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1. Abstract

Accurately predicting crack extension is imperative for maintaining structural integrity in metal structures
subjected to diverse loads. The Gurson model and its extensions are widely accepted for describing ductile
fracture stages, particularly in porous materials with a rigid-perfectly plastic matrix. However, Gurson’s ap-
proach of summarizing strain-hardening behavior into a single parameter proves limiting when considering
a strain-hardening matrix. Perrin proposed a model addressing these limitations by incorporating two types
of strain hardening parameters derived from an approximate analysis of a strain-hardening hollow sphere
under axisymmetric loading. This paper aims to present a numerical implementation and assessment of
Perrin’s model in predicting ductile fracture under large deformations, considering isotropic, kinematics, and
mixed isotropic-kinematics hardening scenarios. The effectiveness of the model is demonstrated by compar-
ing numerical simulations of fracture with experimental observations in pre-cracked specimens. Given the
challenges in achieving global elastic-plastic convergence for these large-scale simulations, an approach in-
volving stiffness tangent moduli was employed to maintain quadratic convergence in global Newton method
iterations.
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2. Introduction

The integrity of engineering metal structures subjected to dynamic, cyclic, or quasi-static loads necessi-
tates a comprehensive investigation of crack initiation and propagation. However, the primary challenge lies
in finding a predictive tool capable of not only identifying crack initiation but also accurately predicting the
subsequent crack extension. In the realm of ductile fracture, which stands as the predominant failure mode
in metals under both room and high-temperature conditions, the micro-mechanically based model proposed
by Gurson [12], along with its heuristic extensions by Tvergaard [22] and Tvergaard and Needleman [23], has
gained widespread acceptance for describing the three successive stages of ductile fracture: cavity nucle-
ation, growth, and coalescence.

Numerous studies have demonstrated the effectiveness of the Gurson model in characterizing crack prop-
agation in pre-cracked metal structures, as well as in small uncracked laboratory test samples like smooth
and notched round tensile specimens or plane strain specimens. Notably, the works of [23, 11, 2] have pro-
vided compelling evidence of the Gurson model’s efficacy in accurately predicting the phenomenon known
as ”cup-cone” fracture in smooth axisymmetric tensile specimens. This phenomenon is characterized by the
initial radial propagation of the crack from the axis, followed by a subsequent deviation at approximately a 45
◦ angle from the plane when it nears the cylindrical free surface.

An extension of the Gurson model [12] developed some years ago by Perrin and Leblond [13], presents a
certain number of theoretical improvements compared to the model “R/R0” and Rousselier’s damage model
[21]:

• better consideration of the interactions between growth of cavities and hardening, and introduction of

the possibility of kinematic or mixed isotropic
/
kinematic hardening;

• better modeling of coalescence;

• taking into account the nucleation, brutal or continuous, of the cavities, which can allow for the simulation
of the behavior of specimens in stainless steel aged by irradiation for instance;

• incorporation of damage delocalization into the model itself, not just through the imposition of a minimum
mesh size. This makes it possible to overcome the usual restrictions on the shape and size of the
meshes.

In addition, the experience has revealed other advantages of the Perrin’s model and/or its numerical
implementation, of a more computational nature:

• The model accommodates square meshes, unlike that of Rousselier’s damage model [21], which re-
quired the use of elongated rectangular meshes forcing the crack to remain in its plane. This made it
possible to simulate the “cup-cone fracture” experiment, in which the crack deviates at 45◦ from its initial
path1.

• The model adequately reproduces the behavior of homothetic test specimens of small dimensions, a
result which could not be obtained until now. The precise origin of this improvement, however, is unclear.

1The coalescence, neglected in the model of Rousselier’s damage model [21], is only taken into account in a relatively coarse way in
the model “R/R0”, because of the absence of coupling plasticity damage.
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In the realm of crack propagation, it is common for the process to occur in areas of the materials where
strain and damage concentrate. These localized regions exhibit incredibly steep stress and damage gradi-
ents, leading to a significant reliance on the mesh size used in finite element (FE) computations. As the mesh
size becomes finer, a peculiar phenomenon arises: damage and strain tend to concentrate within zero-width
bands. This intricate issue is widely acknowledged when attempting to model the response of ductile materi-
als. The challenge arises from the need for more precise data regarding both deformation and stress states
in the post-localization regime of these materials.

A proposal to circumvent this drawback was presented by the authors and co-workers [4, 6, 7]. Their
proposal consists of adding, following an earlier suggestion by Pijaudier-Cabot and Bazant [14], a charac-
teristic length scale to the constitutive model. This addition is accomplished through the convolution of the
damage evolution equation with a carefully chosen weight function. Referred to as the ”damage delocaliza-
tion technique,” this approach has effectively eradicated the detrimental influence of mesh size variations in
finite element computations related to problems associated with ductile fracture. This accomplishment has
been acknowledged by many researchers such as Leblond et al. [15], Tvergaard and Needleman [24, 25],
Enakoutsa [6], and Enakoutsa et al. [4].

Leblond et al. [15] proposed a heuristic approach, which unfortunately lacked a solid theoretical founda-
tion. This limitation prompted Gologanu et al. [26] to develop a more comprehensive and physically-based
alternative. In their work, Gologanu and colleagues derived an enhanced version of Gurson’s model, known
as the GLPD model, by refining the original homogenization procedure based on the classical conditions of
homogeneous boundary strain rate outlined by Mandel [27] and Hill [18]. Gologanu et al. [26] introduced
a quadratic relationship between the boundary velocity and the coordinates, aiming to account for the po-
tential rapid variations of macroscopic strain rate encountered during strain localization over short distances
comparable to the size of the elementary cell under consideration. The outcome of their homogenization pro-
cedure yielded a ”micromorphic” model featuring the second gradient of the macroscopic velocity, generalized
macroscopic stresses of ”moment” type (a product of stress and distance), and a ”micro-structural distance”
associated with the average spacing between adjacent voids.

The Gurson plasticity criterion is commonly regarded as capable of describing the yield strength of a
porous material (containing spherical-shaped voids) with a rigid-perfectly plastic matrix that follows the Von
Mises yield criterion. In the case of a strain-hardening matrix, Gurson [12] suggests summarizing the true
strain-hardening behavior into a single parameter. This involves replacing the highly heterogeneous true
strain-hardening, observed at the microscopic scale, with an ”equivalent” homogeneous strain-hardening be-
havior. This approach has some flaws. Indeed, the classical, precise solution to the hydrostatic loading
problem of a hollow rigid-hardenable sphere was not compatible with the phenomenological model. Addi-
tionally, the previous prediction that the porosity curve, which represents the relationship between porosity
and equivalent strain for a fixed triaxiality during any loading path, solely depended on the initial porosity
and triaxiality, but not on the hardening exponent, was found to be incorrect. To address these challenges,
Perrin [13] proposed a new model, which tackles the issues by utilizing an approximate analysis of a hollow
rigid-hardenable sphere subjected to axisymmetric loading. Two type of strain hardening parameters are in-
troduced into the Gurson model [12]. These parameters are determined through an approximate solution to
the problem of an axisymmetrically deformed strain-hardening hollow sphere.

The objective of this paper is to discuss the numerical implementation and evaluation of the hardening
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model proposed by Perrin [13]. For the numerical implementation, we shall consider three different cases:
isotropic hardening, kinematic hardening, and mixed isotropic-kinematic hardening. For each case, we will
address the ”problem of projection,” which involves adjusting the elastically computed stress tensor to align
with the yield locus (plastic correction of the elastic predictor). It is worth noting that the isotropic hardening
case has been previously discussed by Enakoutsa [6] and Enakoutsa et al. [4]. Therefore, only a few ele-
ments of the projection problem will be presented in this context. We account for large deformation by using
the the Green-Naghdi derivative for the rates of the stress and the kinematics hardening tensor. We provide
the numerical implementation of this derivative in the context of our finite element modeling. Also, because
global elasto-plastic iterations might face convergence difficulties, stiffness tangent moduli are derived for
maintaining quadratic convergence in global Newton iterations. The assessment of the model will consist of
comparing the experimental and numerical results for typical ductile fracture tests.

The paper is organized as follows:

• Section 3 provides a brief description of the theoretical equations of Perrin model [13] including the
isotropic, kinematics, and the mixed isotropic-kinematics hardening.

• Next, Section 4 discusses the numerical implementation of the model. The correction of the stress in
“the projection problem ” for the three types of hardening are discussed.

• Next, Section 5 presents the numerical integration strategy for the case of large deformations and
rotations where the deformation of a structure is significant and cannot be accurately approximated
using small displacement theory.

• Finally, in Section 6, the results of some numerical simulations comparing the fracture of a typical
axisymmetric pre-cracked specimen to experimental observations reported by Rousselier and Mudry
[19] are discussed. Given the challenges in achieving global elastic-plastic convergence for these large-
scale simulations, an approach involving stiffness tangent moduli was employed. The objective of this
approach is to maintain quadratic convergence in global Newton iterations.
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3. Theoretical equations of the model

The model is written in large deformations, in Eulerian formulation, the deformation rate d is supposed to
admit the usual additive decomposition:

d = de + dp (1)

The model equations include the expression of the elastic strain rate de, that of the plastic strain rate dp

(plasticity criterion and associated flow rule); and the expressions for the evolution equations for the internal
parameters (porosity and hardening parameters).

3.1. Elastic Strain Rate

The law of elasticity used is in fact (as usual in elasto-plasticity large deformations) a law of hypo-elasticity
or weak elasticity (linear relation between the rate of stress and the rate of elastic deformation; it is written, at
constant temperature :

Σ̂ = λ
(
trde) l + 2µde (2)

where λ and µ denote the Lamé coefficients and σ an objective derivative of the stress tensor ∝. In practice,
two derivatives are used: that of Jaumann, defined by:

Σ̂ = Σ̇ + Σ ·Ω −Ω · Σ (3)

where Ω = 1
2

(
∇xU − t∇xU

)
(x current position vector, U velocity vector) denote the rate of rotation, and that of

Green-Naghdi, defined by the same formula Eq.(3 ) , but Ω then being equal to R.R−1 where R is the rotation
involved in the polar decomposition of the the deformation gradient.

It should be noted that this model does not incorporate a damage-elasticity coupling ( λ and µ do not
depend on the porosity and are therefore constant if the temperature is), much less important in practice than
the damage-plasticity coupling. In the case where the temperature θ varies, we add to the expression of σ a
term proportional to θ̇ :

Σ̂ = λ
(
trde) I + 2µde +

dE
Edθ
Σθ̇. (4)

where E denotes the Young’s modulus. This formula implicitly assumes the temperature-independent Pois-
son’s ratio. It is recalled that it ensures the cancellation of the stresses at high temperatures, and is reduced
after integration with the traditional formula

Σ = λ(θ)
(
trεe) I + 2µ(θ)εe (5)

in the case where small deformation assumptions are made.
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3.2. Plastic Strain Rate

Let us first consider the case of an isotropic work hardening. The criterion of plasticity is written as:

ϕ(Σ) =
Σ2

eq

Σ2
l

+ 2p ch
(

3
2
Σm

Σ2

)
− 1 − p2 ≤ 0. (6)

In this expression, Σeq is the equivalent Von Mises stress (=
(

3
2 sijsij

) 1
2 , s denoting the deviator of the stress ),

Σm the mean stress (= ( 1
3 )tr Σ), Σ1 and Σ2 homogeneous quantities with constraints given in the expression

will be specified later, p a parameter linked to the porosity f by the formula

p = q f ∗, f ∗ =
{

f if f ≤ fc
fc + γ ( f − fc) if f > fc

(7)

where q is the Tvergaard parameter, fc the critical porosity at the beginning of coalescence and γ the accel-
erating factor of cavity growth.

The flow rule associated by normality with this criterion is written:

dp = η
∂ϕ

∂Σ
(8)

where η denotes the plastic multiplier; by introducing the equivalent plastic strain rate:

deq =

(
2
3
δ

p
ij δ

p
ij

) 1
2

(9)

where δP denotes the deviator of dP, we can write this flow rule in the form of the expression:
δP =

3
2

deq

Σeq
s

dp
m =

p
2
Σ2

1

Σ2Σeq
sh

(
3
2
Σm

Σ2

)
deq

(10)

where dp
m =

1
3 tr dP is the average part of the plastic strain rate. The evolution of the porosity is given by the

following equation, which results from the approximate incompressibility (i.e., neglecting the elasticity) of the
metallic matrix:

ḟ = 3(1 − f )dp
m (11)

Finally, Σ1 and Σ2 are functions of the temperature θ and of two parameters of hardening noted εeq and εm
2

and defined by:

εeq =

∫ τ

0
deq dτ, εm =

∫ τ

0

∣∣∣dp
m

∣∣∣ dτ. (12)

2The rather complicated expressions of Σ1 and Σ2 as a function of εeq and εm are given in Perrin [13]
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Let us now consider the case of a kinematic hardening. The expression of the criterion of plasticity is:

Σ2
eq

Σ2
0

+ 2p sh
(

3
2
Σm − αm

Σ0

)
− 1 − p2 ≤ 0 (13)

where Σ0 is the elastic limit (depending only on temperature) of the matrix, αm =
1
3 tr α the mean part of the

center α of the domain of elasticity and Σeq the equivalent von Mises stress defined here by

Σeq =

[
3
2

(
sij − aij

) (
sij − aij

)] 1
2

, (14)

a denoting the deviator of α. The expression of p is the same ( Eq.( 7 ) as for an isotropic hardening. The
associated flow rule takes the form:

δp =
3
2

deq

Σeq
(s − a)

dp
m =

p
2
Σ0

Σeq
sh

(
3
2
Σm − αm

Σ0

)
deq

(15)

where δp, deq and dp
m are defined as before. The porosity evolution equation Eq.( 11 ) is unchanged. Finally,

the evolution of the center a of the domain of elasticity is given by:
â =

2
3

(
∂α̃eq

∂εeq

)
T
δp +

1
α̃cq

(
∂α̃eq

∂θ

)
aθ̇

α̇m =

(
∂α̃m

∂εm

)
T

dp
m +

1
α̃m

(
∂α̃m

∂θ

)
αmθ̇

(16)

where ˆ denotes the same objective derivative as in Eq.(2) and Eq.(4) and where α̃eq and α̃m are functions 3

of the same hardening parameters εeq, εm as previously. The partial derivatives
(
∂α̃eq/∂εeq

)
and (∂α̃m/∂εm)

are here taken at ”triaxiality in deformation” T = εm/εeq constant. The terms proportional to θ̇ ensure the
cancellation of a and αm, therefore of Σ, at high temperatures. Let us consider finally the case of a mixed
isotropic/kinematic hardening ρ indicating the proportion of kinematic hardening. The criterion is written:

Σ2
eq[

ρΣ0 + (1 − ρ)Σ1
]2 + 2p sh

(
3
2
Σm − ραm

ρΣ0 + (1 − ρ)Σ2

)
− 1 − p2 ≤ 0 (17)

where

Σeq =

[
3
2

(
sij − ρaij

) (
sij − ρaij

)] 1
2

, (18)

and the flow rule
δp =

3
2

deq

Σeq
(s − ρa)

dp
m =

p
2

[
ρΣ0 + (1 − ρ)Σ1

]2[
ρΣ0 + (1 − ρ)Σ2

]
Σeq

sh
(

3
2
Σm − ραm

ρΣ0 + (1 − ρ)Σ2

)
deq.

(19)

3the expressions of which are given in [13]
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The laws of evolution of the porosity and of the hardening parameters are the same as previously.

In fact, the cavities being very generally generated by decohesion of the metal matrix around inclusions, f
can not become lower than its initial value f0 (if f is equal to f0, the cavity is closed around inclusion and the
latter prevents its volume from decreasing further). Consequently, all the previous equations are valid only if
f > f0, or else f = f0 and ḟ ≥ 0⇔ sh ≥ 0 (sh representing the hyperbolic sine of :

3
2
Σm

Σ2
,

3
2
Σm − αm

Σ0
or

3
2
Σm − ραm

ρΣ0 + (1 − ρ)Σ2
(20)

depending on the type of hardening). If f = f0 and sh < 0, it is necessary to write that the behavior is that of
a Von Mises material, which is in fact equivalent to setting p = 0 in the previous equations.

3.3. Cavities’ Nucleation

We have until now, for simplicity, implicitly ignored the phenomena of nucleation of the cavities. Let us now
examine their impact. We distinguish two types of nucleation:

• sudden nucleation, governed by a stress criterion developed at the Ecole des Mines de Paris and whose
expression is:

Σ1 + α
(
Σ̃eq − Σ0

)
≤ Σc (21)

where Σ1 denotes the greatest principal stress of the stress tensor Σ, α a dimensionless parameter, Σc
a critical stress and Σ̃eq the equivalent stress defined by:

Σ̃eq =

(
3
2

sijsij

) 1
2

(22)

(Σ̃eq only coincides with Σeq in the case of isotropic hardening). As long as the inequality is strict in Eq.
(90), the behavior is that of a Von Mises material (⇔ p = 0 ); when the equality is achieved, f “jumps”
abruptly to the value f0 ( and cannot then fall below this value again).

• Continuous nucleation. We distinguish in this case two contributions, denoted ḟc and ḟg, in the growth
rate f porosity. The first represents the rate of increase da at the growth of the cavities, and is given
by formula Eq. (11). The second represents the rate of increase due to continuous germination, and is
given by an empirical equation

ḟg = Adeq (23)

where A is a model parameter.

3.4. Damage Delocalization

For some applications (involving high stress and/or strain gradients), the porosity evolution equation is
“delocalized”. We then define local rates of increase of porosity by growth and germination ḟcl and ḟgl, given
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by formulas Eq.(11) and Eq.(23) respectively, and the true (non-local) growth rate is then given by the convo-
lution formula:

f (x) =
1

C(x)

∫
Ω

ḟl(y)χ(x − y)dΩy ,

ḟ1(y) ≡ ḟcl(y) + ḟgl(y) ,
C(x) =

∫
Ω
χ(x − y)dΩy .

(24)

Ω denotes here the studied domain and χ a weighting function, which we take Gaussian in practice:

χ(z) = exp
(
−|z|2

l2

)
, (25)

l being a characteristic length (of the order of the spacing between cavities), which plays the same role as
the minimum mesh size in the Rousselier model. Note that this delocalization study was thouroughly study by
Enakoutsa et al. ( [1], [4], [6], [7], [8], [9] , and [10] )

4. Numerical Implementation

This section aims to present the digital implementation of the constitutive equations of the non-local Gurson
model [12], as defined by Leblond et al. [15], for its integration into the finite element calculation code. The
essential element of this numerical implementation is the necessary ”projection” operation onto the criterion.
After specifying the time discretization of the problem, which establishes the notations used, and briefly re-
calling the two main steps (local and global) associated with the iterative solution of the problem, we describe
the algorithm used for this projection.

4.1. Time Discretization
The constitutive equations of the models presented above are described by integro-differential relation-

ships in time. Since direct integration of the continuous problem in time is very difficult, we adopt a step-
by-step resolution method: we seek to determine the various mechanical parameters at time t + ∆t given
these quantities at time t. Dealing with ductile materials (which exhibit dissipative behavior), we adopt an
implicit Euler scheme for most variables. Different perspectives could be considered, but it is not customary
because this scheme has become traditional for integrating the behavior relationships of dissipative materials.
It is unconditionally stable and allows for exact verification of the coherence condition when the behavior is
independent of time.

4.2. Overview of the Problem-Solving Approach
In general, solving a quasi-static evolution problem requires the coupled treatment of two sub-problems:

ensuring structural equilibrium and incorporating behavior relations. The approach adopted in our finite calcu-
lations code favors displacements as unknowns (rather than internal variables). Roughly speaking, after time
discretization, we are led to solve the following system: The equilibrium is expressed in terms of the principle
of virtual powers:∫

Ω

Σ · ε(v)dΩ =
∫
Ω

f d · v dΩ +
∫
∂Ω

Td · v d ∂Ω ∀ v ∈ Vad
0 (26)

where Vad
0 represents the set of kinematically admissible fields, Σ is the unknown stress field, Td and fd are
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the imposed volumetric and surface forces. The integration of the behavior relations provides the stress Σ at
each point as a function of the displacement increment ∆u through a nonlinear relationship. The equilibrium
equation Eq. ( 26 ) is then written in the form:

R(∆u) = Fi − Fe = 0. (27)

in the case of discretization using the finite element method. In equation Eq.(27), R is the vector of nodal
residuals expressed as the difference between the internal nodal forces Fi and the external nodal forces Fe.
Since the system Eq.(27) is nonlinear, its solution cannot be directly obtained as in elasticity problems. The
solution is obtained using an iterative method like Newton’s method (or one of its variants), with iterations
ending when equilibrium is considered achieved. Each iteration consists of two steps: a global step and a
local step.

The global step consists of calculating the displacements at the structure’s nodes, as well as the total
strains and stresses at the Gauss points, assuming the plastic deformation increment ∆Σp between times t
and t + ∆t is known at every point. In practice, during the first iteration, this increment is assumed to be zero
(purely elastic calculation), and in subsequent iterations, it takes the value found at the end of the previous
iteration. This step uses the equilibrium equations, the elastic behavior law, and the boundary conditions,
resulting in solving a linear system over the entire structure. However, the plasticity equations are not used
during this step.

The approach is analogous to solving a classical elasticity problem using the finite element method, with
the difference that the total strain includes an additional contribution from plasticity, which plays the role of
”initial deformation” (analogous to thermal deformation, for example).

During the local step, the final total deformation ( or its increment ∆ε), resulting from the previous global
step, is considered as given at each point. Then, the increments of elastic and plastic deformation, ∆εe and
∆εp, as well as the stress Σ, are calculated using the equations of plasticity. In no way, during this step, will
equilibrium equations or boundary conditions be used, which excludes solving a linear system over the entire
structure. The solution algorithm is performed independently at different points.

The following diagram summarizes the different steps of the method.
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Solution at time t : ε, εe, εp, Σ

?

Iteration 1: Elastic calculation, ∆εp = 0

?

Global step: Equilibrium + Elasticity law + Boundary conditions⇒ ∆ε1

?

Local step (at each Gauss point): Plasticity + ∆ε1 ⇒ Σ(t + ∆t), ∆εp1

?

?

Iteration 2

?

Global step: Equilibrium + Elasticity law + Boundary conditions + ∆Σp1 ⇒ ∆ε2

?

Local step ( at each Gauss point ): Plasticity + ∆Σ2 ⇒ Σ(t + ∆t), ∆Σp2

?

Iteration 3

?

It should be noted that despite the somewhat complex nature that the programming of the global step may
take, there is no need to worry about it when digitally implementing a new plasticity model into a finite element
calculation code. The only developments required are related to the local step, which we will now focus on.
The reason is quite simple: the model to be implemented is independent of this programming (in fact, it is a
general routine that can be used by any other plasticity model). For this reason, we will only focus on the local
step in the implementation of the ductile fracture model described above. We will only consider the points in
the structure where we are looking for increments in plastic and elastic deformations and stresses. In practice,
all Gauss points in the structure are processed successively, but again, there is no need to worry as an auto-
matic procedure, valid for any model that we want to implement, takes care of it and is written once and for all.

Compared to the numerical implementation of the classical elasto-plasticity equations in large transfor-
mations, that of the ductile rupture models presents certain differences which mainly concern the so-called
operation of “plastic stress correction” (calculation of the stresses and various other mechanical parameters at
time t + ∆t, knowing these quantities at time t as well as the increment ∆ε ≡ d∆t of total deformation between
these two times).
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4.3. Implicit algorithm for projecting onto the criterion.

4.3.1. Generalities
The numerization of the constitutive equations of the Gurson model, whether in its local or non-local

version, presents certain differences compared to the digitization of the classical von Mises elasto-plasticity
equations. These differences mainly concern the ”projection onto the criterion” or ”plastic stress correction”
operation, which involves calculating stresses and various other mechanical parameters at time t + ∆t, given
these quantities at time t as well as the total strain increment ∆v ≡ ε∆t between these two instants. (Note
that in large transformations, ε∆t is not the variation of the linearized strain tensor, which is not defined. The
notation ∆v is used to simplify the expressions.)

In everything that follows, we will focus on the incremental problem defined between times t and t + ∆t.
Initially, we assume small strains to simplify the presentation. The quantities that appear will be considered
at time t + ∆t, unless they are marked with an upper index 0, which indicates that they are considered at time
t. The known quantities include Σ (stress), ε̄ (strain), and ∆ε (the total strain increment between times t and
t + ∆t).

4.3.2. Correction of the Stress - Case of Isotropic Hardening
Let us write the discretized equations of the problem, denoting ∆ε ≡ d∆t, ∆εe ≡ de∆t,∆εp ≡ dp∆t,∆ee and

∆ep the deviatoric parts of ∆εe and ∆εp,∆εe
m and ∆εp

m their mean parts, assigning a ’ the quantities taken at
time t+∆t ( the non-primed quantities are taken at time t ), and initially neglecting the effects due temperature
variations and major transformations:

• Decomposition of the deformation increment:

∆ε = ∆εe + ∆εp (28)

• Elasticity law :

∆s = 2µ∆ee, (29)

∆Σm = (3λ + 2µ)∆εe
m (30)

• Yield criteria :

Σ′eq
2

Σ′21
+ 2p̃′ ch

(
3
2
Σ′m

Σ′2

)
− 1 − p̃′2 = 0 (31)

• Plastic flow rule :

∆ep =
3
2
∆εeq

Σ′eq
s′, (32)
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∆ε
p
m =

p̃′′

2
Σ′21

Σ′2Σ
′
eq

sh
(

3
2
Σ′m

Σ′2

)
∆εeq. (33)

• Definition of Σ′1 and Σ′2 :

Σ′1 ≡ Σ1

(
ε′eq, ε

′
m

)
,

Σ′2 ≡ Σ2

(
ε′eq, ε

′
m

) (34)

• Evolution equation of the hardening parameters:

∆εeq =
(

2
3∆ep

ij∆ep
ij

) 1
2 .

∆εm =
∣∣∣∆εp

m

∣∣∣ . (35)

Only equations Eq.(31) and Eq.(33) call for specific comments here:

• To be perfectly logical, it would be necessary to use in Eq.(31), which constitutes the writing of the
criterion at the instant t + ∆t, the quantity p′ ≡ p(t + ∆t) deriving, via Eq.(7), from the real porosity f ′

at this instant. This porosity being unknown, the algorithm is then implicit in relation to this variable
(as in relation to the others). The numerical experiment however showed that the convergence is very
difficult, even impossible, with such an algorithm, and that one can, in practice, obtain results only with
an explicit algorithm compared to the porosity (but however implicit against all other parameters). We
therefore replace in Eq.(31) the quantity p′ by an approximation noted p̃′ , deriving via Eq.(7), from the
estimation of f̃ ′ of f ′ ≡ f (t + ∆t) given by

f̃ ′ ≡ f (t) + ḟ (t)∆t. (36)

This of course requires storing the rate of increase ḟ of the porosity.

• In equation (33), which gives the increase in average plastic deformation between the times t and t+∆t,
the most precise would be to use the quantity p′′ = p(t + ∆t/2) (deriving from the true porosity ( f ′′ to
t +∆t/2) In order to preserve however the explicit character of the algorithm with respect to porosity, we
replaces p′′ by the approximation p̃′′ derived from the approximate porosity

f̃ ′′ ≡ f (t) + f (t)
∆t
2

. (37)

The beginning of the resolution of these equations follows the classic approach: we add s to the two members
of Eq.(29) taking into account Eq.(30) and Eq.(31) :

s′ ≡ s + ∆s = s + 2µ∆e − 2µ∆ep = s∗ − 3µ
∆εeq

Σ′eq
s′ (38)

where

s∗ ≡ s + 2µ∆e (∆e ≡ deviator of ∆ε) (39)
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is the final stress deviator “computed elastically”, i.e. assuming the increment ∆ε of purely elastic total defor-
mation (known quantity since we know s and ∆e ). This implies that, as usual, s′ and s∗ are parallel, so that
we can replace

s′
/
Σ′eq by s∗

/
Σ∗eq where

(
Σ∗eq ≡

(
3
2 s∗ijs∗ij

) 1
2
)

in the flow rule Eq.(33) and the calculation of ∆ep is reduced to

that of ∆εeq. Moreover, taking the Von Mises function of the two members, we also deduce that

Σ∗eq − Σ
′
eq = 3µ∆εeq (40)

again a classic equation. By adding in the same way Σm to the two members of Eq.(30) taking into account
Eq.(29), we obtain the same

Σ∗m − Σ
′
m = (3λ + 2µ)∆εp

m, (41)

where

Σ∗m ≡ Σm + (3λ + 2µ)∆Em (42)

(∆Em mean part of ∆ε4 ) denotes the ”elastically calculated” (known) final mean stress. Combining Eq. (29)
and Eq. (42), we get:

∆ε
p
m

∆εeq
=

3µ
3λ + 2µ

Σ∗m − Σ
′
m

Σ∗eq − Σ
′
eq

. (43)

Relating this equation to Eq. (33), we get

3µ
3λ + 2µ

Σ∗m − Σ
′
m

Σ∗eq − Σ
′
eq
=

p̃′′

2
Σ′21

Σ′2Σ
′
eq

sh
(

3
2
Σ′m

Σ′2

)
. (44)

The problem is reduced to the resolution of equations Eq. (31), Eq. (34), Eq. (35)2, Eq. (40), Eq. (41) and Eq.
(44) with respect to the unknowns Σ′eq,Σ

′
m,Σ

′
1,Σ
′
2,∆εeq,∆ε

p
m and ∆εm. For this, we adopt an iterative approach

with respect to the unknowns ∆εeq,∆ε
p
m,∆εm,Σ

′
1,Σ
′
2 : starting from certain initial values of these parameters,

we solve (we will see how) Eq.(31) and Eq.(44) by compared to Σ′eq and Σ′m, we deduce ∆εeq,∆ε
p
m and ∆εm

with Eq. (40 ), Eq. (41) and Eq. (35)2, then Σ′1 and Σ′2 by Eq. (34) and we iterate the process until conver-
gence.

The whole problem therefore consists in simultaneously solving equations Eq. (31) and Eq. (44) with respect
to Σ′eq and Σ′m, the other parameters being assumed to be known. For this, we use the following parametriza-
tion (inspired by that of an ellipse) of the flow surface Eq. (31): Σ

′
eq = (1 − p̃′)Σ′lcosφ

Σ′m =
2
3Σ
′
2sgn(φ)Arg sh

[
1 + (1−p̃′)2

2p′ sin2φ
]
.

(
−
π

2
≤ φ ≤

π

2

)
. (45)

4The notation Em is used here to avoid confusion with the hardening parameter εm .
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The problem is then to solve the following equation, taken from Eq. (44), with respect to the unique variable
φ:

F(φ) = a
[
Σ∗m − Σ

′
m(φ)

]
cosφ p̃′′

[
Σ∗eq − Σ

′
eq(φ)

]
sh

[
3
2
Σ′m(φ)

]
Σ′2

]
= 0 (46)

where

a ≡ 2
(
1 − p̃′

) Σ′2
Σ′1

3µ
3λ + 2µ

(47)

It is sufficient for that to use the method of Newton; one easily calculates for this purpose:

F(φ) = − sinφ

a
Σ∗m − Σ′m(φ) +

2 (1 − p̃′)2 Σ′2 cos2 φ

3 p̃′sh
(

3
2
Σ′m(φ)
Σ′2

)


+ p̃′′
(
l − p̃′

)
Σ′l sh

(
3
2
Σ′m(φ)
Σ′2

)
+

p̃′′

p̃′
(
1 − p̃′

)2
[
Σ∗eq − Σ

′
eq(φ)

]
cosφ coth

(
3
2
Σ′m(φ)
Σ′2

))
.

(48)

Most of the numerical solution therefore consists of two nested loops, the outer loop carrying out the iterations
on the parameters Σ′l ,Σ

′
2,∆εeq,∆ε

p
m and ∆εm, the inner loop solving Eq.(46) by the Newton’s method. Once this

calculation is complete, the program evaluates the local porosity increment ∆ f1 using the following discretized
version of equations Eq. (11) and Eq. (23):

∆ f1 = ∆ flc + ∆ flg, ∆ flc = 3
(
1 − f̃ ′

)
∆ε

p
m, ∆ flg = Aεeq.

Let us now indicate the modifications made by taking into account temperature variations and major trans-
formations. It is then necessary to add the increment of thermal deformation ∆εt in the second member of
Eq.(28). In addition, equations Eq. (29) and Eq.(30) should be replaced by:

∆s + (∆s)J or M ≡ 2µ′∆ee +
∆E
E

s, (∆s)J or M ≡ Σ · ∆Ω − ∆Ω · Σ

∆Σm =
(
3λ′ + 2µ′

)
∆εe

m +
∆E
E
Σm

(49)

where ∆Ω = Ω∆t represents the rotation increment5. In these equations, the Lamé coefficients λ′ and µ′ are
taken at time t + ∆t, but the Young’s modulus E and the stresses Σ, s,Σm at the time t.

5Note that the expression of ∆Σm does not include a corrective term da to the objective derivative; this is because the trace Σ ·Ω−Ω ·Σ
is zero (consequence of = tr(A · B)= tr(B · A))
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The approach is then the same as before, but adding s− (∆s)J or M to the two members of Eq. (49)1 instead
of s; the equations obtained are the same as before provided that expressions Eq.(39) and Eq.(41) of s∗ and
Σ∗m are modified as follows:

s∗ = s + 2µ′∆ee − (∆s)J or M +
∆E
E

s,

Σ∗m = Σm + (3λ′ + 2µ′)
(
∆Em − ∆ε

t
m
)
+
∆E
E
Σm.

(50)

The rest of the resolution is unchanged except for these changes (and the λ → λ′ and µ → µ′ substitu-

tions.) In practice, the corrective terms −(∆s)J or M,
∆E
E

s, −
(
3λ′ + 2µ′

)
∆εt and

∆E
E
Σm are added to s∗ and

Σ∗m.
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4.3.3. Stress correction - case of kinematics hardening
The discretized equations of the problem are written here, with notations analogous to those of the

isotropic case:

∆ε = ∆εe + ∆εp + εt

∆s + (∆s)J or M = 2µ′∆ee +
∆E
E

s,

∆Σm =
(
3λ′ + 2µ′

)
∆εe

m +
∆E
E
Σm



Σ′2eq

Σ′20
+ 2 p̃′ch

(
3
2
Σ′m − α

′
m

Σ′0

)
− l − p̃′2 = 0

Σ′eq =

[
3
2

(
s′ij − a′ij

) (
s′ij − a′ij

)] 1
2


∆ep =

3
2
∆εeq

Σ′eq

(
s′ − a′

)
,

∆ε
p
m =

p̃′′

2
Σ′0

Σ′eq
sh

(
3
2
Σ′m − α

′
m

Σ′0

)
∆εeq .



∆a + (∆a)J or M =
2
3

(
∆α̃eq

∆εeq

)
T
∆eP +

1
α̃eq

(
∆α̃eq

∆θ

)
a∆θ,

(∆a)J or M = a · ∆Ω − ∆Ω · a

∆αm =

(
∆α̃m

∆εm

)
T
∆ε

p
m +

1
α̃m

(
∆α̃m

∆θ

)
αm∆θ


α̃eq ≡ α̃eq

(
εeq, εm, θ

)
, α̃m ≡ α̃m

(
εeq, εm, θ

)
∆εeq =

(
2
3
∆ep

ij · ∆ep
ij

) 1
2

,∆εm =
∣∣∣∆εp

m

∣∣∣

(51)

As usual, the secants
(
∆α̃eq

/
∆εeq

)
T

and
(
∆α̃m

/
∆εm

)
T

are taken has the final temperature θ′, and the se-

cants
(
∆α̃eq

/
∆θ

)
and

(
∆α̃m

/
∆θ

)
has the initial

(
εeq, εm

)
deformation. Moreover, the first two secants are taken

at constant triaxiality equal to the initial triaxiality T = εm/εeq.

Adding s − (∆s)J or M − a − ∆a to both members from Eq.(51)2,3 we get

s′ − a′ ≡ s + ∆s − a − ∆a = s + 2µ′∆ee − (∆s)J or M +
∆E
E

s − a − ∆a
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which yields, taking into account Eq.(51)1, Eq.(51)7, Eq.(51)9:

s′ − a′ = s + 2µ′∆e − (∆s)J or M +
∆E
E

s − a −
2
3

(
∆α̃eq

∆εeq

)
T

3
2
∆εeq

Σ′eq

(
s′ − a′

)
(52)

+ (∆a)J or M −
1
α̃eq

(
∆α̃eq

∆θ

)
a∆θ − 2µ′

3
2
∆εeq

Σ′eq

(
s′ − a′

)
.

Assuming

s∗ = s + 2µ′∆e − (∆s)J or M +
∆E
E

s − a + (∆a)J or M −
1
α̃eq

(
∆α̃eq

∆θ

)
a∆θ (53)

(s∗ is a known quantity), this is written

s′ − a′ = s∗ −
[
3µ′ +

(
∆α̃eq

∆εeq

)
T

]
∆εeq

Σ′eq

(
s′ − a′

)
(54)

equation which shows that s′ − a′ and s∗ are parallel and reduces, as in the isotropic case, the computation
from ∆ep to that of ∆εeq. Moreover, taking the Von Mises function of the two members, we obtain by setting

Σ∗eq =

(
3
2

s∗ijs
∗
ij

) 1
2

. (55)

the equation

Σ∗eq − Σ
′
eq =

[
3µ′ +

(
∆α̃eq

∆εeq

)
T

]
∆εeq, (56)

analogous to Eq. (40) of the isotropic case.

Similarly, adding Σm − αm − ∆αm to both sides of Eq.(51)3 , we obtain :

Σ′m − α
′
m ≡ Σm + ∆Σm − αm − ∆αm = Σm +

(
3λ′ + 2µ′

)
∆εe

m +
∆E
E
Σm − αm − ∆αm, (57)

which yields, taking into account Eq.(51)1 and (51)8:

Σ∗m −
(
Σ′m − α

′
m
)
=

[
3λ′ + 2µ′ +

(
∆α̃m

∆εm

)
T

]
∆ε

p
m, (58)

where Σ∗m denotes the (known) quantity defined by :

Σ∗m = Σm +
(
3λ′ + 2µ′

) (
∆Em − ∆ε

t
m

)
+
∆E
E
Σm − αm −

1
α̃m

(
∆α̃m

∆θ

)
αm∆θ; (59)

Eq. (58) is analogous to Eq. (41) in the isotropic case. Now combining Eq.(51)5, Eq.(56) and Eq.(58), we get:

3µ′ +
(
∆α̃eq

∆εeq

)
T

3λ′ + 2µ′ +
(
∆α̃m
∆εm

)
T

Σ∗m −
(
Σ′m − α

′
m
)

Σ∗eq − Σ
′
eq

=
p̃′′

2
Σ′0

Σ′eq
sh

(
3
2
Σ′m − α

′
m

Σ′0

)
, (60)
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equation analogous to Eq. (44).

From there, we adopt an iterative resolution method, as in the case of isotropic work hardening starting
from initial values of the parameters:

∆εeq, ∆ε
p
m, ∆εm,

(
∆α̃eq

∆εeq

)
T
,

(
∆α̃m

∆εm

)
T

, (61)

we start by solving the equations Eq.(51)2 and Eq. (60) with respect to Σeq and Σ′m−α
′
m; as these equations are

identical to those Eq.(31) and Eq. (44) of the isotropic case on condition of replacing Σ′1,Σ
′
2, 3µ, 3λ+2µ,Σ′mwith

Σ′0,Σ
′
0, 3µ

′ +

(
∆α̃eq

∆εeq

)
T
, 3λ + 2µ +

(
∆α⃗m

∆εm

)
T
,Σ′m − α

′
m, (62)

it suffices to employ the same method with these substitutors; then we draw ∆εeq,∆ε
p
m and ∆εm from Eq. (56),

Eq. (58), Eq. (35)2, we deduce(
∆α̃eq

∆εeq

)
T

and
(
∆α̃m

∆εm

)
T

(63)

thanks to Eq. (51)11 and we iterate the process until convergence.

When this calculation is finished, it is not only necessary to calculate, as in the isotropic case, the local
increment of porosity ∆ f1, but also to evolve a and αm according to formula Eq. (51)6,7,8.

4.3.4. Stress correction - case of mixed isotropic / kinematic Hardening
The discretized equations of the problem are the same as in the kinematic case, with the exception of Eq.

(51)2,3 and Eq. (51)4,5 which are written here:

Σ′2eq[
ρΣ′0 + (1 − ρ)Σ′1

]2 + 2p̃′ch

3
2

Σ′m − ρα
′
m

ρ
(
Σ′0 + (1 − ρ)Σ′2

)  − 1 − p̃2 = 0,

Σ′eq ≡

[
3
2

(
s′ij − ρa

′
ij

) (
s′ij − ρa

′
ij

)] 1
2

.

(64)



∆ep =
3
2
∆εeq

Σ′eq

(
s′ − ρa′

)
,

∆ε
p
m =

p̃′′

2

[
ρΣ′0 + (1 − ρ)Σ′1

]2[
ρΣ′0 + (1 − ρ)Σ′2

]
Σ′eq

sh

3
2

Σ′m − ρα
′
m[

ρΣ′0 + (1 − ρ)Σ′2
] ∆εeq

(65)

In these equations, Σ′1 and Σ′2 are given by:

Σ′1 ≡ Σ1(ε′eq, ε
′
m, θ

′), Σ′2 ≡ Σ2(ε′eq, ε
′
m, θ

′).
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We do not repeat here the whole approach and we will content ourselves with indicating how the final equa-
tions must be modified with respect to the kinematic case: Eq.(53) and Eq. (59) become

s∗ = s + 2µ′∆e − (∆s)J or M +
∆E
E

s − ρa + ρ(∆a)J or M −
1
α̃eq

(
∆α̃eq

∆θ

)
ρa∆θ (66)

Σ∗eq − Σ
′
eq =

[
3µ′ + ρ

(
∆α̃eq

∆εeq

)
T

]
∆εeq (67)

and the equations Eq.(58) and Eq.(54)

Σ∗m −
(
Σ′m − ρα

′
m
)
=

[
3λ′ + 2µ′ + ρ

(
∆α̃m

∆εm

)
T

]
∆ε

p
m (68)

Σ∗m = Σm +
(
3λ′ + 2µ′

) (
∆Em − ∆ε

t
m

)
+
∆E
E
Σm − ραm −

1
α̃m

(
∆α̃m

∆εm

)
ραm∆θ, (69)

and the equation Eq.(60).

3µ′ + ρ
(
∆α̃eq

∆εeq

)
T

3λ′ + 2µ′ + ρ
(
∆α̃m
∆εm

)
T

Σ∗m −
(
Σ′m − ρα

′
m
)

Σ∗eq − Σ
′
eq

=
p̃′′

2

[
ρΣ′0 + (1 − ρ)Σ′1

]2[
ρΣ′0 + (1 − ρ)Σ′2

]
Σ′eq

sh
(

3
2
Σ′m − ρα

′
m

ρΣ′0 + (1 − ρ)Σ′2

)
(70)

The system of the two equations Eq. (51)2,3 and Eq.(60) is solved with respect to the unknowns Σ′eq and
Σ′m − ρα

′
m by the same method as in the isotropic case ( equations Eq.(45), Eq.(46 ), Eq.(47), Eq.(48) ), with

the substitutions

• Σ′1 → ρΣ
′
0 + (1 − ρ)Σ′1

• Σ′2 → ρΣ
′
0 + (1 − ρ)Σ′2,

• 3µ→ 3µ′ + ρ
(
∆α̃eq/∆εeq

)
T
,

• 3λ + 2µ→ 3λ′ + 2µ′ + ρ (∆α̃m/∆εm)T ,

• Σ′m → Σ
′
m − ρα

′
m.

The rest of the resolution is the same as in the kinematic case. Note that in practice, the substitutions:

• Σ′1 → ρΣ
′
0 + (1 − ρ)Σ′1 ,

• Σ′2 → ρΣ
′
0 + (1 − ρ)Σ′2,

• α̃eq → ρα̃eq:

• α̃m → ρα̃m.
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4.4. Particular Cases

The first particular case is that, classic, of the elastic unloading: if the quantity

Σ∗2eq

Σ′21
+ 2 p̃′ sh

(
3
2
Σ∗m

Σ′2

)
− 1 − p̃′2 (71)

(or the analogous quantities if work hardening is kinematic or mixed) is negative, there is discharge, therefore
∆εeq = ∆ε

p
m = ∆εm = 0,∆ f1 = 0 and there is no need to perform constraint correction. The second is that

of the closing of the cavities. Examining this possibility requires comparing the porosity to its initial value f0.
Given the explicit nature of the algorithm used with respect to this parameter, it makes sense to test not the
true porosity f ′ at time t + ∆t (which is known only at the end of the computation, after the convergence of
the double iterative process), but on its approximation f̃ ′ given by Eq.(36). The reclosing test is therefore

the conjunction of the inequalities f̃ ′ ≤ f0 and sh < 0, where sh denotes the hyperbolic sine of
3
2
σ∗m
σ′2

or

analogous quantities. If this test is carried out, it is considered that the criterion is that of Von Mises and the
flow rule, that naturally associated (⇔ p̃′ = p̃′′ = 0 in the previous equations).

The third special case, in a way diametrically opposed to the previous one, is that of total damage, that
is to say the one where the porosity becomes so high that p exceeds 1. In this case, the material is totally
ruined. It is then enough, instead of performing the constraint correction as indicated above, to cancel Σ′. The
calculation of the evolution of the hardening parameters is not necessary, the material remaining by hypothe-
sis ruined later6, but it is necessary all the same to continue to calculate the local increment of porosity ∆ f1,
because it influences, in the event of relocation of the damage, the evolution of the porosity at the close points,
the knowledge of which remains a priori necessary because these points may not themselves be ruined.

The last special case is that of sudden germination (decohesion of the metallic matrix around the inclu-
sions). To treat this case, it is necessary to maintain at 0 the porosity (even, in the case of the delocalization
of the damage, if that of the neighboring points already evolves) as long as the criterion Eq.(90) is not carried
out. As soon as it becomes so, it is necessary to set f = f0 and to continue the calculation normally.

4.5. Numerical treatment of the damage delocalization

This proceudre uses an array AF(I, J). The first index varies from 1 to 6, the second from 1 to the total
number of Gauss points concerned by the delocalization (it identifies the Gauss point). The meanings of the
different quantities AF(I, J) are as follows:

• AF(1, J),AF(2, J),AF(3, J): Current coordinates of Gaussian point J;

• AF(4, J) : Local porosity increment (between times t and t + ∆t ) at the Gaussian point J;

• AF(5, J): Real increment (after convolution) of porosity at the Gaussian point J;

• AF(6, J): Gauss point weight (for integration).

6For this purpose, in the program, f is prevented from decreasing again if p has reached or exceeded the value 1.
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The calculation procedure is as follows: at all the iterations and for all the Gauss points, the a program is used
to calculate the coordinates and the weight of the Gauss point and stores them in AF(1 − 3, J) and AF(6, J). It
also calls the a sub-program, which evaluates

the local porosity increment; the latter is stored in AF(4, J). Once the convergence on the nodal imbal-
ances has been obtained, another program is called which, thanks to a double loop on the Gauss points,
performs the convolution operation. The actual porosity increment at the point J, stored in AF(5, J), is trans-
mitted to a program, which performs the final operation of calculating and storing the porosity at time t and
t + ∆t .

4.6. Correction of the mean part of the deformation rate
The first tests of the program made appear a difficulty which is not specific to the ductile fracture but

arises in a general way in elastoplasticity large deformations. This difficulty consists of an inaccuracy in the
calculation of the average part of the rate of total deformation (which affects, via the law of elasticity or the
law of plastic flow in the case of the ductile damage, the average stress). The origin of this inaccuracy is as
follows. Between two times of calculation t and t + ∆t, the algorithm employed uses a formulation linearized
compared to the increment of displacement ∆u; thus the increment of deformation is given by the formula:

∆εij =
1
2

(
∂∆ui

∂xj
+
∂∆uj

∂xi

)
(72)

where the xi designate the coordinates at time t + ∆t. Similarly, the average strain is taken equal to

∆Em =
1
3
∂∆ui

∂xi
. (73)

The problem stems from the fact that due to quasi-incompressibility (compressibility is only due to elasticity
and possibly damage, which, at least at the beginning of mechanical history, is weak), ∆Em is small compared
to each of ∆εij. As a result, the neglected second-order terms in the above formulas, although indeed small
compared to each of ∂∆ui/∂xj, are not small compared to the sum ∂∆ui/∂xi, and that it is therefore illegal to
delete them in the expression of ∆Em.

We have therefore decided to calculate the deviatoric part ∆e of the total deformation increment using a
linearized formula, but its average part ∆Em exactly . To do this, we evaluate the variation in volume between
the instants t and t + ∆t using the exact formula:

v
v + ∆v

= det
(
δij −

∂∆ui

∂xj

)
(74)

7 and then ∆Em by

3∆Em =
∆v
v
=

1

det
(
δij −

∂∆ui
∂xj

) − 1 (76)

7It would seem more natural to use the formula instead:
v + ∆v

v
= det

(
δij +

∂∆ui

∂Xj

)
(75)

where the xj denote the coordinates at time t. But this would be more delicate because in practice, when passing from instant t to instant
t + ∆t , only the coordinates

(
xj

)
at time t + ∆t (and associated shape functions), and not of those

(
Xj

)
at time t.
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This formula, linearized with respect to ∆v
/
v, poses no problem because ∆v

/
v is effectively small (only the

expansion of ∆v
/
v to the first order according to the ∂∆ui

/
∂xj, that the we are careful here not to perform,

would pose one).

5. Numerical implementation at finite strain

Writing constitutive equations for elastic-plastic large deformation for metals requires a temporary objec-
tive derivative ( i.e. independent of the two reference in which it is evaluated); this derivative intervenes on
one hand in the hypo-elasticity law, and on the other one, in the case of kinematics hardening, in the evolution
equation of the center of the domain of elasticity.

In the formulation adopted in many finite elements codes, the derivative chosen was the most simple one,
the Jaumann Derivative, defined by (considering for example the derivative of the Cauchy stress tensor Σ):

Σ̂ = Σ̇ + Σ.Ω −Ω.Σ (77)

where Ω defines the rate of rotation given by

Ω =
1
2

(
∇xU − t∇xU

)
⇔ Ωij =

1
2

(
∂Ui

∂xj
−
∂Uj

∂xi

)
(78)

( x, current position vector; U the speed). The use of this derivative to calculate the behavior in simple shear
gives rise to oscillations of the shear stress as function of the strain. Although this prediction only concerns
very large deformations and, consequently, no experiment has ever come to demonstrate its unrealistic char-
acter, it is considered unsatisfactory, at least for the spirit, by many authors. It therefore seems desirable, to
prevent criticism which is always possible, to offer the user of our finite element code the possibility of using
another derivative not subject to this drawback.

A possible choice, suggested by Fressengeas and Molinari [16], is to adopt the Green-Naghdi derivative
defined by the same formula as in Eq.(77) above, but Ω being given here by

Ω = Ṙ.R−1 (79)

where R denotes the polar decomposition of the gradient of deformation F. We recall that this term denotes
a multiplicative decomposition of F of the form

F = R.S (80)

where R is a rotation matrix and S is a symmetric matrix
(tS = S

)
. Similarly, F admits the decomposition

F = S̃.R (81)

where S̃ is another symmetric matrix but R the same rotation matrix. The matrices R,S, S̃ are defined unequiv-
ocally if it is specified that they vary continuously and that at the initial time (where F = I ), R = S = S̃ = I.
We describe here the numerical implementation associated with the choice of this derivative and integrated
in our finite element code.
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5.1. Calculations of F−1 at the times t and t + ∆t

The whole problem is to calculate the discretized Green-Naghdi rotation rate Ω∆t ≡ ∆Ω = ∆RR−1 (we
then deduce for example the discretized Molinari stress rate ∆Σ ≡ ∆Σ+Σ∆Ω−∆ΩΣ). This requires calculating
the rotations R(t) ≡ R and R(t + ∆t) ≡ R′ (or R and ∆R = R′ − R ), and for this the deformation gradients
F(t) ≡ F and F(t + ∆t) ≡ F′.

The formula giving F′ is written:

F′ =
∂x′

∂X
= I +

∂u′

∂X
⇔ F′ij = δij +

∂u′i
∂X′j

(82)

where X denotes the position vector at the time 0, x′ the position vector at time t + ∆t and u′ the displace-
ment vector at this time (u′ = x′ −X). However, the use of this formula poses a problem because, when going
from the time t to the time t + ∆t, we only have the shape functions relative to the final coordinates x′i (which
prohibits evaluating the derivatives with respect to the initial coordinates Xi ). It is therefore more convenient
to calculate the inverse of F′ using the formula

F′−1 =
∂X
∂x′
= I −

∂u′

∂x′
⇔ F′−1

ij = δij −
∂u′i
∂X′J

(83)

Of course, it is in fact the discretized version of this equation that we use:

F′−1
ij = δij −

∑
p

∂Np (x′)
∂x′j

u′i(p) (84)

where the sum is extended to all the nodes of the mesh to which the considered (Gaussian) point belongs,
and where Np (x′) and u′(p) denote respectively the shape function associated with the node p and the dis-
placement (at time t + ∆t ) of this node. The inverse of F can be evaluated as follows:

F−1 =
∂X
∂x
=
∂X
∂x′
.
∂x′

∂x
= F′−1.

(
I +
∂∆u
∂x

)
.F′−1.

(
I +
∂∆u
∂x′

)
⇔ F−1

ij = F′−1
ik .

δkj +
∂∆uk

∂x′j

 (85)

where x denotes the position vector at the time t and ∆u the increment of displacement between the times t

and t + ∆t (∆u = u′ − u, u ≡ move at the time t). The error made by replacing ∂∆u
/
∂x by ∂∆u

/
∂x′ is negligible

because of the second order in ∆t whereas the algorithm used is of the first order. The derivatives ∂∆uk

/
∂x′j

are of course still evaluated here using the gradients of the shape functions (relative to the coordinates x′i ).

5.2. Two Dimensional Case

We must now calculate R and R′, or R and ∆R, and the discretized rotation rate ∆Ω. We are going to
distinguish here the two-dimensional and three-dimensional cases, because we will not proceed in the same
way in the two cases (direct calculation of R and R without storage in the two-dimensional case, calculation
of R and ∆R with storage of R in the three-dimensional case). Let us consider first the two-dimensional case.
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Since we do not know F and F′ directly but their inverses, it is convenient to consider the polar decompositions
of these inverses:

F−1 = R.S = S̃.R, F′−1 = R′.S′ = S̃′.R′ (86)

where R and R′ are the rotation matrices, S, S̃,S′, S̃′ symmetric matrices . The quantities R and R′ are none
other than the inverses of R and R′ : indeed, for F for example, we have:

F−1 = S̃ .R ⇒ F = R−1.S̃−1; (87)

the comparison with Eq.(81) and the uniqueness of R and S show that R−1 = R. If we know how to calculate
R and R′, we can easily deduce the discretized rotation rate:

∆Ω = ∆R.R−1 � ∆R.R′−1 =
(
R′ − R

)
.R′−1 = 1 − R.R′−1 = 1 − R−1.R′. (88)

The problem is therefore reduced to the calculation of the rotations R and R′ or to that, equivalent, of the
matrices S and S′, of the polar decompositions of F−1 and F′−1. Consider for example that of F−1. Let us
introduce the matrix of dilatations (symmetric and known)

C = tF−1.F−1. (89)

Thus, we have

C = t(R.S).R.S = tStR.R.S = S2. (90)

Thus S appears as the square root of C. This square root is uniquely defined given the requirements that it
is symmetric, a continuous function of time (like C) and identical to the identity at the initial time. Let assume
that :

C =

[
a b
b c

]
; S =

[
α β
β γ

]
(91)

The matrix equation C = S2 is then written:
α2 + β2 = a

β(α + γ) = b

β2 + γ2 = c

. (92)

In addition, the matrix equation C = (det(S))2 is then written as:

∆ ≡ ac − b2 = (αγ − β)2 ⇒ αγ − β2 =
√
∆, (93)

the choice of the sign in front of the radical results from the continuity and that initially, ∆ = 1, α = γ = 1, β = 0.
Adding this result to Eq.(B.2)1 on one hand, Eq.(B.2)3 on the other hand, we obtain:

α(α + γ) = a +
√
∆

γ(α + γ) = c +
√
∆

(94)
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the addition of these equations gives (α + γ)2 = a + c + 2
√
∆, i.e. α + γ =

√
a + c + 2

√
∆ given that initially,

a = c = 1,∆ = 1, α = γ = 1. Transferring this result to Eq.(B.5) and Eq.(B.2)2, we finally obtain:

α =
a +
√
∆√

a + c + 2
√
∆

β =
b√

a + c + 2
√
∆

γ =
c +
√
∆√

a + c + 2
√
∆

(95)

These equations allow the calculation of S as a function of C. The expression of R follows immediately thanks
to the formula R = F−1.S−1.

5.3. The Three Dimensional Case

We have seen, in the two-dimensional case, that the calculation of R or S is equivalent to that of the square
root of C, itself fundamentally equivalent to the diagonalization of this matrix. In the two-dimensional case,
this results in painless extractions of square roots. In the three-dimensional case, it is a question of solving an
equation of the 3rd degree, which is more unpleasant and costly in computing time. We therefore use another,
faster method, consisting of an incremental calculation of R (and R′ ) and requiring storage, Gauss point by
Gauss point , of R. This method would indeed also lead to faster calculations in the two-dimensional case,
but its use is not possible in this case because of the need to store R.

5.3.1. Calculation of the rotation from the rotation vector

In fact, the storage of the rotation matrix itself is less economical (9 quantities to store) and redundant,
the coefficients being related due to the relationship tR.R = R.tR = I. The most economical way to proceed8

consists in storing the 3 components of the rotation vector V defined by:

V = Θv (96)

where Θ denotes the angle of rotation and v the unit vector parallel with the axis of rotation. Θ is a priori
defined modulo 2π, but it is obvious that we can change the sign of Θ and v without modifying R; there is
therefore uniqueness of Θ and v only if it is specified that Θ is in the interval [0, π].

The first problem that arises is therefore to reconstruct the rotation matrix R from the rotation vector V. For
this, let us calculate the image, by the rotation R, of any vector W. The projection of W on the axis of rotation

8A classic method is to store the quaternion associated with the rotation; but this quaternion has 4 components instead of 3.
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is (v.W) v =
1
Θ2 (V.W) V; this projection is rotation invariant. The projection of W on the plane perpendicular

to the axis of rotation is W′ =W − 1
Θ2 (V.W)V; after rotation, this projection becomes:

cosΘW′ + sinΘv ∧W′ = cosΘ
[
W −

1
Θ2 (V.W)V

]
+

sinΘ
Θ

V ∧
[
W −

1
Θ2 (V.W)V

]
(97)

(98)

= cosΘ
[
W −

1
Θ2 (V.W)V

]
+

sinΘ
Θ

V ∧W. (99)

In total, W thus becomes, after rotation,

RW =
1 − cosΘ
Θ2 (V.W)V + cosΘW +

sinΘ
Θ

V ∧W. (100)

The components of R are therefore given, given that (V ∧W)i = εikj.VkWj where ε denotes the permutation
tensor (completely anti-symmetric), by the formula:

Rij =
1 − cosΘ
Θ2 ViVj + cosΘδij +

sinΘ
Θ
εikjVk,Θ ≡ ||V|| (101)

5.4. Calculation of the discretized rate of rotation vector

We now come to the central problem, which is to calculate, from the knowledge of R,F−1,F′−1, the dis-
cretized rotation rate ∆Ω = ∆R.R−1, or rather the associated discretized rotation rate vector ∆ω, defined
by:

∀W : ∆Ω.W = ∆ω ∧W (102)

To some terms in (∆t)2, ∆ω = Ṙ.R−1 is anti-symmetric; to any such matrix A is associated a vector a such that
∀W,A.W = a ∧W.

From R,F−1,F′−1, we easily form the matrices{
∆M = R.

(
F−1 − F′−1

)
S̃−1 = R.F−1 (103)

(S̃−1 is none other than the inverse of the matrix S̃ of the polar decomposition Eq.(81)’ ). Let ∆S̃ = S̃′ − S̃,
where S̃′−1 denotes the symmetric matrix of the polar decomposition Eq.(81) ) at the time t + ∆t.
We have

S̃′−1 = (S̃ + ∆S̃)−1 =
[
S̃.

(
I + S̃−1.∆S̃

)]−1
�

(
I − S̃−1.∆S̃

)
S̃−1 (104)

Therefore:

∆M = R.
(
F−1 − F′−1

)
= R.

[
tR.S̃−1 −

(
tR + t∆R

) (
S̃−1 − S̃−1∆S̃.S̃−1

)]
� R.

(
tR.S̃−1∆S̃.S̃−1 − t∆R.S̃−1

)
= S̃−1.∆S̃.S̃−1 − Rt∆R.S̃−1

= S̃−1.∆S̃.S̃−1 + ∆Ω.S̃−1

(105)
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As a consequence

∆M − t∆M = ∆Ω.S−1 + S̃−1.∆Ω (106)

Let ∆m be the (known) vector associated with the anti-symmetric matrix ∆M − t∆M. We then have ∆Mij −

∆Mji = εikj∆mk, and likewise ∆Ωij = εikj∆ωk. The previous equation is therefore written as:

εikj∆mk = ∆ΩikS̃ −1
kj + S̃−1

ik ∆Ωkj = εilk∆ω1S̃ −1
kj + S̃−1

ik εklj∆ωl (107)

Multiplying on the right and on the left by εijp we obtain

εikjεijp∆mk = −εijkεijp∆mk = −2δkp∆mk = −2∆mp

= εilkεijp∆ω1S̃−1
kj + εkljεijpS̃−1

ik ∆ω1

=
(
δljδkp − δlpδkj

)
S̃−1

kj ∆ω1 +
(
δkpδli − δki · δlp

)
S̃−1

ik ∆ω1

= S̃−1
pj ∆ωj − S̃−1

jj ∆ωp + S̃−1
ip ∆ωi − S̃−1

ii ∆ωp

= 2S̃−1
pj ∆ωj − 2S̃ −1

jj ∆ωp

⇒ ∆mp =
[(

trS̃−1
)
δpj − S̃−1

pi

]
∆ωj,

(108)

This can be written as:

∆m =
[(

trS̃−1
)

I − S̃−1
]
.∆ω (109)

Thus we can obtain the discretized rotation rate vector ∆ω from ∆m (i.e. ∆M ) by simply inverting a matrix
3 × 3 (which is much less expensive in calculation time than a diagonalization):

∆ω =
[(

trS̃−1
)

I − S̃−1
]
.∆m. (110)

We then easily deduce the discretized rotation rate ∆Ω by the formula ∆Ωij = εikj∆ωk.

5.4.1. Calculation of the rate of the rotation vector
The vector ∆ω being known, it is necessary to calculate and store the rotation R + ∆R at the time t, or

more precisely the vector of rotation V + ∆V at this time t.

An additional advantage here is storing V + ∆V rather than R + ∆R. In the second case, since the
step ∆t is not, numerically, infinitely small, the calculation of ∆R inevitably leads to a matrix R + ∆R which
is no longer strictly orthogonal. In the first, on the contrary, regardless of the vector V + ∆V calculated, the
use, at the next time step, of the formula Eq.(B.5 )with this rotation vector leads to a strictly orthogonal matrix.

To calculate ∆V, let us rewrite Eq.(B.4) with the unit vector W instead of the vector V = Θv, and differenti-
ate it with respect to time, W being assumed fixed:

R.W = (1 − cosΘ)(v.W)v + (cosΘW + sinΘv ∧W)
⇒ ∆R.W = ∆ΘsinΘ(v.W)v + (1 − cosΘ)(∆v.W)v + (1 − cosΘ)(v.W)∆v
− ∆ΘsinΘW + ∆ΘcosΘv ∧W + sinΘ∆v ∧W
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Let us apply this relation to the vector W = v as ∆v.v = 0 ( v being unitary at any time), we obtain:

∆Rv = ∆Θ.sinΘv + (1 − cosΘ)∆v.∆Θ.sinΘv + sinΘ(∆v) ∧ v
= (1 − cosΘ)∆v + sinΘ(∆v) ∧ v

Now, for any vector W, we have ∆R.R−1 W = ∆Ω.W = ∆ω ∧W. For W = v, we have R−1.v = v ( v is carried
by the axis of rotation) and therefore ∆R.v = ∆ω ∧ v. The previous equation is therefore written as:

∆ω ∧ v = (1 − cosΘ)∆v + sinΘ (∆v) ∧ v. (111)

Let us take the cross product of this equation and the vector v; taking into account the formula of the
double cross product, we obtain:

(∆ω.v)v − ∆ω = (1 − cosΘ)(∆v) ∧ v − sinΘ∆v. (112)

So we have both:
(1 − cosΘ)∆v + sinΘ (∆v) ∧ v = ∆ω ∧ v

− sinΘ∆v + (1 − cosΘ)(∆v) ∧ v = (∆ω.v)v − ∆ω
(113)

Solving this system with respect to the unknown quantity ∆v and (∆v) ∧ v immediately gives:

∆v =
1
2
∆ω ∧ v +

sinΘ
2(1 − cosΘ)

∆ω −
sinΘ

2(1 − cosΘ)
(∆ω.v)v

=
1
2
∆ω ∧ v +

1 + cosΘ
2sinΘ

∆ω −
1 + cosΘ

2sinΘ
(∆ω.v)v

(114)

Note that we were thus able to evaluate ∆v without calculating ∆Θ. However, it is ∆V, and not ∆v, that we
want to know; as V = Θv, we have

∆V = ∆Θv + Θ∆v =
∆Θ

Θ
V +

1
2
∆ω ∧ V +

Θ(1 + cosΘ)
2sinΘ

∆ω −
1 + cosΘ
2ΘsinΘ

(∆ω.V)V. (115)

To calculate ∆Θ as a function of ∆ω, note that Eq.(B.5) implies that trR = 1+ 2cosΘ; thus,tr(∆R) = −2∆ΘsinΘ.
But

(
∆R.R−1

)
ij
= ∆Ωij = εikj∆ωk. From there we get

∆Ril =
(
∆R.R−1

)
ij

Rj1 = εikj∆ωkRj1

⇒ tr(∆R) = ∆Rii = εikj∆ωk

(
1 − cosΘ
Θ2 VjVi + cosΘδji +

sinΘ
Θ
εjmiVm

)
= εikjεjmi

sinΘ
Θ
∆ωkVm = −2δkm

sinΘ
Θ
∆ωkVm = −2

sinΘ
Θ
∆ω.V;

(116)

where

∆Θ =
1
Θ
∆ω.V (117)
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Transferring this result to the previous expression of ∆V, we finally get

∆V =
1
2
∆ω ∧ V +

Θ (1 + cosΘ)
2sinΘ

∆ω +

[
1
Θ2 −

1 + cosΘ
2ΘsinΘ

]
(∆ω.V)V (118)

This formula allows the incrementation of the vector V. If, after the incrementation, the norm of this vector
exceeds π, we correct this last modulo 2πv, i.e. we perform the substitution

V→ V − 2πv =
(
1 −

2π
||V||

)
V (119)

(which is equivalent to replacing θ by 2π − Θ and v by - v ).

5.5. Example: simple shear
We consider the typical example of a rigid plastic material, with linear kinematic work hardening, subjected

to a stress of simple shear. The relations between the initial coordinates Xi and current coordinates xi are
written, for this load.

x1 = X1 + γX2
x2 = X2
x3 = X3

(120)

The expression of the shear stress τ ≡ Σ12 as a function of the deformation parameter γ is given by FRESSEE-
NEAS and MOLINARI [17].

τ =
Σ0
√

3
+

h
3

[
2γ

1 + γ2/4
ln

(
1 + γ2/4

)
+

1 − γ2/4
1 + γ2/4

(
−γ + 4Arctg

γ

2

)]
, (121)

where Σ0 and h denotes the initial elastic limit and the slope of work hardening in a simple tensile test. Fig.(1)
shows the comparison of the results obtained numerically (with Σ0 = 500, h = 1000 and E = 2000000: quasi-
rigid material) and those deduced from the formula Eq.( 121 ). The agreement is excellent.

We also compared the theoretical and numerical values of Σ11; the agreement is again excellent. The
above comparison is for the two-dimensional option; a comparable agreement is obtained in the three-
dimensional option, but not shown here.

6. Applications

6.1. Generalities
We will simulate Mudry’s [19] fracture test on a pre-notched and pre-cracked round bar (TA30) made of

A508 Class 3 or 16MND5 steel. The available experimental results for comparison concern the low-alloy steel
16MND5, which is used in the fabrication of nuclear reactor vessels. For this steel, the Young’s modulus is
E = 203, 000 MPa, the Poisson’s ratio is ν = 0.3, and the initial yield strength in uniaxial tension is σy = 450
MPa.
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Figure 1: Shear stress as a function of the deformation parameter

Numerical simulations were carried out using the finite element code Systus®. In each simulation, the
value of the Tvergaard parameter q = 4/e = 1.47 was used, as determined by Perrin and Leblond [5] using a
”differential” scheme. The other damage parameters depend on the considered material and will be provided
later.

The objectives of these simulations, let us recall, are twofold: first, to verify the independence of the
numerical results with respect to spatial discretization, and second, to study the practical effectiveness of
isotropic and kinematics methods in terms of its ability to reproduce experimental results.

The constitutive relationship of this material is deduced from rational stress-strain curves. The stress-strain
curve at 100◦ C is well represented by the empirical law:

σ = 795ε0.01
p ,

as schematically shown in Figure [2]. The elastic part is not represented as it can be neglected without signif-
icantly affecting the overall mechanical behavior of the material. The initial porosity value, denoted as f0, for
this steel is determined based on a study conducted by Murdy and Rousselier [19], which takes into account
the chemical composition and inclusion state. This value is derived from the sulfur and manganese content
of the material as well as the average dimensions of the inclusions. The determined value is 0.00016.

Additionally, three damage parameters are included: fc representing the ”critical” porosity for the onset of
coalescence, δ as the accelerator factor for cavity growth, and b as the value of the characteristic length scale.
These parameters can be adjusted for each simulation, and their respective values are listed in Table A.1.

Depending on the specific case, either isotropic, kinematic, or mixed isotropic-kinematic hardening will be
employed to model the inelastic behavior. For one-off or pulsating loading cases, isotropic hardening is con-
sidered appropriate and relatively straightforward to implement in a model. In contrast, kinematic hardening
models allow for the simulation of fully cyclic behavior but do not account for cyclic hardening and softening
effects. If these factors are significant, it is recommended to use mixed-mode or combined models, as they
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Figure 2: Experimental stress vs. strain curve for the 16 MND5 steel

offer the inclusion of these effects in the constitutive material behavior, providing a more comprehensive rep-
resentation of the physical phenomena.

Due to the limited availability of experimental data for the steels under investigation in these studies, our
focus will be solely on isotropic hardening, as it is the only approach for which experimental data are available.

Achieving convergence for the global elasto-plastic iterations posed challenges. In order to maintain the
quadratic convergence rate of the global Newton iterations, it becomes necessary to incorporate stiffness
tangent moduli, especially for last scale fracture problem simulations. The calculation of these tangent moduli
is a highly intricate endeavor, particularly when dealing with constitutive models of complex nature. The
derivation of these moduli are provided in Appendix B for both the Gurson model and the Perrin’s models.

6.2. Simulation of a tensile axi-symmetric pre-notched and pre-cracked specimen.

The simulation focuses on the upper half of the specimen, taking advantage of symmetry about the horizon-
tal mid-plane. The mesh’s left boundary coincides with the axis of rotational symmetry. The specimen has
a height of 90 mm and a diameter of 30 mm. The triangular central notch at the bottom of the mesh has an
opening angle and depth of 60◦ and 5 mm, respectively. A fatigue pre-crack measuring 1.7 mm originates from
the notch root. From the tip of this pre-crack, a crack develops and propagates towards the axis of rotational
symmetry.

A general mesh of this specimen is shown in Figure 3. Advantage is taken of symmetry about the horizon-
tal mid-plane to mesh only the upper half of the structure. Figure 4 shows enlarged views of the central region
of the specimen. Near the crack tip of the initial fatigue pre-crack, identical discretizations are used to ensure
consistent representation of the initial blunting of the crack. This avoids introducing irrelevant differences in
the load-displacement curves that could interfere with the study of mesh sensitivity (for instance) due to the
constitutive model’s softening behavior.
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To refine the modeling of intense stress and strain gradients in the crack tip region, a radiant mesh design
consisting of four meshes is utilized. These four meshes employ two degenerated quadrilateral elements
and two triangular elements, with their intermediate nodes pulled back to a quarter of the distance from the
element face. The role of the quadrilateral elements is to facilitate crack tip opening and propagation.

Figure 3: General mesh of the TA30 pre-cracked specimen - Minimum elements 200 microns

Figure 5 compares the load–displacement curve generated by the model with experimental results. This
figure demonstrates that the predicted results mirror pretty well the experimental results when the delocaliza-
tion technique is applied on the log of the damage parameter. In fact, Enakoutsa et al. [4] have demonstrated
that applying a simple delocalization technique on the damage parameter results in excessive smoothing of
the porosity in the ligament near the crack type, which yields an earlier drop of the load vs. displacement

37



Figure 4: Zoom of the mesh of the TA30 specimen-Minimum element size 200 microns

curve, in contradiction with the experiments.

Figure 5: Numerical predictions vs. experiments for the TA30 pre-cracked specimen

6.3. Simulation of a Compact Tension (CT) specimen

In this section, we evaluate the effectiveness of the numerical implementation method in replicating the
fracture test conducted by [20]. The test involved a CTJ 25 specimen, made of SS 316L (also called 16MND5
steel) stainless steel, which was deformed under plane strain conditions. The discretized geometry of the
specimen is illustrated in Figure 6. To simplify the modeling process, we take advantage of the specimen’s
symmetry about the vertical mid-plane and only simulate its right half.

The CTJ 25 specimen has dimensions of 50 mm (width), 50 mm (height), and 25 mm (thickness). A rect-
angular notch with a width of 2mm is located on the top surface. However, as we move towards the notch
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root, the shape of the notch transitions into a triangular form, with an opening angle of 60◦. It is important
to note that a fatigue pre-crack, not visible in the figure, with a length of 1.34 mm originates from the notch root.

In this study, we utilize a single 2D mesh since comprehensive analysis of mesh sensitivity was conducted
in the simulations of a TA30 specimen, as described in previous works by the authors [4, 6]

Figure 6: Fine Mesh of the CTJ 25 pre-cracked specimen.

During the experiment, the use of lateral central triangular notches and the opening angle ensured that
the region where the crack propagated exhibited nearly plane strain conditions, allowing for a two-dimensional
simulation. However, because the assumption of perfect plane strain in such a simulation is not entirely ac-
curate, when comparing the simulation results to the experimental data, it is necessary to adjust the applied
experimental force by dividing it by an ”equivalent thickness” of the specimen, which slightly deviates from the
actual thickness. This matter was extensively investigated by Brosse [3], who determined a “best value” of
10.3 mm for this equivalent thickness, which is adopted in this study. The values of the material parameters
are provided in the Table A.1 in the Appendix section.

Figure 7 shows the experimental load–displacement curve (in the black points) together with the numerical
ones obtained with the inclusion of the kinematics hardening and isotropic hardening. The simulations show
that the results with the inclusion of the kinematics hardening (the results are not shown here) does not
change with respect to the isotropic hardening due to the simple tension loading conditions we apply to
obtain the numerical results. Also, the results with the numerical simulations with the non-local model (first
version) present an excessive smoothing of the porosity in the ligament ahead of the crack tip which leads
to am abrupt drop of the load-displacement curve; this can be fixed by using the ln of the evolution equation
of the porosity (see Figure 7 ) However, the discrepancy between the numerical predictions generated by
the modified non-local Gurson’s model (with isotropic hardening) and the actual experimental outcomes is
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undeniably significant, demanding an immediate attention. Nevertheless, this disparity can be decisively
mitigated through judicious adjustments to the parameters fc, representing the porosity value at the onset of
coalescence, and the cavities growth accelerator factor δ, respectively, leaving no room for compromise.

Figure 7: Comparison of experimental and computed load–displacement curves of the CT specimen.

7. Conclusion

The paper presents a comprehensive examination of the numerical implementation and assessment of
Perrin’s hardening model. The implementation covers three cases: isotropic hardening, kinematic hardening,
and mixed isotropic-kinematic hardening. Stiffness matrices of the models are derived to maintain quadratic
convergence. Large deformations are accounted for in the implementation, and the model’s performance is
evaluated by comparing experimental and numerical results in typical ductile fracture tests. The comparison
between the experimental and numerical results demonstrates a successful agreement, highlighting the effec-
tiveness of the ductile fracture accounting for hardening model in capturing the behavior of ductile materials
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under static loading conditions.
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Marie Curie (Paris VI) (in French).

[7] Enakoutsa K., and Leblond J.B. (2009). Numerical implementation and assessment of the GLPD micro-
morphic model of ductile rupture, Eur. J. Mech. A/Solids, 28, 445-460.

[8] Enakoutsa K. (2012). Some new applications of the GLPD micromorphic model for ductile fracture, Math.
Mech. Solids, 19(3), 242-259.

[9] Enakoutsa, K., Solanki, K., Ahad, F., Tjiptowidjojo, Y., and Bammann, D. (2012). Using Damage Delo-
calization to Model Localization Phenomena in Bammann-Chiesa-Johnson Metals, J. Eng. Mater. Tech.,
134(4).

[10] Enakoutsa, K., Solanki, K., Ahad, F., Tjiptowidjojo, Y., and Bammann, D. (2012). Damage smoothing
effects in a delocalized rate sensitivity model for metals, Theoretical and Applied Mechanical Letters, 2(5):
5-051005.

[11] J. Devaux, J-B. Leblond, G. Mottet, G. Perrin, Some new applications of damage models for ductile
metals, in: Application of Local Fracture/Damage Models to Engineering Problems, Proceedings of the
ASME Summer Mechanics Meeting, Tempe (USA), American Society of Mechanical Engineers, 1992.

[12] Gurson A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I - yield
criteria and flow rules for porous ductile media, ASME J. Engng. Mater. Technol., 99, 2-15.
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Appendix A. Material parameters for the simulations

The material parameters for the simulations presented in above are as follows:

E
(Mpa)

ν Σ0
(Mpa)

q f0 fc b δ

203,000 0.3 450 1.47 0.00016 0.05 0.05 0.2

Table A.1: Material parameters used for the numerical simulations on the TA and the CT specimen
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Appendix B. Calculation of the stiffness matrices

Appendix B.1. Generalities

The objective of this section is to expose the calculation of the stiffness matrices for the classical model
of ductile damage of Gurson [12], and its alternative due to Leblond-Perrin-Devaux (model LPD) [13] which
have improved the modeling of the effects of work hardening in the model which are considered in this work.

Perrin [13] presents the equations of the LPD model and its numerical implementation. Analogous pre-
sentation can be found for Gurson’s model in Enakoutsa et al. [4] and Enakoutsa [6]. With regard to the
latter, it will therefore be essential to expose in preliminary the basic equations of the model and its numerical
implementation.

The calculation of the stiffness matrix revealed a default of the numerical implementation proposed for
the LPD model (and its analogous for the model of Gurson). This default concerns the use, in the flow rule
associated with the criterion, of a porosity f

1
2 at the ”half-interval”, i.e. at time t + ∆t

2 , during the transition from
time t to time t + ∆t. The purpose of introducing this porosity was to improve the numerical precision of the
algorithm. Unfortunately it presents the serious disadvantage of dissymmetrizing the stiffness matrix in the
case of the model of Gurson (one will not seek here to justify this assertion, which would lead us too far). We
prefer a slightly different algorithm using, instead of f ′

1
2 , the final porosity (at t + ∆t) f . This leads, for Gurson

model, to a symmetric matrix. For the LPD model, the matrix obtained will unfortunately be asymmetrical
even by taking f

1
2 = f ; we will nevertheless favor this choice for the sake of homogeneity with the numerical

implementation of Gurson model.

We will not in fact calculate all the terms of the tangent-matrix but only the ”most important” ones (or at
least that we think so). Thus one will not take into account for the calculation of the stiffness matrix, the
variation of the stresses due to the variation of the temperature; this is in fact strictly licit due to the fact that
this constraint correction is carried out explicitly, using the constraints at time t and not t + ∆t, and is therefore
independent of the displacement increment ∆u between these times. We will not take into account either the
variation of the stresses due to the objective derivation in the law of hypo-elasticity, which does indeed depend
on ∆u and therefore theoretically generates a contribution in the tangent-matrix.

Similarly, we will not take into account the influence of the geometry on the residual forces ( derivation of

B with respect to ∆u in the integral
∫ t

Ω

B : Σdv ). We can summarize all this by saying that the calculation

of the stiffness matrix will be carried out by neglecting the effects of large transformations, that is to say by

limiting ourselves to the calculation of ∂Σij

/
∂∆εkl where Σ denote the stress tensor at t + ∆t and ∆ε the total

strain increment ( elastic + plastic) between t and t + ∆t. This choice is in conformity with that already made
in finite element codes for the computation of the stiffness matrix for the usual models of plasticity ( without
damage ), whose numerical experiments demonstrated the effectiveness.
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Appendix B.2. Case of the Gurson model

Appendix B.2.1. New parametrization of the yield criterion and derivation
The quantities Σeq,Σm are expressed as a function of φ and Σ̄ as follows (see Eq.(85):

Σeq = Σ̄Seq,Seq ≡ Seq(φ) = (1 − p)cosφ

Σm = Σ̄Sm,Sm ≡ S m(φ) = 2
3 sgn(φ)Argch

[
1 +

(1 − p)2

2p
sin2φ

] (B.1)

the derivatives of Seq and Sm with respect to φ being given by

dSeq

dφ
= −(1 − p)sinφ

dSm

dφ
=

2
3

(1 − p)2

p
sinφcosφ

sh
(

3
2

Sm

) (B.2)

Appendix B.2.2. Derivatives of Σ∗′,Σ∗m and Σ∗eq with respect to ∆ε

From formulas

Σ∗′ij = Σ
o′
ij + 2µ∆ε′ij,∆ε

′
ij = ∆εij −

1
3
∆εkkδij, Σ∗m = Σ

o
m + (3λ + 2µ)∆εm = Σ

o
m +

1
3

(3λ + 2µ )∆εkk, (B.3)

we draw immediately:
∂Σ∗′ij

∂∆εkl
= 2µ

[
1
2

(
δikδjl + δilδjk

)
−

1
3
δijδkl

]
∂Σ∗m
∂∆εkl

=
1
3

(3λ + 2µ)δkl

(B.4)

From Eq.(B.4), we deduce that:

∂Σ∗eq

∂∆εkl
= 3µ

Σ∗′kl

Σ∗eq
(B.5)
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Appendix B.2.3. Derivatives of Σ̄ with respect to ∆ε and φ

To evaluate these derivatives, we will differentiate the evolution equation Eq.(87) from ∆ε̄, written in the form:

(1 − f )∆ε̄ = Seq∆ε
p
eq + 3Sm∆ε

p
m = Seq

Σ∗eq − Σ̄Seq

3µ
+ 3Sm

Σ∗m − Σ̄S m

3λ + 2µ
(B.6)

Before taking this differentiation, note that:

dSeq

dφ
∆ε

p
eq + 3

dSm

dφ
∆ε

p
m = 0; (B.7)

this property is due to the orthogonality of ∆εp to the yield surface (Σ : ∆εp = dΣeq∆ε
p
eq + 3dΣm∆cp

m = 0 if we
vary Σ on the yield surface, i.e. if we vary φ, at Σ̄ fixed). Given this remark, the differentiation gives:

(1 − f )d∆ε̄ =
(

Seq

3µ

∂Σ∗eq

∂∆ekj
+

3Sm

3λ + 2µ
∂Σ∗m
∂∆εkl

)
d∆εkl

−

(
Σeq

3µ
dSeq

dϕ
+

3Σm

3λ + 2µ
dSm

dϕ

)
dϕ −

S2
eq

3µ
+

3S2
m

3λ + 2µ

 dΣ̄
dε̄

d∆ε̄
(B.8)

At φ = const , this gives:

∂ε̄

∂∆εkj
=

Seq

3µ

∂Σ∗eq

∂∆ckj
+

3Sm

3λ + 2µ
∂Σ∗m
∂∆rkl

(1 − f ) +

S2
eq

3µ
+

3S2
m

3λ + 2µ

 dΣ̄
de

(
and

∂Σ̄

∂∆εkl
=

dΣ̄
dε̄
∂∆ε̄

∂∆εkl

)
; (B.9)

at ∆ε = const , we get:

∂∆ε̄

∂φ
= −

Σeq

3µ

dSeq

dφ
+

3Σm

3λ + 2µ
dSm

dφ

(1 − f ) +

S2
eq

3µ
+

3S2
m

3λ + 2µ

 dΣ̄
dε̄

(
and

∂Σ̄

∂φ
=

dΣ̄
dε̄
∂ε̄

∂φ

)
(B.10)

Appendix B.2.4. Derivatives of φ with respect to ∆ε

It is now necessary to exploit the fundamental equation Eq.(90 ) giving φ. Note that the stresses Σeq∗ ,Σ
∗
m

depend only on ∆ε, while the constraints σeq,Σm depend on φ and Σ̄. So this equation is written as:

F(∆ε, φ, Σ̄) = a
[
Σ∗m(∆ε) − Σ̄Sm(φ)

]
cosφ − p

[
Σ∗eq(∆ε) − Σ̄Seq(φ)

]
sh

[
3
2

Sm(φ)
]
= 0 (B.11)
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By differentiating, we get

∂F
∂∆εkl

d∆εkl +
∂F
∂φ

dφ +
∂F
∂Σ̄

dΣ̄ = 0. (B.12)

where

∂F
∂∆εkl

=
∂F
∂Σ∗eq

∂Σ∗eq

∂∆εkl
+
∂F
∂Σ∗m

∂Σ∗m
∂∆εkl

,
∂F
∂Σ∗eq

= −p sh
(

3
2

Sm

)
,
∂F
∂Σ∗m

= acosφ, (B.13)

∂F
∂φ
= pΣ̄sh

(
3
2

Sm

)
dSeq

dφ
−

[
aΣ̄cosφ +

3
2

p
(
Σ∗eq − Σeq

)
ch

(
3
2

Sm

)]
dSm

dφ
− a

(
Σ∗m − Σm

)
sinφ (B.14)

∂F
∂Σ̄
= −aSmcosφ + pSeqsh

(
3
2

Sm

)
(B.15)

By expanding dΣ̄ =
∂Σ̄

∂∆εkl
d∆εk +

∂Σ̄

∂φ
dφ in Eq.(B.12), we get:

∂F
∂∆εkl

d∆εkl +
∂F
∂φ

dφ +
∂F
∂Σ

∂Σ

∂∆εkl
d∆εk +

∂F
∂Σ

∂σ

∂φ
dφ = 0 (B.16)

and thus

∂φ

∂∆εkl
= −

∂F
∂∆εkl

+
∂F
∂Σ̄

∂Σ̄

∂∆εkl

∂F
∂φ
+
∂F
∂Σ̄

∂Σ̄

∂φ

. (B.17)

Note that the derivative ∂F
/
∂φ is precisely the ”slope” which intervenes in Newton’s method on φ used to

solve equation Eq.(B.16).

Appendix B.2.5. Derivatives of Σeq and Σm with respect to ∆ε

We have Σeq = Σ̄eq, Σ̄ depending on ∆ε and φ, and Seq of φ alone, φ being itself a function of ∆ε. Therefore:

∂Σeq

∂∆εkl
= Seq

∂Σ̄

∂∆εkl
+ Seq

∂Σ̄

∂φ

∂φ

∂∆εkl
+ Σ̄

dSeq

dφ
∂φ

∂∆εkl
(B.18)
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Also,

∂Σm

∂∆εkl
= Sm

∂Σ̄

∂∆εkl
+ Sm

∂Σ̄

∂φ

∂φ

∂∆εkl
+ Σ̄

Sm

dφ
∂φ

∂∆εkl
(B.19)

Appendix B.2.6. Derivatives of Σ′ and Σ with respect to ∆ε

The differentiation of the equation Σ̇′ij =
Σeq

Σ∗eq
Σ∗′ij gives

∂Σ∗ij

∂∆εkl
=
Σeq

Σ∗eq

∂Σ∗ij

∂∆εkl
+ Σ∗ij

 1
Σ∗eq

∂Σeq

∂∆εk
−
Σeq

Σ∗2eq

∂Σ∗eq

∂∆εkl

 (B.20)

Finally, the equation Σij = Σ
′
ij + Σmδij gives

∂Σij

∂∆εkl
=
∂Σ′ij

∂∆εkl
+
∂Σm

∂∆εkl
δij (B.21)

This completes the calculation of the tangent-matrix for the Gurson model [12].
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Appendix B.3. Case of the LPD model

Appendix B.3.1. Yield locus parametrization

The stress Σeq,Σm are expressed here as a function of φ, σ1 and Σ2 as follows:
Σeq = Σ1Seq(φ)

Σm = Σ2Sm(φ)
(B.22)

where the expressions for Seq(φ) and S m(φ), as well as their derivatives, are the same as for the Gurson model
( Eq.(B.1 ) and Eq.(B.2 ) )

Appendix B.3.2. Differentials of εeq and Σm

From the equation of evolution of the hardening parameter εeq, i.e. ε̇eq = ε̇
p
eq, we deduce that

εeq = ε
o
eq + ∆ε

p
eq (B.23)

⇒ dεeq = d∆εp
eq (B.24)

Similarly, from the evolution equation ε̇m = |ε̇m|, we deduce that:

εm = ε
∗
m +

∣∣∣∆εp
m

∣∣∣ (B.25)

⇒ dεm = sgn
(
∆ε

p
m

)
d∆εp

m (B.26)

The sign of ∆εp
m is the same as that of Σm, that is to say of φ according to Eq.(B.22 )2 and the expression of

Sm(φ) (cf. Eq.(B.1 ) ). Therefore

dεm = ε d∆εp
m, ε = sgn(φ) (B.27)

Appendix B.3.3. Derivatives of Σ1 and Σ2 with respect to ∆ε and φ

Let us recall that Σ1 and Σ2 are known, pre-tabulated functions of the hardening parameters εeq, εm (and of
the initial porosity). We have:

dΣ1 =
∂Σ1

∂εeq
dεeq +

∂Σ1

∂εm
dεm =

∂Σ1

∂εeq
d∆εeq +

∂Σ1

∂εm
εd∆εp

m (B.28)

from Eq.(B.24 ) and Eq.(B.27 ). Now,

∆ε
p
eq =

Σ∗eq − Σeq

3µ
=

1
3µ

(
Σ∗eq − Σ1Seq

)
(B.29)
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⇒ d∆εp
eq =

1
3µ

(
∂Σ∗eq

∂∆εkl
d∆εkd − Σ1

dSeq

dφ
dφ − SeqdΣ1

)
(B.30)

Also,

∆ε
p
m =

1
3λ + 2µ

(
Σ∗m − Σ2Sm

)
(B.31)

⇒ d∆εp
m =

1
3λ + 2µ

(
∂Σ∗m
∂∆εkl

d∆εkl − Σ2
dSm

dφ
dφ − Smdσ2

)
(B.32)

It goes without saying that the expressions of ∂Σ∗eq

/
∂∆εkl and ∂Σ∗m

/
d∆εkJ here are the same as for Gurson

model (equations Eq.(B.4 ), Eq.(B.5 ) ). By transferring these expressions into Eq.(B.28 ), we obtain:

dΣ1 =
1

3µ
∂Σ1

∂εeq

(
∂Σ∗eq

∂∆εkl
d∆εkl − Σ1

dSeq

dφ
dφ − SeqdΣ1

)
+

ε

3λ + 2µ
∂Σ1

∂εm

(
∂Σ∗m
∂∆εkl

d∆εkl − Σ2
dSm

dφ
dφ − SmdΣ2

) (B.33)

By reasoning in the same way for Σ2, we obtain:

dΣ2 =
1

3µ
∂Σ2

∂εeq

(
∂Σ∗eq

∂∆εkl
d∆εkl − Σ1

dSeq

dφ
dφ − SeqdΣ1

)
+

ε

3λ + 2µ
∂Σ2

∂εm

(
∂Σ∗m
∂∆εkl

d∆εkl − Σ2
dSm

dφ
dφ − SmdΣ2

) (B.34)

By successively taking φ = const then ∆ε = const in these equations, we obtain the following two systems:



(
1 +

Seq

3µ
∂Σ1

∂εeq

)
∂Σ1

∂∆εkl
+
εS m

3λ + 2µ
∂Σ1

∂εm

∂Σ2

∂∆εkl
=

1
3µ
∂Σ1

∂εeq

∂Σ∗eq

∂∆εkl
+

ε

3λ + 2µ
∂Σ1

∂εm

∂Σ∗m
∂∆εkl

Seq

3µ
∂Σ2

∂εeq

∂Σ1

∂∆εkl
+

(
1 +

εS m

3λ + 2µ
∂Σ2

∂εm

)
∂Σ2

∂∆εkl
=

1
3µ
∂Σ2

∂εeq

∂Σ∗eq

∂∆εkl
+

ε

3λ + 2µ
∂Σ2

∂εm

∂Σ∗m
∂∆εkl

(B.35)
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(
1 +

Seq

3µ
∂Σ1

∂εeq

)
∂Σ1

∂φ
+
εS m

3λ + 2µ
∂Σ1

∂εm

∂Σ2

∂φ
= −
Σ1

3µ
∂Σ1

∂εeq

dSeq

dφ
−
εΣ2

3λ + 2µ
∂Σ1

∂εm

∂Sm

∂φ

Seq

3µ
∂Σ2

∂εeq

∂Σ1

∂φ
+

(
1 +

εSm

3λ + 2µ
∂Σ2

∂εm

)
∂Σ2

∂φ
= −
Σ1

3µ
∂Σ2

∂εeq

dSeq

dφ
−
εΣ2

3λ + 2µ
∂Σ2

∂εm

dSm

∂φ
.

(B.36)

Solving these systems provides the value of the derivatives ∂Σ1

/
d∆εkl, ∂Σ2

/
d∆εkl, ∂Σ1

/
∂φ, ∂Σ2

/
∂φ. Note that

the matrix 2 × 2 appearing in the first member is the same for the two systems.

Appendix B.3.4. Derivative of φ with respect to ∆ε

The fundamental equation giving φ is written:

F (∆ε, φ,Σ1,Σ2) = a
Σ2

Σ1

[
Σ∗m(∆ε) − Σ2Sm(φ)

]
cosφ − p

[
Σ∗eq(∆ε) − Σ1Seq(φ)

]
sh

[
3
2

Sm(φ)
]
= 0 (B.37)

Its differentiation gives

∂F
∂∆εkl

d∆εkl +
∂F
∂ϕ

dφ +
∂F
∂Σ1

dΣ1 +
∂F
∂Σ2

dΣ2 = 0 (B.38)

where

∂F
∂∆εkl

=
∂F
∂Σ∗eq

∂Σ∗eq

∂∆εkl
+
∂F
∂Σ∗m

∂Σ∗m
∂∆εkl

,
∂F
∂Σ∗eq

= −psh
(

3
2

S m

)
,
∂F
∂Σ∗m

= a
Σ2

Σ1
cosφ, (B.39)

∂F
∂φ
= pΣ1sh

(
3
2

Sm

)
dSeq

dφ
−

aΣ2
2

Σ1
cosφ +

3
2

p
(
Σ∗eq − Σeq

)
ch

(
3
2

Sm

) dSm

dφ
− a
Σ2

Σ1

(
Σ∗m − Σm

)
sinφ, (B.40)

∂F
∂Σ1
= −a

Σ2

Σ2
1

(
Σ∗m − Σm

)
cosφ + pSeq sh

(
3
2

S m

)
,
∂F
∂Σ2
=

a
Σ1

(
Σ∗m − 2Σm

)
cosφ (B.41)

By expanding dΣ1 =
∂Σ1

∂∆εkl
d∆εkl +

∂Σ1

∂φ
dφ and dΣ2 =

∂Σ2

∂∆εkl
d∆εkl +

∂Σ2

∂φ
dφ in Eq.(B.38), we obtain:

∂F
∂∆εkl

d∆εkl +
∂F
∂φ

dφ +
∂F
∂Σ1

∂Σ1

∂∆εkl
d∆εkl +

∂F
∂Σ1

∂Σ1

∂φ
dφ +

∂F
∂Σ2

∂Σ2

∂∆εkl
d∆εkl +

∂F
∂Σ2

∂Σ2

∂φ
dφ = 0 (B.42)
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and thus

∂φ

∂∆εkl
= −

∂F
∂∆εkl

+
∂F
∂Σ1

∂Σ1

∂∆εkl
+
∂F
∂Σ2

∂Σ2

∂∆εkl

∂F
∂φ
+
∂F
∂Σ1

∂Σ1

∂φ
+
∂F
∂Σ2

∂Σ2

∂φ

. (B.43)

Here again, we notice that ∂F
/
∂φ is the ”slope” used in Newton’s method to solve Eq.(32 ).
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