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Abstract

The note contains a direct extension of the convergence proof of the primal-dual hybrid gradient
(PDHG) algorithm in [3] to the case of monotone inclusions.

1 Introduction

Assume that H;,Ho are Hilbert spaces, and A : Hy — 271, B : Hy — 272 are maximally monotone
maps. Furthermore, assume that C' : H; — Hs is a non-zero bounded linear operator, and consider
the following pair of primal-dual monotone inclusions

find 2 € Hy s.t. 0 € Az + C*(B(Cxz)) (P) 1)
find y € Hao s.t. y € B(Cx), —C*y € Ax, for some x € H; (D)

When A, B are subdifferential maps of proper convex lower semicontinuous functions, this previous
problem reduces to a pair of primal-dual convex programs or a convex-concave saddle point problem.
More specifically, if A =0f1, B=0fs for f1:Hi = R, fo: Ha — R then (1) is equivalent to

inﬁ {fi(z) + f2(Cx)} = in}f{ sup {fi(z) + (Cx,y) — f2(y)}
rcH1 TEH1 yeH,

= sup {—f{(—=C"y) — fa(y)} .

yEH2

(2)

In [2, 3], the authors introduced a first-order primal-dual splitting scheme for solving (2), which in
its simplest form reads as

2"t = argmin fi(x) + (Cz,y") + w’
rEH1
gl = 2gntl — g, )
M2
y" = argmax (CF"H,y) — fo(y) — Lol
yEH2

where 7,0 > 0. The main results in [2, 3] provide convergence of ergodic sequences

1 & 1 &
XN =— o YN = — ; 4
under the assumption
1
TO < . (5)
1C1?

In [6], the author considers a more general version of (1) and introduces a splitting scheme, which
in its simplest form reads as
2"t = (I +7A)7 (2" — 7C*y"),
Frtl = 2zntl g, (6)
y"tt =T +oB )7 (yn + oCa" ).
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Using techniques different from the ones in [2, 3], the author in [6] proves the convergence of the
iterates in (6) to the solution of (1) under the same assumption (5). The key idea is to rewrite (6) in
the form of a forward-backward splitting algorithm analyzed in [4].

In this note, we provide a direct extension of the convergence proof of (3) in [3] for the monotone
inclusion version (6).

2 Notation and hypotheses

Throughout the note, we assume that H;,Hs are Hilbert spaces, A, B are maximally monotone, and
C' is a non-zero bounded linear operator. Furthermore, assume that ¢; : H1 — R and 95 : Ho — R
are continuously Fréchet differentiable convex functions, and denote by

Di(z,2) =1 (z) — 1 (2) — (Vi1 (2),2 — 2), 2,2 € Hy,
D2(yvg) :¢2(y)_¢2(g)_ <V¢2(§)ay—§>a y,yGHQ,

their Bregman divergences. We assume that there exists a > 0 such that

(7)

Di(z,%) + D2(y, §) = (Clz = 2),y = g) > a (e — 2> + ly — 9l*), Vo,z€Hi, Vy,j€Ha (8)
Taking y = y we obtain
1(@) = 1 (7) — (Vo1 (2), — ) = Di(,7) = alla — 3|2, ¥a, 7 € Ha, (9)
which means that 11 is 2a-strongly convex. Similarly, we have that

1/)2(9) - 1/)2(??) - <v¢2(g)7y - g> = DQ(ya g) > a”y - g|‘2avy7g € HQ, (10)
and so 19 is also 2a-strongly convex.

Lemma 1. Assume that H is a Hilbert space, ¥ : H — R is a continuously Fréchet differentiable
strongly convex function, and M : H — 2™ is a mazimally monotone operator. Furthermore, denote

by
D(z,7) = (z) — ¥(z) — (Vib(z),2 — 7), .7 € H.

Then the map
Ter=V,D(z,z)+ Mz, zeH,

is surjective for all & € H.

Proof. Fix an arbitrary T € H. Since # — D(z,Z) is convex and smooth [1, Theorem 20.25] yields
that x +— V,D(x,Z) is maximally monotone with a domain . Hence, by [5, Theorem 1] we have that
T is maximally monotone.

Next, let (zo,y0) € gra M. Then for every x € H we have that

inf | 7| =inf [[V4(2) — V9(0) + Mz — o + (V(z0) + v — V(@)
Zinf [Vip(z) = Vo (zo) + Ma — yol| — [[Vib(xo) + yo — V(2.
Furthermore, the strong convexity of 1 yields that
(Vip(x) = V(o) + Mz — yo,x — o) > 2alz — zo|%,
for some a > 0, and from Cauchy-Schwarz inequality we obtain that
inf [|[Vip(x) — Vip(zo) + Mz — yo|| > 2a|lx — zol], Ve H.

Hence
inf | T(x)[| > 2|z — 2ol — [[V(20) +yo — VY(2)||, Yz €H,

which implies

lim || Tz| = oo,
llzl| =00

and [1, Corollary 21.24] concludes the proof. O



3 The algorithm and its convergence
Considering the following primal-dual splitting algorithm

InJrl — (Vle(,ZEn) + A)71 (_Cv*yn)7
Grtl = 9gntl _ g (11)
yn-i-l — (vyD2(7yn) 4 O'B_l)_l (Oj""'l) )

This previous algorithm is an extension of [3, Algorithm 1], where the subdifferential maps are replaced
by general maximally monotone maps. When

ooy < ol LI e
1(17)—7, 1/)2(24)—7, T E T, Y&,
we obtain o o
xr— X —
Di(e,3) = 220 pygy g = oA
2T 20

and (11) reduces to (6). Moreover the existence of an « > 0 such that (8) holds is equivalent to (5).
Furthermore, Lemma 1 guarantees that all steps in (11) are well defined, and the algorithm will
not halt.

Theorem 1. Assume that (1) admits a solution (x*,y*) € Hi X Ha, and (x",2",y") are generated
by (11) with arbitrary initial points (z°,3°,y°) € H1 x H1 x Ha. Then the ergodic sequence {(Xn,Yn)}
defined in (4) is bounded, and all its weak limits are solutions of (1).

Proof. We introduce the following function
L(z,Gy,m) = sup (2= -u—Cn)+(CC—v,y—mn)
(u,v)EAzx B~ 1y

= Sup <C—$=U>+<77—yav> —<C£L',7’]>+<C<,y>7

(u,v)EAzx B~ 1y

(12)

where we set the supremum of an empty set to be —co. As pointed out in [3], the basic building block
of (11) is the iteration

B = (VeDi(,7) + A)7 (), )
g = (VyDa(-,y) + 0B~ )71 (C7),
for suitable choices of Z, &, & and 7, ¢, §. In an expanded form, (13) can be written as
«D1(2,T = —C* ,
Vel = (14
VyD2(3,9) + 0 =Cz,

where (4,9) € A% x B~1§. Thus, we first obtain estimates for the general iteration (14) and then
apply them to (11).

Let (14) hold, and (x,y) € H1 x Ha, (u,v) € Az x B~'y be arbitrary. Then by the monotonicity
of A and (14) we have that

(uyx — &) >(,x — &) = (=C*"y — VyD1(2,%),x — &)

=(-C*"g,x — &)+ D1(2,%) + D1(x, &) — D1(z, T), (15)
where we also used the identity
(=VD1(2,%), 2 — &) = D1(2,%) + D1(x, &) — D1(2, T).
Similarly, using the monotonicity of B~! we obtain
(0,9 =9) 2(0,y = §) = (CF = Vo Do(2,2), 2 — 2) (16)

:<Ci.7y - g> + DQ(Q,g) + D2(y7g) - D2(y7g)



Combining (15), (16), we obtain
Di(z,z) — D1(2,7) — Di(z, %) + D2(y,9) — D2(9,9) — D2(y,9)
2@ —&—u—C"g) +(CT—v,y —9)

Since (u,v) € Az x B~'y are arbitrary, we obtain that

L(x,2;y,9) <D1(x,2) — D1(&,2) — Di(z,2) + D2(y,y) — D2(9,9) — D2(y,9)

(O =) — )+ (CG—3),§—1), VocHy, yeHo. (17)

As in [3], this previous inequality is the key inequality in the proof. Indeed, (11) corresponds to

choosing

n+1l = n, :EnJrl — 2xn+1 _en n

T=x y L =T I,g:ynJrl,g:yn,g:y’

n (13), and so (17) yields

E(:I;7:L.ﬂ+1;y, yn—i-l) < {Dl (‘Tu :En) + D2(y7 yn) - <C(.’II - xn)ay - yn>}
—{Di(a, 2" ) + Da(y,y" ) = (Ca — 2™ ),y —y"*h)}
_ {D1($n+l,xn) 4 D2(yn+17yn) _ <C(£L‘n+l _ xn)7yn+1 _ yn>} .

Hence, by the convexity of (¢,n) — L(z,(;y,n), we obtain

N
NL(z, XNy, YY) SZ "y y")

g{bl (2,2%) + Dol ) — (Cla — 2%,y — 1°)}
—{D1(z,2™) + Doy, y"™) — (C(z — ™),y — ™)}

=Y {Di@", 2" + Daly"y" ) — (O — ah),y" — ")

for all z € Hq, y € Ha, and N € N. Note that (8) guarantees that the expressions in the curly brackets
are nonnegative.
Recall that (z*,y*) is a solution of (1), and so

—C*y* € Az*, Cz* € B 'y*. (19)
But then by the definition of £ we have that

In particular, we have that
Lx*, XN y* Y N) >0, (20)

and (18) yields that
Dy(a*,a™) + Da(y" y™) = (Cla™ —a™),y" —y") < Di(2”,2%) + Da(y*,y") = (Cla" — %),y —y°),
and (8) implies that

* .0 * 0\ _ * .0 _ .0
||ZZTN—:E*H2+HyN—y*||2 < D1($ ) T )+D2(y 7y2)[ <C(‘T T )73/ Y >7 VN € N.

Therefore, {(z",y™)} is a bounded sequence, and the convexity of the norm yields the boundedness of
the ergodic sequence with the same bounds; that is,

Dy(x*,2°) + Da(y*,y°) — (Ca* — %),y —¢°)

XY =2+ Y ) < L

, VN eN.



Assume that (X,Y) is a weak (subsequential) limit of {(Xx,Yx)}. Invoking (18) again, we obtain

Di(z,2") + Da(y,y°) — (C(z — 2°),y — %)

Lz, XNy, YV) < , (21)
N
for all x € H1, y € Ha, and N € N. Let (u,v) € Az x B~y be arbitrary. Then we have that
<XN - T, U> + <YN - Y 1)> - <CI5 YN> + <OXN7y> < ‘C(Ia XN; Y, YN)a
and so the weak convergence and (21) yield
(X —z,u) + (Y —y,v) = (Cx,Y) + (CX,y)
= dim (XN )+ (VY < g0 (€ YY) £ (X V)
—00
<liminf £(z, XV;y,YV) <0.
N—o00

Therefore we have that

L(x, X;y,Y) <0, VaeH, ye Hs. (22)
Taking y =Y in (22) we obtain

(x = X,u+C*Y) >0, VY(x,u)€ grai,

and so maximal monotonicity of A yields that

(X, -C"Y) e grad < —C"Y € AX. (23)
Similarly, plugging in = X in (22) we find that

(y—Y,v—CX)>0, Y(y,v)€graB™!

and the maximal monotonicity of B~' yields that

(V,CX) € graB™! <= Y € B(CX). (24)
Combining (23) and (24) we obtain that (X,Y") is a solution of (1). O
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