.5

Equation Encoding via Polish Notation Mathematical expressions
can be encoded as trees with operations and functions as nodes, and con-
stants and variables as leaves [22, 35]. For instance, the tree on the right
represents the expression cos(1.5x1) + x22 − 2.6.

Trees provide natural evaluation orders, eliminating the need to use paren-
theses or spaces. Under some additional restrictions (e.g. 1 + 2 + 3 should
be processed as 1 + (2 + 3), −1 × x is equivalent to −x), there is a one-to-one correspondence
between trees and mathematical expressions. For these reasons, trees provide an unambigu-
ous way of encoding equations. While there are existing tree2tree methods [16, 58], they are
usually slower than seq2seq methods at training and inference time. The preorder traversal
is a consistent way of mapping trees to sequences, and the resulting sequences are known as
Polish or Prefix notation, which is used in our equation encoder. For the above expression
cos(1.5x1) + x22 − 2.6, its Polish notation is given by the sequence [+ cos × 1.5 x1 − pow

x2 2 2.6]. Operations such as cos are treated as single words and are not further tokenized,
but they are trainable. In comparison to LaTeX representations of mathematical expressions,
Polish notations have shorter lengths, simpler syntax, and are often more consistent. Note that
in [22,35], binary trees of depth-3 are used to generate symbolic approximations directly for the
solution of a single differential equation.
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Figure 2: PROSE architecture and the workflow. Data Input and Symbol Input are em-
bedded into Data Feature and Symbol Feature respectively before encoding and fusion through
Feature Fusion. PROSE uses Cross-Attention to construct the operator (upper-right structure)
from Fused Data Feature, and evaluate it at Query Locations. PROSE generates symbolic
expressions in the lower-right portion autoregressively. Attention blocks are displayed in Ap-
pendix C.

Following [9, 15, 26, 30], to have a reasonable vocabulary size, floating point numbers are rep-
resented in their base-10 notations, each consisting of three components: sign, mantissa, and
exponent, which are treated as words with trainable embedding. For example, if the length of
the mantissa is chosen to be 3, then 2.6 = +1 · 260 · 10−2 is represented as [+ 260 E-2]. For
vector-valued functions, a dimension-separation token is used, i.e. f = (f1, f2) is represented as
“f1 | f2”. Similar to [9, 15,26,30], our vocabulary is also of order 104 words.

3.1 Model Overview

Our network uses hierarchical attention for feature processing and fusion, and two transformer
decoders for two downstream tasks. Figure 2 provides an overview of the architecture. The
PROSE architecture contains five main components trained end-to-end: data encoder, symbol
encoder, feature fusion, data decoder, and symbol decoder.

Encoders Two separate transformer encoders are used to obtain domain-specific features.
Given numerical data inputs and symbolic equation guesses (possibly empty or erroneous),
the data encoder and symbol encoder first separately perform feature aggregation using self-
attention. For a data input sequence u(t0), · · · ,u(tn), each element u(ti), together with its
time variable ti, goes through a linear layer to form the Data Feature (purple feature sequence
in Figure 2). PROSE then uses self-attention to further process the Data Feature, where the
time variables ti serve as the positional encoding.

The symbolic input (in Polish notation) is a standard word sequence, which can be directly
processed with self-attention layers. The word embedding (for operations, sign, mantissa, etc.)
is randomly initialized and trainable. Sinusoidal positional encoding [61] is used for the symbol
encoder.
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Feature Fusion Hierarchical attention (multi-stream to one-stream) is used in this model for
feature fusion. Separately-processed data and symbol features are concatenated into a feature
sequence, and further processed through self-attention layers where modality interaction occurs.
Following [28], a learnable modality-type embedding is added to the fused features, explicitly
signaling to the model which parts of the sequence are from which modality. Positional encoding
is not needed since it is already included in the individual encoders.

Data Decoder The data decoder constructs the operator via the cross-attention mechanism,
establishing a link between the input-encoded time sequence (fused data features) and the output
functions. The query locations, representing the independent variables of these output functions,
serve as the evaluation points. Importantly, these query locations operate independently of each
other, meaning that assessing the operator at one point, ti, does not impact the evaluation of
the operator at another point, tj . As a result, the time and space complexity scales linearly with
the number of query locations. In addition, since the evaluation points are independent of the
network generation, this resembles the philosophy of the branch and trunk nets, see Operator
Learning Structure in Section 3.

Symbol Decoder The symbol decoder is a standard encoder-decoder transformer, where the
fused symbol feature is the context for generation. The output equation is produced using an
autoregressive approach [19, 61]: it starts with the start-of-sentence token and proceeds itera-
tively, generating each term of the equation based on prior predictions, until it encounters the
end-of-sentence token for that specific equation. During evaluation time, greedy search (iterative
selection of symbol with maximum probability) is used for efficient symbol generation. While
beam search [63] can be used to improve the performance (e.g. percentage of valid expression
outputs), we empirically find that greedy search is sufficient for obtaining valid mathematical
expressions using the Polish notation formulation.

4 Experiments

We detail the numerical experiments and studies in this section. We created a dataset of 15
distinct multi-dimensional nonlinear ODEs. To verify the performance of the PROSE approach,
we conduct four case studies (Table 2) with different symbolic and data inputs (Table 1). Addi-
tionally, in the ablation study, we confirm that the inclusion of symbolic equation information
enhances the accuracy of the data prediction. Hyperparameters and experimental conditions
can be found in Appendix A.

Dataset The dataset is created from a dictionary of 15 distinct ODEs with varying dimensions:
twelve 3D systems, two 4D systems, and one 5D system. To generate samples, we uniformly
sample the coefficients of each term in the ODEs from the range [F − 0.1F, F + 0.1F ], where F
represents the value of interest. We refer to Appendix B for the details.

The goal is to accurately predict the solutions of ODEs at future timepoints only using obser-
vations of a few points along one trajectory. We do not assume knowledge of the governing
equation and thus the equations are also trained using the PROSE approach. The operator’s
input function is the values along the trajectories, discretized using a 64-point uniform mesh in
the interval [0, 2]. The target operator maps this input function to the ODE solution in the in-
terval [2, 6]. To assess PROSE’s performance under noisy conditions, we introduce 2% Gaussian
noise directly to the data samples.
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Table 1: Experiment settings. Data-noise: additive noise on data. Unknown coefficients:
replace the input equation coefficients with placeholders. Term deletion: omit a term in the
target equation with 15% chance. Term addition: add an erroneous term with 15% chance.
For the last test, all data inputs are padded to the maximum equation dimension. “Unknown
expressions” means that the coefficients are unknown and there are terms added and removed.

Experiments
(Expression Type)

Data-
Noise

Unknown
Coefficients

Term
Deletion

Term
Addition # ODEs

Known ✓ ✗ ✗ ✗ 12
Skeleton ✓ ✓ ✗ ✗ 12

Unknown (3D) ✓ ✓ ✓ ✓ 12
Unknown (Multi-D) ✓ ✓ ✓ ✓ 15

The training dataset contains 512K examples, where 20 initial conditions are sampled to generate
solution curves for each randomly generated system. The validation dataset contains 25.6K
examples, where 4 initial conditions are sampled for each ODE system. The testing dataset
contains 102,400 examples, where 4 initial conditions are sampled for each ODE system. The
training dataset and the testing dataset contain the same number of ODE systems. In terms of
practical applications, given test cases with unknown models, we are free to continue to augment
the training and validation sets with any ODE, thus the dataset can be made arbitrarily large.

To test the performance of the equation prediction, we corrupt the input equation by randomly
replacing, deleting, and adding terms. The terminologies and settings are found in Table 1.

Evaluation Metrics As PROSE predicts the operator and learns the equation, we present
three metrics to evaluate the model performance for solution and equation learning. For data
prediction, the relative L2 error is reported. For the expression outputs (symbolic sequences in
Polish notation), a decoding algorithm is used to transform the sequences into trees representing
functions. The percentage of outputs that can be transformed into valid mathematical expres-
sions is reported. Valid expressions (which approximate the velocity maps of ODE systems)
are evaluated at 50 points in Rd where each coordinate is uniformly sampled in [−5, 5] (i.e. a
Monte Carlo estimate) and the relative L2 error is reported. Here d is the dimension of the ODE
system. More specifically, suppose f(u) and f̂(u) are true and PROSE-generated ODE velocity

maps, we report the average relative L2 error computed at sampled points: ∥f−f̂∥2
∥f∥2 .

4.1 Results

We observe in Table 2 that all experiments, even those corrupted by noise or random terms,
achieve low relative prediction errors (< 5.7%). The data prediction error decreases as we relax
the conditions on the symbolic guesses, i.e. when the equations are “Unknown” 5.7% to “Known”
2.94%. Note in the case that the equations are “Known”, we expect that the equations behave
more like labels for the dataset. Moreover, the low expression error (< 2.1%) shows PROSE’s
ability to correct and predict accurate equations, even when erroneous ODE equations are
provided.

Data vs. Equation Prediction. We present the results of 10K testing samples in the
“Unknown (3D)” experiment in Table 3. We see that the data prediction (whose features are
influenced by the symbolic terms) is more accurate than using the learned governing equation
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Table 2: Performance of the model trained with different input expression types.
The two relative prediction errors are for interval [2, 4] and [2, 6], respectively.

Experiments
(Expression Type)

Relative
Prediction Errors (%)

Relative
Expression Error (%)

Percentage of Valid
Expressions (%)

Known 2.74, 2.94 0.00 100.00
Skeleton 3.39, 4.59 2.10 99.98

Unknown (3D) 3.43, 4.63 2.11 99.95
Unknown (Multi-D) 3.95, 5.66 1.88 99.94

directly. This shows the value of constructing a data prediction component rather than only
relying on the learned governing equation. However, as in [26], the predicted equations can
be further refined using optimization techniques, typically Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, where the predicted expression parameters can be used as a close initial
guess.

Table 3: Performance of data decoder output and symbol decoder output plus the
backward differentiation formula (BDF method).

Prediction Generation Method
Relative

Prediction Error (%)
Percentage of Valid

Expression Outputs (%)

Data decoder output 4.59
99.96

Symbol decoder output + BDF method 14.69

Out-of-distribution Case Study. We study our model’s ability to generalize beyond the
training distribution. Specifically, we test on datasets whose parameters are sampled from a
large interval [F −λF, F +λF ], where F represents a value of interest. We choose λ = 0.15, 0.20,
which are greater than the training setting λ = 0.10. The results are shown in Table 4. This
shows that the approach can be used for prediction even in the case where the parameter values
were not observed during training time.

Table 4: Out-of-distribution Testing Performance. Relative prediction errors are reported
for intervals [2, 4] and [2, 6], respectively.

Parameter Sample
Relative Range λ

Relative
Prediction Errors (%)

Relative
Expression Error (%)

Percentage of Valid
Expression Outputs (%)

0.10 3.43, 4.63 2.11 99.95
0.15 3.89, 5.71 3.21 99.44
0.20 4.94, 7.66 4.83 97.89

Ablation Study. Since the model is multimodal in both inputs and outputs, we investigate
the performance gains by using the equation embedding in the construction of the features. In
particular, we compare the performance of the full PROSE model with multimodal input/output
(as shown in Figure 2) and the PROSE model with only the data modality (i.e. no symbol
encoder/decoder or fusion structures).

The comparison tests are run using varying numbers of input sensors. For consistency, noise on
the data samples is not included in this test, although the symbolic inputs do have unknown
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Figure 3: Comparing the PROSE model with multimodal input/output and the
PROSE model with only the data modality. The models are trained with different data
input lengths for 60 epochs. The relative prediction errors are computed on the same output
grid.

Figure 4: Sampled attention maps of feature fusion layers. For each map, non-zero values
in the upper left and bottom right corner represent in-modality interactions and non-zero values
in the upper right and bottom left blocks represent cross-modality interactions. Other maps are
presented in Appendix C.

coefficients and terms added/removed. As shown in Figure 3, the PROSE model with mul-
timodal input/output consistently outperforms the data-modality-only model, demonstrating
performance gains through equation embedding. Notably, we do not observe any degradation in
the full PROSE model’s performance when reducing the number of input sensors, whereas the
data-modality-only model’s performance declines as sensors are removed from the input func-
tion. This showcases the value of the symbol modality in supplying additional information for
enhancing data prediction.

In Figure 4, we plot 4 (out of the 64 = 8 layers × 8 heads) attention maps corresponding to the
Feature Fusion layers on one four-wing attractor example (see Appendix B). This uses the full
PROSE model with multimodal input/output and with a data input grid size 32. The non-zero
values (which appear as the yellow/green pixels) indicate the connections between the features.
More importantly, the non-zero values in the bottom-left and upper-right blocks indicate a non-
trivial cross-modality interaction. Together with the improved relative error shown in Figure 3,
we see the overall improvements using our multimodal framework.

Output Example. In Figure 5, we display a typical PROSE output from the “Unknown (3D)”
experiment in Table 2. Each curve is one trajectory of one state variable ui(t) for i = 1, 2, 3.
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The target solution curves (with noise) are the dashed lines (only up to t = 2 is seen during
testing) and the predicted solution curves are the solid lines. We display the target equation
and the generated equation, which is exact with respect to the terms generated and accurate up
to two digits (noting that the mantissa has length three).

Target:


u′1 = −0.327u1 − u2 − u3 − 0.25u22
u′2 = −0.327u2 − u3 − u1 − 0.25u23
u′3 = −0.327u3 − u1 − u2 − 0.25u21

Generated:


u′1 = −0.32u1 − u2 − u3 − 0.25u22
u′2 = −0.32u2 − u3 − u1 − 0.25u23
u′3 = −0.32u3 − u1 − u2 − 0.25u21

Relative Prediction Error: 3.29%
Relative Expression Error: 0.36%

Figure 5: An example of PROSE’s outputs. Target solution curves are dashed lines and
predicted solution curves are solid lines. The input is the data up to t = 2. The numbers in the
legend refer to the coordinate of the state variable ui(t) for i = 1, 2, 3. The target and PROSE
generated equations are displayed.

5 Discussion

The PROSE network is developed for model and multi-operator discovery. The network archi-
tecture utilizes hierarchical transformers to incorporate the data and embedded symbols in a
symbiotic way. We show that the learned symbolic expression helps reduce the prediction error
and provides further insights into the dataset. Experiments show that the generated symbolic
expressions are mathematical equations with validity of > 99.9% on in-distribution tests and
> 97.89% on out-of-distribution tests, and with numerical error of about 2% (in terms of rel-
ative L2 norm). This shows that the network is able to generate ODE models that correctly
represent the dataset and does so by incorporating information from other similar ODEs.

The symbolic expression and data fusion yield a scientifically relevant multimodal formulation.
In particular, the expressions provide alternative representation for the dataset and its predicted
values, enabling the extraction of more refined information such as conserved quantities, station-
ary points, bifurcation regimes, hidden symmetries, and more. Additionally, since the symbolic
expressions are valid functions, they can be used for evaluation and thus lead to alternative
predictive algorithms (i.e. simulating the ODE). One future direction is the construction of a
PROSE approach for nonlinear partial differential equations with spatio-temporal queries.
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[18] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser,
Fabian Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection
and semantic segmentation for autonomous driving: Datasets, methods, and challenges.
IEEE Transactions on Intelligent Transportation Systems, 22(3):1341–1360, 2020.

[19] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences.
Minds and Machines, 30:681–694, 2020.

[20] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.
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A Experiment Setup

Training A standard cross-entropy loss Ls is used for the symbolic outputs. While it is pos-
sible to simplify and standardize equations with SymPy [45], [15] showed that for their symbolic
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regression task, such simplification decreases training loss but not testing loss, thus we did not
include it in our experiments.

Relative squared error Ld is used for the data predictions. In comparison to the standard
mean squared error, the relative squared error makes the learning process more uniform across
different types of ODE systems, as solution curves of different systems may have very different
value ranges.

The data loss Ld and symbol loss Ls are combined to form the final loss function L = αLd+βLs,
where the weights α, β are hyperparameters. Unless otherwise specified, the models are trained
using the AdamW optimizer for 80 epochs where each epoch is 2,000 steps. On 2 NVIDIA
GeForce RTX 4090 GPUs with 24 GB memory each, the training takes about 19 hours.

Hyperparameters The model hyperparameters are summarized in Table 5, and the optimizer
hyperparameters are summarized in Table 6.

Table 5: Model hyperparameters. FFN means feedforward network.

Hidden dimension for attention 512 Hidden dimension for FFNs 2048
Number of attention heads 8 Fusion attention layers 8
Data encoder attention layers 2 Data decoder attention layers 8
Symbol encoder attention layers 4 Symbol decoder attention layers 8

Table 6: Optimizer hyperparameters.

Learning rate 10−4 Weight decay 10−4

Scheduler Inverse square root Warmup steps 10% of total steps
Batch size per GPU 256 Gradient norm clip 1.0
Data loss weight α 6.0 Symbol loss weight β 1.0

B Chaotic and MultiScale ODE Dataset

In this section, we provide the details of all ODE systems. We also include the parameters of
interest.

Thomas’ cyclically symmetric attractor
u′1 = sin(u2) − bu1

u′2 = sin(u3) − bu2

u′3 = sin(u1) − bu3

b = 0.17

Lorenz 3D system 
u′1 = σ(u2 − u1)

u′2 = u1(ρ− u3) − u2

u′3 = u1u2 − βu3


σ = 10

β = 8/3

ρ = 28
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Aizawa attractor


u′1 = (u3 − b)u1 − du2

u′2 = du1 + (u3 − b)u2

u′3 = c + au3 − u33/3 − u21 + fu3u
3
1



a = 0.95

b = 0.7

c = 0.6

d = 3.5

e = 0.25

f = 0.1

Chen-Lee attractor
u′1 = au1 − u2u3

u′2 = −10u2 + u1u3

u′3 = du3 + u1u2/3

{
a = 5

d = −0.38

Dadras attractor


u′1 = u2/2 − au1 + bu2u3

u′2 = cu2 − u1u3/2 + u3/2

u′3 = du1u2 − eu3



a = 1.25

b = 1.15

c = 0.75

d = 0.8

e = 4

Rössler attractor 
u′1 = −u2 − u3

u′2 = u1 + au2

u′3 = b + u3(u1 − c)


a = 0.1

b = 0.1

c = 14

Halvorsen attractor
u′1 = au1 − u2 − u3 − u22/4

u′2 = au2 − u3 − u1 − u23/4

u′3 = au3 − u1 − u2 − u21/4

a = −0.35

Rabinovich–Fabrikant equation
u′1 = u2(u3 − 1 + u21) + γu1

u′2 = u1(3u3 + 1 − u21) + γu2

u′3 = −2u3(α + u1u2)

{
α = 0.98

γ = 0.1

Sprott B attractor 
u′1 = au2u3

u′2 = u1 − bu2

u′3 = c− u1u2


a = 0.4

b = 1.2

c = 1
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Sprott-Linz F attractor 
u′1 = u2 + u3

u′2 = −u1 + au2

u′3 = u21 − u3

a = 0.5

Four-wing chaotic attractor
u′1 = au1 + u2u3

u′2 = bu1 + cu2 − u1u3

u′3 = −u3 − u1u2


a = 0.2

b = 0.01

c = −0.4

Duffing equation


u′1 = 1

u′2 = u3

u′3 = −δu3 − αu2 − βu32 + γ cos(ωu1)



α = 1

β = 5

γ = 8

δ = 0.02

ω = 0.5

Lorenz 96 system{
u′i = (ui+1 − ui−2)ui−1 − ui + F, i = 1, . . . , N

u−1 = uN−1, u0 = uN , uN+1 = u0
F = 8

Double Pendulum
u′1 = u3

u′2 = u4

u′3 =
−3g/l sin(u1)−g/l sin(u1−2u2)−2 sin(u1−u2)(u2

4+u2
3 cos(u1−u2))

3−cos(2(u1−u2))

u′4 =
sin(u1−u2)(4u2

3+4g/l cos(u1)+u2
4 cos(u1−u2))

3−cos(2(u1−u2))

{
g = 9.81

l = 1

The initial conditions for the ODE systems are sampled uniformly from the hypercube [−2, 2]d

where d is the dimension of the system. The ODE systems are solved on the interval [0, 6]
using BDF method with absolute tolerance 10−6 and relative tolerance 10−5. Unless otherwise
specified, the data part contains function values at 192 uniform grid points in the time interval
[0, 6], where the first 64 points in the interval [0, 2] are used as data input points, and the last
128 points in the interval [2, 6] are used as data labels. 2% Gaussian observation noise is added
to the data samples. More precisely, if u is the underlying true equation values, the observed
value is ũ = u+ση where η ∼ N (0, I) and σ is chosen such that the signal-to-noise ratio σ||η||2

||u||2
is 2%.

C Visualizatons

Figure 6 shows the training and validation loss curves for experiments “Unknown (3D)” and
“Skeleton” (described in Table 2). Figure 7 contains the attention architecture details. Figure 8
shows the full attention maps for one four-wing attractor example.
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Figure 6: Example training and validation loss curves.
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Figure 7: Attention block details. Self-attention is a special case of cross-attention with the
same source.
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Figure 8: Attention maps of 8 Feature Fusion layers for a four-wing attractor exam-
ple.
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