A note on the convergence of the monotone inclusion version of the primal-dual hybrid gradient algorithm

Levon Nurbekyan
Department of Mathematics, Emory University
lnurbek@emory.edu

November 8, 2023

Abstract

The note contains a direct extension of the convergence proof of the primal-dual hybrid gradient (PDHG) algorithm in [3] to the case of monotone inclusions.

1 Introduction

Assume that $\mathcal{H}_{1}, \mathcal{H}_{2}$ are Hilbert spaces, and $A: \mathcal{H}_{1} \rightarrow 2^{\mathcal{H}_{1}}, B: \mathcal{H}_{2} \rightarrow 2^{\mathcal{H}_{2}}$ are maximally monotone maps. Furthermore, assume that $C: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a non-zero bounded linear operator, and consider the following pair of primal-dual monotone inclusions

$$
\text { find } x \in \mathcal{H}_{1} \text { s.t. } 0 \in A x+C^{*}(B(C x)) \quad \text { (P) }
$$

$$
\begin{equation*}
\text { find } y \in \mathcal{H}_{2} \text { s.t. } y \in B(C x),-C^{*} y \in A x \text {, for some } x \in \mathcal{H}_{1} \quad \text { (D) } \tag{1}
\end{equation*}
$$

When A, B are subdifferential maps of proper convex lower semicontinuous functions, this previous problem reduces to a pair of primal-dual convex programs or a convex-concave saddle point problem. More specifically, if $A=\partial f_{1}, B=\partial f_{2}$ for $f_{1}: \mathcal{H}_{1} \rightarrow \overline{\mathbb{R}}, f_{2}: \mathcal{H}_{2} \rightarrow \overline{\mathbb{R}}$ then (1) is equivalent to

$$
\begin{align*}
\inf _{x \in \mathcal{H}_{1}}\left\{f_{1}(x)+f_{2}(C x)\right\} & =\inf _{x \in \mathcal{H}_{1}} \sup _{y \in \mathcal{H}_{2}}\left\{f_{1}(x)+\langle C x, y\rangle-f_{2}(y)\right\} \tag{2}\\
& =\sup _{y \in \mathcal{H}_{2}}\left\{-f_{1}^{*}\left(-C^{*} y\right)-f_{2}(y)\right\} .
\end{align*}
$$

In $[2,3]$, the authors introduced a first-order primal-dual splitting scheme for solving (2), which in its simplest form reads as

$$
\left\{\begin{array}{l}
x^{n+1}=\underset{x \in \mathcal{H}_{1}}{\operatorname{argmin}} f_{1}(x)+\left\langle C x, y^{n}\right\rangle+\frac{\left\|x-x^{n}\right\|^{2}}{2 \tau}, \tag{3}\\
\tilde{x}^{n+1}=2 x^{n+1}-x^{n}, \\
y^{n+1}=\underset{y \in \mathcal{H}_{2}}{\operatorname{argmax}}\left\langle C \tilde{x}^{n+1}, y\right\rangle-f_{2}(y)-\frac{\left\|y-y^{n}\right\|^{2}}{2 \sigma},
\end{array}\right.
$$

where $\tau, \sigma>0$. The main results in $[2,3]$ provide convergence of ergodic sequences

$$
\begin{equation*}
X^{N}=\frac{1}{N} \sum_{n=1}^{N} x_{i}, \quad Y^{N}=\frac{1}{N} \sum_{n=1}^{N} y_{i} \tag{4}
\end{equation*}
$$

under the assumption

$$
\begin{equation*}
\tau \sigma<\frac{1}{\|C\|^{2}} \tag{5}
\end{equation*}
$$

In [6], the author considers a more general version of (1) and introduces a splitting scheme, which in its simplest form reads as

$$
\left\{\begin{array}{l}
x^{n+1}=(I+\tau A)^{-1}\left(x^{n}-\tau C^{*} y^{n}\right) \tag{6}\\
\tilde{x}^{n+1}=2 x^{n+1}-x^{n} \\
y^{n+1}=\left(I+\sigma B^{-1}\right)^{-1}\left(y^{n}+\sigma C \tilde{x}^{n+1}\right)
\end{array}\right.
$$

Using techniques different from the ones in $[2,3]$, the author in [6] proves the convergence of the iterates in (6) to the solution of (1) under the same assumption (5). The key idea is to rewrite (6) in the form of a forward-backward splitting algorithm analyzed in [4].

In this note, we provide a direct extension of the convergence proof of (3) in [3] for the monotone inclusion version (6).

2 Notation and hypotheses

Throughout the note, we assume that $\mathcal{H}_{1}, \mathcal{H}_{2}$ are Hilbert spaces, A, B are maximally monotone, and C is a non-zero bounded linear operator. Furthermore, assume that $\psi_{1}: \mathcal{H}_{1} \rightarrow \mathbb{R}$ and $\psi_{2}: \mathcal{H}_{2} \rightarrow \mathbb{R}$ are continuously Fréchet differentiable convex functions, and denote by

$$
\begin{align*}
& D_{1}(x, \bar{x})=\psi_{1}(x)-\psi_{1}(\bar{x})-\left\langle\nabla \psi_{1}(\bar{x}), x-\bar{x}\right\rangle, \quad x, \bar{x} \in \mathcal{H}_{1}, \\
& D_{2}(y, \bar{y})=\psi_{2}(y)-\psi_{2}(\bar{y})-\left\langle\nabla \psi_{2}(\bar{y}), y-\bar{y}\right\rangle, \quad y, \bar{y} \in \mathcal{H}_{2}, \tag{7}
\end{align*}
$$

their Bregman divergences. We assume that there exists $\alpha>0$ such that

$$
\begin{equation*}
D_{1}(x, \bar{x})+D_{2}(y, \bar{y})-\langle C(x-\bar{x}), y-\bar{y}\rangle \geq \alpha\left(\|x-\bar{x}\|^{2}+\|y-\bar{y}\|^{2}\right), \quad \forall x, \bar{x} \in \mathcal{H}_{1}, \quad \forall y, \bar{y} \in \mathcal{H}_{2} \tag{8}
\end{equation*}
$$

Taking $y=\bar{y}$ we obtain

$$
\begin{equation*}
\psi_{1}(x)-\psi_{1}(\bar{x})-\left\langle\nabla \psi_{1}(\bar{x}), x-\bar{x}\right\rangle=D_{1}(x, \bar{x}) \geq \alpha\|x-\bar{x}\|^{2}, \forall x, \bar{x} \in \mathcal{H}_{1} \tag{9}
\end{equation*}
$$

which means that ψ_{1} is 2α-strongly convex. Similarly, we have that

$$
\begin{equation*}
\psi_{2}(y)-\psi_{2}(\bar{y})-\left\langle\nabla \psi_{2}(\bar{y}), y-\bar{y}\right\rangle=D_{2}(y, \bar{y}) \geq \alpha\|y-\bar{y}\|^{2}, \forall y, \bar{y} \in \mathcal{H}_{2}, \tag{10}
\end{equation*}
$$

and so ψ_{2} is also 2α-strongly convex.
Lemma 1. Assume that \mathcal{H} is a Hilbert space, $\psi: \mathcal{H} \rightarrow \mathbb{R}$ is a continuously Fréchet differentiable strongly convex function, and $M: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is a maximally monotone operator. Furthermore, denote by

$$
D(x, \bar{x})=\psi(x)-\psi(\bar{x})-\langle\nabla \psi(\bar{x}), x-\bar{x}\rangle, \quad x, \bar{x} \in \mathcal{H}
$$

Then the map

$$
T x=\nabla_{x} D(x, \bar{x})+M x, \quad x \in \mathcal{H}
$$

is surjective for all $\bar{x} \in \mathcal{H}$.
Proof. Fix an arbitrary $\bar{x} \in \mathcal{H}$. Since $x \mapsto D(x, \bar{x})$ is convex and smooth [1, Theorem 20.25] yields that $x \mapsto \nabla_{x} D(x, \bar{x})$ is maximally monotone with a domain \mathcal{H}. Hence, by [5, Theorem 1$]$ we have that T is maximally monotone.

Next, let $\left(x_{0}, y_{0}\right) \in \operatorname{gra} M$. Then for every $x \in \mathcal{H}$ we have that

$$
\begin{aligned}
\inf \|T x\| & =\inf \left\|\nabla \psi(x)-\nabla \psi\left(x_{0}\right)+M x-y_{0}+\left(\nabla \psi\left(x_{0}\right)+y_{0}-\nabla \psi(\bar{x})\right)\right\| \\
& \geq \inf \left\|\nabla \psi(x)-\nabla \psi\left(x_{0}\right)+M x-y_{0}\right\|-\left\|\nabla \psi\left(x_{0}\right)+y_{0}-\nabla \psi(\bar{x})\right\| .
\end{aligned}
$$

Furthermore, the strong convexity of ψ yields that

$$
\left\langle\nabla \psi(x)-\nabla \psi\left(x_{0}\right)+M x-y_{0}, x-x_{0}\right\rangle \geq 2 \alpha\left\|x-x_{0}\right\|^{2}
$$

for some $\alpha>0$, and from Cauchy-Schwarz inequality we obtain that

$$
\inf \left\|\nabla \psi(x)-\nabla \psi\left(x_{0}\right)+M x-y_{0}\right\| \geq 2 \alpha\left\|x-x_{0}\right\|, \quad \forall x \in \mathcal{H}
$$

Hence

$$
\inf \|T(x)\| \geq 2 \alpha\left\|x-x_{0}\right\|-\left\|\nabla \psi\left(x_{0}\right)+y_{0}-\nabla \psi(\bar{x})\right\|, \quad \forall x \in \mathcal{H}
$$

which implies

$$
\lim _{\|x\| \rightarrow \infty}\|T x\|=\infty
$$

and [1, Corollary 21.24] concludes the proof.

3 The algorithm and its convergence

Considering the following primal-dual splitting algorithm

$$
\left\{\begin{array}{l}
x^{n+1}=\left(\nabla_{x} D_{1}\left(\cdot, x^{n}\right)+A\right)^{-1}\left(-C^{*} y^{n}\right) \tag{11}\\
\tilde{x}^{n+1}=2 x^{n+1}-x^{n} \\
y^{n+1}=\left(\nabla_{y} D_{2}\left(\cdot, y^{n}\right)+\sigma B^{-1}\right)^{-1}\left(C \tilde{x}^{n+1}\right)
\end{array}\right.
$$

This previous algorithm is an extension of [3, Algorithm 1], where the subdifferential maps are replaced by general maximally monotone maps. When

$$
\psi_{1}(x)=\frac{\|x\|^{2}}{2 \tau}, \quad \psi_{2}(y)=\frac{\|y\|^{2}}{2 \sigma}, \quad x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}
$$

we obtain

$$
D_{1}(x, \bar{x})=\frac{\|x-\bar{x}\|^{2}}{2 \tau}, \quad D_{2}(y, \bar{y})=\frac{\|y-\bar{y}\|^{2}}{2 \sigma}
$$

and (11) reduces to (6). Moreover the existence of an $\alpha>0$ such that (8) holds is equivalent to (5).
Furthermore, Lemma 1 guarantees that all steps in (11) are well defined, and the algorithm will not halt.

Theorem 1. Assume that (1) admits a solution $\left(x^{*}, y^{*}\right) \in \mathcal{H}_{1} \times \mathcal{H}_{2}$, and ($x^{n}, \tilde{x}^{n}, y^{n}$) are generated by (11) with arbitrary initial points $\left(x^{0}, \tilde{x}^{0}, y^{0}\right) \in \mathcal{H}_{1} \times \mathcal{H}_{1} \times \mathcal{H}_{2}$. Then the ergodic sequence $\left\{\left(X_{N}, Y_{N}\right)\right\}$ defined in (4) is bounded, and all its weak limits are solutions of (1).

Proof. We introduce the following function

$$
\begin{align*}
\mathcal{L}(x, \zeta ; y, \eta) & =\sup _{(u, v) \in A x \times B^{-1} y}\left\langle x-\zeta,-u-C^{*} \eta\right\rangle+\langle C \zeta-v, y-\eta\rangle \\
& =\sup _{(u, v) \in A x \times B^{-1} y}\langle\zeta-x, u\rangle+\langle\eta-y, v\rangle-\langle C x, \eta\rangle+\langle C \zeta, y\rangle, \tag{12}
\end{align*}
$$

where we set the supremum of an empty set to be $-\infty$. As pointed out in [3], the basic building block of (11) is the iteration

$$
\left\{\begin{array}{l}
\hat{x}=\left(\nabla_{x} D_{1}(\cdot, \bar{x})+A\right)^{-1}\left(-C^{*} \tilde{y}\right) \tag{13}\\
\hat{y}=\left(\nabla_{y} D_{2}(\cdot, \bar{y})+\sigma B^{-1}\right)^{-1}(C \tilde{x}),
\end{array}\right.
$$

for suitable choices of $\bar{x}, \hat{x}, \tilde{x}$ and $\bar{y}, \hat{y}, \tilde{y}$. In an expanded form, (13) can be written as

$$
\left\{\begin{array}{l}
\nabla_{x} D_{1}(\hat{x}, \bar{x})+\hat{u}=-C^{*} \tilde{y} \tag{14}\\
\nabla_{y} D_{2}(\hat{y}, \bar{y})+\hat{v}=C \tilde{x}
\end{array}\right.
$$

where $(\hat{u}, \hat{v}) \in A \hat{x} \times B^{-1} \hat{y}$. Thus, we first obtain estimates for the general iteration (14) and then apply them to (11).

Let (14) hold, and $(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2},(u, v) \in A x \times B^{-1} y$ be arbitrary. Then by the monotonicity of A and (14) we have that

$$
\begin{align*}
\langle u, x-\hat{x}\rangle & \geq\langle\hat{u}, x-\hat{x}\rangle=\left\langle-C^{*} \tilde{y}-\nabla_{x} D_{1}(\hat{x}, \bar{x}), x-\hat{x}\right\rangle \\
& =\left\langle-C^{*} \tilde{y}, x-\hat{x}\right\rangle+D_{1}(\hat{x}, \bar{x})+D_{1}(x, \hat{x})-D_{1}(x, \bar{x}) \tag{15}
\end{align*}
$$

where we also used the identity

$$
\left\langle-\nabla_{x} D_{1}(\hat{x}, \bar{x}), x-\hat{x}\right\rangle=D_{1}(\hat{x}, \bar{x})+D_{1}(x, \hat{x})-D_{1}(x, \bar{x})
$$

Similarly, using the monotonicity of B^{-1} we obtain

$$
\begin{align*}
\langle v, y-\hat{y}\rangle & \geq\langle\hat{v}, y-\hat{y}\rangle=\left\langle C \tilde{x}-\nabla_{x} D_{2}(\hat{x}, \bar{x}), x-\hat{x}\right\rangle \\
& =\langle C \tilde{x}, y-\hat{y}\rangle+D_{2}(\hat{y}, \bar{y})+D_{2}(y, \hat{y})-D_{2}(y, \bar{y}) . \tag{16}
\end{align*}
$$

Combining (15), (16), we obtain

$$
\begin{aligned}
& D_{1}(x, \bar{x})-D_{1}(\hat{x}, \bar{x})-D_{1}(x, \hat{x})+D_{2}(y, \bar{y})-D_{2}(\hat{y}, \bar{y})-D_{2}(y, \hat{y}) \\
\geq & \left\langle x-\hat{x},-u-C^{*} \tilde{y}\right\rangle+\langle C \tilde{x}-v, y-\hat{y}\rangle \\
= & \left\langle x-\hat{x},-u-C^{*} \hat{y}\right\rangle+\langle C \hat{x}-v, y-\hat{y}\rangle+\langle C(x-\hat{x}), \hat{y}-\tilde{y}\rangle+\langle C(\tilde{x}-\hat{x}), y-\hat{y}\rangle .
\end{aligned}
$$

Since $(u, v) \in A x \times B^{-1} y$ are arbitrary, we obtain that

$$
\begin{align*}
\mathcal{L}(x, \hat{x} ; y, \hat{y}) \leq & D_{1}(x, \bar{x})-D_{1}(\hat{x}, \bar{x})-D_{1}(x, \hat{x})+D_{2}(y, \bar{y})-D_{2}(\hat{y}, \bar{y})-D_{2}(y, \hat{y}) \tag{17}\\
& +\langle C(x-\hat{x}), \tilde{y}-\hat{y}\rangle+\langle C(\tilde{x}-\hat{x}), \hat{y}-y\rangle, \quad \forall x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2} .
\end{align*}
$$

As in [3], this previous inequality is the key inequality in the proof. Indeed, (11) corresponds to choosing

$$
\hat{x}=x^{n+1}, \bar{x}=x^{n}, \tilde{x}^{n+1}=2 x^{n+1}-x^{n}, \hat{y}=y^{n+1}, \bar{y}=y^{n}, \tilde{y}=y^{n}
$$

in (13), and so (17) yields

$$
\begin{aligned}
\mathcal{L}\left(x, x^{n+1} ; y, y^{n+1}\right) \leq & \left\{D_{1}\left(x, x^{n}\right)+D_{2}\left(y, y^{n}\right)-\left\langle C\left(x-x^{n}\right), y-y^{n}\right\rangle\right\} \\
& -\left\{D_{1}\left(x, x^{n+1}\right)+D_{2}\left(y, y^{n+1}\right)-\left\langle C\left(x-x^{n+1}\right), y-y^{n+1}\right\rangle\right\} \\
& -\left\{D_{1}\left(x^{n+1}, x^{n}\right)+D_{2}\left(y^{n+1}, y^{n}\right)-\left\langle C\left(x^{n+1}-x^{n}\right), y^{n+1}-y^{n}\right\rangle\right\} .
\end{aligned}
$$

Hence, by the convexity of $(\zeta, \eta) \mapsto \mathcal{L}(x, \zeta ; y, \eta)$, we obtain

$$
\begin{align*}
N \mathcal{L}\left(x, X^{N} ; y, Y^{N}\right) \leq & \sum_{n=1}^{N} \mathcal{L}\left(x, x^{n} ; y, y^{n}\right) \\
\leq & \left\{D_{1}\left(x, x^{0}\right)+D_{2}\left(y, y^{0}\right)-\left\langle C\left(x-x^{0}\right), y-y^{0}\right\rangle\right\} \\
& -\left\{D_{1}\left(x, x^{N}\right)+D_{2}\left(y, y^{N}\right)-\left\langle C\left(x-x^{N}\right), y-y^{N}\right\rangle\right\} \tag{18}\\
& -\sum_{n=1}^{N}\left\{D_{1}\left(x^{n}, x^{n-1}\right)+D_{2}\left(y^{n}, y^{n-1}\right)-\left\langle C\left(x^{n}-x^{n-1}\right), y^{n}-y^{n-1}\right\rangle\right\}
\end{align*}
$$

for all $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$, and $N \in \mathbb{N}$. Note that (8) guarantees that the expressions in the curly brackets are nonnegative.

Recall that $\left(x^{*}, y^{*}\right)$ is a solution of (1), and so

$$
\begin{equation*}
-C^{*} y^{*} \in A x^{*}, \quad C x^{*} \in B^{-1} y^{*} \tag{19}
\end{equation*}
$$

But then by the definition of \mathcal{L} we have that

$$
\mathcal{L}\left(x^{*}, \zeta ; y^{*}, \eta\right) \geq\left\langle x^{*}-\zeta, C^{*} y^{*}-C^{*} \eta\right\rangle+\left\langle C \zeta-C x^{*}, y^{*}-\eta\right\rangle=0, \quad \forall \zeta \in \mathcal{H}_{1}, \quad \forall \eta \in \mathcal{H}_{2}
$$

In particular, we have that

$$
\begin{equation*}
\mathcal{L}\left(x^{*}, X^{N} ; y^{*}, Y^{N}\right) \geq 0 \tag{20}
\end{equation*}
$$

and (18) yields that

$$
D_{1}\left(x^{*}, x^{N}\right)+D_{2}\left(y^{*}, y^{N}\right)-\left\langle C\left(x^{*}-x^{N}\right), y^{*}-y^{N}\right\rangle \leq D_{1}\left(x^{*}, x^{0}\right)+D_{2}\left(y^{*}, y^{0}\right)-\left\langle C\left(x^{*}-x^{0}\right), y-y^{0}\right\rangle
$$

and (8) implies that

$$
\left\|x^{N}-x^{*}\right\|^{2}+\left\|y^{N}-y^{*}\right\|^{2} \leq \frac{D_{1}\left(x^{*}, x^{0}\right)+D_{2}\left(y^{*}, y^{0}\right)-\left\langle C\left(x^{*}-x^{0}\right), y-y^{0}\right\rangle}{\alpha}, \quad \forall N \in \mathbb{N}
$$

Therefore, $\left\{\left(x^{n}, y^{n}\right)\right\}$ is a bounded sequence, and the convexity of the norm yields the boundedness of the ergodic sequence with the same bounds; that is,

$$
\left\|X^{N}-x^{*}\right\|^{2}+\left\|Y^{N}-y^{*}\right\|^{2} \leq \frac{D_{1}\left(x^{*}, x^{0}\right)+D_{2}\left(y^{*}, y^{0}\right)-\left\langle C\left(x^{*}-x^{0}\right), y-y^{0}\right\rangle}{\alpha}, \quad \forall N \in \mathbb{N}
$$

Assume that (X, Y) is a weak (subsequential) limit of $\left\{\left(X_{N}, Y_{N}\right)\right\}$. Invoking (18) again, we obtain

$$
\begin{equation*}
\mathcal{L}\left(x, X^{N} ; y, Y^{N}\right) \leq \frac{D_{1}\left(x, x^{0}\right)+D_{2}\left(y, y^{0}\right)-\left\langle C\left(x-x^{0}\right), y-y^{0}\right\rangle}{N} \tag{21}
\end{equation*}
$$

for all $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$, and $N \in \mathbb{N}$. Let $(u, v) \in A x \times B^{-1} y$ be arbitrary. Then we have that

$$
\left\langle X^{N}-x, u\right\rangle+\left\langle Y^{N}-y, v\right\rangle-\left\langle C x, Y^{N}\right\rangle+\left\langle C X^{N}, y\right\rangle \leq \mathcal{L}\left(x, X^{N} ; y, Y^{N}\right)
$$

and so the weak convergence and (21) yield

$$
\begin{aligned}
& \langle X-x, u\rangle+\langle Y-y, v\rangle-\langle C x, Y\rangle+\langle C X, y\rangle \\
= & \lim _{N \rightarrow \infty}\left\langle X^{N}-x, u\right\rangle+\left\langle Y^{N}-y, v\right\rangle-\left\langle C x, Y^{N}\right\rangle+\left\langle C X^{N}, y\right\rangle \\
\leq & \liminf _{N \rightarrow \infty} \mathcal{L}\left(x, X^{N} ; y, Y^{N}\right) \leq 0 .
\end{aligned}
$$

Therefore we have that

$$
\begin{equation*}
\mathcal{L}(x, X ; y, Y) \leq 0, \quad \forall x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2} \tag{22}
\end{equation*}
$$

Taking $y=Y$ in (22) we obtain

$$
\left\langle x-X, u+C^{*} Y\right\rangle \geq 0, \quad \forall(x, u) \in \operatorname{gra} A
$$

and so maximal monotonicity of A yields that

$$
\begin{equation*}
\left(X,-C^{*} Y\right) \in \operatorname{gra} A \Longleftrightarrow-C^{*} Y \in A X \tag{23}
\end{equation*}
$$

Similarly, plugging in $x=X$ in (22) we find that

$$
\langle y-Y, v-C X\rangle \geq 0, \quad \forall(y, v) \in \operatorname{gra} B^{-1}
$$

and the maximal monotonicity of B^{-1} yields that

$$
\begin{equation*}
(Y, C X) \in \operatorname{gra} B^{-1} \Longleftrightarrow Y \in B(C X) \tag{24}
\end{equation*}
$$

Combining (23) and (24) we obtain that (X, Y) is a solution of (1).

References

[1] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, second edition, 2017. With a foreword by Hédy Attouch.
[2] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision, 40(1):120-145, 2011.
[3] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program., 159(1-2):253-287, 2016.
[4] P. L. Combettes. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization, 53(5-6):475-504, 2004.
[5] R. T. Rockafellar. On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc., 149:75-88, 1970.
[6] B. C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math., 38(3):667-681, 2013.

