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1. Abstract

In this paper, we present a robust exploration of the Gologanu-Leblond-Devaux
(GLD) model, an advanced iteration of Gurson’s model, designed to predict ductile
fractures in porous metals. Going beyond the limits of the original Gurson model,
the GLD model accounts for cavity shape effects and nonlocal strain localization,
marking a significant leap in fracture mechanics. We also present a comprehensive
exposition of the GLD model and its nonlocal extension, establishing their compati-
bility with the concept of generalized standard materials. Notably, we emphasize the
uniqueness of solutions in the numerical implementation, underlining the imperative
need for a meticulously devised mixed implicit/explicit algorithm. Furthermore, we
set out to validate the GLD model through rigorous comparisons of our numerical
simulations with experimental data. Employing a damage delocalization approach
rooted in the natural logarithm of porosity, our study provides compelling evidence
of the model’s performance. This approach mitigates issues observed with the orig-
inal porosity rate, preventing excessive smoothing of porosity and maintaining the
fidelity of stress-strain curves. Additionally, we gave a profound theoretical elucida-
tion of this phenomenon via Fourier’s analysis of porosity rate. Through this work,
we not only enhance our understanding of ductile fracture behavior but also establish
a robust numerical framework for its predictive modeling. The GLD model emerges
as a powerful tool for the accurate analysis and prediction of fracture phenomena in
porous materials, further advancing the field of materials science and engineering.
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2. Introduction

The famous Gurson’s model [5] , in the cases involving the behaviors of ductile
porous metals, has already demonstrated its ability to predict several fracture prob-
lems involving ductile cracking. When incorporated in a finite element code, it has
predicted the cup cone fracture phenomena of a round axisymmetric specimen ( [8]
and [13] .) It also has been applied to a wide range of materials and engineering
problems over the years. Here are some examples of problems and materials where
the Gurson model has been used to predict ductile fracture:

• Metallic Alloys: The Gurson model has been applied to various metallic ma-
terials, such as steel and aluminum alloys, to predict the initiation and propa-
gation of ductile fractures in these materials under various loading conditions.

• Welded Joints: In welded structures, the presence of weld defects and inclu-
sions can lead to ductile fracture. The Gurson model has been used to assess
the integrity of welded joints and predict their fracture behavior.

• Sheet Metal Forming: During sheet metal forming processes, materials can
undergo ductile fracture. The Gurson model has been employed to predict
the onset and propagation of fractures in sheet metal components.

• Automotive Crashworthiness: When designing cars for crashworthiness, en-
gineers need to understand how materials will deform and fracture during a
collision. The Gurson model has been applied to analyze the ductile fracture
behavior of automotive materials.

• Pipeline Integrity: In the oil and gas industry, pipelines are subject to high-
pressure environments. The Gurson model has been applied to assess the
ductile fracture resistance of pipeline materials, especially when dealing with
defects or corrosion.

• Fracture in Polymers and Ceramics: While the original Gurson model was
developed for metals, modified versions of the model have been extended to
predict ductile fracture in polymers and ceramics.

• Composite Materials: The Gurson model has been adapted to predict the
behavior of composite materials with voids, delaminations, or fiber-matrix
debonding, aiding in the design of composite structures.

• Pipeline Integrity: In the oil and gas industry, pipelines are subject to high-
pressure environments. The Gurson model has been applied to assess the
ductile fracture resistance of pipeline materials, especially when dealing with
defects or corrosion.

A drawback of this model is that it assumes that the existing cavities in the
materials are spherical, neglecting hereby the effects of the cavities’ shape on the
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general mechanical behavior of the material. This is a good approximation when
the triaxiality (ratio of the mean stress with respect to the equivalent von Mises
stress ) is very high; indeed, the mean stress is then higher than the mean deviatoric
stress such that the cavity has the tendency to grow in the same way in all of the
directions. However, when the triaxiality is small the effects of the cavities’ shape
become important and the Gurson model predicts worse outcomes. For example, in
a uniaxial tensile test, the triaxiality is 1/3, and Gurson’s model predicts a contin-
uous increase of the porosity leading to coalescence of cavities and eventual failure.

In reality, however, the cavities quickly become cylindrical under the effect of
the tensile stress exerted, and the porosity then ceases to grow in the manner one
might expect. This surprising phenomenon challenges the predictions of the Gurson
model, which assumes that porosity growth is primarily governed by the average
stress, typically positive in tensile loading scenarios. Instead, the dominant factor
influencing cavity growth in this context is the lateral constraint, which interestingly
approaches zero as the cavities transform into more cylindrical shapes.

Another intriguing scenario where the shape effects of cavities play a crucial role
is when these voids take the form of cracks, often manifesting as very flattened
voids. These cracks can be generated, for instance, through the rupture of a brittle
phase within the material. In such cases, the geometrical characteristics of these
cracks, their orientation, and their interaction with the surrounding material become
critical factors that significantly influence the material’s mechanical behavior and
failure mechanisms, see for instance Li and Huang [21], Monchiet et al. [25] , Wen
et al. [22] , Li and Steinmann [28]. Understanding and modeling these intricate
shape effects of cavities and cracks is of paramount importance in advancing our
comprehension of material behavior under various loading conditions and enhancing
our ability to engineer materials with tailored properties.

Gologanu et al. [19] made a significant contribution to the field of material
science and structural mechanics by extending Gurson’s pioneering model to incor-
porate the influence of cavity shape characteristics. While Gurson’s model laid the
foundation for understanding the behavior of materials with voids or cavities, Golo-
ganu et al. took this a step further. Their groundbreaking work recognized that
real-world cavities often deviate from idealized spherical shapes and, as a result,
introduced a novel parameter known as the shape factor. This shape factor is a
crucial addition to the model, as it accounts for the non-spherical nature of cavities,
enabling a more accurate representation of the complex void geometries found in
materials.

The concept of the shape factor introduced by Gologanu et al. is particularly
valuable in cases where voids exhibit axisymmetric ellipsoidal shapes. By consider-
ing the ratio of the axes of these ellipsoids, the shape factor allows engineers and
researchers to better capture the intricate details of cavities within materials. This
enhancement not only improves the accuracy of the model but also enhances our
understanding of how cavity shape influences the overall mechanical behavior of
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materials.

Also, constitutive models involving softening all predict unlimited localization of
strain and damage. This feature generates such undesired phenomena as absence
of energy dissipation during crack propagation and mesh size sensitivity in finite
element computations. Gurson [5] ’s famous model for porous ductile materials,
which was derived from approximate limit-analysis of some elementary voided cell
in a plastic solid, is no exception. In this model, unlimited localization arises from
the softening because of the gradual increase of the porosity.

Several proposals have been made to solve this problem. One of these, attributed
to Leblond et al. [16] but based on a previous suggestion made by Pijaudier-Cabot
and Bazant et al. [9] in damage of concrete, comprises adopting a nonlocal evo-
lution equation for the porosity involving some spatial convolution of some “local
porosity rate” within an otherwise unmodified Gurson model. This simple proposal
has attracted the attention of several authors ( Tvergaard and Needleman [18],
Tvergaard and Needleman [20], Enakoutsa et al. [23, 24] ). It was notably checked
by Tvergaard and Needleman [18] that it allows to eliminate mesh size effects.
Also, Enakoutsa et al. [23, 24] showed that with a minor modification, it leads to
an excellent numerical reproduction of the results of typical experiments of ductile
rupture.

One shortcoming of Leblond et al. [16]’s proposal, however, is that it is purely
heuristic and lacks any serious theoretical justification. This was the motivation
for a later, more elaborate and physically based proposal of Gologanu et al. [19].
These authors derived an improved variant of Gurson’s model (the GLPD model1)
through some refinement of this author’s original homogenization procedure based
on Mandel [1]’s and Hill [2]’s classical conditions of homogeneous boundary strain
rate. In the approach of Gologanu et al. [19], the boundary velocity is assumed to
be a quadratic, rather than linear, function of the coordinates. The physical idea is
to account in this way for the possibility of quick variations of the macroscopic strain
rate, such as encountered during strain localization, over short distances of the order
of the size of the elementary cell considered. The output of the homogenization
procedure is a model of “micromorphic” nature involving the second gradient of
the macroscopic velocity and generalized macroscopic stresses of “moment” type
(homogeneous to the product of a stress and a distance), together with some “mi-
crostructural distance” connected to the mean spacing between neighboring voids.
Practical applications from a theoretical and experimental stand-point have found
this model very useful, see for instance Enakoutsa [27, 29]

The objective of this paper is to present the numerical implementations of this
GLD model and its nonlocal extension into a finite element code and assessment
the robustness of this numerical implementation by comparing the numerical pre-

1GLPD: Gologanu-Leblond-Perrin-Devaux.
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dictions of the model with available experimental data for typical ductile fracture
test specimens. The rest of the paper is organized as follows.

• In Section 3, we initially provide a concise overview of GLD original model,
as well as the nonlocal extension introduced by Leblond et al. [16].

• Following this, in anticipation of delving into its numerical application, Section
3 examines its connection to the category of generalized standard materials,
a concept delineated and explored by Halphen and Nguyen [3]. It is demon-
strated that both the initial model and its altered iterations define such a
material, assuming that porosity remains constant, the orientation, and the
shape of the cavity are kept constant.

• Section 4 proceeds to address the numerical implementation of the GLD
model. As per the property established in Section 3, it is affirmed that the
problem of projecting the elastically computed stress tensor onto the yield
locus (plastic correction of the elastic predictor) has a unique solution. This
is valid when the equations concerning this problem are derived using implicit
time discretization for the plastic strain and hardening parameter components,
but explicit time discretization is employed for the porosity, the orientation,
and the shape factor components. This serves as a compelling rationale for
embracing a ”mixed” implicit/explicit algorithm

• Following this, in Section 5, we conduct a comparison between the results
obtained from numerical simulations illustrating the fracture behavior of a
standard axisymmetric pre-cracked specimen and the experimental observa-
tions reported by Rousselier and Mudry [7]. All the simulations employ a
damage delocalization approach based on the natural logarithm of porosity.
This decision is motivated by the observation that using the original porosity
rate leads to excessive smoothing of the porosity, resulting in a sharp decline in
the stress-strain curves after the onset of coalescence, as noted in Enakoutsa
[23] and Enakoutsa et al. [24]. In this same section, we provide a theoretical
explanation of this excessive smoothing of the porosity based on some Fourier
analysis of the porosity rate.
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3. Theoretical equations of the model

3.1. Overview of the model

The constitutive equations of the model was derived by Gologanu et al. [14, 17].
The work of Gologanu et al. is characterized by their endeavor to incorporate void
shape effects into ”homogenized” models for porous plastic metals. They achieve
this by extending Gurson’s [5] classical limit-analysis of a hollow sphere to encom-
pass an axisymmetric prolate or oblate spheroid containing a spheroidal confocal
cavity, akin to their approach in previous works. While their primary focus lies on
axisymmetric loadings, they also present some generalization of the model to arbi-
trary loadings towards the end of their study.

In their work, Gologanu et al. [14, 17] introduce the family of axisymmetric
velocity fields initially proposed by Lee and Mear [12]. These fields are supplemented
to account for the finite nature of the representative volume, in contrast to the
infinite medium considered by Lee and Mear [12]. Gologanu et al. [14, 17] then
describe the derivation of the exact macroscopic yield locus or an approximate one
from these velocity fields. By utilizing only two trial velocity fields, as opposed to a
larger number, they simplify the process of obtaining an analytic, approximate yield
function. This approach enables them to calculate overall plastic dissipation based
on the two independent components of the macroscopic strain rate, leading to the
derivation of an approximate criterion that reproduces well-known exact or widely
accepted results.

3.2. Constitutive equations of the model

The voids are assumed ellipsoidal axisymmetric and aligned, of axis e3
2. The

porosity f is defined as the ratio of the voids to the total volume of matter and
voids. The shape factor of the cavity is defined as the logarithm of the ratio of the
axes of a cavity according to e3 and a perpendicular direction.

3.2.1. Plasticity criterion, evolution equations of the internal parameters

The yield criterion, which depends on the porosity f , the parameter of the
shape factor S and a strain hardening parameter σ representing some ”average of
the elastic limit of the sound matrix,” is written as

Φ(σ, f, S, σ) ≡ C

σ2 ∥σ
′ + ησhX∥2 + 2q(g + 1)(g + f)cosh(K

σh
σ
)

− (g + 1)2 − q2(g + f)2 = 0.
(1)

In this expression, σ′ represents the deviatoric stress σ, X the tensor defined as

X =
1

3
(−e1 ⊗ e1 − e2 ⊗ e2 + 2e3 ⊗ e3) (2)

2the voids’ principal basis being (e1, e2, e3)
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(where we recall that the vector e3 is parallel to the axes of the voids), and || ||
the von Mises norm:

∥T ∥ ≡
(
3

2
T : T

)1/2

=

(
3

2
T ijT ij

)1/2

; (3)

we shall adopt in the rest of this note the simplified notation

σeq ≡ ∥σ′ + ησhX∥ (4)

(note that with this definition , σeq ̸= ||σ′|| as it is customary).

The parameters C, η,K, g depend uniquely on f and S; their expressions are
given in Gologanu et al. [19] but are not necessary here. In addition, the stress σh
is

σh = α2(σ11 + σ22) + (1− 2α2)σ33 (5)

where here also, α2 is a parameter which depends uniquely on f and S whose
expressions are given in Gologanu et al. [19] . Finally, q is the ”Tvergaard’s param-
eter [6] ” whose value depends here of the shape of the cavities given in Gologanu
et al. [19] .

The law of evolution of porosity is classically deduced from the approximated
incompressibility (the elasticity being neglected) of the sound matrix:

ḟ = 3(1− f)ε̇pm (6)

where ε̇pm = 1
3 tr(ε̇

p) represents the mean part of the strain rate ε̇p. The law of the
evolution of the shape factor of cavities is as follows

Ṡ =
3

2
hε̇p

′

33 + 3

(
1− 3α1

f
+ 3α2 − 1

)
ε̇pm (7)

where ε̇p
′
represents the deviatoric strain rate of the plastic deformation ε̇p,

ε̇p = 1
3 trε̇

p its mean part as above and α1 a parameter depending here also on the
parameters f and S and whose precise expression is given in Gologanu et al. [19].
Finally, h is a parameter depending, in addition to f and S, on the triaxiality T
defined by

T =
σm
∥σ′∥ (8)
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where σm = 1
3 trσ is the mean part of the stress tensor. The parameter σ

is given as a function of a strain hardening parameter ε representing roughly the
average equivalent deformation of the sound matrix by the formula

σ = σ(ε) (9)

where σ(ε represents the function given the Cauchy stress as a function of the
logarithmic deformation in a simple tensile test on the sound material. The evolu-
tion equation of ε is the same as the one proposed by Gurson

(1− f)σ ε̇ = σ : ε̇p. (10)

Finally, the evolution equation of x3 parallel to the axis of the voids is given by

ė3 = Ω · e3 (11)

where Ω is the ”rotation rate of the matter” (for example the antisymmetric
part of the velocity gradient.) This equation is based on the heuristic hypothesis
that the voids and the matter has the same rotation rate.

3.2.2. Flow rule associated to the yield criterion by normality

As usual, we assume the partition of the total deformation rate ε̇ between the
elastic deformation rate ε̇e and the plastic formation rate ε̇p. The first rate is given
by the usual elasticity law and the second by

ε̇p = λ̇
∂Φ

∂σ
, λ̇ ≥ 0 (12)

where Φ represents (remember) the yield function and the plastic multiplier λ̇. It is
now a question of explaining this equation. To do this, let’s start by evaluating
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∂σ2
eq

∂σij
=

∂

∂σij

[
3

2
(σ′

kl + ησhXkl) (σ
′
kl + ησhXkl)

]
= 3 (σ′

kl + ησhXkl)

(
δikδjl −

1

3
δijδkl + η

∂σh
∂σij

Xkl

)
= 3

[
σ′
ij + ησhXij + (σ′

kl + ησhXkl) η
∂σh
∂σij

Xkl

]
= 3

[
σ′
ij + ησhXij +

2

3
η
∂σh
∂σij

(
3

2
σ′ : X + ησh

)]
.

As a result, the Greek indices taking only values 1 and 2 and taking into account

the obvious relationships ∂σh

/
∂σαβ = α2δαβ , ∂σh

/
∂σα3 = 0, ∂σh

/
∂σ33 =

1− 2α2, we get

∂Φ

∂σαβ
=
3C

σ2

[
σ′
αβ + ησhXαβ +

2

3
ηα2δαβ

(
3

2
σ′ : X + ησh

)]
+ 2q(g + 1)(g + f)

K

σ
α2δαβsinh

(
K
σh
σ

)
;

∂Φ

∂σα3
=
3C

σ2 σα3;

∂Φ

∂σ33
=
3C

σ2

[
σ′
33 + ησhX33 +

2

3
η(1− 2α2)

(
3

2
σ′ : X + ησh

)]
+ 2q(g + 1)(g + f)

K

σ
(1− 2α2)sinh

(
K
σh
σ

)
.

(13)

As a consequence

ε̇pm =
1

3
(ε̇pαα + ε̇p33) =

λ̇

3

(
∂Φ

∂σαα
+

∂Φ

∂σ33

)
=
λ̇

3

[
2Cη

σ2

(
3

2
σ′ : X + ησh

)
+ 2q(g + 1)(g + f)

K

σ
sinh

(
K
σh
σ

)]
.

(14)
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In addition, combining Eqs. ( 12, 13, 14 ), we see that

ε̇pαβ =λ̇ · 3C
σ2

(
σ′
αβ + ησhXαβ

)
+ α2δαβ · 3ε̇pm;

ε̇pα3 =λ̇ · 3C
σ2 σα3;

ε̇p33 =λ̇ · 3C
σ2 (σ′

33 + ησhX33) + (1− 2α2) · 3ε̇pm.

(15)

Let us assume that

ε̇pd =ε̇p − 3α2ε̇
p
meα ⊗ eα − 3(1− 2α2)ε̇

p
me3 ⊗ e3 (16)

(It will be observed that ε̇pd is a pure deviator, that is to say that trε̇pd = 0 ).
From Eqs. ( 15, 16 )

ε̇pd =λ̇
3C

σ2 (σ′ + ησhX) .

Thus, the tensors ε̇pd and σ′ + ησhX are positively collinear. We immediately
deduce that

ε̇pd =
3

2

ε̇pd
σeq

(σ′ + ησhX) . (17)

where

ε̇pd =

(
2

3
ε̇pd : ε̇pd

)1/2

(18)

(ε̇pd worths the von Mises’s norm of ε̇pd) and σeq is given by Eq.(4). In addition,
we immediately obtain

λ̇ =
1

2C

σ2ε̇pd
σeq

;
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reporting this result in Eq.(14), we get

ε̇pm
ε̇pd

=
1

6C

σ2

σeq

[
2Cη

σ2

(
3

2
σ′ : X + ησh

)
+ 2q(g + 1)(g + f)

K

σ
sinh

(
K
σh
σ

)]
or

ε̇pm
ε̇pd

=
η

3σeq

(
3

2
σ′ : X + ησh

)
+ q(g + 1)(g + f)

K

3C

σ

σeq
sinh

(
K
σh
σ

)
.

(19)

The equations Eqs. ( 17, 19 ) (where ε̇pd is defined by Eq.(16) and ε̇pd by Eq.(18)
) consists of the plastic flow rule of the material.

3.2.3. Damage delocalization

In certain applications, especially those involving high stress and/or strain gra-
dients, the porosity evolution equation undergoes a process of delocalization. In
this context, we define local rates of porosity increase due to the voids growth. The
local rates are determined by formula Eq.(6). The true non-local growth rate is
then computed using the convolution formula presented below:

f(x) =
1

C(x)

∫
Ω

ḟl(y)χ(x− y)dΩy ,

C(x) =
∫
Ω
χ(x− y)dΩy .

(20)

Ω denotes here the studied domain and χ a weighting function, which we take the
Gaussian of in practice:

χ(z) = exp

(
−|z|2

l2

)
, (21)

where l serves as a characteristic length, approximately equal to the spacing between
cavities, and it plays a role similar to the minimum mesh size in the Rousselier model.
It is worth noting that this delocalization study has been extensively explored by
Enakoutsa and colleagues ( [24], [23] , and [26] ) and in many other works including
the pionnering work of Pijaudier-Cabot and Bazant [10] , but in the context of
modelling of concrete materials.
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4. Class of generalized standard materials and GLD model

Halphen and Nguyen [3]; Son [4] defined, within the framework of linearized
theory, the class of ”Generalized Standard Materials.” (GSM) For these materials,
the internal parameters collectively follow an extended normality law. Under these
conditions, the local projection problem has a unique solution, provided that the
evolution equations of the internal parameters are discretized in time with an im-
plicit scheme. The GSM framework is largely explained in Appendix A of this paper.

Drawing inspiration from Enakoutsa [23], it can be shown that the model pre-
sented here defines a generalized standard material, provided that: (i) the framework
considered is the linear theory; (ii) the porosity, orientation, and shape of the cavity
are kept constant. Some elements of this proof are given in Appendix B

In practice, these restrictions are not realistic for problems involving ductile frac-
ture which entail significant deformations, porosity growth, and cavity deformations.
However, still following Enakoutsa [23], it can be observed that:

• if, in the hypoelasticity law, the additional terms due to the objective deriva-
tive of σ are discretized in time using an explicit scheme;

• if, in the criterion and flow rule, the porosity f and the shape factor S con-
sidered are those from the previous time step; then the equations of the local
projection problem are exactly the same as in the linearized framework with
fixed porosity f and shape factor S: thus, the model behaves as if the material
were a generalized standard material.

Therefore, the existence and uniqueness of the solution to the local projection prob-
lem are ensured, provided that (i) the evolution equations of εp and ϵ̄ are discretized
in time using an implicit scheme; (ii) the additional terms due to the objective deriva-
tive of σ are discretized in time using an explicit scheme; (iii) the values of porosity
f and the quadratic form S used in the criterion and the flow rule are those from
the previous time step.
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5. Numerical implementation

5.1. Projection onto the yield surface

The essential problem of any numerical implementation of an elastic plastic
model is that of the projection onto the yield surface. This problem is as follows:
from the results of a “ large elastic-plastic iteration” (elastic resolution over the
whole structure with initial plastic deformations given), which provides the incre-
ment of total deformations ∇ε̇ between the time t and t +∇t of the calculation,
find the decomposition of ε̇ into elastic ε̇e and plastic ε̇p (using the yield criterion
at t+∇t and the flow rule (between t and t+∇t) ) and the stress at t+∇t.

In the subsequent, the quantities without indices are taken at the moment t+∇t
while those with an index “0” will be taken at the time t (it is therefore a question
of known quantities.)

Let us begin, as in the case of the original Gurson’s criterion, by defining a
parametrization of the original Gurson’s criterion of the criterion by means of an
angle ϕ, ensuring automatic satisfaction. The flow rules will then provide an equa-
tion on ϕ which can be resolved numerically.

To find this parametrization, let us look for the maximum value of C
σ2
eq

σ2 corre-

sponding to σh = 0 =⇒ cosh

(
K
σh
σ

)
= 1; according to Eq. ( 1 )

C
σ2
eq

σ2 = (g + 1)2 + q2(g + f)2 − 2q(g + 1)(g + f) = [g + 1− q(g + f)]2.

It is therefore natural to assume that

C
σ2
eq

σ2 = [g + 1− q(g + f)]2cos2φ

⇒σeq =
σ√
C
[g + 1− q(g + f)]cosφ

(22)

where φ is some angle with positive cosine. We get from Eq.( 1 )
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2q(g + 1)(g + f)cosh
(
K
σh
σ

)
= (g + 1)2 + q2(g + f)2 − [g + 1− q(g + f)]2cos2φ

= (g + 1)2 + q2(g + f)2 − [g + 1− q(g + f)]2

+ [g + 1− q(g + f)]2sin2φ

= 2q(g + 1)(g + f) + [g + 1− q(g + f)]2sin2φ

⇒ cosh
(
K
σh
σ

)
= 1 +

[g + 1− q(g + f)]2

2q(g + 1)(g + f)
sin2φ

⇒ σh =
σ

K
sgn(φ)cosh−1

(
1 +

[g + 1− q(g + f)]2

2q(g + 1)(g + f)
sin2φ

)
(23)

where we introduce a ”sgn(ϕ)” (sign of ϕ) to allow σh to take all possible values,
both negative and positive. The Eqs. ( 22, 23 ) is the parametrization of the
criterion we are looking for. The interval of variation of the angle ϕ can be taken

equal to

[
− π

2
,+

π

2

]
: it allows cos(ϕ) to take all positive or zero values, as well as

sgn(ϕ) to take values ±1. Before writing the flow rule in a discretized form, let us
begin by establishing the relationships that exist between σh and σm on one hand,

ε̇pd and ε̇p
′
on the other hand. First, we get Eqs. ( 5 )

σh =α2σαα + (1− 2α2)σ33 =
1

3
(σαα + σ33) +

(
α2 −

1

3

)
σαα + 2

(
1

3
− α2

)
σ33

=σm + (1− 3α2)

(
−1

3
σαα +

2

3
σ33

)
which gives, from the definition Eq. ( 2 ) of the tensor X:

σh = σm + (1− 3α2)σ
′ : X. (24)

In addition, from Eq. ( 16 ),

ε̇pd =ε̇p − 3α2ε̇
p
meα ⊗ eα − 3(1− 2α2)ε̇

p
me3 ⊗ e3

=ε̇p − ε̇pmeα ⊗ eα − ε̇pme3 ⊗ e3 + (1− 2α2)ε̇
p
meα ⊗ eα + 2(3α2 − 1)ε̇pme3 ⊗ e3

=ε̇p − 3(1− 3α2)ε̇
p
mX.

(25)

Let us now write the flow rule in discretized form. ∆εpd being related to ∆εp
′
par
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the relationship

∆εpd = ∆εp
′
− 3(1− 3α2)∆ε

p
mX (26)

(which is the discretized equivalent form of Eq.( 25 ), we get ( see Eq.( 17 ) and
Eq.( 18 ) )

∆εpd =
3

2

∆εpd
σeq

(σ′ + ησhX) (27)

where

∆εpd =

(
3

2
∆εpd : ∆εpd

)1/2

. (28)

Note that these equations correspond to an implicit algorithm with respect to all
parameters except the porosity f . The symbol f̃ represents an explicit approxima-
tion of porosity on the half-interval t+ ∆t

2 given by

∆εpm
∆εpd

=
η

3σeq

(
3

2
σ′ : X + ησh

)
+ q(g + 1)(g + f̃)

K

3C

σ

σeq
sinh

(
K
σh
σ

)
.

(29)

The explicit character of the algorithm with respect to f (parameter governing soft-
ening) ensures its convergence, taking f̃ at t+ ∆t

2 , and not at t or t+∆t, allowing
us to optimize the precision of the algorithm:

f̃ = f0 + ḟ0
∆t

2
. (30)

Assume σ′
o and σ⋆

m the deviatoric and the mean parts of the stresses tensor (at
t +∆t) σ⋆ ”elastically calculated,” that is by assuming that the increment of de-
formation ∆ε is purely elastic; we get

σ∗′
= σ′

o + 2µ∆ε′ and σm = σmo + (3λ+ 2µ)∆εm. (31)

σ′
o and σ⋆

m are the known quantities during the operation of the ”projection on the
yield surface.” Now let us evaluate σ′ using Eqs.( 31 ), Eqs.( 26 ), Eq.( 27 ) )
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σ′ =σ′
o + 2µ∆εe

′
= σ′

o + 2µ∆ε′ − 2µ∆εp
′
= σ∗′

− 2µ∆εp
′

=σ∗′
− 2µ∆εpd − 6µ(1− 3α2)∆ε

p
mX

=σ∗′
− 3µ

∆εpd
σeq

(σ′ + ησhX)− 6µ(1− 3α2)∆ε
p
mX.

(32)

Contracting this equation with the tensor
3

2
X using Eq.( 29 )

k = q(g + 1)(g + f̃)
K

3C
σsinh

(
K
σh
σ

)
; (33)

we get

3

2
σ′ : X =

3

2
σ∗′

: X − 3µ
∆εpd
σeq

(
3

2
σ′ : X + ησh

)
−6µ(1− 3α2)

[
η

3σeq

(
3

2
σ′ : X + ησh

)
+

k

σeq

]
∆εpd

thus, adding ησh to the two sides of the equations, we get:

3

2
σ′ : X + ησh =

3

2
σ∗′

: X + ησh − 3µ
∆εpd
σeq

(
3

2
σ′ : X + ησh

)
− 2µ

η

σeq
(1− 3α2)

(
3

2
σ′ : X + ησh

)
∆εpd − 6µ(1− 3α2)

k

σeq
∆εpd

⇒
[
1 + 3µ

∆εpd
σeq

+ 2µη(1− 3α2)
∆εpd
σeq

](
3

2
σ′ : X + ησh

)
=

3

2
σ∗′

: X + ησh − 6µk(1− 3α2)
∆εpd
σeq

⇒ 3

2
σ′ : X + ησh =

a∆εpd + b

c∆εpd + d
(34)
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where

a = −6µk(1− 3α2) ; b =

(
3

2
σ∗′

: X + ησh

)
σeq ;

c = 3µ+ 2µη(1− 3α2) ; d = σeq.

(35)

Let’s go back now to Eq.( 32 ) by adding ησhX to the two sides of the equa-
tions; we obtain

σ′ + ησhX = σ∗′
+ ησhX − 3µ

∆εpd
σeq

(σ′ + ησhX)− 6µ(1− 3α2)∆ε
p
mX

⇒
(
1 + 3µ

∆εpd
σeq

)
(σ′ + ησhX) = σ∗′

+ ησhX − 6µ(1− 3α2)∆ε
p
mX.

In addition, by Eq.( 32 ) we have

σm = σmo + (3λ+ 2µ)∆εem = σ∗
m − (3λ+ 2µ)∆εpm

⇒ ∆εpm =
σ∗
m − σm
3λ+ 2µ

,

(36)

thus, by reporting in the previous equation, we get

(
1 + 3µ

∆εpd
σeq

)
(σ′ + ησhX) =

σ∗′
+ ησhX − 6µ

3λ+ 2µ
(1− 3α2)(σ

∗
m − σm)X.

(37)

Taking the von Mises norm ∥∥ of the two sides of the equation, we get
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σeq + 3µ∆εpd =

∥∥∥∥σ∗′
+ ησhX − 6µ

3λ+ 2µ
(1− 3α2)(σ

∗
m − σm)X

∥∥∥∥

⇒ ∆εpd =
1

3µ

(∥∥∥∥σ∗′
+ ησhX − 6µ

3λ+ 2µ
(1− 3α2)(σ

∗
m − σm)X

∥∥∥∥− σeq

)
.

(38)

Finally, using the flow rule Eq.( 29 ) together with Eqs.( 33, 34, 36 ) we obtain

∆εpm =
σ∗
m − σm
3λ+ 2µ

=

(
η

3σeq

a∆εpd + b

c∆εpd + d
+

k

σeq

)
∆εpd

⇒ σ∗
m − σm
3λ+ 2µ

σeq −
(
η

3

a∆εpd + b

c∆εpd + d
+ k

)
∆εpd = 0.

(39)

Let us observe that ∆εpd can be expressed as a function of ϕ and 3
2σ

′ : X thanks
to Eq.( 38 ), considering Eqs.( 22, 23, 24 ). Thus, we can choose ϕ and 3

2σ
′ : X

as principal unknowns. These equations satisfy Eqs.( 34, 39 ) where the coefficients
a, b, c, d are given by Eq.(35) (k itself being given by Eq.( 33 ) ) .

These equations can be solved numerically by Newton’s method: the quantity
3
2σ

′ : X can be evaluated by solving Eq.( 34 ), ϕ being calculated at each Newton’s
iteration on 3

2σ
′ : X by solving Eq.( 39 ) by Newton iteration on ϕ. Once ϕ and

3
2σ

′ : X are determined, we deduced σeq, σh, and σm by Eqs.( 22, 23, 24 ), and
∆εpm and ∆εpd by Eqs.( 36, 38 ), σ′ + ησhX (and hence σ′) by Eq.( 37 ), ∆εpm by
Eq.( 27 ) and ∆εp′ by Eq.( 26 ). Thus, the operation of projection onto the yield
locus has been carried out.

5.2. Evolution equations for the internal parameters

The first internal parameter is the porosity f . Adopting an implicit algorithm
with respect to this quantity leads to unsolvable convergence problems. We therefore
adopt an explicit algorithm where f (as it appears for example in Eqs.( 22, 23 ) does
not represent the true value of the porosity at time t + ∆t but the approximation
given by

f = fo + ḟo∆t (40)
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( f is therefore fixed throughout the passage from the instant t to instant t+∆t).

Of course, after convergence of the large elastic plastic iterations from t to
t+∆t, f is updated for the next step thanks to the following formula, discretized
equivalent of Eq.( 6 )

∆t = 3
(
1− f̃

)
∆εpm. (41)

The (approximate) value f̃ of the porosity in the half-interval (see Eq.(??)) is
used here in order to improve the accuracy of the algorithm.

The second internal parameter is the shape factor S, also unknown “a priori”.
To determine it, we adopt an iterative algorithm of a ”fixed point” type. The law
of evolution of this parameter is the discretized equivalent of Eq.(7 )

∆S =
3

2
h∆εp

′

33 + 3

(
1− 3α1

f
+ 3α2 − 1

)
∆εpm. (42)

We recall that h is an independent parameter, besides f and S, of the triaxiality T
defined by Eq.(8). It is therefore necessary to calculate, in addition to σm as we saw

above, ∥σ′∥, quantity which, we recall, is not equal to σeq =

(
∥σ′ + ησhX∥

)
.

By definition of the von Mises norm ∥∥ defined by

σ2
eq = ∥σ′ + ησhX∥2 =

3

2
(σ′ + ησhX) : (σ′ + ησhX)

=
3

2
σ′ : σ′ + 3ησhσ

′ : X + η2 + σ2
h = ∥σ′∥2 + 2ησh

(
3

2
σ′ : X + ησh

)
− η2σ2

h

⇒ ∥σ′∥ =

[
σ2
eq − 2ησh

(
3

2
σ′ : X + ησh

)
+ η2σ2

h

]1/2
. (43)

This equation allows to evaluate ∥σ′∥ and therefore the triaxiality ∥T ∥, the quan-
tities σeq, σh,

3
2σ

′ : X + ησh being known elsewhere.

The third internal parameter is the hardening parameter σ, or what amounts
to the same via Eq.(9), the mean equivalent deformation ε. We use a fixed point
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algorithm to calculate this parameter, as for the shape form factor. The law of
evolution used, discretized equivalent of Eq.(10), is

(
1− f̃

)
σ∆ε = σ : ∆εp. (44)

Its use requires the calculation of σ : ∆εp according to known quantities. We
get, from Eqs.(24, 26 ) and Eq.(27),

σ : ∆εp = (σ′ + σm1) :
(
∆εp

′
+∆εpm1

)
= σ′ : ∆εp

′
+ 3σm∆εpm

= σ′ : (∆εpd + 3(1− 3α2)∆ε
p
mX) + 3 (σh − (1− 3α2)σ

′ : X)∆εpm

= σ′ : ∆εpd + 3σh∆ε
p
m

= σ′ :
3

2

∆εpd
σeq

(σ′ + ησhX) + 3σh∆ε
p
m

= (σ′ + ησhX) :
3

2

∆εpd
σeq

(σ′ + ησhX)− 3

2

∆εpd
σeq

ησhX : (σ′ + ησhX) + 3σh∆ε
p
m

= σeq∆ε
p
d + 3σh∆ε

p
m − η

σh
σeq

(
3

2
σ′ : X + ησh

)
∆εpd

thus, the evolution equation of Eq.(44) of ε can be written as

∆ε =
1(

1− f̃
)
σ

[
σeq∆ε

p
d + 3σh∆ε

p
m − η

σh
σeq

(
3

2
σ′ : X + ησh

)
∆εpd

]
(45)

where all the quantities on the right side of the equation are known quantities.

The fourth internal parameter is the vector e3 parallel to the void axis. Its law
of evolution Eq.(11 ) is discretized in an explicit way following the expression:

∆e3 = ∆Ω · (e3)o (46)

where ∆e designates the rotation increment of the manner, equals for example
to the anti-symmetric part of the gradient of the displacement increment. (e3)o
designating the vector e3 at the explicitly known instant t; therefore we can perform
the correction of this vector given by Eq.(46) prior to any other calculation, without
having to perform iterations.
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5.3. Numerical treatment of the delocalization

This procedure uses an array A(I, J). The first index varies from 1 to 6, the
second from 1 to the total number of Gauss points concerned by the delocalization
(it identifies the Gauss point). The meanings of the different quantities A(I, J) are
as follows:

• A(1, J),A(2, J),A(3, J): Current coordinates of Gaussian point J;

• A(4, J) : Local porosity increment (between times t and t + ∆t ) at the
Gaussian point J;

• A(5, J): Real increment (after convolution) of porosity at the Gaussian point
J;

• A(6, J): Gauss point weight (for integration).

The calculation procedure is as follows: at all the iterations and for all the
Gauss points, a program is used to calculate the coordinates and the weight of the
Gauss point, subsequently storing them in A(1 − 3, J) and A(6, J). It also calls
a sub-program, which evaluates the local porosity increment; the latter is stored
in A(4, J). Once the convergence on the nodal imbalances has been obtained,
another program is called which, thanks to a double loop on the Gauss points,
performs the convolution operation. The actual porosity increment at the point J ,
stored in A(5, J), is transmitted to a program, which performs the final operation
of calculating and storing the porosity at time t and t+∆t .
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6. Numerical simulations: mesh size effects

This section delves into an investigation concerning the variations in mesh size
and their impact on numerical simulations of ductile fracture problems. These sim-
ulations utilize both the local and nonlocal versions of the GLD model. Emphasizing
the significance of this investigation is crucial and should not be underestimated.
The primary rationale behind incorporating the non-local concept into the GLP
model is to eliminate undesirable mesh size effects that often accompany finite ele-
ment computations using this model. To evaluate these mesh size effects, there’s no
need for a comparison with experimental data. Instead, our focus will be on exam-
ining a hypothetical axisymmetric specimen with a pre-existing notch, constructed
from 508 Cl.3 steel (in accordance with American Standards) and subjected to ten-
sion loading. Figure 1 illustrates a detailed mesh for this specimen, with a minimum
element size of 0.15 mm in the central region.

Figure 1: Fine mesh of the axisymmetric pre-notched specimen.

In Figure 2(a), we observe the predicted load-displacement curves for both of the
considered mesh discretizations using the original Gurson model. The comparison
between these curves reveals that altering the mesh discretization has no impact
on crack initiation. However, a different scenario unfolds during the crack propa-
gation phase: the curve’s slope undergoes changes, and the disparity between the
two curves progressively widens within the regions of material softening until the
specimen ultimately ruptures. This discrepancy between the two curves highlights
the problematic dependence of results predicted by the local GLD model on the
size of the finite elements (FE). To clarify further, as the elements near the crack
tip region decrease in size, failure occurs earlier, and crack propagation accelerates,
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Figure 2: Predicted load versus displacement curves: calculations without damage delocalization;
full black line (2): fine mesh, full grey line (1): crude mesh. The characteristic length scale used in
the nonlocal calculations b is equal to 400 µm. Note the discrepancy between the two curves for
the calculations without delocalization; this discrepancy is considerably reduced in the calculations
with delocalization.

Figure 3: Predicted load versus displacement curves: calculations with damage delocalization; full
black lines (2): fine mesh, full grey lines (1): crude mesh. The characteristic length scale used in
the nonlocal calculations b is equal to 400 µm. Note the discrepancy between the two curves for
the calculations without delocalization; this discrepancy is considerably reduced in the calculations
with delocalization.

leading to a reduction in load-displacement curves. It’s important to note that this
mesh size sensitivity isn’t related to the high stress and strain gradients near the
crack tip. In fact, the mesh discretization in the crack propagation zone is suffi-
ciently fine to capture significant spatial variations in the mechanical fields caused
by crack propagation. The anomalous mesh size sensitivity observed in our simu-
lations is a consequence of the presence of softening induced by damage growth.
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This is a well-known issue that can lead to ill-posed mathematical problems when
a characteristic length scale is absent in the model.
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7. Numerical simulations of typical ductile fracture tests

For our initial application, we will conduct an axisymmetric simulation of Mudry’s
[7] fracture test on a round bar with axial symmetry. This bar, denoted as TA30
(with the number referring to its diameter), is composed of A508 Class 3 steel and
features a pre-existing notch and crack. In Figure 4, you can see the geometry of
the specimen and one of its discretizations.

To simplify the modeling, we are taking advantage of the symmetry along the
horizontal mid-plane, which allows us to simulate only the upper half of the spec-
imen. Furthermore, the axis of rotational symmetry aligns with the left boundary
of the mesh. The specimen’s dimensions are 90mm in height and 30mm in diame-
ter. At the bottom of the mesh, there is a triangular-shaped central notch with an
opening angle of 60 degrees and a depth of 5mm.

Additionally, there is a fatigue-induced pre-crack measuring 1.7mm in length
that originates from the root of the triangular notch. From this pre-crack’s tip,
a crack begins to propagate. This crack extends towards the axis of rotational
symmetry and is situated slightly to the left of the notch root, where the element
shapes transition from triangular to square.

Figure 4: General mesh of the TA30 pre-cracked specimen - Minimum elements 200 microns.
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Figure 5: Zoom of the mesh of the TA30 specimen-Minimum element size 200 microns.

The characteristics of the material include, for the model with cavity shape ef-
fects, in addition to the usual parameters q, f0, fc, δ, σ0, the cavity shape factor
S0, and the three components (e3)

X
0 , (e3)

Y
0 , (e3)

Z
0 of the unit vector (e3)0 initially

collinear with the void axis. These data are summarized in Table 1 as indicated of the
Appendix C. These parameters are consistent with the ones utilized in Enakoutsa’s
[23] and Enakoutsa et al. [24] previous investigations of the same problem, except
for the orientation and the shape factor. We will employ various values for the coa-
lescence parameters, namely fc (critical porosity) and δ (the “accelerating factor”),
which differs from those considered by Enakoutsa’s [23] and Enakoutsa et al. [24].

A decade ago, Enakoutsa’s research [23] and the work conducted by Enakoutsa
et al. [24] exposed a significant issue associated with excessive porosity smoothing
in the Gurson’s [5] model. To address this concern, it was recommended to employ
the natural logarithm (log) instead of utilizing raw porosity values. In what follows.
we shall repeat the same analysis for the GLD model of interest in this study.

7.1. Analysis of smoothing of porosity

The purpose of this section is to provide a theoretical explanation for the over-
smoothing of porosity that occurs as a result of the nonlocal evolution equation Eq.
(20). While this explanation may be basic and lacking in detail, it will be adequate
to propose an effective solution.

When considering both the ”mean” and deviatoric components of the flow rule
Eq. (12)1 and removing the plastic multiplier λ, we obtain the following equation
Eq. (47):

εpm
εpeq

=
η

3σeq

(
3

2
σ′ : X + ησh

)
+ q(g + 1)(g + f)

K

3C

σ

σeq
sinh

(
K
σh
σ

)
. (47)
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Here, εpm is defined as 1
3 tr εp, and εpeq is defined as

(
2
3 ε

p
ij

′
εpij

′
)1/2

, where εp,′

represents the deviatoric tensor of εp. These terms represent the mean and equiv-
alent plastic strain rate, respectively.

If we utilize the local evolution equation Eq. (9) for porosity and combine it with
the equation Eq. (47), we obtain (assuming simplicity during the pre-coalescence
phase, where f∗ = f and p = qf ):

ḟ = kfεpeq , k ≡ η

3σeq

(
3

2
σ′ : X + ησh

)
+q(g+1)(g+f)

K

3C

σ

σeq
sinh

(
K
σh
σ

)
.

(48)

If we replace the local equation (9) with the nonlocal one (20), this implies
replacing equation (48)1 with:

ḟ(x, t) =
1

A(x)

[
ϕ ∗ (kfεpeq)

]
(x, t) (49)

Here, the symbol ”∗” represents the convolution product, and we have intro-
duced indications of position and time dependence for clarity.

We begin by idealizing the body as an infinite medium and making the sim-
plifying assumption that the parameters k and εpeq in equation (49) exhibit spatial
uniformity. This allows us to treat the factor A(x) as uniform and incorporate it into
the smoothing function ϕ. Moreover, the parameters k and εpeq can be extracted
from the convolution operation. Upon performing a spatial Fourier transformation
of equation Eq. (49), we obtain the following expression:

∂f̂

∂t
(p, t) = k(t)εpeq(t)ϕ̂(p)f̂(p, t) (50)

Alternatively, we can express this as:

∂f̂

∂ϵpeq
(p, ϵpeq) = k(ϵpeq)ϕ̂(p)f̂(p, ϵ

p
eq) (51)
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Here, ϵpeq represents the cumulative equivalent plastic strain, which is the time
integral of εpeq.

Equation (51) elucidates that the rate of growth of f̂(p, ϵpeq) is determined pri-

marily by the factor k(ϵpeq)ϕ̂(p).

Now, if we consider the Fourier transform ϕ̂(p) of a typical smoothing function,
such as a Gaussian, it is noteworthy that this transform is positive and reaches its
maximum at p = 0. Consequently, the maximum growth rate of f̂(p, ϵpeq) occurs
when p = 0, corresponding to an infinite wavelength λ ≡ 2π/|p|. This implies that
Fourier components of f with longer wavelengths grow at a faster pace compared
to those with shorter wavelengths, ultimately resulting in a gradual smoothing out
of spatial variations in porosity.

To delve into more specifics, let’s introduce the (albeit very simplistic) assump-
tion that the quantity k is not only spatially uniform but also constant over time.
When we integrate equation Eq. (51), we obtain the following expression:

f̂(p, ϵpeq) = f̂(p, 0) exp
[
kϕ̂(p)ϵpeq

]
. (52)

Consequently, the evolution of f̂(p, ϵpeq) over time is controlled by the ”growth

factor” exp
[
kϕ̂(p)ϵpeq

]
.

Now, when we compare the growth factors for p = 0 and p ̸= 0, we find:

f̂(0, ϵpeq)/f̂(0, 0)

f̂(p, ϵpeq)/f̂(p, 0)
= exp

(
k
[
ϕ̂(0)− ϕ̂(p)

]
ϵpeq

)
. (53)

Since the function ϕ̂(p) reaches its maximum at p = 0, the term within the
curly braces is positive. Consequently, this ratio is greater than one and can become
significantly large for long times (large values of ϵpeq) due to the rapid growth of the
exponential function. This confirms that the development of Fourier components
of f with longer wavelengths is significantly favored compared to those with shorter
wavelengths.

It’s worth noting that while the evolution equation (51) is not a diffusion equa-
tion, it exhibits characteristics reminiscent of such an equation. If we hypothetically
consider a diffusion equation for porosity (with the cumulative equivalent plastic
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strain ϵpeq playing the role of time), expressed as:

∂f

∂ϵpeq
(x, ϵpeq) = D∆f(x, ϵpeq), (54)

where D is a constant and ∆ denotes the Laplace operator, then taking the Fourier
transform of this equation yields:

∂f̂

∂ϵpeq
(p, ϵpeq) = −D |p|2f̂(p, ϵpeq), (55)

and upon integration, we obtain:

f̂(p, ϵpeq) = f̂(p, 0) exp(−D |p|2ϵpeq). (56)

The ratio of the growth factors for p = 0 and p ̸= 0 in this case is precisely
given by:

f̂(0, ϵpeq)/f̂(0, 0)

f̂(p, ϵpeq)/f̂(p, 0)
= exp(D |p|2ϵpeq). (57)

This result aligns with what we would obtain by expanding the term within
square brackets in equation Eq. ( 53 ) to the second order in p.

7.2. Numerical simulations and comparison with experiments

The specific approach presented in Section 7.1 was implemented for the simu-
lations presented in this study.

Figure 6 provides a visual representation that vividly showcases the comparison
between the experimental load-displacement curve and the numerical outcomes ob-
tained by adjusting the model parameters discussed earlier. The local GLD model
yields results that are reasonably acceptable, although their reliance on the mesh, as
demonstrated in the previous section, is noteworthy. These results were all obtained
using a fixed mesh size of 200 µm and a characteristic length scale of b = 500 µm.

Upon examining Figure 6, disparities between the experimental and simulation
results become apparent. Several explanations may account for these differences.
One possibility could be the underlying model assumptions or the simplifications
used in its development. Another factor to consider is the precision of the material
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Figure 6: Comparison numerical predictions vs experimental results for the GLD model. Several
values of the cavities growth acceleration factor δ were considered (Red: Experimental result;
Green: GLD with δ = 2.8; Black: GLD with δ = 2; Blue: GLD with δ = 1.0 )

properties and parameters employed in the simulations, as they might not always
be known with absolute certainty. Variations in material behavior or properties can
introduce discrepancies in the results. This is why we varied the coalescence param-
eter, specifically the coalescence acceleration factor δ in the model. The substantial
disparity observed in the descending portion of the experimental curve highlights
the importance of accounting for coalescence to accurately replicate the test. This
underscores that the previously reported agreement is contingent on various factors.

In light of the observed disparities between the experimental and simulation
results as elucidated in Figure 6, it is imperative to delve deeper into the factors
contributing to these differences. We have already considered the possibility of
discrepancies arising from the underlying model assumptions and simplifications,
as well as the precision of material properties and parameters utilized in our sim-
ulations. However, a comprehensive investigation into the effects of coalescence
necessitates a more comprehensive analysis.

To accomplish this, we propose a multifaceted approach. First, we should ex-
tend our sensitivity analyses beyond the coalescence acceleration factor δ. We must
systematically vary other critical parameters within the model, such as the initial
conditions, boundary conditions, and possibly the numerical schemes employed.
This broader exploration will enable us to pinpoint which aspects of the simulation
are most sensitive to changes and contribute significantly to the observed dispari-
ties.

Furthermore, it is worth considering alternative material models or material prop-
erty databases that may better capture the behavior of the materials under study.
Such alternative models could provide a more accurate representation of the ex-
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perimental data, thus reducing the discrepancies between the two. Additionally,
we should investigate the potential influence of experimental uncertainties, such as
measurement errors or environmental conditions, on our results.

In parallel, a rigorous validation process is essential to ensure the fidelity of our
simulation approach. This validation should include comparing our simulations not
only with the current experimental data but also with historical data and data from
similar studies if available. By doing so, we can assess whether the observed dis-
parities are unique to our current experimental setup or if they are indicative of a
broader issue with the simulation methodology.

Finally, our approach to addressing the disparities between experimental and
simulation results should encompass an in-depth exploration of model parameters,
consideration of alternative material models, investigation of experimental uncer-
tainties, and a thorough validation process. Through these concerted efforts, we
aim to refine our simulation approach, enhance our understanding of the underlying
physical processes, and ultimately achieve better agreement between our simulations
and experimental data in future experiments.
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8. Conclusion

In conclusion, this paper has presented a comprehensive and rigorous exploration
of the Gologanu-Leblond-Devaux (GLD) model, showcasing its advanced capabili-
ties in predicting ductile fractures in porous metals. The GLD model, building upon
Gurson’s foundation, offers a significant leap in fracture mechanics by accounting
for cavity shape effects and nonlocal strain localization. The compatibility of the
GLD model with generalized standard materials has been established, highlighting
its potential for widespread application.

One crucial aspect emphasized in this study is the uniqueness of solutions
in the numerical implementation, necessitating a meticulously devised mixed im-
plicit/explicit algorithm. Through rigorous comparisons with experimental data and
the introduction of a damage delocalization approach rooted in the natural loga-
rithm of porosity, our research has provided compelling evidence of the GLD model’s
superior performance compared to the original porosity rate-based models. Further-
more, the profound theoretical elucidation of this phenomenon through Fourier’s
analysis of porosity rate adds depth to our understanding of ductile fracture behav-
ior.

In summary, this work not only enhances our comprehension of ductile frac-
ture phenomena but also establishes a robust numerical framework for predictive
modeling. The GLD model emerges as a powerful and indispensable tool for the
accurate analysis and prediction of fracture behavior in porous materials, pushing
the boundaries of materials science and engineering.
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Appendix A. Class of Generalized Standard Materials and the GLD model

In this section, we aim to introduce Generalized Standard Materials (abbrevi-
ated as GSM) and then examine the generalized standard nature of the GLP model
under the assumption of small deformations. It should be noted that the formalism
of generalized standard materials only applies under this assumption.

The examination demonstrates that, at a fixed porosity, the constitutive equa-
tions of the GLD model possess the required properties to ensure the model’s clas-
sification within the GSM class.

In the following section, we will explore the implications of this property con-
cerning the numerical implementation of the model.

It is important to immediately note that this property applies equally to both
the original local version of the model and its non-local modified version presented
in Section 7.1, as fixing the porosity disregards its evolution equation, which is the
only differing point between the two versions.

The presentation begins with a very brief general overview of some aspects of
the work by Halphen and Nguyen [3] , and Nguyen [4] on the Generalized Strain
Gradient (GSM). It continues by providing a simple example of MSG before delving
into the main result of this section: the generalized standard nature of GLP model
when the porosity, the orientation, and the shape factor components in the model
are assumed to be discretized with an explicit numerical scheme.

Appendix A.1. Generalities

The constitutive law of an GSM is specified using two thermodynamic poten-
tials. The first one is the specific free energy ψ(ε,α), which is a function of the
strain tensor v and a set of internal parameters collectively denoted as α. This
function must be convex with respect to the variables ε and α taken separately (but
not necessarily with respect to the global variable (ε, α)).

The free energy provides by differentiation the stress tensor σ and the thermo-
dynamic force F associated with α:

σ =
∂ψ

∂ε
and F = −∂ψ

∂α
(A.1)

The second thermodynamic potential is the dissipation potential, denoted as
D(α̇), which must be a convex, positive, and zero function for α̇ = 0. This potential
governs the evolution equations of the internal parameters through the following
equivalent relationships:

F ∈ ∂D(α̇) ⇐⇒ α̇ ∈ ∂D̃(F) (A.2)
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The notation D̃ represents the Legendre-Fenchel transform. 3

Here, ∂D and ∂D̃ represent the sub-differentials of D and D̃ respectively.

For a time-independent behavior, as is the case in our work, the potential D is
positively homogeneous of degree 1 with respect to ȧ.

Its Legendre-Fenchel transform, D̃(F), is then the indicator function4 of a closed
convex set C (the domain of reversibility) in the space of thermodynamic forces F.

This set is defined by an inequality of the form Φ(F) ≤ 0 for a certain function
Φ, the sub-differential ∂D̃(F) is reduced to the zero vector 0 if F is contained
within the convex set C, coincides with the half-line η(∂f/∂F)(F), η ≥ 0 if F is on
the boundary of C, and is empty if F is not contained in C.

The evolution equation [A.2]2 can thus be rewritten in an equivalent form:

ȧ = η
∂Φ

∂F
, η =

{
0 if Φ(F) < 0

≥ 0 if Φ(F) = 0
(A.3)

This means that the evolution equation of a follows a kind of generalized ”nor-
mality property.”

This immediately leads to a number of properties that the GSMs satisfy:

Appendix A.2. Properties of the GSMs

Appendix A.2.1. Property 1

The evolution law [A.3] of a ensures the positiveness of the dissipation F : ȧ.
Indeed, the sub-differential of D(ȧ) is defined as:

F ∈ ∂D(ȧ) ⇐⇒ ∀ȧ′, F : (ȧ′ − ȧ) ≤ D(ȧ′)−D(ȧ). (A.4)

For ȧ′ = 0, this gives −F : ȧ′ ≤ −D(ȧ) (since D(0) = 0), which means F : ȧ′ ≥
D(ȧ) ≥ 0 (due to the positiveness of D).

Appendix A.2.2. Property 2

Let’s agree that quantities indexed by 0 are taken at time t, and those with-
out a particular symbol are taken at time t + ∆t. If the evolution equation [A.3]
for α is discretized in time using an implicit scheme, then the projection prob-
lem, which consists of determining the values of α or ∆α ≡ α − α0 based on
the values of ε0, α0, and ∆ ≡ ε − ε0, is equivalent to minimizing the function
χ(ε, α0,∆α) ≡ ψ(ε, α0 +∆α) +D(∆α) with respect to ∆α.

3It is recalled that: (i) the Legendre-Fenchel transform f̃(y) of the function f(x) is defined by
the formula f̃(y) ≡ supx[x ·y− f(x)]; (ii) its subdifferential ∂f(x) at point x is the set of points
y such that y · (x′ − x) ≤ f(x′) − f(x) for all points x′; (iii) the equivalence y ∈ ∂f(x) ⇐⇒
x ∈ ∂f̃(y) follows.

4Recall that the indicator function of a convex set takes the values 0 and +∞ inside and outside
the set, respectively.
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To establish this property, let’s note that the condition ensuring that the function
χ is minimal at the point ∆α is given by:

0 ∈ ∂χ(ε, α0,∆α) ⇐⇒ 0 ∈ ∂ψ

∂α
(ε, α0 +∆α) + ∂D(α) ⇐⇒

−∂ψ
∂α

(ε, α0,∆α) ∈ ∂D(α) ⇐⇒ F ∈ ∂D(∆α)

where F represents the thermodynamic force at time t+∆t.

The announced equivalence is then clear since the last expression is nothing
but the evolution equation of α, written in the form [A.2]1 instead of [A.2]2, and
discretized implicitly in time.

(Note that ∂D
(
∆α

∆t

)
= ∂D(∆α) since D is positively homogeneous of degree

1).

Since the functions ψ(ε, α0 +∆α) and D∆α are convex with respect to ∆α,
this equivalence guarantees the existence of the solution to the projection problem,
and its uniqueness if the free energy is strictly convex5 with respect to α.

It also ensures the symmetry of the tangent matrix to be used to solve the
projection problem, since this matrix is the Hessian matrix of the function χ.

Appendix A.2.3. Property 3

The tangent matrix of global elasto-plastic iterations is symmetric.
This third property is somewhat less obvious than the first two and arises from

the second property. To establish it, we will employ a vector notation for stress and
strain tensors: ε ≡ (εi)1 ≤ i ≤ 6, σ ≡ (σi)1 ≤ i ≤ 6, along with internal variables:
α ≡ (αp)1 ≤ p ≤ N . The relevant tangent matrix is then (∂σi/∂εj)1 ≤ i, j ≤ 6
where σ is expressed as a function of the unique variable ε using the expression:

σ ≡ ∂ψ

∂ε
[ε, α(ε)] (A.5)

Here, α(ε) = α0 +∆α(ε), and ∆α(ε) minimizes the function χ(ε, α0,∆α).
By differentiating equation [A.5], we obtain:

∂σi
∂εj

(ε) =
∂2ψ

∂εi∂εj
(ε, α(ε)) +

∂2ψ

∂εi∂αp
(ε, α(ε))

∂∆αp

∂εj
(ε) (A.6)

To evaluate the derivatives ∂∆αp

/
∂εj , we differentiate the conditions ∂χ/∂∆αp =

0 defining ∆α with respect to εj , using the definition of the function χ:

5The dissipation potential cannot be strictly convex, as its property of positive degree 1 homo-
geneity implies linearity along each half-line starting from the origin 0.
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∂2ψ

∂εj∂αp
(ε, α(ε)) +

∂2D
∂∆αp∂∆αq

(∆α(ε))
∂∆αq

∂εj
(ε) = 0. (A.7)

Let M denote the inverse of the Hessian matrix (∂2D
/
∂∆αp∂∆αq)1≤p,q≤N .

Inverting equation [A.7], we obtain:

∂∆αp

∂εj
(ε) = −Mpq(∆α(ε))

∂2ψ

∂εj∂∆αq
(ε, α(ε)) (A.8)

Substituting this result into equation [A.6], we have:

∂σi
∂εj

(ε) =
∂2ψ

∂εi∂εj
(ε, α(ε))− ∂2ψ

∂εi∂αp
(ε, α(ε))Mpq(∆α(ε))

∂2ψ

∂εj∂∆αq
(ε, α(ε)),

(A.9)

which clearly reveals the symmetry of the matrix (∂σi

/
∂εj)1≤i,j≤6.

In summary, from the above, three main insights can be drawn.
The first insight pertains to the convexity of the function φ(+∆ε, α +∆α) +

D(∆α) with respect to the variable ∆α. This ensures the existence of the mini-
mum, and consequently, the solution to the “projection problem.”

The second insight concerns the uniqueness of the solution to the projection
problem. It is achieved under the condition that φ is strictly convex with respect
to the variable α. It should be noted that D is convex but not strictly so, as it is
positively homogeneous of degree 1.

The third insight, finally, pertains to the symmetry of the tangent matrix nec-
essary for minimizing χ(ε, α0,∆α) ≡ ψ(ε, α0,∆α) + D(∆α) with respect to ∆α.
Therefore, there is symmetry in the tangent matrix within the projection problem.
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Appendix B. The GLD model and the MSG framework

To begin with, it is necessary to define the state variables and the expression
for the free energy, and then ensure that the latter satisfies the required properties
(see Appendix A above).

The state of the material is described by the following state variables: the
components of total deformation ε and a set of internal variables including the
components of plastic deformation εp and the cumulative equivalent plastic defor-
mation.

We then propose the following free energy potential, which is the sum of elastic
deformation energy and ”locked” hardening energy:

ψ(ε, εp, εeq) =
1

2
(ε− εp) : C : (ε− εp) + λ

∫ εeq

0

σ(ε)dε. (B.1)

In this equation, C represents the fourth-order elastic stiffness tensor, and σ(εeq)
is the yield stress in simple tension, a function of cumulative plastic deformation.

It is easy to see, with this definition, that the free energy ψ is strictly convex
with respect to the internal variable ε, as the quadratic form defined by C is posi-
tive definite. The free energy is also strictly convex with respect to εp for the same
reason as mentioned earlier. It is also strictly convex with respect to the variable
εeq due to the positivity of the hardening slope. Furthermore, it is a sum of strictly
convex functions of εp and εeq (with ε fixed). Therefore, the free energy is strictly
convex with respect to the global internal variable (εp, εeq), as desired.

Moreover, the derivative of ψ with respect to ε is equal to σ, as desired as well,
and the thermodynamic forces Fεp and F εeq associated with the internal variables
εp and εeq are given by:

Fεp

= − ∂ψ

∂εp
= C : (ε− εp) = s

F εeq = − ∂ψ

∂εeq
= −σ(εeq) ≡ σ

(B.2)

The second thing to do is to demonstrate that the reversibility domain defined
by GLD criterion in the space of thermodynamic forces ( expressing GLD’s charge
function Φ in terms of the variables Fεp and F ϵ̄ instead of σ and σ̄) is convex.

The transformation from the variables (σ, σ̄) to the variables ( Fεp , F ϵ̄) =
(σ,−λσ̄) is, however, linear. Therefore, it will be sufficient to prove that the re-
versibility domain in the space of the first variables, C ≡ (σ, σ̄); Φ(σ, σ̄, S, f) ≤ 0,
is convex.
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This would result immediately from the convexity of GLD’s charge function Φ
with respect to the global internal variable (σ, σ̄), if this function were convex.

The second element consists of checking that the evolution equations of the
internal variables εp and ϵ̄ comply with the generalized normality property with
respect to the GLD’s yield function, expressed in terms of thermodynamic forces:

ε̇p = η
∂Φ

∂Fεp
≡ η

∂Φ

∂σ

˙̄ϵ = η
∂Φ

∂F ε̄
≡ −η

λ

∂Φ

∂σ̄

(B.3)

The two last elements of this proof were extensively discussed in Enakoutsa et al.
[24] and Enakoutsa [23] in the context of the Gurson’s [5] model, and for this
reason will not be repeated here.
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Appendix C. Parameters of the GLD model

The material parameters utilized for the simulations presented above are precisely
delineated as follows:

Parameter Values
E (MPa) 203 000

ν 0.3
σ0 (MPa) 450

q 1.47
f0 0.00016
fc 0.05

b(µm ) 500
δ 2.8
S0 2.1

(e3)
X
0 0.

(e3)
Y
0 0.

(e3)
Z
0 1.

Table C.1: Material parameters used for the numerical simulations on the pre-cracked TA and the
axisymmetric pre-notched specimens. The characteristics of the material include, for the model
with shape effects, in addition to the usual ones such as q, f0, fc, δ, b, the initial shape factor S0

and the three components (e3)X0 , (e3)Y0 , (e3)Z0 of the unit vector (e3)0 initially collinear with
the void axis.
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