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TENSOR TRAIN BASED SAMPLING ALGORITHMS FOR APPROXIMATING

REGULARIZED WASSERSTEIN PROXIMAL OPERATORS

FUQUN HAN, STANLEY OSHER, AND WUCHEN LI

Abstract. We present a tensor train (TT) based algorithm designed for sampling from a target distribution
and employ TT approximation to capture the high-dimensional probability density evolution of overdamped
Langevin dynamics. This involves utilizing the regularized Wasserstein proximal operator, which exhibits a
simple kernel integration formulation, i.e., the softmax formula of the traditional proximal operator. The
integration, performed in R

d, poses a challenge in practical scenarios, making the algorithm practically im-
plementable only with the aid of TT approximation. In the specific context of Gaussian distributions, we
rigorously establish the unbiasedness and linear convergence of our sampling algorithm towards the target dis-
tribution. To assess the effectiveness of our proposed methods, we apply them to various scenarios, including
Gaussian families, Gaussian mixtures, bimodal distributions, and Bayesian inverse problems in numerical ex-
amples. The sampling algorithm exhibits superior accuracy and faster convergence when compared to classical
Langevin dynamics-type sampling algorithms.

Keywords: tensor train, sampling, wasserstein proximal, bayesian inverse problem

1. Introduction

Over the past decade, obtaining samples from a known and potentially complicated distribution has be-
come increasingly vital in the fields of data science, computational mathematics, and engineering. Sampling
algorithms play a central role in many critical real-world applications, including finding global optimizers for
a high-dimensional function [20], obtaining samples from the latent space in generative modeling [31], and
solving Bayesian inverse problems to estimate the posterior distribution [32]. Efficient and reliable sampling
algorithms are essential for the success of the aforementioned applications.

Given the significance of sampling from a known distribution, numerous intriguing algorithms have been
proposed and analyzed. Among them, Markov Chain Monte Carlo (MCMC) type algorithms have been the
most popular due to their simple formulation and intrinsic diffusion resulting from the adoption of Gaussian
noise, which is desirable. Representative MCMC type algorithms include Metropolis random walk [23], hit
and run [2] which are zero-order methods, and unadjusted Langevin [26], Hamiltonian Monte Carlo [21],
Metropolis-adjusted Langevin algorithms [38], which are first-order methods using Langevin diffusions. For
a more in-depth review and details for Monte Carlo type algorithms, one may refer to [3] and references
therein. Langevin-type MCMC methods usually involve evaluating the gradient of the potential function
and adding a Gaussian noise to achieve diffusion. Several theoretical results showed that they can converge
to the stationary distribution under proper assumptions [10, 11].

Classical Langevin dynamics-type sampling algorithms may exhibit slow convergence, particularly for
complex and high-dimensional distributions. As an alternative approach, generating diffusion using the
score function, defined as the logarithm of the density function, offers a promising direction for sampling
algorithms. In [31], the author demonstrates that score-based diffusion minimizes the Kullback–Leibler
divergence (KL divergence) between the target and generated distribution, a perspective that can also be
interpreted as an entropy-regularized optimal transport problem [16]. Score-based diffusion has already
showcased impressive numerical performance in various domains, including image generation [7], medical
inverse problems [4], and importance sampling [9]. Despite these successes, a notable challenge in many score
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function based algorithms lies in efficiently approximating the score function, stemming from the inherent
complexity associated with solving the density function.

Recently, in [33], a new score function based sampling algorithm via the backward Wasserstein proximal
operator (BRWP) is proposed. In that work, the authors approximate the score function by considering
a regularized Wasserstein proximal, which can be shown to have a kernel formula through the Hopf-Cole
transform. With the explicit form for the computation of the score function, the sampling algorithm becomes
deterministic and relatively robust. Numerical experiments show that the evolution of samples exhibits a
highly structured manner and a reliable convergence is guaranteed for several interesting scenarios. However,
as the author pointed out in [33], the algorithm is biased due to the discretization of the particle evolution
equation and is not easily scalable to high-dimensional spatial domains.

To address the curse of dimensionality inherent in high-dimensional sampling problems, many strategies
have been employed. These approaches encompass the investigation of low-rank structures [5, 36], the
utilization of accelerated gradient flow techniques [19, 37], and the incorporation of deterministic sparse
quadrature rules tailored for special cases [30, 12]. In this work, we shall leverage efficient and delicate
tensor algorithms to improve both theoretical results and the numerical performance of BRWP. Tensor
train approximation, which can represent a broad class of functions with storage complexity O(d) and
allows many algebraic computations of order O(d), where d is the dimension, has become popular in recent
years. Tensor train approximations and algorithms, also called matrix product space [35], are populated in
[25] and find applications in neural network representation [34], achieving image super-resolution [8], high-
dimensional PDE simulation [28], generative modeling [15], and so on. In this paper, we fully harness the
power of tensor train approximation to derive proper tensor sampling algorithms that are computationally
efficient and accurate for high-dimensional distributions.

The proposed sampling algorithm presents several distinctive features. Firstly, by embracing tensor train
approximation for high-dimensional integration kernels, the algorithm generates samples that align more
accurately with theoretical results than the Monte Carlo integration used in BRWP. Secondly, the paper
introduces a delicate choice of covariance matrix for initial density estimation through the discretization
of the density function on a high-dimensional mesh, leading to an unbiased sampling algorithm. Lastly,
diffusion which is generated by a deterministic approximation procedure of the score function endows the
proposed method with great robustness for highly ill-posed Bayesian inverse problems.

The paper is structured as follows. Section 2 provides an insightful review of the score function based
sampling algorithm focusing on the BRWP proposed in [33] and emphasizing the kernel representation of
the solution for the regularized Wasserstein proximal operator. Section 3 will introduce the fundamental
concept of tensor train approximation and will present several important motivations for the adoption
of tensor train approximation for our objective. Section 4 intricately details the proposed tensor train
based sampling algorithm, offering comprehensive insights into its implementation and convergence analysis
across critical scenarios. Finally, Section 5 presents a series of numerical experiments to validate the proposed
sampling algorithm’s claimed features and provide a robust empirical foundation for its efficacy in real-world
applications, such as Bayesian inverse problems.

2. Problem Statement and Score-Based Sampling Algorithm

In this section, our main goal is to present the definition of the score function and outline an approximation
problem for a regularized Wasserstein proximal operator. The kernel formula for this operator is key to
the derivation of our sampling algorithm. Following this, we provide a brief description of the Backward
Regularized Wasserstein Proximal Scheme (BRWP) proposed in [33], which serves as motivation for the
current work.

Our specific objective is to acquire a series of samples {xk,j}Nj=1 from a distribution Πk, approximating
the target distribution Π∗ with a density function

ρ∗(x) =
1

Z
exp (−V (x)) , (1)
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where V (x) is a known continuously differentiable potential function, and Z =
∫

Rd exp(−V (y))dy < +∞ is
a normalization constant.

Score-based diffusion concerns the evolution of particles with density function ρ, following the Langevin
stochastic differential equation

dX(t) = −∇V (X(t))dt +
√

2/βdW (t), , X(0) = X0, , (2)

where β > 0 is a constant, W (t) is the standard Wiener process in R
d, and X0 is the initial set of particles.

With the help of Louisville’s equation [22], we derive the scored-based particle evolution equation whose
trajectories have the same marginal distribution as (2)

dX

dt
= −∇V (X)− β−1∇ log ρ(t,X), , (3)

where ∇ log ρ(t,X) is the score function associated with density ρ.

To compute the density function, it is known that ρ will evolve following the Fokker-Planck equation

∂ρ

∂t
= ∇ · (∇V (x)ρ) + β−1∆ρ , ρ(0, x) = ρ0(x) , (4)

for the initial density ρ0.

Approximating the terminal density ρT := ρ(T, ·) with terminal time T is challenging due to non-linearity
and high dimensions. To address this, we consider a kernel formula to approximate a regularized Wasserstein
operator. Specifically, we first recall the Wasserstein proximal with linear energy

ρT = argmin
q

[

1

2T
W (ρ0, q)

2 +

∫

Rd

V (x)q(x)dx

]

, (5)

where W (ρ0, q) is the Wasserstein-2 distance between ρ0 and q. Additionally, by the Benamou-Brenier
formula, the Wasserstein-2 distance can be expressed as an optimal transport problem, leading to

W (ρ0, q)
2

2T
= inf

ρ,v,ρT

∫ T

0

∫

Rd

1

2
‖v(t, x)‖22ρ(t, x) dx dt,

where the minimizer is taken over all vector fields v : [0, T ]×R
d → R

d, density functions ρ : [0, T )×R
d → R,

such that

∂ρ

∂t
+∇ · (ρv) = 0 , ρ(0, x) = ρ0(x) , ρ(T, x) = q(x) .

Solving (5) is usually a challenging optimization problem. In [18], motivated by Schrödinger bridge
systems, the authors introduce a regularized Wasserstein proximal operator by adding a Laplacian regular-
ization term, leading to

ρT = argmin
ρ

inf
v,q

∫ T

0

∫

Rd

1

2
||v(t, x)||2ρ(t, x) dx dt +

∫

Rd

V (x)q(x) dx , (6)

with
∂ρ

∂t
+∇ · (ρv) = β−1∆ρ, , ρ(0, x) = ρ0(x) , ρ(T, x) = q(x) , (7)

where ρ(t, x) as the solution to the above regularized Wasserstein proximal operator approximates one step
of the Fokker-Planck equation when T is small.

Introducing a Lagrange multiplier function Φ, we find that solving ρT is equivalent to computing the
solution of the coupled PDEs











∂tρ+∇x · (ρ∇xΦ) = β−1∆xρ ,

∂tΦ+ 1
2 ||∇xΦ||2 = −β−1∆xΦ ,

ρ(0, x) = ρ0(x) , Φ(T, x) = −V (x) .

(8)
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The coupled PDEs can be solved using the Hopf-Cole type transform, and then ρ(t, x) can be computed by
solving a system of backward-forward heat equations

ρ(t, x) = η(t, x)η̂(t, x) , (9)

where η̂ and η satisfy

∂tη̂(t, x) = β−1∆xη̂(t, x) , (10)

∂tη(t, x) = −β−1∆xη(t, x) , (11)

η(0, x)η̂(0, x) = ρ0(x), η(T, x) = exp (−βV (x)) . (12)

In summary, equation (9) provides a closed-form update to compute the density function by solving a
system of backward-forward heat equations. Once ρT is known, by the Euler discretization for equation (3),
the evolution of particles in the next iteration can be computed as

Xk+1 = Xk − h(∇V (Xk) + β−1∇ log(ρT (Xk))) . (13)

where h is the step size and ρT is the terminal density with initial distribution Πk.

For a comprehensive understanding of our upcoming discussion, we recall the key steps in the BRWP
algorithm developed in [33]. This algorithm estimates the initial density ρ0 by empirical distribution,
computes (9) by convolution with a heat kernel as

ρT (x) =

∫

Rd

exp
[

− β
2

(

V (x) +
||x−y||2

2

2T

)]

∫

Rd exp
[

− β
2

(

V (z) +
||z−y||2

2

2T

)]

dz
ρ0(y)dy (14)

and generates new samples by (13). In particular, the integral in R
d that appeared in (14) is estimated

using Monte-Carlo integration.

3. Review on Tensor Train Approximation and Algorithms

In this section, we will provide a concise overview of the definition, algorithms, and convergence properties
of tensor train (TT) approximation applied to several crucial classes of multivariate functions of interest.
The general objective of TT approximation is to reduce the computational complexity and improve the
robustness of the sampling algorithms that we will introduce in the subsequent sections.

The TT decomposition fTT of a d-dimensional tensor f : Rd → R is defined as follows:

f(x1, . . . , xd) ≈ fTT (x1, . . . , xd) =

r1
∑

α1=1

· · ·
rd
∑

αd=1

g1(x1, α1)g2(α1, x2, α2)g3(α2, x3, α3) · · · gd(αd−1, xd) , (15)

where r = max{rj}dj=1 is the rank of the decomposition, and the functions gi are cores of the TT decompo-

sition. We remark (15) can be generalized to functional approximation in R
d.

The TT representation of a high-dimensional tensor enables efficient computation of various algorithms,
including addition, Hadamard product, and matrix-vector products, especially when the rank r is relatively
small. Assuming the number of nodal points in each dimension is n, then the complexity of several frequently
used algorithms for tensors in TT format is summarized in the following table [25]:

Operation Rounding Addition Hadamard Product Matrix-Vector Product
Complexity O(dnr3) O(dnr3) O(dnr3) O(dn2r4)

To use TT algorithms effectively, it is crucial to determine the class of functions for which the TT
representation (15) exists with a relatively small rank r. Since the TT decomposition can be viewed as a
recursive singular value decomposition, we recall the following theorem from [14] based on SVD if f is a
d-dimensional tensor.
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Theorem 3.1. [14] Let f ∈ Hk(Rd) for some fixed k > 0 and 0 < ǫ < 1. Then, the overall truncation error

of the TT decomposition for f with ranks r ≤ ǫ−1/k is given by

‖f − fTT ‖L2(Rd) ≤
√
dǫ,

and the storage cost for TT representation will be ǫ−d/k.

The above theorem is applicable since, as we will see later, for sampling problems, functions we approxi-
mate in TT format are the exponential of potential functions or simply the heat kernel, which is typically
very smooth. In such cases, k can be relatively large, resulting in small ranks for TT approximation and
low storage complexity for a fixed d.

Moreover, it is noteworthy that the estimate in Theorem 3.1 remains slightly unsatisfactory, considering
that the storage cost and approximation error still depend on

√
d or ǫ−d/k, which might be expensive for

high-dimensional scenarios. For an alternative approximation result, specifically when f represents the
density function of a Gaussian distribution, we refer to [29] which presents a convergence theorem that is
independent of dimension and relies on the off-diagonal ranks of the variance matrix.

The next issue we need to address is the algorithm to obtain a proper TT decomposition efficiently for
a given tensor. Based on our numerical experience, we found that the TT crossing algorithm in [24] is the
most efficient and stable one for our purpose. For a discretized tensor defined on (Rn)d, where n is the
number of nodal points in each dimension, the general idea of TT crossing-type algorithms is to unfold
the tensor into a matrix A1 of the form R

n × R
n(d−1), called the unfolding matrix. The standard crossing

approximation is then applied on A1 to have

A1 ≈ CÂ−1R ,

with

C = A1(:, I1) , R = A1(J1, :) ,

where I1 and J1 are small index sets chosen by certain energy minimization algorithms. This process is
repeated for each dimension. Notably, crossing algorithms only require access to a small number of entries
of the original tensor, and the full tensor is never formed in the algorithm.

For the accuracy of the TT crossing algorithm, the following error bound of TT approximation in the
Frobenius norm for f discretized on n points in each dimension is established in [27].

Theorem 3.2. [27] Suppose a tensor f can be approximated by a tensor train with maximum rank r and

error ǫ. Using the crossing algorithm with tolerance ǫ, we can find fTT with rank at most r such that

||f − fTT ||F ≤ (3κ)log2 d − 1

3κ− 1
(r + 1)ǫ ,

where κ is the condition number of the unfolding matrix of f .

3.1. A Straightforward Tensor Train Algorithm to Improve BRWP. In this subsection section, we
initially propose a straightforward sampling method that leverages TT algorithms discussed in the preceding
subsection. This method is designed to compute high-dimensional integrals appearing in (14). The error
analysis of this algorithm offers valuable insights into the power of TT approximations in approximating
the kernel formula, paving the way for the development of the new algorithm to be presented in the next
section.

In the algorithm described in [33], for each iteration, it requires the computation of the density ρT using
the following formula

ρT (xj) =
1

N

N
∑

i=1

exp
[

−β/2
(

V (xi) + ||xi − xj ||22/(2T )
)]

∫

Rd exp
[

−β/2
(

V (z) + ||xi − z||22/2T
)]

dz
, (16)

for each particle located at xj .
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We observe that the bottleneck of computation in (16) at each iteration lies in the normalization term

N(x) :=

∫

Rd

exp

[

−β

2

(

V (z) +
||x− z||22

2T

)]

dz , (17)

which involves integration in R
d. Monte Carlo integration through random sampling can only provide a

solution that converges at a rate of N−1/2, where N is the number of random points used in the integration.
It is important to note that the N−1/2 error bound does not imply that the computational complexity
to achieve a fixed degree of accuracy is the same for any dimension, as the complexity of evaluating a d-
dimensional function f will also depend on d. For certain scenarios, as we will present in the following table
3.1, the convergence could be extremely slow for some interesting high-dimensional integrals that arise in
sampling problems.

In this case, we propose to apply TT approximation to improve both the accuracy and efficiency of the
computation of the normalization term in (17). We first consider n quadrature points {zj}nj=1 ∈ [−L,L]

in each dimension. The mesh formulated by
⊗{zj} in [−L,L]d is denoted as Zd,n. The integration then

becomes
N(x) ≈ KdT (exp(−βV/2))(x), (18)

where T (f) is the tensor train approximation using the crossing algorithm for f on the mesh Zd,n, and Kd

is defined as
Kd(x, y) = K1(x, y)⊗ · · · ⊗K1(x, y), (19)

with

(K1(x, y))j,k = wj exp

(

−β
||zj − zk||22

4T

)

,

and wj being quadrature weights for zj. The error term ǫ in the approximation (18) consists of the truncation

of integration onto [−L,L]d, which is small due to the exponential decay of exp(−β||x− z||22/4T ) for z, and
the quadrature error, which will be of order n−n if zj is Legendre quadrature points.

Then, the computation of the density function ρT becomes:

ρT (xj) =

∫

Rd

G(xj , y)ρ0(y)dy , G(x, y) = T (exp(−βV/2))(xj)
Kd(xj , y)

N(y)
. (20)

Combining Theorems 3.1 and 3.2, we observe that the score function

∇ log(ρT )(xj) =
∇ρT (xj)

ρT (xj)

can be computed efficiently and accurately when exp(−βV (x)/2) is sufficiently smooth and has relatively
small TT ranks. Before we proceed, we would like to provide an example to demonstrate the improvement
of accuracy and efficiency of approximating the integral (17) for a special case where ρ0 = 1 and N(y) = 1.
In this case, the function ∇ log(ρT ) can be explicitly written out for some cases by computing the proximal
of V (x) directly. We pick a challenging non-convex potential function V (x) = |x|21/2, the computational

time and accuracy using TT integration and MC integration are summarized in the following tables.

TT Integration MC Integration with
103 Samples 106 Samples

Error 0.099 0.224 0.190
Time 5 < 1 85

Table 1. Relative error and time for differ-
ent numbers of samples in seconds.

d TT Integration MC Integration
10 0.27 31.48
100 6.29 277.81
200 16.53 2186.5

Table 2. Computational
time in seconds among
different dimensions d

.

In summary, TT integration demonstrates substantial advantages in terms of accuracy and efficiency
when compared to MC integration, especially for some high-dimensional integrations.
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Given the improved accuracy and efficiency of using the tensor train to compute integral as in (18), we
present the following theorem that rigorously demonstrates the improvement in the accuracy of the sampling
algorithm. This is done for a representative scenario where both Πk and Π∗ are Gaussian distributions.
For the notional sake, we will write f(n, d) . g(n, d) when f(n, d) ≤ Cg(n, d) for a positive constant C
independent of n and d.

Theorem 3.3. For BRWP in [33], let V (x) = xTx/(2σ2), and denote Xk and X̃k be samples obtained at

the k-th iteration with TT integration and MC iteration with means µk and µ̃k respectively. Assuming all

steps in the BRWP Algorithm are exact except the step of approximating N(x) in (17). If the complexities

of the two numerical integration methods are of the same order, and let µ∞ = limk→∞ µk, µ̃∞ = limk→∞ µ̃k,

we have

|µ∞ − µ∗| . d

2n
, |µ̃∞ − µ∗| . 1

d1/2n
,

where n represents the number of discretization points in each dimension for TT integration.

Proof. From [33] and our analysis in the next section, under exact arithmetic, µ∞ and µ̃∞ all converge to
µ∗. Hence, we shall examine the numerical errors generated by the two different integration methods when
approximating N(y) defined in (17).

Let N1(y) and N2(y) be the approximations to N(y) by TT integration and MC integration, respectively.
We have

|N2(y)−N(y)| . n−d/2
mc ,

where nd
mc is the number of samples used in MC integration, involving O(nd

mc) flops.

For N1, considering n quadrature points in each dimension and truncating the integration to [−L,L]d,
then the error between N1(y) and N(y) consists of two parts: one from truncation of integration to a
bounded domain denoted as E1, and the other from the quadrature rule denoted as E2.

For E1, using the upper bound for the error function of the Gaussian distribution, we have

E1 . d
exp(−βL2

z/(4σ
2))

Lz
.

For E2, recalling the classical error bound of the Gauss-Legendre quadrature, we derive

E2 ≤ d
(2Lz)

2n+1(n!)4

((2n)!)3
||H2n||∞

(4β−1σ2)2n
,

where H2n is the Hermitian polynomial coming from the n-th derivative of the Gaussian. Stirling’s approx-
imation for n! and the upper bound of Hermitian polynomials yield E2 .

d
2n . Thus, |N1(y)−N(y)| . d

2n .

Assuming P and P̃ are computed with the same order of flops, we have nmc = (n2d)1/d, and the error for
MC integration becomes

|N2(y)−N(y)| . 1

nd1/2
.

Finally, recalling the iterative relation in [33], the numerical error in approximating the normalization
term N(x) will propagate to all the remaining iterations. Hence, the error in the iteration at infinity will
be bounded by the same term. �

To conclude, according to Theorem 3.3, if we employ TT integration to approximate the normalization
term (17), the computational accuracy will experience a significant improvement while maintaining the same
order of computational complexity compared with MC integration. This theorem underscores the necessity
of applying TT approximation, and the introduced straightforward algorithm becomes particularly useful
when T is extremely small, and an empirical distribution for ρ0 is acceptable. However, as revealed in [33],
the aforementioned algorithm is still biased, meaning that the steady state of the generated distribution
differs from the target distribution. Therefore, in the next section, we will propose an unbiased new sampling
algorithm with the assistance of TT approximation.
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4. Tensor Train based Noise-free Sampling Algorithm (TT-BRWP)

In this section, we propose a new sampling algorithm with the help of a TT algorithm that utilizes a
delicate choice of covariance matrix to enhance the accuracy of the BRWP proposed in [33]. We verify the
convergence and mixing time of the proposed algorithm in a representative scenario that the distribution
we would like to sample is a general Gaussian distribution.

We recall that to compute the terminal density function in BRWP, the empirical distribution is employed
to estimate initial density ρ0. However, this choice, along with the discretization of the particle evolution
equation, leads to biased estimations of the sample mean and variance [33]. Given that, we choose to
use the following density estimation which is only implementable when the TT algorithm is employed to
approximate ρ0 as

ρ0(y) =
1

M

M
∑

k=1

1

|H|1/2(2π)d/2 exp

(

− 1

2
(y − xk)

TH−1(y − xk)

)

, (21)

with a special choice of the covariance matrix H. In subsequent analysis, we will derive and justify the
explicit choice of H, which depends on the sample covariance and parameters β, T .

We remark that, heuristically, solving ρ with our special choice of ρ0 can be considered as solving a
preconditioned version of the Fokker-Planck equation satisfied by the density function. From our numerical
experience and the following analysis of several representative scenarios, this preconditioned equation leads
to a sampling algorithm with faster convergence and unbiased estimation. The more complete theoretical
treatment will be addressed in future works.

Before the analysis, we first present the TT-BRWP algorithm as follows.

Algorithm 1 Tensor train BRWP sampling algorithm (TT-BRWP)

1: Input: Given X0 = {x0,j}Mj=1 ∈ R
d ∼ Π0.

2: Construction: Solve backward heat equation by (18) and use TT crossing to obtain TT approximation
for 1/η0 in (9).

3: for k = 1, 2, · · · Number of iterations do
4: for j = 1, 2, · · · Number of samples (parallel) do
5: Construct: Write ρ∗0,j as in (21), which is a tensor train of rank 1.

6: Compute η̂0 = ρ∗0,j/η0 by Hadamard product.
7: Solve forward heat equation with η̂0 to get η̂T and ∇η̂T .
8: Compute ρT,j = ηT ◦ η̂T and ∇ρT,j = ηT ◦ ∇η̂T .
9: end for

10: Interpolate ∇ρT =
∑

j ∇ρT,j and ρT =
∑

j ρT,j on Xk (interpolation on a gridded array).

11: Compute score function ∇ log ρT = ∇ρT /ρT .
12: Solve (3) using backward Euler scheme to have Xk+1 = Xk − h(∇V (Xk) + β−1∇ log(ρT (Xk))).
13: end for

14: Output: Xk = {xk,j}Mj=1 for k ∈ N.

In the following, section 4.1 and 4.2 will verify Algorithm 1 by computing its mixing time and deriving
continuous analog to show the convergence of the generated samples to a desired stationary distribution when
the underlying distribution is assumed to be a Gaussian. In section 4.3, details of numerical implementation
will be addressed.

4.1. Analysis of TT-BRWP for Gaussian Distribution. We first focus on the verification of Algorithm
1 when the target distribution is a multivariate Gaussian distribution. We then derive the convergence and
mixing time of the proposed algorithm.
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Let us consider the case that the density function for the target distribution is

ρ∗(x) =
1

Z
exp

(

− (x− µ)TΣ−1(x− µ)

2

)

which is a multivariate Gaussian distribution. Then the solution of the regularized Wassertain proximal
defined in (8) can be written as [18]

ρT (x) =

∫

Rd

ρ0(y)

exp

(

− β
2

(

||x−y||2
2

2T + (x− µ)TΣ−1(x− µ)

))

N(y)
dy , (22)

where

N(y) =

∫

Rd

exp

(

− β

4
(z − µ)TΣ−1(z − µ)

)

exp

(

− β
||z − y||22

4T

)

dz . (23)

Next, we initialize the algorithm by letting Π0 be a Gaussian distribution with mean µ0 and covariance
Σ0, which is a practically common choice for real applications. Moreover, we assume that we have sufficiently
many random samples from Π0 so that ρ0 in (21) can be approximated by a continuous convolution.

Now, recall the fact that the convolution of two multivariate Gaussians with mean and covariance (µ1,Σ1),
(µ2,Σ2) will still be a Gaussian with mean and covariance (µ1 + µ2,Σ1 +Σ2). Hence, we have

N(y) ∼ exp

(

− β

4
(y − µ)T(Σ + T )−1(y − µ)

)

, ρ0(y) ∼ exp

(

− 1

2
(y − µ0)(H +Σ0)

−1(y − µ0)

)

,

where f(x) ∼ g(x) denotes f(x) = Cg(x) for some constants C that are independent of x. Substituting the
above two expressions into (22), we derive

ρT (x) ∼ exp

(

− β
(x− µ)TΣ−1(x− µ)

4

)

∫

Rd

exp

(

− β
||x− y||22/T − (y − µ)T(Σ + T )−1(y − µ)

4
− (y − µ0)(H +Σ0)

−1(y − µ0)

2

)

dy

∼ exp

(

− β

2
(x− µ0,T )

TΣ−1
0,T (x− µ0,T )

)

(24)

where

µ0,T = Kµ+
β

2
K(H +Σ0)

−1Kµ , Σ0,T = 2β−1TK +KT(H0 +Σ0)
−1K , (25)

and K = (I + TΣ−1)−1. Consequently, we employ the discretization of particle evolution equation (13) to
have

X1 = X0 − h∇V (X0)− hβ−1∇ log ρT = (1− hΣ−1 + hβ−1Σk,T )X0 − hβ−1Σ−1
k,Tµk,T . (26)

Hence, it will be clear that X1 and also all Xk will be with Gaussian distributions. Moreover, their means
and covariances can be explicitly computed which is presented in the following Lemma similar to proposition
2 in [33].

Lemma 4.1. Assuming V (x) = (x−µ)TΣ−1(x−µ)/2 and Xk is a Gaussian distribution with mean µk and

covariance Σk, then Xk+1 will also be a Gaussian with mean and covariance as

µk+1 = (I − hΣ−1 + hβ−1Σk,T )µk − hβ−1Σ−1
k,Tµk,T (27)

and

Σk+1 = (I − hΣ−1 + hβ−1Σ−1
k,T )Σk,T (I − hΣ−1 + hβ−1Σ−1

k,T ) (28)

where µk,T and Σk,T are given in (25) by replacing Σ0 with Σk.

Now, we are ready to introduce our choice of the covariance matrix Hk in (21) at the k-th iteration, which
will be

Hk = β−1(I − TΣ−1
k )Σk(I + TΣ−1

k )− Σk = β−1(Σk − T 2Σ−1
k )− Σk , (29)
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where Σk is the covariance matrix for particles Xk in the k-th iteration. The reason we choose Hk is from
(28) as the steady state of covariance denoted as Σ∞ will satisfy

I + h(β−1Σ−1
∞,T − Σ−1) = I ⇒ Σ− T 2Σ−1 = Σ∞ − T 2Σ−1

∞ . (30)

Hence, in this scenario, the covariance of the target distribution Σ will also be a steady state for the evolution
of Xk. We remark that to allow Hk to be positive definite, we shall choose β < 1 and T to be sufficiently
small.

To better understand the convergence of Σk and µk, we first consider the simplified case where Σ0 and Σ
commute, indicating they share the same eigenspace. Then from (28), we observe that Σk also commutes
with Σ for all k in this case.

We introduce the notations σ(j) and σ
(j)
k as the j-th eigenvalue of Σ and Σk respectively. Moreover, we

write m
(j)
k as the j-th entry in µk. In the following, we will skip the superscript if the result holds for all j.

By simplifying Lemma 4.1, the evolution of mk and σ2
k can be simplified as follows

mk+1 =

(

1− σ−2h+
hσ−2T (1 + σ−2T )

σ2
k − T 2σ−2

k + 2T (1 + σ−2T )

)

mk , (31)

σ2
k+1 =

(

1− σ−2h+
h(1 + σ−2T )2

σ2
k − T 2σ−2

k + 2T (1 + σ−2T )

)2

σ2
k , (32)

and the equation for the steady state σ∞ in (30) simplifies to

σ2 − T 2σ−2 = σ2
∞ − T 2σ−2

∞ (33)

with the only positive solution being σ2
∞ = σ2, indicating the only steady state of Σk is exactly Σ.

An important observation is that β does not appear in the iterative relation (31) and (32), implying that
the choice of β as a regularization parameter is mainly to ensure Hk defined in (29) is positive. Reasonable
choice of β will not influence the evolution of the sample mean and covariance significantly. To characterize
the behavior of the evolution of sample distribution Πk we get at the k-th iteration, we introduce the total
variation dTV (P,Q) between two distributions P and Q over Rd with probability density functions p and q:

dTV (P,Q) =

∫

Rd

|p(x)− q(x)|dx . (34)

We also recall the result about the total variation between two Gaussian distributions with the same mean
from [6]

dTV (N (µ,Σ1),N (µ,Σ2)) =
3

2
min







1,

√

√

√

√

d
∑

i=1

λ2
i







, (35)

where λi are eigenvalues of Σ−1
1 Σ2 − I.

Next, we introduce the mixing time concerning the target distribution Π∗ as

tmix(ε,Π0) = min
k

{k|dTV (Πk,Π
∗) ≤ ε} . (36)

Now, we present a theorem regarding the mixing time of the proposed TT-BRWP, assuming the initial and
exact means are equal. The result is comparable with Theorem 2 in [33] with slightly different assumptions
and a simplified proof. The evolution of sample means mk will be discussed in Section 4.2.

Before the main theorem, we prove the following technical lemma, which will be critical in the proof of
the next theorem.

Lemma 4.2. Let T, h ∈ [0, σ2/4], and ζ ∈ [σ/2, 3σ/2], the function

f(ζ) := 1− h

[

σ−2 + (1 + σ−2T )2
3T 2/ζ2 + ζ2 − 2T (1 + σ−2T )

(ζ2 − T 2/ζ2 + 2T (1 + σ−2T ))2

]

satisfies |f(ζ)| ≤ 1− h/σ2.
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Proof. Firstly, to show f(ζ) ≤ 1− h/σ2, we observe that it suffices to show

3T 2/ζ2 + ζ2 − 2T (1 + σ−2T ) > 0

for ζ such that |ζ − σ| ≤ σ/2. This is equivalent to exploring the minimum value of a quadratic polynomial
in ζ2, and the desired condition will boil down to

T 2(3− (1 + T/σ2)2) ≥ T 2

which is true by our choice of T .

Secondly, to show f(ζ) ≥ h/σ2 − 1, it suffices to show

σ2(1 + Tσ−2)2(3T 2ζ−2 + ζ2 − 2T (1 + Tσ−2)) ≤ 6(ζ2 − T 2ζ−2 + 2T (1 + Tσ−2))2 .

Taking the square root of both sides, we have

σ(1 + Tσ−2)(3T 2ζ−2 + ζ2 − 2T (1 + Tσ−2))1/2

≤ζ−1σ(1 + Tσ−2)((3T 2 − T 2(1 + Tσ−2)2) + (ζ2 − T (1 + Tσ−2))2)1/2

≤σ(1 + Tσ−2)(ζ − T (1 + Tσ−2)ζ−1) .

Now, we introduce a new function g(T ) such that

g(T ) :=
√
6(ζ4 − T 2 + 2T (1 + Tσ−2)ζ2)− σ(1 + Tσ−2)(ζ3 − T (1 + Tσ−2)ζ) .

Hence, it remains to verify g(T ) > 0 for any ζ ∈ [σ/2, 3σ/2] and T ≤ σ2/4. As g(0) = ζ3(
√
6ζ −σ), we have

g(0) > 0. Hence, we only need to show g′(T ) > 0 for T < σ2/4 which is

g′(T ) = 3σ−3ζT 2 + [(4
√
6σ−2ζ2 + 4σ−1ζ − 2

√
6)T + σζ] + (2

√
6ζ2 − ζ3σ−1) .

Since each component of the above expression is positive, we have f(ζ) ≥ h/σ2− 1 for all T , completing our
proof. �

Theorem 4.3. Let V (x) = xTΣ−1x/2 and σm be the smallest eigenvalue of Σ. For distribution Πk evolved

following Algorithm 1 with T, h ∈ [0, σ2
m/4], assuming Σ0 and Σ commute and |σ(j)

0 − σ(j)| ≤ σ(j)/2 for all

j, we have

||Σk − Σ||F ≤ (1− δ)k||Σ0 − Σ||F ,

where δ = h/σ2. Moreover, if we assume µ0 = 0, the total variation is bounded by

dTV(Πk,Π
∗) ≤ 3

2
C
√
d(1− δ)k ,

and the mixing time is given as

tmix(ε,Π0) = O
(

log(
√
d(1− δ))

)

,

where the constant C depends on Σ, Σ0, T , and h.

Proof. Under the assumption that Σ0 and Σ commute and share the same eigenspaces, it is sufficient to
focus on the evolution of the j-th eigenvalue of Σk for each iteration which is given by (32) as

σk+1 =

(

1− hσ−2 + h
(1 + σ−2T )2

σ2
k − T 2σ−2

k + 2T (1 + σ−2T )

)

σk , (37)

where we skip the superscript j to simplify notations. We regard the evolution of σk as a fixed-point iteration
with the iterative function

φ(ζ) =

(

1− hσ−2 + h
(1 + σ−2T )2

ζ2 − T 2/ζ2 + 2T (1 + σ−2T )

)

ζ . (38)

The derivative of φ with respect to ζ is

φ′(ζ) = 1− h

[

σ−2 + (1 + σ−2T )2
3T 2/ζ2 + ζ2 − 2T (1 + σ−2T )

(ζ2 − T 2/ζ2 + 2T (1 + σ−2T ))2

]

. (39)

By Lemma 4.2, |φ′(ζ)| ≤ 1−δ, showing that σk converges linearly with rate 1−δ, i.e., |σk−σ| ≤ (1−δ)k|σ0−σ|.
Hence, we show the convergence of Σk.
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Leveraging the TV norm between two Gaussians in (35), we derive

dTV(Πk,Π
∗) ≤ 3

2
C
√
d(1− δ)k , C = min{1,max

j
{(σ(j))−1(σ(j) − σ

(j)
0 )}} . (40)

Furthermore, the mixing time can be derived by combining the above estimate on the TV norm and its
definition. �

Before we proceed to the more general case, we would like to compare the convergence of variance with the
initial density defined in (21) depicted in the above theorem with the case of using the empirical distribution
as ρ0 proposed in [33]. The result in the next figure comes from the iterative function we formulated in (38).
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Figure 1. Logarithm of the approximation error for variance versus iteration using empirical
distribution (blue) and density estimation defined in (21) (red) with σ = 2, 0.5, 0.25 (from
left to right), T = 0.1, h = 0.1.

From Fig. 1, we can observe that the unbiased nature of Algorithm 1 by employing a delicate choice of
the covariance matrix for ρ0 which improves the accuracy of variance approximation, especially for the case
where σ is relatively small. Moreover, we also hope to numerically explore the influence of parameter T on
the rate of convergence which is shown in the following figure with the help of iterative function (38).

5 10 15 20 25 30 35 40

Iterations

-5

-4

-3

-2

-1

0

1

2

L
o

g
 o

f 
L

2
 e

rr
o

r 
fo

r 
v
a

ri
a

n
c
e

 a
p

p
ro

x
im

a
ti
o

n

T = 0.05

T = 0.1

T = 0.2

T = 0.4

5 10 15 20 25 30 35 40

Iterations

-30

-25

-20

-15

-10

-5

0

5

L
o

g
 o

f 
L

2
 e

rr
o

r 
fo

r 
v
a

ri
a

n
c
e

 a
p

p
ro

x
im

a
ti
o

n

T = 0.05

T = 0.1

T = 0.2

T = 0.4

Figure 2. Logarithm of the approximation error of Algorithm 1 for variance versus iterations
using different terminal time T with T = 0.05, 0.1, 0.2, 0.4, h = 0.1, σ = 0.5 (Left) and 1
(Right).

From Fig. 2, we observe that as T becomes smaller, a slightly faster convergence can be achieved. However,
as T becomes smaller, the integration in (17) requires more nodal points to obtain a satisfactory numerical
approximation. Hence, we will choose a fixed T empirically in our following numerical experiments.
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Next, we void the assumption that Σ0 and Σ commute with each other and derive a continuous analog
of the evolution of Σk to further demonstrate its convergence property. First, from the results in Theorem
4.3 and numerical experiments in Fig. 2, the algorithm is interesting when T and h are both small. Hence,
it is reasonable to drop high-order terms in h and T .

Let us revisit the iterative relationship about Σk in (28) and notice that the evolution of the covariance
matrix can be written as

Σk+1 =Σk − h(Σ−1Σk +ΣkΣ
−1 − β−1Σ−1

T Σk − β−1ΣkΣ
−1
T ) +O(h2) . (41)

Then by the Neumann series, we notice that

β−1Σ−1
T = (2T +Σk − TΣ−1Σk − TΣkΣ

−1 +O(T 2))−1 = Σ−1
k (I + T (Σ−1 +ΣkΣ

−1Σ−1
k − 2Σ−1

k )) +O(T 2) .

Substituting this into (41), we arrive at

Σk+1 = Σk − h
[

ΣkΣ
−1 +Σ−1Σk − 2− T (2Σ−1 +Σ−1

k Σ−1Σk +ΣkΣ
−1Σ−1

k − 4Σ−1
k )

]

+O(h2) +O(T 2) . (42)

Now, let h → 0 and consider the continuous analog of the covariance matrix as Σt depends on time t. This
leads to

dΣt

dt
= −ΣtΣ

−1 − Σ−1Σt + 2 + T (2Σ−1 +Σ−1
t Σ−1Σt +ΣtΣ

−1Σ−1
t − 4Σ−1

t ) +O(T 2) . (43)

To further explore the convergence of Σt, we consider the Frobenius norm of (Σt − Σ)T(Σt − Σ), which is
equivalent to the trace of the matrix, to derive

d||(Σt − Σ)2||F
dt

=Tr{−4(Σt − Σ)Σ−1(Σt − Σ) + 4T (Σt − Σ)(Σ−1Σ−1
t )(Σt − Σ)}+O(T 2)

=− 4Tr{(Σt − Σ)(Σ−1 − TΣ−1Σ−1
t )(Σt −Σ)}+O(T 2)

≤− 4Tr{(Σt − Σ)Σ−1(Σt − Σ)}(I − Tρ{Σ−1}) +O(T 2) , (44)

where we have used the facts that Tr{AB} = Tr{BA} and |Tr{AB}| ≤ |Tr{A}|ρ{B} where ρ is the
spectral radius of B. The above implies that when (I − Tρ(Σ−1)) is positive, which is guaranteed for small
T , ||(Σt−Σ)2||F decays to 0. The conclusion of the above discussion is summarized in the following theorem.

Theorem 4.4. When h and T are sufficiently small, let Σt be the continuous analog of Σk when h → 0.
Then the Frobenius norm of Σt − Σ will decay to 0 for T small enough, and the decay rate is bounded by

d||(Σt − Σ)2||F
dt

≤ −4Tr{(Σt − Σ)Σ−1(Σt − Σ)}(I − Tρ{Σ−1}) +O(T 2) ≤ 0 (45)

which depends on eigenvalues of Σ.

The above theorem shows, from the continuous perspective, that the covariance matrix ofXk will converge
to Σ for any T , h that are sufficiently small.

To conclude this section, we provide a brief comparison between our theoretical convergence result and
BRWP as well as MALA.

• In comparison to BRWP, the proposed sampling algorithm is unbiased, leading to a steady state
that exactly matches the target distribution while BRWP introduces a variance shift by a factor of
aT 2/β, as illustrated in Fig., 1.

• Contrasting with MCMC-type methods like MALA, which has a theoretical upper bound for mixing
time of O(d2) [11], our method exhibits a faster convergence with a theoretical bound of O(log(

√
d)).

This suggests that our approach achieves faster convergence in higher dimensions, a characteristic
that will be evident in numerical experiments.
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4.2. Analysis of TT-BRWP Algorithm for a Simplified Bayesian Inverse Problem. In this section,
we shall focus on the accuracy of the proposed TT-BRWP in an interesting scenario that arises in Bayesian
inverse problems and data fitting. The potential function will be

V (x) =
||Ax− µ||22

2λ2
+ ||Γx||22 (46)

where A and Γ are known linear forward operator and linear regularization operator respectively that could
be m×d for m 6= d, µ is the noisy observation, and λ is the noise level. This model corresponds to Tikhonov
regularization for inverse problems and L2 regularization in data fitting. For V (x), we can rewrite it as

V (x) = (x− (ATA+ ΓTΓ)−1ATµ)T(ATA+ ΓTΓ)(x− (ATA+ ΓTΓ)−1ATµ) + C (47)

where C is independent of x. Let µ̃ = (ATA+ ΓTΓ)−1ATµ and Σ = (ATA+ ΓTΓ)−1ATµ, then our goal is
to draw samples from the distribution N (µ̃,Σ) with the proposed TT-BRWP.

We note that since A and Γ are available, Σ̃ and Σk will commute as the only unknown is the scalar-valued
noise level. Now, as in the previous section, we still assume µ̃ = 0 since the general case can be obtained
by a change of coordinates. For the evolution of sample mean µk, we focus on one entry mk = µk(j) and
m̃ = µ̃(j) for some j which by (31) satisfies

(mk+1 − m̃) =

(

1− h
T + (σ

(j)
k )2

(σ
(j)
k )4 + 2T (σ

(j)
k )2 − T 2

)

(mk − m̃) . (48)

To compute the total variation between two Gaussian with different mean, we recall the following result
which is a simplified version of Theorem 1.8 in [1].

Lemma 4.5. Suppose Σ1, Σ2 commute and dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤ 1/600, we have

dTV(N (µ1,Σ1),N (µ2,Σ2)) ≤
1√
2
max

{

||Σ−1
1 ||F ||Σ1 − Σ2||F , ||Σ−1/2(µ1 − µ2)||2

}

.

Then we can derive the following result regarding the total variation difference and mixing time.

Theorem 4.6. Let V (x) be defined in (46) and σm be the smallest eigenvalue of Σ̃. For distribution Πk

evolved following Algorithm 1 with T ≤ σ2
m/(2 + 2

√
2), h ≤ σ2

m/4, assuming the initial distribution satisfies

dTV (Π0,Π
∗) ≤ 1/600 and |σ(j)

0 − σ(j)| ≤ σ(j)/2 for all j, we have

||µk − µ̃||∞ ≤ (1− δ)k||µ0 − µ̃||∞ , ||Σk − Σ̃||F ≤ (1− δ)k||Σ0 − Σ̃||F ,

where δ = h/(2σ2). Moreover, the total variation is bounded by

dTV(Πk,Π
∗) ≤ 1√

2
C
√
d(1− δ)k ,

and the mixing time is given as

tmix(ε,Π0) = O
(

log(
√
d(1− δ))

)

,

where the constant C depends on µ, µ0, T , and h.

Proof. The convergence of covariance is given by Theorem 4.3. Next, to show ||µk−µ̃||∞ ≤ (1−δ)k||µ0−µ̃||∞,
by the iterative relation in (48), we observe it suffices to verify

h ≤ (T + σ2)− 2T 2

(T + σ2)
≤ h

δ
, (49)

where we skip the superscript j for simplification. Then we may take f(t) := (t+ σ2)− 2t2/(t+ σ2) and it
suffices to show f(0), f(σ2/4) satisfy the above inequalities and f(t) is monotonic.

Next, all the above conditions will be equivalent to

h ≤ σ2 ≤ h/δ , h ≤ 23/20σ2 ≤ h/δ , σ4 − 2Tσ2 − T 2 ≥ 0 ;

which are satisfied by our choice of parameters.
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Finally, the statement on total variation norm and mixing time follows from Lemma 4.5 and their defini-
tions directly. �

In conclusion, Theorem 4.6 establishes the linear convergence of the proposed method for the potential
function (46), which is relevant in the context of Bayesian inverse problems and data fitting applications.

Moreover, from (48), we can also derive the continuous analogue mt for any component of µ which is

|mt − m̃| = exp

(

− T + σ2

(T + σ2)2 − 2T 2
t

)

|m0 − m̃| ,

and if (T + σ2)2 − 2T 2 > 0, i.e., T ≤ σ2/(
√
2− 1), mt converges monotonically to m̃. This provides a clear

continuous analog of results in Theorem 4.6

4.3. Numerical Consideration and Computational Complexity. In this subsection, we shall briefly
discuss some numerical details in the implementation of TT-BRWP in Algorithm 1 and the efficiency of
computation which provides important practical guidance on its application.

For the computation of η̂T and ∇η̂T in line 7, we utilize a similar kernel formulation introduced in (18)
which provides a solution for the forward heat equation in (11). Hence, we have

η̂T (x) =

(

β

2πT

)d/2 ∫

Rd

exp

(

− β||x− y||22
4T

)

η̂0(y)dy (50)

and its gradient will be

∇η̂T (x) = −
(

β

2πT

)d/2 ∫

Rd

β(x− y)

2T
exp

(

− β||x− y||22
4T

)

η̂0(y)dy . (51)

We observe that all the above computations as well as η̂T ◦ ηT can be implemented in a tensor-train format
efficiently by using Kd defined in (19).

Moreover, in algorithm 1, when x is near the boundary of the discretization grid, the value of η0

η0(x) =

∫

Rd

exp

(

− β

2

(

V (x)− ||x− y||2
2T

))

dy , (52)

will be extremely small which creates underflow and induces difficulties in approximating 1/η0. In this sce-
nario, one may compute − log(η0) on line 2 and compute the exponential of a tensor by Taylor’s polynomial
of exponential function which enhances the numerical stability with the price of increased computational
complexity.

Finally, for the interpolation on line 10, linear interpolation on a gridded mesh is employed which has
proven to be able to provide satisfactory numerical accuracy and efficiency.

5. Numerical Experiments

In this section, we test the proposed TT-BRWP in algorithm 1 and compare it with the classical Unad-
justed Langevin Algorithm (ULA), the unbiased Metropolis-adjusted Langevin algorithm (MALA), and the
BRWP with MC integration in [33]. For all our following experiments, the initialization X0 is always sam-
pled from a Gaussian distribution with mean 0 and variance 1. Moreover, for all the following TT-BRWP
and BRWP algorithms, we choose β = 4 and 1 respectively.

5.1. Gaussian Distribution. Example 1: In this example, we explore the case V (x) = −(x−a)TΣ−1(x−
a)/2 in R

6 where Σ = σ2I6 for different choices of σ to validate our theoretical results on the convergence
of variance presented in Theorem 4.3.
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Figure 3. Example 1. The logarithm of the L2 error for the variance with samples generated
from TT-BRWP (blue), BRWP (red), and ULA (black).

From Fig. 3, we observe clear linear convergence of the variance for Gaussian distributions with both
σ = 0.2 and σ = 4. From left, TT-BRWP exhibits faster convergence for small σ and improves the final
estimation significantly due to the unbiased nature; from right, TT-BRWP is more robust compared to
BRWP for large σ as BRWP degenerates in this case.

Example 2: Next, we consider the case when Σ is a general SPD matrix. We pick

Σ̂ =





0.4 0.2 0.3
0.2 3 0.2
0.3 0.2 6





and let Σ =

[

Σ̂ 0

0 I3

]

. Then we examine the evolution of the mean and the total variation for the distribution

generated by TT-BRWP, BRWP, and ULA, respectively.
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Figure 4. Example 2. The error of mean for samples generated for TT-BRWP (blue),
BRWP (red), and ULA (black) versus iterations.
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From the first plot of Fig. 4, TT-BRWP provides the best approximation of the sample mean among the
three algorithms. Moreover, from the second plot, BRWP with MC integration degenerates for this case
which shows the necessity of the TT approximation.

5.2. Gaussian Mixture and Bimodal Distribution. Example 3: In the third example, we consider
sampling from a Gaussian mixture distribution in R

6 with

ρ∗(x) =
1

Z

exp
(

−||x− a||22/2
)

+ exp
(

−||x+ a||22/2
)

2
,

for a normalization term Z. We pick a = (1,−0.5, 0, 0, 0, 0)T in R
6 and choose h = 0.02, T = 0.02 to ensure

the convergence of sampling algorithms.
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Figure 5. Example 3. Evolution of particles for different algorithms after 30 iterations
where the contour lines are 0.6 and 0.1.

From Fig. 5, TT-BRWP in the first plot tends to give a more structured distribution of samples for the
case of Gaussian mixture distribution, while ULA has many more points that fall outside the region of high
probability of the original distribution.

Example 4: In this example, we consider sampling from a bimodal distribution (double moon) in R
6 with

ρ∗(x) =
1

Z
exp(−2(||x|| − a)2)

[

exp
(

−2(x1 − a)2
)

+ exp
(

−2(x1 + a)2
)]

.

We test the case a = 2 with T = 0.01 and h = 0.01.
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Figure 6. Example 4. Evolution of sample points for different algorithms after 30 iterations
where the contour lines are 0.8, 0.4, and 0.1 in 20 iterations.

From Fig. 6, it is evident that TT-BRWP provides a set of particles that are concentrated more in the
high probability region of the target distribution within only 20 iterations, while BRWP and ULA converge
more slowly.
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5.3. Nonconvex Potential Function. Example 5: In this example, we present a particularly interesting
case where the potential function V (x) is nonconvex, which is known to be highly challenging due to the
slow convergence of MC integration as shown in table 3.1. We consider

V (x) = ||x− a||21/2 =
(

3
∑

j=1

|xj − a(j)|1/2
)2
,

with a = (1, 1, 0)T in R
3.
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Figure 7. Example 5. Evolution of sample points for different algorithms where the contour
lines are 0.8, 0.4, and 0.1 after 20 iterations.

From Fig. 7, we can observe that the proposed TT-BRWP algorithm provides a quite accurate set of
samples that distributed follows the desired non-convex density function, while samples from BRWP with
MC integration and ULA does not exhibit clear similarity with the target density function.

5.4. Bayesian Inverse Problems. In this subsection, we will examine the accuracy and robustness of the
proposed TT-BRWP to tackle several interesting and ill-posed inverse problems using Bayesian inference.

Let us first recall the general setting for Bayesian inverse problems. Firstly, we write the measurement
process as

y = G(x∗) + ζ,

where ζ is random noise, x∗ is the underlying truth we would like to recover, and G is the forward operator.
The objective of Bayesian inverse problems is to estimate the posterior distribution

π(x|y) = π(y|x)π(x) , (53)

where π(x) is the prior density, and π(y|x) is the likelihood function depending on the forward operator
and noise level. Existing sampling algorithms will often suffer from slow convergence or even divergence,
especially for high-dimensional or nonlinear scenarios.

Example 6: The first example we consider is a classical ill-posed inverse problem for recovering the initial
distribution of the heat equation. Let u be the solution of the heat equation in the sense that

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) , u(t, 0) = u(t, π) = 0 , u(0, x) = u0(x) , u(T, x) = uT (x) , x ∈ [0, π] .

Then our goal is to recover u0 from noisy measurement data uT . To simplify the computation, we assume

u0 is composed of a series of trigonometric functions, and our task is to recover θk in u0 =
∑d

k=1 θk sin(kx)
with d = 10.

In our experiment, let θ represent vectors containing coefficients θk, y be the measurement data polluted
by noise with a noise level σ2 = 0.1, the likelihood function is chosen as

π(θ|y) = exp

(

− ||u(T, x, θ)− y||22
2σ2

)

. (54)
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The prior distribution is chosen as the L1 norm of θ as a sparse constraint, and hence, the potential function
V (θ) will simply be

V (θ) =
||u(T, x, θ)− y||22

2σ2
+ τ ||θ||L1 ,

where τ is a small regularization parameter. Then our reconstruction results are presented in Fig. 8.
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Figure 8. Example 6: Recovering initial data for the heat equation under L1 regularization
for T = 0.1 and h = 0.01.

From Fig. 8, we can observe that TT-BRWP in blue provides a much better reconstruction compared to
sampling algorithms with MC integration in red line and also ULA which does not converge for this task.
Moreover, even if we compare BRWP with TT integration (in black) and MC integration (in red) in the
first plot, TT integration can indeed improve the accuracy significantly, while the final estimation is still
clearly biased due to the employment of empirical distribution for the estimation of the density function.

Example 7: We consider a nonlinear inverse problem for an elliptic boundary value problem from [13].
The potential p satisfies

− d

dy

(

exp(x1)
d

dy
p(y)

)

= 1 , y ∈ [0, 1] , (55)

with p(0) = 0 and p(1) = x2. Then the solution to the forward problem has an explicit solution

p(y) = x2y + exp(−x1)

(

− y2

2
+

y

2

)

. (56)

Due to the exponential term, it is clear that this inverse problem is nonlinear. Then for measurement points
y1, y2 ∈ [0, 1], the forward operator will be

G(x) = (p(y1), p(y2))
T . (57)

By employing an L2 regularization term, the potential function will simply be

V (x) =
||G(x) − p̃||22

2σ2
+ τ ||x||22 , (58)

for noisy measurement data p̃, and noise level σ = 0.1 which corresponds to 10% noise in the measurement
data. In our experiments, we choose x∗ = [0.4, 1], y1 = 0.25, and y2 = 0.75. The reconstruction results for
reconstruction error with different choices of step size are presented in Fig. 9.
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Figure 9. Example 7: L2 error of the estimation of parameters x∗ versus iteration for an
inverse elliptic boundary value problem with different step sizes.

From Fig. 9, we observe that when the step size is relatively small, all three methods under consideration
exhibit convergence to the stationary distribution, while TT-BRWP in blue provides the most accurate
result after a large number of iterations. Moreover, when the step size is large, i.e., 0.1, in the second
plot, TT-BRWP is the only one that provides convergence in a few iterations which demonstrates its strong
robustness.

Example 8. In this example, we examine a nonlinear non-convex inverse problem from [17] where we
consider the following Cauchy problem

∂2u

∂t2
(t, x, θ)− ∂2u

∂x2
(t, x, θ) = 0 , u(0, x, θ) = h(x, θ) , ut(0, x, θ) = 0 , (59)

where h(x, θ) is a unknown source function parameterized by θ ∈ R
d such that

h(x, θ) =

d
∑

j=1

sin(k(x− θj))

k|x− θj|
, (60)

where the sinc function can be considered as an approximation to a point source which also makes the
problem itself non-convex. Moreover, by d’Alembert’s formula, the solution to the Cauchy problem will be

u(t, x, θ) =
h(x− t, θ) + h(x+ t, θ)

2
. (61)

The measurement data is considered as ũ(xi, ti, θ
∗) for xi and tj distributed uniformly on [−2, 2] and [0, 1]

for i = 1, · · · , Ni and j = 1, · · · , Nj .

We again employ a L2 regularization term and the potential function we are interested in will be

V (θ) =

∑Ni

i=1

∑Nj

j=1 |u(tj , xi, θ)− ũ(tj , xi, θ
∗)|2

2σ2
+ τ ||θ||22 , (62)

with σ = 1 and Ni = Nj = 21. Let θ∗ = [−0.9,−0.3, 0.4, 1]. The result is presented in Fig. 5.4.
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Figure 10. Example 8: Error of the estimation for θ versus iteration (left) and generated
particles from TT-BRWP for (θ3, θ4) (right) where exact values are θ∗3 = 0.4, θ∗4 = 1.

From Fig. 5.4, we observe that TT-BRWP converges much faster than MALA to the desired distribution,
and the generated particles are distributed near the exact value. We remark that BRWP diverges for this
case.

6. Conclusion.

In this paper, we proposed a sampling algorithm based on the tensor train approach, aiming to draw
samples from potentially high-dimensional and complex distributions. Our method is inspired by a kernel
formulation for the regularized Wasserstein proximal operator and employs tensor train approximation
for high-dimensional integration. Specifically, by accurately approximating the crucial score function and
employing a suitable kernel density approximation, our new sampling algorithm demonstrates superior
accuracy, stability, and speed compared to BRWP and Langevin dynamic types sampling algorithms.

There are several intriguing avenues for future exploration. From a theoretical standpoint, establishing
the accuracy and mixing time of the proposed algorithm for general non-Gaussian distributions, as verified
by our numerical experiments, would be highly attractive. A comprehensive theoretical treatment would
enhance the method’s applicability to a broader range of practically important scenarios. Moreover, from
an algorithmic perspective, exploring the interplay of tensor methods with Wasserstein proximal kernels,
investigating the acceleration of MCMC algorithms within the current framework, and exploring related ker-
nel methods for addressing challenging high-dimensional scientific computing problems would be interesting
avenues for further research.
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