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Abstract. In [32], a first-order optimization algorithm has been introduced to solve time-implicit
schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-
order algorithm equipped with a quadratic regularization term. We provide sufficient conditions
under which the proposed algorithm and its time-continuous limit converge exponentially fast to
a desired time-implicit numerical solution. We show both theoretically and numerically that the
convergence rate is independent of the grid size, which makes our method suitable for large scale
problems. The efficiency of our algorithm has been verified via a series of numerical examples
conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters
as well as comparisons with some classical root-finding algorithms are also discussed in the numerical
section.

1. Introduction

Reaction-diffusion equations (RD) are well-known time-dependent partial differential equations
(PDEs). They are originally used to model the density evolution of chemical systems with local
reaction processes in which substances get transformed, and diffusion processes in which the sub-
stances get spread over. Since the same type of equations describe many systems, the RD equation
finds its applications in broad scientific areas. This includes the study of phase-field models in
which the Allen-Cahn and the Cahn-Hilliard equations [1, 3] are used to depict the development of
microstructures of multiple materials; the research on the evolution of species distribution in ecology
system [36]; the study of the reaction processes of multiple chemicals [39, 37]; and the modeling &
prediction of crimes [42].

Time-implicit schemes are often used when solving RD equations numerically. This is because in
simulations, explicit or semi-explicit schemes are often encountered with Courant–Friedrichs–Lewy
(CFL) conditions, under which the time step size is restricted to be very small. Conversely, em-
ploying time-implicit schemes allows for the use of larger time step sizes, leading to a more efficient
computation of the equilibrium state in RD equations. Moreover, computing RD equations with a
weak diffusion and a strong reaction term is of great interest to the computational math community.
The performance of explicit and semi-implicit schemes could be unstable under these circumstances.
However, it has been shown that implicit schemes still work very well on these models [46, 32]. In
addition, time-implicit schemes are also known to be energy-stable [46].

In a recent work [32], the primal-dual hybrid gradient (PDHG) algorithm which is an easy-
to-implement optimization algorithm, has been used for computing the time-implicit solution of
RD equations. The PDHG algorithm (1.6) is a first-order optimization algorithm with tunable
hyperparameters. The method does not require extra effort to compute the inverse of the Jacobian
matrix in the time-implicit scheme. This feature is distinct from many classical algorithms, such as
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Newton’s methods for solving nonlinear equations. Nevertheless, the PDHG algorithm presented in
[32] faces both theoretical and practical challenges. The time-implicit scheme results in a nonlinear
equation, and the PDHG algorithm introduces nonlinear coupling in both the primal and dual
variables. In addition, there is a lack of convergence analysis for the proposed PDHG algorithm.
Furthermore, the nonlinearity inherent in RD equations poses a challenge in resolving the optimal
choice of hyperparameters. In this paper, we provide the convergence study of the PDHG algorithm
for computing the time-implicit scheme of RD equations. We also present a series of numerical
experiments on the choices of hyperparameters.

Let us first briefly review the treatment in [32]. Consider the following general form of the RD
equation on a region Ω ⊂ Rd with prescribed boundary (e.g., periodic, Neumann, or Dirichlet) and
initial conditions.

∂u(x, t)

∂t
= −G(aLu(x, t) + bf(u(x, t))), x ∈ Ω, u(·, 0) = u0(·). (1.1)

Here we assume L,G are self-adjoint, non-negative definite linear operators. f(·) is the reaction
term (usually nonlinear). a ≥ 0 is the diffusion coefficient. And b ≥ 0 is the reaction coefficient. To
compute the numerical solution of (1.1), we adopt the following time-implicit scheme with a time
step size ht > 0.

ut+1 − ut

ht
= −G(aLut+1 + bf(ut+1)), 0 ≤ t ≤ Nt − 1. (1.2)

Assume that at each time step, the numerical solution ut belongs to a certain Hilbert space X with
an inner product (·, ·). Let us denote u = [u1, . . . , ut, . . . , uNt ]⊤ ∈ XNt . Define the vector-valued
functional F(·) : XNt → XNt as

F(u) = [. . . , ut+1 − ut + htG(aLut+1 + bf(ut+1)), . . . ]⊤0≤t≤Nt−1. (1.3)

We first reformulate (1.2) as an inf-sup problem with a tunable parameter ϵ>0 following the treat-
ment in [52]

inf
u∈XNt

sup
p∈XNt

(p,F(u))− ϵ

2
∥p∥2XNt . (1.4)

Here we write p = [p1, . . . , pt, . . . , pNt ] ∈ XNt . We point out that the saddle point of inf-sup
problem (1.4) solves the time-implicit scheme F(u) = 0 whenever (1.3) admits a unique solution.
It is worth mentioning that in the above treatment, we slightly generalize the algorithm proposed
in [32] by accumulating multiple time steps in a root-finding problem and introducing a quadratic
regularization term in the saddle point problem (1.4).

As demonstrated in [32], we deal with the inf-sup saddle problem by applying the primal-dual
hybrid gradients (PDHG) algorithm [7, 50]. We further substitute the proximal step of variable u
with an explicit update to obtain

pn+1 =
1

1 + ϵτP
(pn + τPF(un)) ,

p̃n+1 =pn+1 + ω(pn+1 − pn),

un+1 =un − τUDF(un)
∗p̃n+1.

(1.5)

Here ω > 0 is the extrapolation coefficient, and τP , τU > 0 are PDHG step sizes. DF(u) is a linear
operator on XNt , which denotes the Fréchet derivative of F(·) at u. DF(u)∗ is the adjoint operator
of DF(u) on XNt . It is not hard to verify that the equilibrium state of PDHG scheme (1.5) is the
desired (u∗, 0) with F(u∗) = 0 whenever DF(u)∗ is invertible for arbitrary u ∈ XNt .

The PDHG algorithm (1.5) converges slowly when F(·) possesses a large condition number. To
improve the convergence speed, it is necessary to consider preconditioning F(·). We consider an
invertible linear operator M : XNt → XNt , where M is extracted from the linear part of F(·). Then
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we introduce the preconditioned functional F̂(u) = M−1F(u). We apply the PDHG algorithm (1.5)
to F̂(u) = 0 to obtain

pn+1 =
1

1 + ϵτP
(pn + τPM

−1F(un)),

p̃n+1 =pn+1 + ω(pn+1 − pn),

un+1 =un − τUDF(un)
∗(M−1)∗p̃n+1.

(1.6)

The above treatment (1.6) will significantly improve the algorithm’s convergence speed while leaving
the equilibrium state invariant.

In this paper, we analyze the aforementioned preconditioned PDHG algorithm (1.6) to establish
sufficient conditions under which the method is guaranteed to converge. We remark that there are
two types of convergence analysis, which may cause confusion in this manuscript. One refers to the
convergence of the numerical solution to the real solution as the number of grid points increases;
the other one refers to the convergence of (un,pn) to the equilibrium state of the PDHG algorithm
(1.6) as n increases. In this research, we mainly focus on analyzing the second type of convergence.
We now briefly summarize the main contributions:

• (Theoretical aspect) Suppose that the reaction term f(·) is Lipschitz. Assume that the
discretization of the differential operators Lh,Gh are positive-definite, self-adjoint, and com-
mute. We establish the following theoretical results for our algorithm.
(1) We study the PDHG flow (3.5), which is the time-continuous limit of (2.15) as τU , τP →

0, (1 + ω)τP → γ > 0. We give conditions on ht, Nt under which we can pick γ, ϵ such
that the residual term exponentially decays to 0. The convergence results for general
RD equations are discussed in Theorem 5 and Theorem 7; We establish convergence
rates that are independent of the grid-size Nx for both Allen-Cahn type and Cahn-
Hilliard type equations in Corollary 7.1.

(2) We analyze the convergence speed of the PDHG method (2.15) in Theorem 8. We show
that under certain conditions of ht, Nt, we are able to select suitable hyperparameters
τU , τP , ω, ϵ that guarantee the exponential convergence of the L2 error term. We es-
tablish convergence rates that are independent of the grid-size Nx for both Allen-Cahn
type and Cahn-Hilliard type equations in Corollary 8.1.

• (Numerical aspect) In section 3.2.2 and 3.3 we justify our theoretical results stated above.
In section 4.1, we demonstrate the effectiveness of our algorithm on different RD equations
including the standard Allen-Cahn and Cahn-Hilliard equations, as well as equations with
variable mobility terms or higher-order diffusion terms whose linear operator M (c.f. (2.12))
cannot be directly inverted. In section 4.1.5, we validate that the convergence rate of our
method is independent of the grid size Nx. In section 4.2, we investigate the optimal, or
at least near-optimal hyperparameters of our algorithm for achieving efficient performance.
We demonstrate the efficiency of our method by comparing it with some of the classical
methods in section 4.3 and section 4.4.

There exist plenty of references regarding the numerical schemes for RD equations, which include
studies on finite difference methods [6, 11, 15, 22, 23, 26, 35, 40, 41, 46, 48], and finite element
methods [18, 19, 23, 28, 29, 30, 31, 49]. A series of benchmark problems [12, 25] have also been
introduced to verify the effectiveness of the proposed methods. Recently, machine learning or deep
learning algorithms such as deep-learning-based backward stochastic differential equations (BSDE)
[20, 21], physics-informed neural networks (PINNs) [38, 45, 47], and Gaussian processes [10] have
also been applied to deal with various types of nonlinear equations including the RD equations.

The primal-dual hybrid gradients (PDHG) method was first introduced in [7, 50] to deal with
constrained optimization problems arising in image processing. This method later finds its applica-
tions in various branches such as nonsmooth PDE-constrained optimization [13], Magnetic resonance
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imaging (MRI) [44], large-scale optimization problems including image denoising and optimal trans-
port [24], computing gradient flows in Wasserstein-like transport metric spaces [4, 5, 18], as well as
design fast optimization algorithms [52], etc.

In [16], the authors introduce damping terms to the wave equation to achieve faster stabiliza-
tion, which resembles the time-continuous limit (the PDHG flow) (3.5) of our proposed algorithm.
However, [16] focuses on the linear case while our research deals with nonlinear RD equations. In
recent work [9], the authors conduct certain transformations to enhance the convergence of a sad-
dle point algorithm. Although the transformed algorithm shares similarities with our method, the
target functionals considered in both researches are distinct. In [8], the authors apply the splitting
method to propose an accelerating algorithm for the root-finding problem A(x) = 0, where A can
be decomposed as the sum of the gradient function and the skew-symmetric operator. In contrast,
our proposed method deals with a time-dependent root-finding problem, which generally can not
be cast into the settings of [8]. We refer our readers to [32] for more detailed discussions on related
references.

Our research is inspired by [33] in which the authors apply the PDHG algorithm to compute
time-implicit conservation laws. Our former research [32] mainly focuses on the conceptual and
experimental aspects of the PDHG method applied to RD equations. In addition, the primal-
dual method also finds its application in the computation of Hamilton-Jacobi equations [34]. The
aforementioned works [32, 33, 34] do not address the convergence speed of the PDHG algorithm. In
this work, we establish the convergence guarantee for the nonlinearly coupled primal-dual system.
Moreover, we prove a convergence property of our method, where the convergence rate is independent
of the space grid size.

This paper is organized as follows. In section 2, we provide a detailed derivation of our algorithm
applied to RD equations. In section 3.1, we establish the existence and uniqueness result regarding
the time-implicit scheme of the RD equation. In section 3.2, we focus on the PDHG flow, which
is the time-continuous limit of the proposed algorithm. We first establish convergence results for
the general root-finding problem and then apply our theory to the time-implicit schemes of RD
equations. In section 3.3, we prove exponential convergence of our algorithm. We also investigate
necessary conditions that guarantee such convergence. In section 4, we demonstrate the effectiveness
of our method on different types of RD equations and make comprehensive comparisons with the
IMEX scheme as well as some classical root-finding algorithms.

2. Derivation of the method

In this section, we give a detailed derivation of the PDHG method when applied to the reaction-
diffusion (RD) equation (1.1). From now on, we assume that the domain Ω = [0, L]2 is a square
region.

Suppose we solve (1.1) on the time interval [0, T ]. We divide the time interval into Nt subintervals,
and divide the domain Ω into Nx ×Nx grids. Applying time-implicit finite difference scheme yields

U t+1 − U t

ht
= −Gh(aLhU

t+1 + bf(U t+1)), for t = 0, 1, . . . , Nt, with U0 given. (2.1)

Denote ht = T
Nt

, and hx = L
Nx

. Write U t ∈ RNx×Nx as the numerical solution at the t−th time
node. We denote Gh,Lh as N2

x × N2
x matrices, which represents the discretization of the operator

L,G w.r.t. the spatial step size hx and the boundary condition.

Remark 1 (Allen-Cahn and Cahn-Hilliard equations). For Allen-Cahn equation [1], we have G =
Id, L = −∆; for Cahn-Hilliard equation [3], we have G = −∆, L = −∆. And f(·) = W ′(·) where
W (ξ) = 1

4(ξ
2 − 1)2 is the double-well potential for both equations. We can impose periodic or

homogeneous Neumann boundary conditions for both equations. Furthermore, suppose we apply the
central difference scheme to discretize the Laplace operator ∆. We obtain ∆P

hx
= INx ⊗ LapPhx

+
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LapPhx
⊗INx for periodic boundary condition, and ∆N

hx
= INx⊗LapNhx

+LapNhx
⊗INx for homogeneous

Neumann boundary condition, where ⊗ is the Kronecker product and we define

LapPhx
=

1

h2x


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

 , LapNhx
=

1

h2x


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 . (2.2)

2.1. PDHG method for preconditioned root-finding problem. In this section, we provide a
more detailed derivation for our algorithm.

Let us treat X = RN2
x . We denote U = [U1⊤, . . . , UNt⊤]⊤ ∈ RNtN2

x as the numerical solution.
Lh,Gh indicate the discrete approximations of L,G. We formulate the time-implicit scheme (2.1) as
a root-finding problem

F (U) = 0, (2.3)

with F : RNtN2
x → RNtN2

x defined as

F (U) = DU + htGh(aLhU + bf(U))− V. (2.4)

Here we denote the time difference matrix D = DNt ⊗ Ix, where Ix is the identity matrix on RN2
x ,

and

DN =


1
−1 1

−1 1
. . . . . .

−1 1

 is an N ×N matrix. (2.5)

On the other hand, we define
Gh = It ⊗ Gh, Lh = It ⊗ Lh, (2.6)

with It representing the identity matrix on RNt . We denote f(U) = f((U1⊤, . . . , UNt⊤)⊤) =

(. . . , f(U t
ij), . . . )

⊤. The constant vector V ∈ RNtN2
x depends on both the initial condition and

the boundary condition of the equation.

We aim to solve F (U) = 0. In [32], an indicator function ι(u) =

{
0 if u = 0;

+∞ if u ̸= 0;
is introduced

to reformulate the root-finding problem as an optimization problem inf
U∈RNtN

2
x

ι(F (U)), which can be

further reduced to an inf-sup saddle problem

inf
U∈RNtN

2
x

sup
P∈RNtN

2
x

P⊤F (U). (2.7)

Inspired by [52], we replace ι by a milder quadratic function qϵ(·) = 1
2ϵ∥·∥

2 to obtain the minimization
problem

inf
U∈RNtN

2
x

qϵ(F (U)). (2.8)

Since qϵ is the Legendre transform of its dual q∗ϵ (·) = ϵ
2∥ · ∥

2, i.e., qϵ(U) = sup
P∈RNtN

2
x

P⊤U − q∗ϵ (P ).

We can thus reformulate (2.8) as an inf-sup problem with a tunable parameter ϵ,

inf
U∈RNtN

2
x

sup
P∈RNtN

2
x

L(U,P ) ≜ P⊤F (U)− ϵ

2
∥P∥2. (2.9)
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We tackle this saddle point problem by leveraging the primal-dual hybrid gradient (PDHG) algo-
rithm and obtain

Pn+1 =
1

1 + ϵτP
(Pn + τPF (Un)) ,

P̃n+1 =Pn+1 + ω(Pn+1 − Pn),

Un+1 =Un − τUDF (Un)
⊤P̃n+1.

(2.10)

When DF (U) is nonsingular for arbitrary U ∈ RNtN2
x , the equilibrium state of the above discrete

dynamic is (U∗, 0) with F (U∗) = 0. As discussed in the introduction, a large condition number of
F (·) may significantly slow down the convergence speed of (2.10). To mitigate this, we consider
suitable preconditioning of F (·). Let us decompose F (U) into its linear part and nonlinear part,

F (U) =DU + htGh(aLhU + bf(U))− V

=(D + ahtGhLh)U + bhtGh(f(U) + Jf (U − U) +R(U))− V. (2.11)

Here we assume U is a certain point in RN2
x at which we expand f(U) = f(U)+Jf (U −U)+R(U).

We choose matrix Jf as an approximation of the Jacobian matrix Df(U) = diag(. . . , f ′(U ij), . . . ).
We denote R(U) ≜ f(U)− f(U)− Jf (U − U) as the remainder term.

Remark 2. In practice, we usually choose Jf = Df(ue1) where 1 is the 1−vector, and ue is one of
the stable equilibrium states, i.e. f(ue) = 0. For example, in Allen-Cahn equation, f(u) = u3 − u,
then ue = ±1, we always have f ′(ue) = 2. Thus, we set Jf = 2I.

By writing

M = D + ahtGhLh + bhtGhJf =


X
−I X

. . . . . .
−I X

 with X = I + ahtGhLh + bhtGhJf ,

(2.12)

Ṽ = bhtGh(f(U)− JfU)− V,

we decompose F (U) as MU+bhtGhR(U)−Ṽ . It is beneficial to consider the preconditioned function

F̂ (U) = M−1F (U) = U + M−1(bhtGhR(U))− Ṽ
denote as

= U + η(U). (2.13)

We discuss the sufficient condition under which M is invertible in the following remark.

Remark 3 (Invertibility of M ). Suppose a, b ≥ 0, Gh, Lh are self-adjoint, non-negative definite,
and commute. Assume Jf = cI with c ≥ 0. Then M is invertible for any ht > 0. To prove this,
it suffices to show that each X is invertible. By similar arguments of the proof in Lemma 13, it is
not hard to verify that X is equivalent to I + ahtΛGh

ΛLh
+ bchtΛGh

, which is invertible for ht > 0.
Here ΛGh

,ΛLh
are diagonal matrices equivalent to Gh,Lh.

The corresponding root-finding problem F̂ (U) = 0 is equivalent to the original problem (2.3)
whenever M is invertible.

We now apply (2.10) to the inf-sup saddle problem with respect to F̂ (·)

inf
U∈RNtN

2
x

sup
Q∈RNtN

2
x

L̂(U,Q) ≜ Q⊤F̂ (U)− ϵ

2
∥Q∥22. (2.14)
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And our PDHG method with implicit update in Q and explicit update in U yields

Qk+1 =
1

1 + ϵτP
(Qk + τP (F̂ (Uk)));

Q̃k+1 = Qk+1 + ω(Qk+1 −Qk);

Uk+1 = Uk − τU (DF̂ (Uk)
⊤Q̃k+1).

(2.15)

We then iterate (2.15) so that {Uk} approaches the desired root U∗. We terminate the iteration
whenever the ℓ∞ norm of the residual term

Res(Uk) = F (Uk)/ht =

. . . ,(U t+1
k − U t

k

ht
+ Gh(aLhU

t+1
k + bf(U t+1

k ))

)⊤

, . . .

⊤

0≤t≤Nt−1

. (2.16)

is less than a certain tolerance tol, i.e., ∥Res(Uk)∥∞ < tol.

2.2. Complexity of the algorithm. We apply the Fast Fourier Transform (FFT) [14, 43] to eval-
uate the multiplication of Lh,Gh for periodic boundary conditions. We refer interested readers to
[32] for more details. Thus, computing F (U) requires O(NtN

2
x logNx) steps of operations. Further-

more, since M is block lower triangular, applying back substitution together with FFT to solve the
linear system involving M requires O(NtN

2
x logNx) steps of operations. Thus, the complexity at

each iteration of our algorithm equals O(NtN
2
x log(Nx)).

2.3. Relation with G-prox PDHG method. The G-prox primal-dual hybrid gradients algo-
rithm [24] was recently invented to improve the convergence of optimization and root-finding prob-
lems. The algorithm can be formulated as

Pk+1 = argmin
P∈RNtN

2
x

{
1

2τP
∥P − Pk∥2G − L̂(Uk, P )

}
=

1

1 + ϵτP
(Pk + τPG

−1F (Uk));

P̃k+1 = Pk+1 + ω(Pk+1 − Pk);

Uk+1 = argmin
U∈RNtN

2
x

{
1

τP
∥U − Uk∥22 + L̂(Uk, P̃k+1)

}
.

(2.17)

Here we define the G-weighted norm as ∥v∥2G = v⊤Gv, and pick G = MM⊤. In practice, we
substitute the following explicit update of Uk for the implicit update,

Uk+1 = Uk − τUDF (Uk)
⊤P̃k+1. (2.18)

Now, we multiply M⊤ on both sides of (2.17) (but with the third line replaced by (2.18)) to obtain

M⊤Pk+1 =
1

1 + ϵτP
(M⊤Pk + τPM−1F (Uk));

M⊤P̃k+1 = M⊤Pk+1 + ω(M⊤Pk+1 − M⊤Pk);

Uk+1 = Uk − τUDF (Uk)
⊤(M⊤P̃k+1).

(2.19)

By denoting Qk = M⊤Pk and noticing that F̂ (U) = M−1F (U), (2.19) reduces exactly to (2.15).
This verifies the equivalence between the G-prox PDHG algorithm and our proposed method.

3. Numerical analysis of the proposed method

In this section, we study the numerical convergence properties of the proposed PDHG algorithm.
In subsection 3.1, we prove the unique solvability of the time-implicit scheme (2.1) of RD equations.
In subsection 3.2, we study the convergence of the time-continuous limit of the PDHG algorithm.
In subsection 3.3, we prove the convergence of the PDHG algorithm.
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3.1. Unique solvability of the time-implicit scheme. In this research, we mainly focus on
reaction functions f that belong to the functional space F , where

F =

{
f ∈ C1(R)

∣∣∣∣ f can be decomposed as f = V ′ + ϕ,
where V ∈ C1(R) is convex, and ϕ ∈ C(R) is Lipschitz.

}
. (3.1)

The space F covers a majority of reaction functions that arise in classical RD equations such as the
Allen-Cahn and the Cahn-Hilliard equations.

Before we present the result, we assume the spectral decomposition of Gh:

Gh =
[
Q1 Q2

] [ Λ
O

] [
Q⊤

1

Q⊤
2

]
, (3.2)

where Λ = diag(λ1, . . . , λr) is a diagonal matrix with positive entries λ1 ≥ · · · ≥ λr > 0, r =
rank(Gh).

Theorem 1 (Existence and uniqueness of (2.3)). Suppose that Gh, Lh used in the finite difference
scheme (2.1) are self-adjoint and positive semidefinite. Assume Gh has the spectral decomposition
as in (3.2). We also assume that f ∈ F , such that the convex function V satisfies

(V ′(x)− V ′(y), x− y) ≥ K|x− y|2,
for some K ≥ 0. If the time step size ht in (2.1) satisfies

λmin

(
Λ−1

ht
+ a Q⊤

1 LhQ1

)
+ bK > b Lip(ϕ), (3.3)

then the root-finding problem (2.3) admits a unique solution.

The proof of the theorem is deferred to Appendix A.1.

Remark 4. The condition (3.3) can be simplified for some specific equations.
• (Allen-Cahn equation with periodic boundary condition) G = Id,L = −∆, f(x) = x3 − x.

We set Gh = IN2
x
, and Lh = −∆P

hx
= INx ⊗ (−LapPhx

) + (−LapPhx
) ⊗ INx , where LapPhx

is
defined in (2.2). In this case, the condition (3.3) yields ht <

1
2b .

• (Cahn-Hilliard equation with periodic boundary condition) G = −∆, L = −∆, f(x) = x3−x.

We set Gh = Lh = −∆P
hx
. A sufficient condition for (3.3) is ht <

a2

b2
.

Similar results regarding both Allen-Cahn and Cahn-Hilliard equations have also been done in [46].
Theorem 1 applies to general RD equation (1.1). We refer interested readers to Appendix A.2 for
more detailed discussions.

3.2. Lyapunov analysis for the PDHG flow. We are ready to present the main result of this
paper. In subsection 3.2.1, we first prove the convergence of the time-continuous limit of the PDHG
algorithm (2.15) for the general root-finding problem. In subsection 3.2.2, we apply the previous
theory to the time-implicit scheme of RD equations. In subsection 3.2.3, we provide numerical
justifications for the theoretical study. To alleviate the notation, we denote ∥ · ∥ as the 2−norm for
both vectors and matrices in the following discussion.

3.2.1. Convergence analysis for the general root-finding problem. Firstly, we establish the conver-
gence result for a general root-finding problem F̂ (U) = 0 regardless of the exact form of F̂ (U). Our
main results are summarized in Theorem 2 and Corollary 3.

Recall (2.15), we substitute Q̃k+1 with

Q̃k+1 = Qk + (1 + ω)(Qk+1 −Qk) =Qk + (1 + ω)τP

(
− ϵ

1 + ϵτP
Qk −

1

1 + ϵτP
F̂ (Uk)

)
=

(
1− (1 + ω)τP ϵ

1 + ϵτP

)
Qk −

(1 + ω)τP
1 + ϵτP

F̂ (Uk).
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Then, the PDHG iteration (2.15) can be formulated as

Qk+1 −Qk

τP
= − ϵ

1 + ϵτP
Qk −

1

1 + ϵτP
F̂ (Uk);

Uk+1 − Uk

τU
= −DF̂ (Uk)

⊤
((

1− (1 + ω)τP ϵ

1 + ϵτP

)
Qk −

(1 + ω)τP
1 + ϵτP

F̂ (Uk)

)
.

(3.4)

Suppose we send the step sizes τU , τP → 0, and keep ω increasing such that (1 + ω)τP → γ > 0.
Then the above time-discrete dynamic will converge to the following time-continuous dynamic of
(Ut, Qt) which we denote as the “PDHG flow”.{

Q̇ =− ϵQ+ F̂ (U),

U̇ =−DF̂ (U)⊤((1− γϵ)Q− γF̂ (U)).
(3.5)

We introduce two notations that will be commonly used in the following discussion,

σ = inf
U∈RNtN

2
x

{σmin(DF̂ (U))} = inf
U∈RNtN

2
x

{σmin(I + bhtM
−1GhDR(U))}, (3.6)

σ = sup
U∈RNtN

2
x

{σmax(DF̂ (U))} = sup
U∈RNtN

2
x

{σmax(I + bhtM
−1GhDR(U))}, (3.7)

where σmin(A)(σmax(A)) denotes the minimum (maximum) singular value of matrix A. The condi-
tion number is defined by

κ = σ/σ. (3.8)
We consider the following Lyapunov function of (U,Q) associated with a parameter µ > 0,

Iµ(U,Q) =
1

2
∥F̂ (U)∥2 + µ

2
∥Q∥2. (3.9)

The parameter µ enables us to establish the exponential decay of Iµ(Ut, Qt) along the PDHG flow
whenever 0 < σ ≤ σ < ∞. We have the following Lemma.

Lemma 2 (Exponential decay of Iµ(Ut, Qt)). Suppose that 0 < σ ≤ σ < ∞. We pick the parameter
µ > 0 satisfying

1

σ
− 1

σ
<

2
√
µ
. (3.10)

Furthermore, we choose γ, ϵ > 0 satisfying

max

{(
1−

√
µ

σ

)2

,

(
1−

√
µ

σ

)2
}

< γϵ <

(
1 +

√
µ

σ

)2

. (3.11)

Under the above choices of µ, γ and ϵ, let (Ut, Qt) be the solution to the PDHG flow (3.5) with
arbitrary initial condition (U0, Q0). Then we have,

Iµ(Ut, Qt) ≤ exp

(
− 2β t

max{1, µ}

)
Iµ(U0, Q0).

Here we denote
β = min

z∈[σ2,σ2]
{φµ,γ,ϵ(z)} > 0,

with φµ,γ,ϵ(z) =
1
2(γz + µϵ−

√
(γz − µϵ)2 + (µ− (1− γϵ)z)2).

We defer the proof of this Lemma to Appendix B.1. Lemma 2 provides a sharp convergence rate
for Iµ(Ut, Qt). However, β does not take an explicit form. In the following theorem, we relax the
bound in Lemma 2 to obtain an explicit convergence rate for ∥F̂ (Ut)∥.
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Theorem 3 (Exponential decay of the residual ∥F̂ (Ut)∥). Assume that (Ut, Qt) solves (3.5) with
an arbitrary initial position (U0, Q0). Then, as long as σ is bounded away from 0 and σ is finite,
one can always pick suitable parameters γ, ϵ such that the residual ∥F̂ (Ut)∥ decays exponentially
fast to 0. In particular, if we set ϵ = (1− δ)κ and γ = 1−δ

κ with |δ| < 1
κ , then we have

∥F̂ (Ut)∥2 ≤ exp

(
−(1− κ|δ|)(3− δ)

min{σ2, 1}
8κ

t

) √
∥F̂ (U0)∥2 + σ2∥Q0∥2.

The proof is provided in Appendix B.1. We can further improve the convergence rate by fixing
γϵ = 1 in Theorem 11 of Appendix B.1.

3.2.2. Convergence analysis for our specific root-finding problem (2.13). In this section, we discuss
the exponential decay of the PDHG flow (3.5) when it is applied to the time-implicit scheme (2.1)
of the RD equation (1.1) when the reaction term f(·) is Lipschitz. The main results of this section
are Theorem 7 and Corollary 7.1.

Before demonstrating our result, we list several conditions regarding equation (1.1) and its nu-
merical scheme (2.1). These conditions will be used later.

(1) Suppose the coefficients a, b are non-negative, i.e.,

a ≥ 0, b ≥ 0. (A)

(2) Assume that
f(·) is Lipschitz with constant Lip(f). (B)

(3) In the numerical scheme (2.1) of (1.1), suppose

Lh,Gh are self-adjoint, non-negative definite, and commute, i.e., GhLh = LhGh. (C)

(4) Recall Jf mentioned in (2.11). We assume

Jf is a constant diagonal matrix cI with c ≥ 0. (D)

As stated in Theorem 3, we need σ > 0 and σ < ∞ in order to establish the exponential decay
of ∥F̂ (U)∥. Lemma 4 provides a sufficient condition for this to hold.

Lemma 4. Suppose (A), (B), (C) hold. When ht < 1
|b|λmax(Gh)Lip(f)

, we always have σ > 0 and
σ < ∞.

We prove this Lemma in Appendix B.2. Combining Theorem 3 and Lemma 4 leads to the
following Theorem 5.

Theorem 5 (First convergence result of ∥F̂ (Ut)∥). Consider the RD equation (1.1) on [0, T ]. Sup-
pose (A), (B) and (C) hold. We apply the PDHG flow (3.5) to solve the time-implicit scheme (2.1)
with time step size ht <

1
|b|∥Gh∥Lip(f) . Suppose γ = 1−δ

κ , and ϵ = (1− δ)κ with κ = σ/σ, and |δ| < 1
κ .

Then ∥F̂ (Ut)∥ converges exponentially fast to 0.

Remark 5. It is worth mentioning that we do not assume condition (3.3) of Theorem 1. Then
F̂ (U) = 0 might not admit a unique solution, but the exponential decay of ∥F̂ (Ut)∥ is still guaranteed.

Although Theorem 5 guarantees the exponential convergence of ∥F̂ (Ut)∥ for arbitrarily large b
and T as long as ht, γ, ϵ are suitably chosen, both the time step size ht and the convergence rate
may depend on the spatial discretization Nx. To get rid of this dependency, we provide sufficient
conditions under which σ and σ are bounded away from the constants that are independent of
Nx. Thus, we achieve a convergence rate that is independent of Nx. Recall the remainder term
R(U) = f(U)− f(U)−Df(U)(U − U) mentioned in (2.11). We have the following Lemma.
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Lemma 6. Consider the reaction-diffusion type equation (1.1) on [0, T ]. Suppose the conditions
(A), (B), (C) and (D) hold. Since (B) requires f to be Lipschitz, so does R. And we denote its
Lipschitz constant as Lip(R). Define

ζa,b,c(ht) = max
1≤k≤N2

x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

}
,

where λk(Gh), λk(Lh) are the eigenvalues of Gh, Lh which are simultaneously diagonalizable by an
orthogonal matrix Q. Recall that in (2.13), we have η(U) = bhtM−1GhR(U)− w̃, then

∥Dη(U)∥ ≤ bTζa,b,c(ht)Lip(R) .

And we also have

σ ≥ 1− bTζa,b,c(ht)Lip(R), σ ≤ 1 + bTζa,b,c(ht)Lip(R).

We prove this lemma in Appendix B.2. A direct corollary of Lemma 6 and Theorem 3 is Theorem
7, which not only guarantees the unique solvability of F̂ (U) = 0, but also establishes exponential
convergence for ∥F̂ (Ut)∥.

Theorem 7 (Unique existence of the root & the second convergence result of ∥F̂ (Ut)∥). Suppose
conditions (A), (B), (C) and (D) hold. We pick ht and T = Ntht (Nt ∈ N+) satisfying

bTLip(R)ζa,b,c(ht) < 1. (3.12)

Then there exists a unique root of F̂ . Furthermore, we denote θ = bTLip(R)ζa,b,c(ht) < 1. Suppose
we set ϵ = κ− 1

2 and γ = 1
κ − 1

2κ2 . Then we have

∥F̂ (Ut)∥ ≤ exp

(
− 5

32
· (1− θ)3

1 + θ
t

)√
∥F̂ (U0)∥2 + (1 + θ)∥Q0∥2. (3.13)

Proof. The unique existence of the root for F̂ (·) is due to Lemma 15.
We now prove the exponential convergence (3.13). According to Lemma 6, by letting θ =

bTLip(R)ζa,b,c(ht), we obtain

σ ≥ 1− θ, σ ≤ 1 + θ, and thus κ ≤ 1 + θ

1− θ
. (3.14)

Now recall Theorem 3. To alleviate our discussion, we choose δ = 1
2κ . After setting the parameters

ϵ = κ− 1
2 and γ = 1

κ − 1
2κ2 , we have

∥F̂ (Ut)∥ ≤ exp

(
−1

2
(3− 1

2κ
)
min{σ2, 1}

8κ
t

) √
∥F̂ (U0)∥2 + σ2∥Q0∥2

≤ exp

(
−1

2
· 5
2
· (1− θ)3

8(1 + θ)
t

)√
∥F̂ (U0)∥2 + (1 + θ)∥Q0∥2

= exp

(
− 5

32
· (1− θ)3

1 + θ
t

)√
∥F̂ (U0)∥2 + (1 + θ)∥Q0∥2,

where the second inequality is due to (3.14) and the fact that κ ≥ 1. □

We can simplify condition (3.12) for specific types of RD equations. This is summarized in the
following Corollary.

Corollary 7.1 (Nx-independent convergence rate for specific RD equations). Suppose the conditions
(A), (B), (C) and (D) hold. We pick T = Ntht (Nt ∈ N+) such that

• (Allen-Cahn type, Gh = I, Lh is self-adjoint, non-negative definite) T < 1
bLip(R) , or equiva-

lently, pick ht <
1

bLip(R) and Nt ≤
⌊

1
bLip(R)ht

⌋
. We denote θ̃ = bLip(R)T < 1.
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• (Cahn-Hilliard type, Gh = Lh are self-adjoint, and non-negative definite) T < 2
√
aht+bcht

bLip(R) , or

equivalently, pick ht <
4a

b2(Lip(R)−c)2+
and Nt ≤

⌊
2
√

a/ht+bc

bLip(R)

⌋
. We denote θ̃ = bLip(R)T

2
√
aht+bcht

< 1.

Suppose further that ϵ = κ− 1
2 and γ = 1

κ − 1
2κ2 , then ∥F̂ (Ut)∥ convergences to 0 exponentially fast,

∥F̂ (Ut)∥ ≤ exp

(
− 5

32
· (1− θ̃)3

1 + θ̃
t

)√
∥F̂ (U0)∥2 + (1 + θ̃)∥Q0∥2. (3.15)

Proof. Recall that we have θ = bTLip(R)ζa,b,c(ht). We prove θ̃ ≥ θ under both cases.

• (Allen-Cahn type) Note that ζa,b,c(ht) = maxk

{
1

1+ht(aλk(Lh)+bc)

}
≤ 1. Thus,

θ = bTLip(R)ζa,b,c(ht) ≤ bTLip(R) = θ̃.

• (Cahn-Hilliard type) We have

ζa,b,c(ht) = max
k

{(
1

λk(Gh)
+ htaλk(Lh) + htbc

)−1
}

= max
k

{(
1

λk(Lh)
+ htaλk(Lh) + htbc

)−1
}

≤ 1

2
√
aht + bcht

.

Then,

θ = bTLip(R)ζa,b,c(ht) ≤
bTLip(R)

2
√
aht + bcht

= θ̃.

Since θ̃ < 1 in both cases, we have θ ≤ θ̃ < 1. Applying Theorem 7 yields (3.13). Note that
(1−θ)3

1+θ ≥ (1−θ̃)3

1+θ̃
for 0 ≤ θ ≤ θ̃ < 1. This implies our result (3.15).

□

3.2.3. Numerical verification. We apply our algorithm to solve the Allen-Cahn equation (4.1) with
ϵ0 = 0.01 on a 64× 64 grid. We use τU = τP = 0.5, ω = 1, ϵ = 0.1. At each iteration k, denote Uk

as the numerical solution. We define rk = − log10(∥F̂ (Uk+1)∥/∥F̂ (Uk)∥) to be the convergence rate
of the residual term ∥F̂ (Uk)∥ at kth iteration. The residual is expected to converge linearly to 0.
We denote by r̄ the average convergence rate of the first 500 iterations. By (3.15), when θ̃ is small,
the convergence rate is 5

32(1− 4θ̃ +O(θ̃2)), which is linear w.r.t. Ntht (recall that θ̃ ∝ T = Ntht).
Such linear relation is verified in the first two figures of Figure 1. In the third figure, we observe
fast decay of the average convergence rate r̄ as θ̃ ∝ Ntht keeps increasing. Furthermore, we verify
the dependence of the convergence rate on Ntht via the left plot of Figure 4.

We also apply our algorithm to the Cahn-Hilliard equation (4.2) with ϵ0 = 0.1 on a 64× 64 grid.
We keep the hyperparameters the same as in the case of Allen-Cahn. The average convergence rate
r̄ is computed by the first 500 iterations of the algorithm. By (3.15), the convergence rate is linear
w.r.t. Nt(

√
ht + o(

√
ht)) when θ̃ ∝ Nt

√
ht is small. This is reflected in Figure 2. Unlike the case of

Allen-Cahn, in which the PDHG algorithm converges as θ̃ increases, the iterations for Cahn-Hilliard
diverges as θ̃ ∝ Nt

√
ht increases. This is reflected on the right plot of Figure 2.

For a fixed time step size ht, denote by Nmax the maximum number of time steps that guarantees
the convergence of the PDHG algorithm. We plot the relation between Nmax and ht on a logarithmic
scale in Figure 3. We observe the relation Nmax = O( 1√

ht
) when the step size ht is not too small.

The dependence of the convergence rate w.r.t. Nt

√
ht is shown in the right plot of Figure 4.
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(a) Plot of r̄ vs ht. Fix Nt = 1,
ht = 10−4k, 1 ≤ k ≤ 50.
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(b) Plot of r̄ vs Nt.
Fix ht = 5× 10−4, 1 ≤ Nt ≤ 20.
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(c) Plot of r̄ vs Nt.
Fix ht = 10−2, 1 ≤ Nt ≤ 40.

Figure 1. Convergence rate of the residual term ∥F̂ (Uk)∥ w.r.t. ht, Nt for Allen-
Cahn equation.
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(a) Plot of r̄ vs ht. Fix Nt = 1,
ht = 5× 10−4k, 1 ≤ k ≤ 40.
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(b) Plot of r̄ vs Nt.
Fix ht = 0.005, 1 ≤ Nt ≤ 22.

Figure 2. Convergence rate of the residual term ∥F̂ (Uk)∥ w.r.t. ht, Nt for Cahn-
Hilliard equation.

3.3. Lyapunov analysis for the time-discrete case. In this section, we discuss the convergence
of the time-discrete PDHG algorithm (2.15). Recall that the equilibrium state of the PDHG dynamic
(2.15) is (U∗, 0) with F̂ (U∗) = 0, we consider the following Lyapunov function

J (U,Q) =
1

2
(∥U − U∗∥2 + ∥Q− 0∥2) = 1

2
(∥U − U∗∥2 + ∥Q∥2).

The next theorem provides a sufficient condition on the convergence of J when f(·) is Lipschitz.

Theorem 8 (Exponential convergence of the PDHG algorithm (2.15)). Consider the following
assumptions,

• (On PDE (1.1)) Assume (A), (B) hold.
• (On numerical scheme (2.1) of PDE) Assume (C) holds. Suppose the time step size ht and
T = Ntht satisfy bTLip(R)ζa,b,c(ht) <

√
2− 1. Suppose we pick θ ≥ bTLip(R)ζa,b,c(ht) with

θ <
√
2− 1.

• (On PDHG algorithm (2.15)) Suppose (D) holds. There exist γ̃ = ωτP , ϱ = τP
τU

, ϵ > 0
satisfying

ϱγ̃ϵΨ(θ)− 1

4
Ω(γ̃ϵ, ϱ, θ)2 > 0. (3.16)
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Figure 3. Nmax − ht log-log plot for Cahn-Hilliard equation (4.2). We solve the
equation on 64 grid with ht = 0.01 · k, k = 0.5, 1, 2, . . . , 13. The yellow triangle has
slope equals to 1

2 . The orange dashed line is the linear regression of data points with
rather large ht = 0.01 · k with 5 ≤ k ≤ 11.

(a) We solve Allen-Cahn equation (4.1)
Plot of r̄ vs (log10 Nt, log10 ht),

with Ntht = 0.15, 0.05, 0.01, 0.001.

(b) We solve Cahn-Hilliard equation (4.2)
Plot of r̄ vs (log10 Nt, log10 ht),

with Nt

√
ht = 0.15, 0.05, 0.01, 0.001.

Figure 4. Plots of r̄ vs (Nt, ht).

Here we denote Ψ(θ) = 1− 2θ− θ2, and Ω(u, ϱ, θ) = |1− u− ϱ|+ (|1− u|+ ϱ)θ. We choose
PDHG step size for the dual variable as

τP =
ϱγ̃ϵΨ(θ)− 1

4Ω(γ̃ϵ, ϱ, θ)
2

4(γ̃ + ϱϵ)(1 + θ)2max{γ̃2(1 + θ)2, (1− γ̃ϵ)2}
, (3.17)

and set the extrapolation coefficient ω = γ̃
τP

, the PDHG step size for U as τU = τP
ϱ .
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Under the above conditions, there exists a unique U∗ s.t. F̂ (U∗) = 0. Furthermore, assume that
{Uk, Qk} solves the PDHG algorithm (2.15) with arbitrary initial condition (U0, Q0). Write Jk =
J (Uk, Qk). We have

Jk ≤
(

2

Φ +
√
Φ2 + 4

)k+1
(
J1 +

Φ+
√
Φ2 + 4

2
J0

)
, (3.18)

where

Φ =
(ϱγ̃ϵΨ(θ)− 1

4Ω(γ̃ϵ, ϱ, θ)
2)2

2(1 + θ)2max{γ̃2(1 + θ)2, (1− γ̃ϵ)2}(γ̃ + ϱϵ)2
.

The proof of the theorem is provided in Appendix B.3.

We can simplify the results in Theorem 8 for Allen-Cahn and Cahn-Hilliard type of equations,
using similar argument in the proof of Corollary 7.1, for Allen-Cahn (resp., Cahn-Hilliard) type
equations. Suppose bLip(R)T <

√
2−1 (resp., bLip(R)T

2
√
aht+bcht

<
√
2−1). If we set θ = bLip(R)T (resp.,

θ = bLip(R)T

2
√
aht+bcht

), then we have bTζa,b,c(ht)Lip(R) ≤ θ <
√
2− 1.

Furthermore, we can pick specific values of the hyperparameters τU , τP , ω, ϵ to obtain a more
concise convergence rate Φ. To do so, we denote u = γ̃ϵ and assume that u < 1. We set ϱ =
1 − γ̃ϵ = 1 − u. Then the condition (3.16) leads to (1 − u)uΨ(θ) − (1 − u)2θ2 > 0, which yields
θ2

1−2θ < u < 1. Furthermore, the rate Φ equals

Φ =
(1− u)2(u(1− 2θ − θ2)− (1− u)θ2)2

2(1 + θ)2max{γ̃2(1 + θ)2, (1− u)2}(γ̃ + (1− u)ϵ)2
.

We further pick γ̃ = (1− u)ϵ. Together with γ̃ϵ = u, we have γ̃ =
√
u(1− u), ϵ =

√
u

1−u . Thus,

Φ =
(1− 2θ)2

8(1 + θ)2
·

(
1− θ2

1−2θ ·
1
u

)2
max{(1 + θ)2, (1− u)/u}

.

Now the value of τP is determined by (3.17), τU = τP
ϱ , ω = γ̃

τP
can also be determined. In summary,

we have the following Corollary.

Corollary 8.1 (Nx-independent convergence rate for specific RD equations). Suppose (A), (B),
(C), and (D) hold. Assume ht, Nt and T = Ntht satisfy

• (Allen-Cahn type, Gh = I, Lh is self-adjoint, non-negative definite) Pick T <
√
2−1

bLip(R) , or

equivalently, ht <
√
2−1

bLip(R) , Nt ≤
⌊ √

2−1
bLip(R)ht

⌋
. We denote θ = bLip(R)T <

√
2− 1;

• (Cahn-Hilliard type, Gh = Lh is self-adjoint, and non-negative definite)

Pick T < (
√
2−1)(2

√
aht+bcht)

bLip(R) , or equivalently, ht <
4(
√
2−1)2a

b2(Lip(R)−(
√
2−1)c)2+

, Nt ≤
⌊
(
√
2− 1)

2
√

a/ht+bc

bLip(R)

⌋
.

We denote θ = bLip(R)T

2
√
aht+bcht

= bLip(R)Nt
√
ht

2
√
a+bc

√
ht

<
√
2− 1.

Then, there is unique U∗ with F̂ (U∗) = 0. Furthermore, if we choose u ∈ ( θ2

1−2θ , 1) and set

τP =
u(1− 2θ)− θ2

8
√
u(1− u)(1 + θ)2 max{u(1 + θ)2, 1− u}

, τU =
τP

1− u
, ω =

√
u(1− u)

τU
, ϵ =

√
u

1− u
, (3.19)

then Uk converges exponentially fast to U∗, i.e.,

∥Uk − U∗∥2 ≤ C0

(
2

Φ +
√
Φ2 + 4

)k+1

.
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Here

C0 =

(
J1 +

Φ+
√
Φ2 + 4

2
J0

)
, Φ =

(1− 2θ)2

8(1 + θ)2
·

(
1− θ2

1−2θ ·
1
u

)2
max{(1 + θ)2, (1− u)/u}

.

In the following example, we pick the hyperparameters ht, Nt, τU , τP , ω, ϵ according to Corollary
8.1, and apply it to different types of equations. Our algorithm is guaranteed to converge linearly.
The theoretical results presented in Theorem 8 and Corollary 8.1 are not necessarily the sharpest
convergence rate. In practice, the actual convergence rate of our PDHG method is generally faster
than the theoretical guarantee in Corollary 8.1. This is reflected in the following Table 1. When
composing Table 1, recall that f(u) = u3−u, we set c = f ′(±1) = 2, and R(u) = f(u)−cu = u3−3u.
In our numerical result, we observe that |U t

ij | ≤ 1 for any spatial index (i, j) and temporal index t.
Thus we use sup

u∈[−1,1]
|R′(u)| = 3 as the value of Lip(R) in Corollary 8.1 during the calculation.

ht Nt u τP τU ω ϵ θ̃ Φ Actual rate

ϵ0 = 1.0
0.005

< 0.1381

20
≤ 27

0.5
u ∈ (0.2250, 1)

0.0498 0.0996 5.0181 1.0 0.3000 0.0112 0.0723

AC(4.1) ϵ0 = 0.1
0.001

< 0.0138
7

≤ 13
0.5

u ∈ (0.0760, 1)
0.0574 0.1147 4.3587 1.0 0.2100 0.0141 0.0821

ϵ0 = 0.01
0.0005

(< 0.0014)
1

(≤ 2)
0.5

(u ∈ (0.0321, 1)) 0.0936 0.1872 2.6702 1.0 0.1500 0.0307 0.1325

ϵ0 = 10
0.005

(<1.4553)
10

(≤ 12)
0.5

(u ∈ (0.04, 1)) 0.0842 0.1684 2.9695 1.0 0.1640 0.0260 0.0537

CH(4.2) ϵ0 = 1.0
0.001

(<0.1455)
5

(≤ 9)
0.5

(u ∈ (0.0978, 1)) 0.0475 0.0949 5.2662 1.0 0.2874 0.0103 0.0301

ϵ0 = 0.1
0.0005

(<0.0015)
1

(≤ 1)
0.5

(u ∈ (0.1663, 1)) 0.0286 0.0572 8.7392 1.0 0.2741 0.0043 0.0169

Table 1. Theoretical convergence rate vs actual convergence rate of ∥Uk − U∗∥22.
The constraints in the parentheses in the columns of ht, Nt, and u are derived from
the conditions in Corollary 8.1. The actual rate r is solved from the linear regression
model r · k + b given the numerical data {k, log(∥Uk+1 − U∗∥2/∥Uk − U∗∥2)} for
1 ≤ k ≤ 400 (Allen-Cahn equation (4.1)); and 1 ≤ k ≤ 500 (Cahn-Hilliard equation
(4.2)).
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Figure 5. Plot of log ∥Uk − U∗∥2 vs k (1 ≤ k ≤ 400) when using hyperparameters
specified in Table 1 to solve Allen-Cahn equation (4.1) with different ϵ0 on a 128×128
grid.

Remark 6. (3.19) may also not be the optimal choice of hyperparameters. We provide suggestions
on selecting the optimal hyperparameters in section 4.2.



NUMERICAL ANALYSIS OF THE PDHG METHOD FOR REACTION-DIFFUSION EQUATIONS 17

0 50 100 150 200 250 300 350 400 450

Iteration number

-50

-40

-30

-20

-10

0

10

lo
g(

||U
k -

 U
*||2 L

2
)

(a) ϵ = 10.

0 50 100 150 200 250 300 350 400 450 500

Iteration number

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

||U
k -

 U
*||2 L

2
)

(b) ϵ = 1.0.

0 50 100 150 200 250 300 350 400 450 500

Iteration number

-25

-20

-15

-10

-5

0

5

lo
g(

||U
k -

 U
*||2 L

2
)

(c) ϵ = 0.1.

Figure 6. Plot of log ∥Uk − U∗∥2 vs k (1 ≤ k ≤ 500) when using hyperparameters
specified in Table 1 to solve Cahn-Hilliard equation (4.2) with different ϵ0 on a
128× 128 grid.

4. Numerical examples

In this section, we test the proposed algorithm on four types of RD equations, namely the Allen-
Cahn equation, the Cahn-Hilliard equation, an RD equation with variable coefficients (mobility
term), and a 6th-order reaction-diffusion equation. We verify the independence between the con-
vergence rate of our algorithm and the grid size Nx. We discuss how the hyperparameters of the
proposed algorithm are chosen to achieve the optimal (or near-optimal) performance via numerical
experiments. We also provide comparisons between the implicit scheme with adaptive step size
ht and the IMEX scheme on long-time range computation. At the end of this section, we make
comparisons with three commonly used algorithms for resolving the time-implicit schemes such as
the nonlinear SOR [35], the preconditioned fixed point method [2] and Newton’s method [11].

For all the numerical examples in this section, if not specified, we always set the hyperparameters
ω = 1 and ϵ = 0.1. We terminate the iteration whenever ∥Res(Uk)∥∞ < tol with tol = 10−6. Here
the residual term Res(Uk) is defined in (2.16). All numerical examples are imposed with periodic
boundary conditions. We adopt the central discretization scheme to discretize the Laplace operator
∆, i.e., we set the discretized Laplace operator as LapPhx

defined in (2.2).
Among four equations discussed in this section, equations (4.1), (4.2), and (4.6) have already been

considered in [32], where more numerical results are demonstrated. In this research, we mainly use
them as test equations for validating our theoretical findings and justifying the effectiveness of our
method.

All the numerical examples are computed using MATLAB on a laptop with 11th Gen Intel Core
i5-1135G7 @ 2.40GHz CPU and 16.0 GB RAM. The corresponding codes are provided at https://
github.com/LSLSliushu/PDHG-method-for-solving-reaction-diffusion-equations/tree/main.

4.1. Tested equations. Throughout this section, we denote the double potential function W (u) =
1
4(u

2 − 1)2, and thus W ′(u) = u3 − u.

4.1.1. Allen-Cahn equation (AC). We consider the Allen-Cahn equation

∂u

∂t
= a∆u− bW ′(u), on [0, 0.5]2 × [0, T ], u(x, 0) = u0(x). (4.1)

We set a = ϵ0, b = 1
ϵ0

with ϵ0 = 0.01. We set the initial condition as u0 = 2χB(x∗,r) − 1 where
x∗ = (0.25, 0.25), r = 0.2. For the precondition matrix M , Gh = I, and Lh = ∆P

hx
, and Jf = 2I.

We compare our method and the IMEX method in Figure 7. The zero-level set of the solution u(·, t)
of this equation is known to be the curvature flow of a circle [35]. A comparison among the plots

https://github.com/LSLSliushu/PDHG-method-for-solving-reaction-diffusion-equations/tree/main
https://github.com/LSLSliushu/PDHG-method-for-solving-reaction-diffusion-equations/tree/main
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of the front positions computed by our method, the Nonlinear SOR method. The real solution is
presented on the right-hand side of Figure 7.
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Figure 7. We solve equation (4.1) with ϵ0 = 0.01. We set τU = 0.55, τP = 0.95 for
our PDHG method. (Left) Comparison between our method (time-implicit scheme
solved by the proposed PDHG algorithm) and the IMEX scheme. We discrete the
space into 128 × 128 lattices. We compute both schemes with large time step size
ht = 0.02 and compare with the benchmark solution solved from the same IMEX
scheme with ht = 0.001. Blue curve indicates the L1 discrepancy between the IMEX
solution on the coarser time grid UIMEX and the benchmark solution U⋆. Red curve
indicates the L1 discrepancy between the time-implicit solution UPDHG and U⋆.
(Right) Comparison between the front position of the numerical solution solved via
our PDHG method and the Nonlinear SOR method, as well as the real front position.

4.1.2. Cahn-Hilliard equation (CH). We consider the Cahn-Hilliard equation
∂u

∂t
= −a∆∆u+∆bW ′(u), on [0, 2π]2 × [0, T ], u(x, 0) = u0(x). (4.2)

We set a = ϵ20 and b = 1. We set the initial condition u0 as a modified indicator function whose
value equals +1 if (x, y) falls inside any of the seven circles and −1 otherwise, i.e.,

u0(x, y) = −1 +
7∑

i=1

φ(
√

(x− xi)2 + (y − yi)2 − ri),

where the mollifier function φ is defined as

φ(s) =

{
2e−

ϵ2

s2 s < 0;

0 s ≥ 0
, with ϵ = 0.1.

The centers and radii of these seven circles are listed in Table 2. For the precondition matrix M ,

i 1 2 3 4 5 6 7

xi π/2 π/4 π/2 π 3π/2 π 3π/2
yi π/2 3π/4 5π/4 π/4 π/4 π 3π/2
ri π/5 2π/15 π/15 π/10 π/10 π/4 π/4

Table 2. Centers and radius of the 7 circles.

Gh = Lh = ∆P
hx

, and Jf = 2I.
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4.1.3. A reaction-diffusion equation with variable coefficient (VarCoeff). We consider the following
equation with variable coefficient (mobility term) σ(·),

∂u

∂t
= a∇ · (σ(x)∇u)− bW ′(u), on [0, 2π]2 × [0, T ], u(x, 0) = u0(x). (4.3)

We choose a = ϵ0, b =
1
ϵ0

with ϵ0 = 0.01. The media σ(x, y) = 1 + µ
2 (sin

2 x+ sin2 y) with µ = 5.0.

We set the initial condition u0 =
1
2(cos(4x)+cos(4y)). We adopt the following time-implicit scheme

U t+1
ij − U t

ij

ht
=

a

h2
x

(σi+ 1
2
,j(Ui+1,j−Ui,j)−σi− 1

2
,j(Ui,j−Ui−1,j)+σi,j+ 1

2
(Ui,j+1−Ui,j)−σi,j− 1

2
(Ui,j−Ui,j−1))−bW ′(U t+1

ij ),

(4.4)
where 0 ≤ t ≤ Nt − 1, 1 ≤ i, j ≤ Nx, and UNx+1,j = U1,j , U0,j = UNx,j ;Ui,Nx+1 = Ui,1, Ui,0 = Ui,Nx

for all 1 ≤ i, j ≤ Nx. And we set σpq = σ((p− 1)hx, (q − 1)hx) for any p, q ∈ Q.
For the precondition matrix M , Gh = I, we approximate Lh by −σ∆P

hx
, whose matrix-vector mul-

tiplication and inversion can be efficiently computed via the FFT algorithm. Here σ = 1
|Ω|
∫
Ω σ(x, y) dxdy =

1 + µ
2 denotes the average of σ over Ω = [0, 2π]2. We set Jf = 2I. We choose τU = 0.5, τP = 0.95

when applying our PDHG method to solve the time-implicit scheme (4.4).
The numerical solutions to (4.3) are provided in Figure 8. A series of residual decay plots

throughout our method are demonstrated in Figure 9.
Furthermore, we denote

E(u) =

∫
Ω

a

2
σ(x)|∇u(x)|2 + bW (u(x)) dx,

as the free energy functional associated with the reaction-diffusion equation (4.3). Denote

Ehx(U) =
∑

1≤i,j≤Nx

(a
2
(σi+ 1

2
,j |Ui+1,j − Ui,j |2 + σi,j+ 1

2
|Ui,j+1 − Ui,j |2) + bW (Ui,j)

)
h2x (4.5)

as the discrete analogy of E(u). The free energy Ehx(U
tk) versus tk plot of energy decay is presented

in Figure 10. In addition, a comparison between the proposed scheme and the IMEX scheme can
be found in Figure 11.
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Figure 8. Numerical solution of the time-implicit scheme solved via our PDHG
method on a 256× 256 grid at different time stages t = 0.0, 0.2, 1.0, 3.6, 10.0, 20.0.

4.1.4. A 6th-order Reaction-Diffusion Equation (6th-order). We consider the following 6th-order
Cahn-Hilliard-type equation:

∂u

∂t
= ∆(ϵ20∆−W ′′(u) + ϵ20)(ϵ

2
0∆u−W ′(u)), on [0, 2π]2 × [0, T ], u(·, 0) = u0. (4.6)

In this example, we choose parameter ϵ0 = 0.18. We set the initial condition

u0(x, y) = 2esinx+sin y−2 + 2.2e− sinx−sin y−2 − 1.

When we set up the precondition matrix M , we approximate Gh by

∆h(ϵ
2
0∆h −W ′′(±1) + ϵ20) = ∆h(ϵ

2
0∆h − 2 + ϵ20),
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Figure 9. The loss plot of log10(Res(Uk)) vs iteration number k. We solve (4.3)
with ht = 0.002. The plots (from left to right) are the loss plots at 30th, 60th, and
90th subinterval.
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Figure 10. We compute the free energy on [0, 5]. (Left) Free energy decay (blue)
of the time-implicit scheme (solved by PDHG method) with ht = 2 · 10−3, and the
reference energy decay (red) solved from IMEX scheme with ht = 10−4. The relative
error between them is plotted in orange. (Right) The log− log plot of free energy.

and set Lh = ϵ20∆h. We pick Jf = 2I. We choose τU = 0.5, τP = 0.95 for our PDHG method. A
comparison between our proposed scheme and the IMEX scheme is provided in Figure 12.

4.1.5. Grid-size-free algorithm. As emphasized previously in the introduction, the convergence rate
of our algorithm is independent of the grid size Nx. This has also been verified in Corollary 7.1 and
Corollary 8.1. (Recall that the quantities θ̃ and θ in these corollaries are independent of Nx.) In this
subsection, we verify such irrelevance by testing our algorithm on various types of equations with
different grid sizes Nx. The numerical results are demonstrated in Figure 13, where the number of
iterations required upon convergence directly reflects the convergence rate of our PDHG algorithm.

4.2. Hyperparameter selection. Given the spatial and the temporal step sizes hx, ht of the
implicit scheme, there are 5 hyperparameters to be determined for our algorithm: Nt, τU , τP , ω, and
ϵ. In the following, we discuss the choice of these hyperparameters.
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Figure 11. (Left) Comparison between our method (time-implicit scheme solved
by the proposed PDHG algorithm) and the IMEX scheme. We discretize the space
into a 256×256 lattice. We compute both schemes with large time step size ht = 0.01
and compare with the benchmark solution solved from the same IMEX scheme with
ht = 0.001. Blue curve indicates the L1 discrepancy between the IMEX solution on
the coarser time grid UIMEX and the benchmark solution U⋆. Red curve indicates
the L1 discrepancy between the time-implicit solution UPDHG and the benchmark
U⋆. (Right) Plot of |UPDHG − U⋆| (up); and plot of |UIMEX − U⋆| (down).
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of our method and the IMEX scheme with ht = 0.01. (Right) Plot of |UPDHG − U⋆|
(up); and |UIMEX − U⋆| (down).

(1) (Choosing Nt) Suppose we want to solve an equation on [0, Ttotal]. We divide the time interval
into M ·Nt subintervals, i.e.,

[0, Ttotal] =
M⋃
k=1

Ik =
M⋃
k=1

 Nt⋃
j=1

Ik,j

 , where each Ik,j = [(k − 1)T + (j − 1)ht, (k − 1)T + jht].

with T = Ttotal/M, ht = T/Nt.
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Figure 13. Relation between the number of iterations needed for convergence
and space discretization Nx. We verify on four different equations with Nx =
50, 100, 150, 200, 250. We set ϵ0 = 0.01 for the Allen-Cahn equation and ϵ0 = 0.1
for the Cahn-Hilliard equation.

We then apply our proposed method to each subinterval Ik in order to obtain the entire numerical
solution on [0, Ttotal]. We test our algorithm with different combinations of M ·Nt on various types
of equations. Unless specified otherwise, we choose ω = 1, ϵ = 0.1. We set the stopping criteria as
∥Res(Uk)∥∞ < 10−6. The efficiency of our algorithm under different scenarios is reflected in CPU
time demonstrated in Table 3. Among the series of experiments, we observe that it is usually the
most efficient to pick Nt ≤ 3.

Equation Name [τU , τP , T ] M ×Nt

1× 100 2× 50 4× 25 10× 10 20× 5 25× 4 33× 3 + 1 50× 2 100× 1

AC(ϵ0 = 0.01) [0.5, 0.5, 1.0] – – 1198.41 219.52 137.71 138.65 88.53 106.41 92.72
AC(ϵ0 = 0.1) [0.5, 0.5, 1.0] – – 90.28 57.73 34.37 50.43 41.37 26.62 24.20
AC(ϵ0 = 1) [0.5, 0.5, 1.0] 64.28 38.11 23.42 24.24 13.05 13.29 12.51 10.89 10.72

CH [0.5, 0.5, 1.0] 775.15 208.93 170.77 252.99 148.96 183.34 101.41 77.35 86.37
6th Order [0.8, 0.8, 0.1] – – 374.82 389.90 285.12 384.52 199.11 188.58 208.30
Varcoeff [0.95, 0.5, 1.0] – – 305.73 206.72 204.34 153.88 144.67 142.22 61.46

Table 3. Comparison of CPU time (s) with different Nts (All problems are solved
on 256× 256 grids).

(2) (Choosing τU , τP ) Theoretically, choosing τU , τP as suggested in Corollary 8.1 will guarantee the
convergence of our method. In practice, we can pick a larger τU , τP to achieve faster convergence.
Generally speaking, the optimal step size τP is around 0.9, and the optimal ratio ϱ = τP

τU
should be

slightly less than 2. The intuition of choosing ϱ > 1 is that we want to treat the inner optimization
of the functional L̂(U,Q) defined in (2.14) w.r.t. the dual variable Q more thoroughly. In fact, it
is common in bi-level optimization to choose a larger, more aggressive step size for the inner-level
optimization problem both practically [17] and theoretically [27, 51]. A rather efficient choice of the
step sizes (τU , τP ) is (0.5, 0.9). This is verified in Table 4, in which we compare the choice (0.5, 0.9)
with other combinations of (τU , τP ).
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ϵ = 0.1 for all problems τU = 0.9, τP = 0.5 τU = 0.65, τP = 0.65 τU = 0.5, τP = 0.9

6th Order [T = 0.5] Nx = 256, Nt = 50 62.28 47.92 30.53
Nx = 128, Nt = 50 12.31 9.47 8.54

VarCoeff [T = 0.5] Nx = 256, Nt = 50 103.23 109.38 82.38
Nx = 128, Nt = 50 15.92 13.35 9.54

Table 4. Comparison on speeds among different ratios ϱ = τP
τU

for different equa-
tions.

(3) (Choosing ω) We pick ω = 1 in our experiments. If one increases or decreases ω, one should
modify τP correspondingly so that γ̃ = ωτP remains unchanged. Once γ̃ ≈ 0.9 is fixed, we generally
achieve the optimal (or near-optimal) performance of our algorithm.

(4) (Choosing ϵ) We set ϵ around 0.1. Recall that supQ {L̂(U,Q)} = ∥F̂ (U)∥2
2ϵ . Increasing ϵ will

decrease the convexity of the functional ∥F̂ (U)∥2
2ϵ , which will slow down our algorithm. Decreasing

ϵ brings our algorithm closer to our original version of PDHG method [32], in which we discover
stronger oscillations towards convergence, which may also affect the efficiency.

4.3. Long-time computation via adaptive time step size. It is an important topic how one
can efficiently compute the RD equation for large time T to study its behavior near the equilibrium
state. Since we can pick large time step size ht under the implicit scheme, our proposed method
offers an opportunity for faster computations to approximate the equilibrium state of RD equations.

To be more precise, we adopt adaptive time step size ht during the update of time-implicit scheme
(2.1). Suppose we set up an upper bound h̄t > 0 for time step size ht. As ht < h̄t, we increase ht
by 10% if the proposed PDHG algorithm converges in less than n̄ steps. Otherwise, we decrease ht
by 50%. If ht exceeds h̄t, we reset ht = h̄t.

We implement this strategy of adaptive time step size on equation (4.3) with T = 20. As we
pick ϵ0 = 0.01, (4.3) possesses weak mobility-diffusion and strong reaction. We solve the equation
with Nx = 256, and set the initial time step size ht = 0.01, we set h̄t = 0.08. As shown in Figure
14, our method works efficiently in this example, with an average ht ≈ 0.04. We also compute
the same equation by using the classical IMEX method [23] in which we treat the linear part as
implicit and the nonlinear part as explicit. We apply the preconditioned conjugate gradient (PCG)
algorithm with tolerance1 η = 10−10 to solve the linear system at each IMEX step. For (4.3), the
IMEX method only works stably for a rather small time step size ht ≤ 0.5 · 10−3. As reflected in
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Figure 14. (Left) Plot of time step size ht versus physical time t; (Middle) Plot of
PDHG iterations versus physical time t; (Right) Plot of accumulated CPU time (s)
versus physical time t.

Table 5, our method works better on long-time computation.

1Suppose we apply PCG algorithm to solve the linear equation Ax = b with A positive definite. Denote xk as the
solution obtained at the k-th iteration of the PCG algorithm, then we terminate the PCG iteration if ∥Axk−b∥∞ ≤ η.
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Our method IMEX
ht = 0.5 · 10−3 ht = 0.2 · 10−3 ht = 10−4

1481.76 s 1814.40 s 4158.18 s 6216.81 s

Table 5. Comparison of CPU time (s) between our treatment and the classical
IMEX method on computing the equation (4.3) on [0, 20].

4.4. Comparison on computational efficiency. In this section, we compare the computational
efficiency (in CPU time) of the proposed method with some classical algorithms used for solving
time-implicit schemes of the reaction-diffusion equations.

(1) (Nonlinear SOR) The Nonlinear SOR (NL SOR) method is the nonlinear version of the
successive over-relaxation (SOR) algorithm. It is used to solve the implicit scheme of the
Allen-Cahn equation (4.1) in [35]. We set the tolerance of the Newton’s method used in NL
SOR as 10−10. We set τU = 0.55, τP = 0.95 for our PDHG method. We compare NL SOR
with our algorithm in Figure 15.
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Figure 15. Accumulated CPU time comparison between our method (red) and
Nonlinear SOR method (blue) applied to Allen-Cahn equation (4.1) with ϵ0 = 0.1
and ht = 0.005. We solve the equation on a 128 × 128 grid. The quantile plots are
composed based on 40 independent runs of both algorithms.

(2) (Fixed point method) The fixed point method is also a frequently used algorithm to solve
the time-implicit scheme of the RD equation. We reformulate the time-implicit scheme (2.1)
as

(I + ahtGhLh)U
t+1 = U t − bhtGhf(U

t+1).

For fixed U t, we establish the following fixed point iteration for solving U t+1,

Uk+1 = (I + htGh(aLh + bcI))−1(U t − bhtGh(f(Uk)− cUk)), with initial guess U0 = U t.

Here c is a tunable constant that can be chosen as the value of f ′(·) at equilibrium state.
When f(u) = W (u) = 1

4(1 − u2)2, we set c = f ′(±1) = 2. The linear system is solved by
the PCG algorithm with tolerance η = 10−10. We set τU = 0.5, τP = 0.95 for our PDHG
method. We apply both algorithms to (4.3) with ϵ0 = 0.1. We compare the fixed point
method with our algorithm in Figure 16.

(3) (Newton’s method) Newton’s method with the PCG algorithm as its linear solver serves
as a popular tool for solving implicit schemes of RD equations with a higher order of spatial
differentiation. Here we consider Newton’s method introduced in section 3 of [11]. In [11],
Newton’s method is applied to the spectral discretization of the solution while here we apply
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Figure 16. Accumulated CPU time comparison between our method (red) and
PCG-fixed point iteration (blue). We solve (4.3) with ϵ0 = 0.1 and ht = 0.01 on a
256× 256 grid. These quantile plots are composed based on 40 independent runs of
both algorithms.

Newton’s method to the finite difference scheme. We set τU = 0.5, τP = 0.95 for our PDHG
method. We apply both methods to (4.6). According to our experiments, we observe that
when the time step size ht ≤ 0.005, Newton’s method works more efficiently than the PDHG
algorithm. When ht > 0.005, the PDHG method is faster. Such observation is reflected in
Figure 17. Table 6 demonstrates that the PDHG method is more efficient than Newton’s
method when the latter is applied to multi-interval computation with smaller time step sizes.
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Figure 17. Accumulated CPU time comparison between our method (red) and
Newton’s method (blue). Solving equation (4.6) with ht = 0.001 (Left) and ht =
0.005 (Right). We solve the equation on a 256× 256 grid. These quantile plots are
composed based on 40 independent runs of both algorithms.

5. Conclusion

In this research, we reformulate the PDHG algorithm proposed in [32] by introducing a quadratic
regularization term to solve implicit schemes of RD equations. Theoretically, we establish unique
existence results for the time-implicit schemes of general RD equations. We further prove the
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Method PDHG PCG Newton’s method
ht × n 0.01× 50 0.005× 100 0.001× 500 0.0005× 1000 0.00025× 2000

CPU time(s) 263.90 422.28 299.02 470.71 773.01

Table 6. Time costs of applying the PDHG method and Newton’s method to (4.6)
on 256× 256 grid.

exponential convergence for both the PDHG flow and the proposed discrete-time PDHG algorithm.
In addition, we show that the convergence rates are independent of the grid size Nx. Our theoretical
results are also supported by numerous numerical experiments. We test the proposed PDHG method
via four different types of reaction-diffusion equations. Based on these numerical examples, we verify
the optimal (or near-optimal) way to set the hyperparameters of our algorithm. We also verify the
efficiency of our method by comparing it with several classical root-finding algorithms, such as the
nonlinear SOR method, the fixed point method, and Newton’s method.

We end the discussion by mentioning three important future directions.

• The convergence rate achieved in this research is not the sharpest rate. Can we establish a
sharp convergence rate in terms of the algorithm’s hyperparameters?

• Currently, all of the proposed preconditioners are time-independent. How can we design a
more sophisticated time-dependent preconditioner to assist the convergence of the general-
ized PDHG algorithm?

• As we accumulate multiple time intervals together to formulate a saddle-point scheme for
the root-finding problem, we cancel the causalities among different time nodes. Will this
causality-free optimization strategy render the possibility of parallel computing for the pro-
posed PDHG time-implicit solvers?
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Appendix A. Proofs of section 3.1

A.1. Proof of Theorem 1.

Proof of Theorem 1. To prove this result, we only need to prove that the following single-step scheme
U − U0

ht
= −Gh(aLhU + bf(U)), (A.1)

admits a unique solution U for arbitrary U0. By writing ξ = U − U0, we reformulate (A.1) as
ξ

ht
+ Gh(aLh(U

0 + ξ) + bf(U0 + ξ)) = 0. (A.2)

We first show that ξ solves (A.2) iff ξ is the critical point of the following variational problem

min
ξ∈Ran(Gh)

{
ξ⊤G†

hξ

2ht
+

a

2
(U0 + ξ)⊤Lh(U

0 + ξ) + bW (U0 + ξ)⊤1

}
. (A.3)

Here we denote W (·) as the primitive function of f(·). Let us define V = Ran(Gh) and J (ξ) as
the function in (A.3) for simplicity. Define ΠV as the orthogonal projection from RNx×Nx onto the
subspace V.

We know that ξ is a critical point of J on space V iff

ΠV∇J (ξ) = 0.

By direct calculation, this is equivalent to

G†
hξ

ht
+ a ΠVLh(U0 + ξ) + b ΠVf(U + ξ) = 0.

Writing the projection ΠV = G†
hGh, we obtain

G†
h

(
ξ

ht
+ a GhLh(U0 + ξ) + b Ghf(U + ξ)

)
= 0.

Since the vector inside the above bracket belongs to V, the above is equivalent to (A.2).
We now prove the existence and uniqueness of the minimizer to the variational problem (A.3)

under condition (3.3), which implies the theorem.
By a change of variable ξ = Q1x, where Q1 is defined as in the spectral decomposition (3.2) of

Gh, and x ∈ Rr, (A.3) is equivalent to the following non-constrained optimization problem

min
x∈Rr

{
x⊤Λ−1x

2ht
+

a

2
x⊤Q⊤

1 LhQ1x+ a U0⊤LhQ1x+ b W (U0 +Q1x)
⊤1

}
. (A.4)

Denote J̃ (x) as the function in the above problem. Computing ∇J̃ yields

∇J̃ (x) =
Λ−1

ht
x+ a Q⊤

1 LhQ1x+ aQ⊤
1 LhU

0 + b Q⊤
1 (V

′(U0 +Q1x) + ϕ(U0 +Q1x)).

Then

(x− y, ∇J̃ (x)−∇J̃ (y))

=
1

ht
(x− y)⊤Λ(x− y) + a(x− y)⊤Q⊤

1 LhQ1(x− y) + b(Q1(x− y))⊤(V ′(U0 +Q1x)− V ′(U0 +Q1y))

+ b(Q1(x− y))⊤(ϕ(U0 +Q1x)− ϕ(U0 +Q1y))

≥ (x− y)⊤
(
Λ

ht
+ aQ⊤

1 LhQ1

)
(x− y) + bK∥x− y∥2 − bLip(ϕ)∥x− y∥2

≥
(
λmin

(
Λ−1

ht
+ aQ⊤

1 LhQ1

)
+ bK − bLip(ϕ)

)
∥x− y∥2.
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Then the condition (3.3) leads to

α = λmin

(
Λ−1

ht
+ aQ⊤

1 LhQ1

)
+ bK − bLip(ϕ) > 0.

This shows the α-strongly convexity of J̃ , which leads to the existence and uniqueness of the
minimizer to (A.3), which accomplishes the proof.

□

A.2. Simplified conditions for specific reaction-diffusion equations. The condition (3.3)
can be simplified for specific types of equations. We discuss two examples.

• (Allen-Cahn equation with periodic boundary condition) In this case, G = Id,L = −∆.
f(x) = x3 − x. We set Gh = IN2

x
, and Lh = −∆P

hx
= INx ⊗ (−LapPhx

) + (−LapPhx
) ⊗ INx ,

where LapPhx
is defined in (2.2). Then

λP
k =

4

h2x
sin2

(
πk

Nx

)
, with 1 ≤ k ≤ Nx,

are the eigenvalues of −LapPhx
. And the eigenvalues of Λ−1

ht
+ a Q⊤

1 LhQ1 = I
ht

+ aLh are
λk,l =

1
ht

+ a(λP
k + λP

l ), with 1 ≤ k, l ≤ Nx. Thus, λmin(
Λ−1

ht
+ a Q⊤

1 LhQ1) =
1
ht

.
Furthermore, we can decompose f(x) = V ′(x) + ϕ(x), where

V (x) =

{
1
4(x

2 − 1)2, |x| > 1;

0, |x| ≤ 1.
ϕ(x) =

{
0, |x| > 1;

x3 − x, |x| ≤ 1.

Then one can verify that K = 0 and Lip(ϕ) = 2. In this case, condition (3.3) implies

ht <
1

Lip(ϕ)b
=

1

2b
.

• (Cahn-Hilliard equation with periodic boundary condition) In this case, G = −∆, L = −∆.
f(x) = x3 − x. We set Gh = Lh = I ⊗ (−LapPhx

) + (−LapPhx
)⊗ I. We have

λmin

(
Λ−1

ht
+ a Λ

)
= min

1≤k,l≤Nx−1

{
1

(λP
k + λP

l )ht
+ a(λP

k + λP
l )

}
≥ 2

√
a

ht
.

Thus, a sufficient condition for (3.3) is

ht <
4a2

b2Lip(ϕ)2
=

a2

b2
.

It is worth mentioning that the conditions on ht for both Allen-Cahn and Cahn-Hilliard equations
are independent of the spatial step size h, which makes it possible for our scheme to overcome the
CFL condition required in the time-explicit scheme.

Appendix B. Proofs of section 3.2

B.1. Proofs of section 3.2.1. To prove Lemma 2, we need the following Lemma 9 and Lemma
10.

Lemma 9. Suppose λ ≥ λ > 0. Assume µ > 0 satisfies 1√
λ
− 1√

λ
< 2√

µ . Define

A = max

{(
1−

√
µ

√
λ

)2

,

(
1−

√
µ

√
λ

)2
}
, and B =

(
1 +

√
µ

√
λ

)2

,
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then we always have A < B. Then for any λ ∈ [λ, λ], and γ, ϵ > 0 with A < γϵ < B, the matrix
Bλ

Bλ =

[
γλ −1

2(µ− (1− γϵ)λ)
−1

2(µ− (1− γϵ)λ) µϵ

]
(B.1)

is always positive definite.

Proof of Lemma 9. First, we have
∣∣∣∣1− √

µ√
λ

∣∣∣∣ < 1 +
√
µ√
λ
, 1−

√
µ√
λ
< 1 +

√
µ√
λ
; and the condition 1√

λ
−

1√
λ
< 2√

µ yields −(1−
√
µ√
λ
) < 1 +

√
µ√
λ
. This yields

max

{∣∣∣∣1− √
µ

√
λ

∣∣∣∣ , ∣∣∣∣1− √
µ

√
λ

∣∣∣∣} < 1 +

√
µ

√
λ
.

Taking squares on both sides of the above inequality gives A < B.
On the other hand, since γλ > 0, and µϵ > 0, we know Bλ is positive definite if and only if

det(Bλ) > 0. In order to alleviate our notations, let us denote the quadratic polynomial qµ,λ(·) as

qµ,λ(x) = λ2x2 − 2λ(µ+ λ)x+ (µ− λ)2.

Then we know det(Bλ) = −1
4qµ,λ(γϵ).

Now, for fixed λ ∈ [λ, λ], the two roots of qµ,λ(x) are
(
1±

√
µ√
λ

)2
. Thus qµ,λ(x) < 0 if

x ∈ Iλ ≜

((
1−

√
µ

√
λ

)2

,

(
1 +

√
µ

√
λ

)2
)
.

On the other hand, we have

sup
λ∈[λ,λ]

{(
1−

√
µ

√
λ

)2
}

= max

{(
1−

√
µ

√
λ

)2

,

(
1−

√
µ

√
λ

)2
}

= A,

and

inf
λ∈[λ,λ]

{(
1 +

√
µ

√
λ

)}
=

(
1 +

√
µ

√
λ

)2

= B.

As a result,
⋂

λ∈[λ,λ] Iλ = (A,B). Thus, we have shown that for any λ ∈ [λ, λ], and A < γϵ < B,
qµ,λ(γϵ) < 0. This directly leads to the assertion of the lemma.

□

Lemma 10 (Positive definiteness of Hµ). Consider the matrix Hµ,

Hµ =

[
γΣ −1

2(µI − (1− γϵ)Σ)
−1

2(µI − (1− γϵ)Σ) µϵI

]
,

with Σ symmetric and positive definite. Suppose 0 < λ ≤ λ are two positive numbers such that the
spectrum λ(Σ) ⊂ [λ, λ]. We further assume that 1√

λ
− 1√

λ
< 2√

µ . We adopt the notation A,B in

Lemma 9, i.e.,

A = max

{(
1−

√
µ

√
λ

)2

,

(
1−

√
µ

√
λ

)2
}
, and B =

(
1 +

√
µ

√
λ

)2

.

By Lemma 9, we have A < B. We also assume that γ, ϵ > 0 satisfy A < γϵ < B.
Define the function φµ,γ,ϵ(·) as

φµ,γ,ϵ(z) =
1

2
(γz + µϵ−

√
(γz − µϵ)2 + (µ− (1− γϵ)z)2). (B.2)

We denote β = min
λ∈[λ, λ]

{φµ,γ,ϵ(λ)}, then β > 0. And we have Hµ ⪰ βI.
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Proof of Lemma 10. For any λ ∈ [λ, λ], consider the matrix Bλ as defined in (B.1), i.e.,

Bλ =

[
γλ −1

2(µ− (1− γϵ)λ)
−1

2(µ− (1− γϵ)λ) µϵ

]
.

By Lemma 9, we know Bλ is positive definite. By a directly calculation, the eigenvalues of Bλ are
given by (we assume λ1(Bλ) ≥ λ2(Bλ)),

λ1,2(Bλ) =
γλ+ µϵ±

√
(γλ− µϵ)2 + (µ− (1− γϵ)λ)2

2
. (B.3)

Thus λ2(Bλ) = φµ,γ,ϵ(λ). Since Bλ is positive definite, λ2(Bλ) = φµ,γ,ϵ(λ) > 0.
As a result, φµ,γ,ϵ(λ) > 0 for λ ∈ [λ, λ]. Since φµ,γ,ϵ(·) is continuous on the compact set [λ, λ],

we know the infimum value β > 0. At the same time, it not hard to verify that Bλ ≻ βI for any
λ ∈ [λ, λ].

To estimate Hµ from below, let us denote λ(Σ) = {λ1, λ2, . . . , λN} with λ1 ≥ λ2 ≥ · · · ≥ λN > 0
as the eigenvalues of matrix Σ. Since Hµ is symmetric, Hµ is similar to the following block diagonal
matrix via an orthogonal transform

Bλ1

Bλ2

. . .
BλN

 ,

with each Bλj
defined as in (B.1). Since each λj ∈ λ(Σ) ⊂ [λ, λ], the above argument applies to

every Bλj
, i.e., Bλj

≻ βI for any 1 ≤ j ≤ N . This leads to Hµ ≻ βI. □

We are ready to prove Lemma 2.

Proof of Lemma 2. We denote

Σ = DF̂ (Ut)DF̂ (Ut)
⊤ = (I +Dη(Ut))(I +Dη(Ut)

⊤),

and compute

d

dt
Iµ(Ut, Qt) = F̂ (U)⊤DF̂ (U)U̇ + µ Q⊤Q̇

= −F̂ (U)⊤DF̂ (U)DF̂ (U)⊤(Q+ γQ̇) + µ Q⊤(−ϵQ+ F̂ (U))

= −F̂ (U)⊤Σ(Q+ γ(−ϵQ+ F̂ (U)))− µϵ∥Q∥2 + µQ⊤F̂ (U)

= F̂ (U)⊤(µI − (1− γϵ)Σ)Q− γF̂ (U)⊤ΣF̂ (U)− µϵ∥Q∥2

= −[F̂ (U)⊤, Q⊤]

[
γΣ −1

2(µI − (1− γϵ)Σ)
−1

2(µI − (1− γϵ)Σ) µϵI

]
︸ ︷︷ ︸

denote as Hµ

[
F̂ (U)
Q

]

= −[F̂ (U)⊤, Q⊤] Hµ [F̂ (U)⊤, Q⊤]⊤.

(B.4)

We denote σ1(Ut) ≥ · · · ≥ σN (Ut) as the singular values of the Jacobian matrix DF̂ (Ut). It is not
hard to verify that the spectrum of Σ

λ(Σ) = {σ2
1(Ut), . . . , σ

2
N (Ut)}.

According to definition (3.6) and (3.7), we have

λ(Σ) ⊂ [σ2, σ2].
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Now we apply Lemma 10 with λ = σ2, λ = σ2. We prove that Hµ ≻ βI for any Ut ∈ RN . As a
result, we obtain the following inequality:

d

dt
Iµ(Ut, Qt) = −[F̂ (U)⊤, Q⊤] Hµ [F̂ (U)⊤, Q⊤]⊤ ≤ −β(∥F̂ (Ut)∥2 + ∥Qt∥2).

Furthermore, one has

max{1, µ}(∥F̂ (U)∥2 + ∥Q∥2) ≥ ∥F̂ (U)∥2 + µ∥Q∥2,

which yields

∥F̂ (U)∥2 + ∥Q∥2 ≥ 2

max{1, µ}
Iµ(U,Q).

This finally leads to
d

dt
Iµ(Ut, Qt) ≤ − 2 β

max{1, µ}
Iµ(Ut, Qt).

And the Grönwall’s inequality gives

Iµ(Ut, Qt) ≤ exp

(
− 2 β

max{1, µ}
t

)
Iµ(U0, Q0).

□

We now prove Theorem 3.

Proof of Theorem 3. Let us pick the hyperparameter µ = σ2, one can verify that µ satisfies (3.10).
Furthermore, √γϵ = 1 − δ. Since |δ| < 1

κ , 1 − 1
κ <

√
γϵ < 1 + 1

κ . This verifies that √
γϵ satisfies

(3.11). Now Theorem 2 guarantees that φµ,γ,ϵ > 0 on [σ2, σ2]. For z ∈ [σ2, σ2], we further calculate

φµ,γ,ϵ(z) =
1

2
(γz + µϵ−

√
(γz + µϵ)2 − (4γϵµz − (µ− (1− γϵ)z)2))

=
1

2

4γϵµz − (µ− (1− γϵ)z)2

γz + µϵ+
√
(γz + µϵ)2 − (4γϵµz − (µ− (1− γϵ)z)2)

≥4γϵµz − (µ− (1− γϵ)z)2

4(γz + µϵ)

=
−(1− γϵ)2z2 + 2µ(1 + γϵ)z − µ2

4(γz + µϵ)

=
−((1 + γϵ)z − µ)2 + 4γϵz2

4(γz + µϵ)

=
(2
√
γϵz − (1 + γϵ)z + µ)(2

√
γϵz + (1 + γϵ)z − µ)

4(γz + µϵ)

=
(
√
µ− |1−√

γϵ|
√
z)(

√
µ+ |1−√

γϵ|
√
z)((1 +

√
γϵ)2z − µ)

4(γz + µϵ)

1−√
γϵ=δ, z≤σ2

≥
(
√
µ− |δ|

√
z)(

√
µ+ |δ|

√
z)((2− δ)2z − µ)

4(γσ2 + µϵ)
. (B.5)

Since we have set

γ =
1− δ

κ
, ϵ = (1− δ)κ, µ = σ2.
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Substituting them into (B.5) yields

φµ,γ,ϵ(z) ≥
(σ − |δ|

√
z)(|δ|

√
z + σ)((2− δ)2z − σ2)

8(1− δ) σ σ

=
1

8(1− δ)

(
1− |δ|

√
z

σ

)(
|δ|

√
z

σ
+

σ

σ

)
((2− δ)2z − σ2)

≥ 1

8(1− δ)
(1− κ|δ|)

(
|δ|+ 1

κ

)
(1− δ)(3− δ)σ2

≥ 1

8κ
(1− κ|δ|)(3− δ)σ2.

If we denote β = min
z∈[σ2,σ2]

{φµ,γ,ϵ(z)}, then we have

β

max{1, µ}
≥ (1− κ|δ|)(3− δ)

8κ

σ2

max{1, σ2}
=

1

8
(1− κ|δ|)(3− δ)

min{σ2, 1}
κ

.

Thus, the result of Theorem 2 yields

Iµ(Ut, Qt) ≤ exp

(
−1

4
(1− κ|δ|)(3− δ)

min{σ2, 1}
κ

t

)
Iµ(U0, Q0).

Taking square root on both sides of the above inequality and using the fact that

∥F̂ (Ut)∥ ≤
√
Iµ(Ut, Qt),

we obtain

∥F̂ (Ut)∥ ≤ exp

(
−1

8
(1− κ|δ|)(3− δ)

min{σ2, 1}
κ

t

)√
Iµ(U0, Q0).

This implies our theorem.
□

Theorem 11 (Exponential decay of Iµ(Ut, Qt)). Assume that (Ut, Qt) solves (3.5) with arbitrary
initial position (U0, Q0). Then we have the exponential decay of the Lyapunov function Iµ(Ut, Qt),
i.e.,

Iµ(Ut, Qt) ≤ exp (−2λt) Iµ(U0, Q0) ,

where

λ = min{ϵ− 1

2
|(1− γϵ)σ2

1/µ− 1|, ϵ− 1

2
|(1− γϵ)σ2

n/µ− 1|,

γσ2
1 −

1

2
|(1− γϵ)σ2

1 − µ|}, γσ2
n − 1

2
|(1− γϵ)σ2

n − µ|} .

In particular, when γϵ = 1, µ = 0, and

γ =
−1

2
σ2
1−σ2

n

σ2
1+σ2

n
+

√
1
4

(
σ2
1−σ2

n

σ2
1+σ2

n

)2
+ 4σ2

n

2σ2
n

,

we have λ = 2σ2
n
σ2
1+σ2

n

σ2
1−σ2

n
− 1

2σ
4
n

(
σ2
1+σ2

n

σ2
1−σ2

n

)3
+O(σ6

n).

Proof of Theorem 11. We would like to find λ such that
dI
dt

+ 2λI ≤ 0 .

Then by Gronwall’s inequality, we obtain exponential convergence. We have
dI
dt

+ 2λI = [F̂ (U)⊤, Q⊤]

[
λI − γΣ 1

2(µI − (1− γϵ)Σ)
1
2(µI − (1− γϵ)Σ) λµI − µϵI

] [
F̂ (U)
Q

]
.
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Using Lemma A.1 from [52], it suffices to have

λ− γσ2
i +

1

2
|(1− γϵ)σ2

i − µ| ≤ 0 , (B.6a)

λµ− µϵ+
1

2
|(1− γϵ)σ2

i − µ| ≤ 0 , (B.6b)

for all σ2 = σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
n = σ2. Let us define g1(σ) = ϵ − 1

2 |(1 − γϵ)σ2/µ − 1|, and
g2(σ) = γσ2 − 1

2 |(1− γϵ)σ2 − µ|. Then (B.6) implies that

λ ≤ min
i=1,2

min
σn≤σ≤σ1

gi(σ) .

Since gi(σ)’s are piece-wise linear and have only one kink, it is easy to check that

min
σn≤σ≤σ1

gi(σ) = min{gi(σ1), gi(σn)} .

This proves the first part of our lemma. When taking µ = 1
2(1 − γϵ)(σ2

1 + σ2
n), one can show by a

straightforward calculation that g1(σn) = g1(σ1). This also implies that g2(σ1) ≥ g2(σn). Therefore,
to make λ large, we would like to equate g1(σn) and g2(σn). This yields

ϵ− 1

2

σ2
1 − σ2

n

σ2
1 + σ2

n

= γσ2
n − 1

4
(1− γϵ)(σ2

1 − σ2
n)

ϵ =
γσ2

n + 1
2
σ2
1−σ2

n

σ2
1+σ2

n
− 1

4(σ
2
1 − σ2

n)

1− 1
4γ(σ

2
1 − σ2

n)
. (B.7)

In the special case of γϵ = 1, we obtain

1 = γϵ =
γ2σ2

n + 1
2γ

σ2
1−σ2

n

σ2
1+σ2

n
− 1

4γ(σ
2
1 − σ2

n)

1− 1
4γ(σ

2
1 − σ2

n)
. (B.8)

We can solve for γ and we get (keeping the positive root)

γ =
−1

2
σ2
1−σ2

n

σ2
1+σ2

n
+

√
1
4

(
σ2
1−σ2

n

σ2
1+σ2

n

)2
+ 4σ2

n

2σ2
n

.

Consequently, the convergence rate is

λ = γσ2
n = −1

4

σ2
1 − σ2

n

σ2
1 + σ2

n

+
1

2

√
1

4

(
σ2
1 − σ2

n

σ2
1 + σ2

n

)2

+ 4σ2
n

= 2σ2
n

σ2
1 + σ2

n

σ2
1 − σ2

n

− 1

2
σ4
n

(
σ2
1 + σ2

n

σ2
1 − σ2

n

)3

+O(σ6
n) . (B.9)

□

B.2. Proofs of section 3.2.2. To prove Lemma 4, we need the following Lemma 12 and Lemma
13.

Lemma 12. Suppose A is an nm× nm matrix defined as

A =


A1

−I A2

−I A3

. . . . . .
−I An

 ,
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where each Ak is anm×m matrix with σmin(Ak) ≥ α > 0 and σmax(Ak) ≤ α, i.e., ∥Akv∥ ≥ α∥v∥,
∥Akv∥ ≤ α∥v∥ for any v ∈ Rm. Then ∥A−1∥ ≤

∑n
k=1 α

−k, and ∥A∥ ≤ α + 1, i.e., σmin(A) ≥
1∑n

k=1 α
−k , and σmax(A) ≤ α+ 1.

Proof of Lemma 12. By a direct calculation, we have

A−1 =


A−1

1

(A1A2)
−1 A−1

2

(A1A2A3)
−1 (A2A3)

−1 A−1
3

...
...

...
. . .

(A1A2 . . . An)
−1 (A2 . . . An)

−1 (A3 . . . An)
−1 . . . A−1

n

 .

Thus we can write A−1 as

A−1 =


A11 O

A22

. . .
O Ann

+


O

A21
. . .
. . . . . .

O An,n−1 O

+ · · ·+


O
...

. . .

O
. . .

An1 O . . . O


denote as

= J1 + J2 + · · ·+ Jn.

Here, each Jk (1 ≤ k ≤ n) is an nm× nm block-(sub)diagonal matrix whose k-th subdiagonal is

diag(Ak,1, Ak+1,2, . . . , An,n−k+1).

And each Aij is defined as
Aij = (AjAj+1 . . . Ai)

−1, if i ≥ j.

Then one can bound ∥A−1∥ as

∥A−1∥ ≤
n∑

k=1

∥Jk∥.

To bound each ∥Jk∥ from above, consider any v = [v⊤1 , v
⊤
2 , . . . , v

⊤
n ]

⊤ ∈ Rnm with each vj ∈ Rm, we
have

∥Jkv∥2 =
n∑

j=k

∥Aj,j−k+1vj∥2 =
n∑

j=k

∥(Aj−k+1 . . . Aj)
−1vj∥2 ≤ α−2k

n∑
j=k

∥vj∥2 ≤ α−2k∥v∥2.

This yields ∥Jkv∥ ≤ α−k∥v∥ which further gives ∥Jk∥ ≤ α−k. Thus, we have proved ∥A−1∥ ≤∑n
k=1 α

−k, which directly leads to the result σmin(A) ≥ 1∑n
k=1 α

−k .
On the other hand, we write A as

A = diag(A1, . . . , An)− J ⊗ I,

where J is an n× n matrix defined as

J =


0

1
. . .
. . . . . .

1 0

 , (B.10)

and I is an n× n identity matrix. Then we have

∥A∥ ≤ ∥diag(A1, . . . , An)∥+ ∥J ⊗ I∥ ≤ α+ 1.

□
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Lemma 13. Suppose G,L are self-adjoint, nonnegative definite matrices. Assume GL = LG. Then
I+GL (or I+LG) is orthogonally equivalent to I+ΛGΛL, where ΛG,ΛL are the diagonal matrices
equivalent to G,L. Furthermore, σmin(I +GL) = σmin(I + LG) ≥ 1 + λmin(G)λmin(L) ≥ 1.

Proof of Lemma 13. Since G,L commutes, they can be diagonalized simultaneously, i.e., there exists
an orthogonal matrix Q, s.t. G = QΛGQ

⊤, and L = QΛLQ
⊤, where ΛG,ΛL ⪰ O are diagonal

matrices. Then I+GL = I+LG = Q(I+ΛGΛL)Q
⊤. And thus σmin(I+GL) = σmin(I+ΛGΛL) ≥

1 + λmin(G)λmin(L) ≥ 1. □

We now prove Lemma 4.

Proof of Lemma 4. We first recall

σ = inf
U∈RN2

x

{σmin(DF̂ (U))} = inf
U∈RN2

x

{σmin(M
−1DF (U))},

σ = sup
U∈RN2

x

{σmax(DF̂ (U))} = sup
U∈RN2

x

{σmax(M
−1DF (U))},

where we denote F (U) = DU + htGh(aLhU + bf(U)).
We have

σmin(M
−1DF (U)) =

1

σmax(DF (U)−1M )
≥ 1

∥DF (U)−1∥∥M ∥2
=

σmin(DF (U))

∥M ∥
. (B.11)

And
σmax(M

−1DF (U)) ≤ σmax(DF (U))∥M−1∥. (B.12)
Now we estimate the singular values of DF (U), since

DF (U) =


X1

−I X2

−I X3

. . . . . .
−I XNt

 ,

where each Xi = I + ahtGhLh + bhtGhdiag(f
′(U i)). (Here we denote U = (U1⊤, . . . , UNt⊤)⊤.)

Then for each Xi, we have

σmin(Xi) ≥ σmin(I + ahtGhLh)− σmax(bhtGhdiag(f
′(U i)))

≥ σmin(I + ahtGhLh)− ht|b|∥Gh∥∥diag(f ′(U i))∥.
By Lemma 13, the first term above is no less than 1 + ahtλmin(Gh)λmin(Lh) ≥ 1. It is not hard to
verify that ∥Gh∥ = λmax(Gh), ∥diag(f ′(U i))∥ ≤ Lip(f). This leads to

σmin(Xi) ≥ 1− ht|b|λmax(Gh)Lip(f).

We denote α = 1− ht|b|λmax(Gh)Lip(f). Then α > 0, and is independent of U .
On the other hand, one can also verify that

σmax(Xi) = ∥Xi∥ ≤ ∥I + ahtGhLh∥+ ht|b|∥Gh∥Lip(f),
by denoting α = ∥I + ahtGhLh∥+ ht|b|∥Gh∥Lip(f), we know α is also independent of U .

We now apply Lemma 12 to DF (U) with σmin(Xi) ≥ α and σmax(Xi) ≤ α. Together with (B.11)
and (B.12), we have

σmin(DF̂ (U)) ≥ 1(∑Nt
k=1 α

−k
)
∥M ∥

, σmax(DF̂ (U)) ≤ (1 + α)∥M−1∥.

Since α, α, ∥M ∥ and ∥M−1∥ are all independent of U , we are done.
□



38 LIU, ZUO, OSHER, AND LI

To prove Lemma 6, we need the following Lemma 14.

Lemma 14. Suppose we keep all the assumptions from Lemma 6. Let Gh be defined as in (2.6),
and M be defined as in (2.12). Then

∥M−1Gh∥ ≤ Nt

(
max

1≤k≤N2
x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

})
.

Proof of Lemma 14. Recall that we have

M =


X
−I X

−I X
. . . . . .

−I X

 , X = I + ahtGhLh + bhtGhJf .

By Lemma 13, we have X = Q(I + ahtΛGh
ΛLh

+ bchtΛGh
)Q⊤, where we have also used that Gh,Lh

commute, and Jf = cI. Here we write ΛGh
,ΛLh

as the diagonal matrices which are orthogonally
similar to Gh,Lh w.r.t. orthogonal matrix Q. It is not hard to verify that

∥X−1∥ ≤ 1

1 + ht(λmin(aGhLh + bcGh))
≤ 1. (B.13)

Now one can compute

M−1Gh =


X−1

X−2 X−1

X−3 X−2 X−1

...
...

...
. . .

X−Nt X−(Nt−1) X−(Nt−2) . . . X−1




Gh

Gh

Gh

. . .
Gh



=


I

X−1 I
X−2 X−1 I

...
...

...
. . .

X−(Nt−1) X−(Nt−2) X−(Nt−3) . . . I


︸ ︷︷ ︸

N


X−1Gh

X−1Gh

X−1Gh

. . .
X−1Gh


︸ ︷︷ ︸

G̃h

denote as
= N G̃h.

Similar to the treatment in Lemma 4, we estimate ∥N ∥ by decomposing N as

N =I ⊗X0 + J ⊗X−1 + J2 ⊗X−2 + · · ·+ JNt−1 ⊗X−(Nt−1) ,

where we recall that J is defined as in (B.10); And X0 is treated as the identity matrix.
Then we estimate ∥N ∥ as

∥N ∥ ≤

(
Nt−1∑
k=0

∥Jk ⊗ (X−1)k∥

)
.

Since ∥A⊗B∥ = ∥A∥ · ∥B∥ for any dimensions of square matrices A,B, using (B.13) and ∥J∥ ≤ 1
yields

∥N ∥ ≤
Nt−1∑
k=0

∥(X−1)k∥ ≤
Nt−1∑
k=0

∥X−1∥k ≤ Nt. (B.14)
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On the other hand, we have

G̃h = X−1Gh = Q((I + ahtΛGh
ΛLh

+ bchtΛGh
)−1ΛGh

)Q⊤.

If we denote {λk(Gh)}, {λk(Lh)} (1 ≤ k ≤ N2
x) as the corresponding eigenvalues of Gh,Lh w.r.t. Q,

we know

∥G̃h∥ = max
1≤k≤N2

x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

}
. (B.15)

Now combining (B.14) and (B.15) and using ∥M−1Gh∥ ≤ ∥N ∥∥G̃h∥, we finish the proof. □

We now prove Lemma 6.

Proof of Lemma 6. By Lemma 14 and the fact that ∥DR(·)∥ ≤ Lip(R), we have

∥Dη(U)∥ = ∥bhtM−1GhDR(U)∥ ≤ bht · ∥M−1Gh∥ · Lip(R) ≤ bTζa,b,c(ht)Lip(R).

Recall that
DF̂ (U) = I +Dη(U).

Now for any v ∈ RN2
x , we have

∥DF̂ (U)v∥ = ∥v +Dη(U)v∥ ≥ ∥v∥ − ∥Dη(U)∥∥v∥. ≥ (1− bTLip(R)ζa,b,c(ht))∥v∥. (B.16)

Since the right-hand side of (B.16) is independent of U , this will lead to a lower bound on σ, i.e.

σ ≥ 1− bTζa,b,c(ht)Lip(R).

By a similar argument, we have

∥DF̂ (U)v∥ ≤ ∥v∥+ ∥Dη(U)∥∥v∥ ≤ (1 + bTζa,b,c(ht)Lip(R))∥v∥.

This will finally lead to
σ ≤ 1 + bTζa,b,c(ht)Lip(R).

□

Lemma 15 (Sufficient condition on the unique solvability of F̂ (U) = 0). Suppose conditions (A),
(B), (C) and (D) hold. We pick ht and T = Ntht (Nt ∈ N+) satisfying bTLip(R)ζa,b,c(ht) < 1.
Then there exists a unique root of F̂ .

Proof of Lemma 15. (3.12) leads to

max
1≤k≤N2

x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

}
<

1

bTLip(R)
,

which is equivalent to

min
1≤k≤N2

x ,λk(Gh)>0

{
1

λk(Gh)
+ ht(aλk(Lh) + bc)

}
> bTLip(R).

Since T ≥ ht, the right-hand side of the above inequality is larger than or equal to bhtLip(R). Thus
the above inequality yields

min
1≤k≤N2

x ,λk(Gh)>0

{
1

λk(Gh)ht
+ aλk(Lh) + bc

}
> bLip(R). (B.17)

Recall the decomposition of f(u) = cu+ (f(u)− cu) = cu+R(u). By (D), c ≥ 0. We can then set
K = c, ϕ = R in Theorem 1. Furthermore, (C) implies λk(Q

⊤
1 LhQ1) = λk(Lh). As a result, (B.17)

is equivalent to (3.3) in Theorem 1, which leads to the unique existence of the root-finding problem
F̂ (U) = 0. □
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B.3. Proofs of section 3.3. Before we prove Theorem 8, we need Lemma 16, 17 and 18.

Lemma 16. Suppose θ ∈ [0,
√
2− 1), there exist u, k > 0, s.t.

kuΨ(θ)− 1

4
Ω(u, k, θ)2 > 0,

where Ψ(θ) = 1− 2θ − θ2, Ω(u, k, θ) = |1− u− k|+ θ(|1− u|+ k).

Proof of Lemma 16. We note that Ω(u, k, θ)2 ≤ ((1 + θ)(|1− u|+ k))2 ≤ 2(1 + θ)2((1− u)2 + k2).
Then for any u, k > 0, we have

kuΨ(θ)− 1

4
Ω(u, k, θ)2 ≥ kuΨ(θ)− 1

2
(1 + θ)2((1− u)2 + k2))

= ku(1 + θ)2
(

Ψ(θ)

(1 + θ)2
− ((1− u)2 + k2)

2ku

)
≥ ku(1 + θ)2

(
Ψ(θ)

(1 + θ)2
−

√
k2 + 1− 1

k

)
.

Denote c = Ψ(θ)
(1+θ)2

. For any θ ∈ [0,
√
2−1), c ∈ (0, 1]. As shown in Figure 18, it is not hard to verify

that
√
k2+1−1

k increases monotonically from 0 to 1 on R+. Thus, Ψ(θ)
(1+θ)2

−
√
k2+1−1

k > 0 is guaranteed
to have a positive solution k > 0. This proves the lemma. □

O
k

√
k2+1−1

kc
1

Figure 18. Graph of
√
k2+1−1

k .

Lemma 17. Suppose F : Rd → Rd is differentiable on Rd. Let v ∈ Rd. Then, for any x, y ∈ Rd,
there exists tv ∈ (0, 1) such that

v⊤(F (y)− F (x)) = v⊤DF (x+ tv(y − x))(y − x).

Proof of Lemma 17. Define h(t) = v⊤(F (x+ t(y−x))−F (x)). Since h(·) is differentiable on (0, 1),
by mean value theorem, there exists tv ∈ (0, 1) such that h(1)− h(0) = h′(tv). □

Lemma 18. Suppose a positive sequence {ak}k≥0 satisfies the following recurrence inequality

ak+2 − ak ≤ −Φ ak+1, k ≥ 0 (B.18)

with Φ > 0. Then

ak ≤
(

2

Φ +
√
Φ2 + 4

)k+1
(
a1 +

Φ+
√
Φ2 + 4

2
a0

)
for k ≥ 1.

Proof of Lemma 18. We consider the characteristic polynomial r2 + Φr − 1 = 0. It has two roots
r+ = −Φ+

√
Φ2+4

2 > 0 and r− = −Φ−
√
Φ2+4

2 < 0. Then Φ =
1−r2+
r+

= 1
r+

− r+. Plugging this back to
(B.18) yields

ak+2 +

(
1

r+
− r+

)
ak+1 − ak ≤ 0, k ≥ 0,

which further leads to

ak+2 +
1

r+
ak+1 ≤ r+

(
ak+1 +

1

r+
ak

)
k ≥ 0.
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Thus, we obtain

ak+1 +
1

r+
ak ≤ rk+

(
a1 +

1

r+
a0

)
, for any k ≥ 0. (B.19)

Taking the index in (B.19) as k − 1 and k, one obtains

rk−1
+

(
a1 +

1

r+
a0

)
≥ ak +

1

r+
ak−1 > ak;

rk+

(
a1 +

1

r+
a0

)
≥ ak+1 +

1

r+
ak >

1

r+
ak.

This yields

ak ≤ rk−1
+

(
a1 +

1

r+
a0

)
, and ak ≤ rk+1

+

(
a1 +

1

r+
a0

)
, k ≥ 1.

Since r+ < 1, we finally obtain

ak ≤
(

2

Φ +
√
Φ2 + 4

)k+1
(
a1 +

Φ+
√
Φ2 + 4

2
a0

)
, k ≥ 1.

□

We now prove Theorem 8.

Proof of Theorem 8. According to Lemma 15, under conditions (A), (B), (C), (D), and

bTζa,b,c(ht)Lip(R) <
√
2− 1 < 1,

it is straightforward to check the unique existence of the root-finding problem F̂ (U) = 0.
Now we suppose {Uk, Qk} solves (2.15). We write Jk = J (Uk, Qk) for convenience. Then we

want to bound Jk+1 − Jk from above. We calculate

Jk+1 − Jk =(Uk+1 − Uk) ·
(
1

2
(Uk+1 + Uk)− U∗

)
+ (Qk+1 −Qk) ·

(
Qk+1 +Qk

2

)
≤(Uk+1 − Uk) ·

(
1

2
(Uk+1 + Uk)− U∗

)
+ (Qk+1 −Qk) ·Qk+1

=(Uk+1 − Uk) · (Uk − U∗) +
1

2
∥Uk+1 − Uk∥2 + (Qk+1 −Qk) ·Qk+1.

The inequality is due to the convexity of the quadratic function ∥Q∥2. From (2.15), we know

Uk+1 − Uk = −τUDF̂ (Uk)
⊤(Qk+1 + ωτP (F̂ (Uk)− ϵQk+1));

= −τUDF̂ (Uk)
⊤((1− γ̃ϵ)Qk+1 + γ̃F̂ (Uk));

Qk+1 −Qk = τP (F̂ (Uk)− ϵQk+1).
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Let us define γ̃ = ωτP and ϱ = τP
τU

. Using F (U∗) = 0, we obtain

Jk+1 − Jk

= −τU (Uk − U∗)
⊤DF̂ (Uk)

⊤((1− γ̃ϵ)Qk+1 + γ̃F̂ (Uk)) + τPQ
⊤
k+1(F̂ (Uk)− ϵQk+1) +

1

2
∥Uk+1 − Uk∥2

= −τU

(
γ̃(Uk − U∗)

⊤DF̂ (Uk)
⊤F̂ (Uk) + (1− γ̃ϵ)(Uk − U∗)

⊤DF̂ (Uk)
⊤Qk+1

− ϱF̂ (Uk)
⊤Qk+1 + ϱϵ∥Qk+1∥2

)
+

τ2U
2
∥DF̂ (Uk)

⊤((1− γ̃ϵ)Qk+1 + γ̃F̂ (Uk))∥2

= −τU

(
γ̃(Uk − U∗)

⊤DF̂ (Uk)
⊤(F̂ (Uk)− F̂ (U∗))︸ ︷︷ ︸

(A)

+(1− γ̃ϵ)(Uk − U∗)
⊤DF̂ (Uk)

⊤Qk+1︸ ︷︷ ︸
(B)

−ϱ(F̂ (Uk)− F̂ (U∗))
⊤Qk+1︸ ︷︷ ︸

(C)

+ ϱϵ∥Qk+1∥2︸ ︷︷ ︸
(D)

)
+

τ2U
2

∥DF̂ (Uk)
⊤((1− γ̃ϵ)Qk+1 + γ̃F̂ (Uk))∥2︸ ︷︷ ︸

(E)

.

By Lemma 17, term (A) and term (C) are given by

(A) = γ̃(Uk − U∗)
⊤DF̂ (Uk)

⊤DF̂ (Uk,ν1)(Uk − U∗) ,

(C) = −(Uk − U∗)
⊤DF̂ (Uk,ν2)

⊤Qk+1 ,

where Uk,νj = U∗ + νj(Uk − U∗) with ν1, ν2 ∈ (0, 1), j = 1, 2.
Recall that DF̂ (U) = I +Dη(U). To simplify the notation, we write

ση = sup
U∈Rn

{∥Dη(U)∥} .

By Lemma 6, we have ση ≤ bTζa,b,c(ht)Lip(R). We now estimate term (A) as

(A) =γ̃(Uk − U∗)DF̂ (Uk)
⊤DF̂ (Uk,ν1)(Uk − U∗)

=(Uk − U∗)
⊤(I +Dη(Uk)

⊤)(I +Dη(Uk,ν1))(Uk − U∗)

=∥Uk − U∗∥2 + (Uk − U∗)
⊤Dη(Uk)

⊤(Uk − U∗) + (Uk − U∗)
⊤Dη(Uk,ν1)(Uk − U∗)

+ (Uk − U∗)
⊤Dη(Uk)

⊤Dη(Uk,ν1)(Uk − U∗)

≥(1− 2ση − σ2
η)∥Uk − U∗∥2.

We can further estimate the terms (B), (C), and (E) as

(B) = (1− γ̃ϵ)(Uk − U∗)
⊤(I +Dη(Uk))Qk+1;

(C) = −ϱ(Uk − U∗)
⊤DF̂ (Uk,ν2)

⊤Qk+1 = −ϱ(Uk − U∗)
⊤(I +Dη(Uk,ν2))

⊤Qk+1.

Thus

(B) + (C) =(1− γ̃ϵ)(Uk − U∗)
⊤(I +Dη(Uk))Qk+1 − ϱ(Uk − U∗)

⊤(I +Dη(Uk,ν2))
⊤Qk+1

=(1− γ̃ϵ− ϱ)(Uk − U∗)
⊤Qk+1 + (Uk − U∗)

⊤((1− γ̃ϵ)Dη(Uk)− ϱDη(Uk,ν2))
⊤Qk+1

≥− |1− γ̃ϵ− ϱ|∥Uk − U∗∥∥Qk+1∥ − (|1− γ̃ϵ|+ ϱ)σ̄η∥Uk − U∗∥∥Qk+1∥
=− (|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)σ̄η)∥Uk − U∗∥∥Qk+1∥ .

And

(E) ≤ σ2(|1− γ̃ϵ| · ∥Qk+1∥+ γ̃∥F̂ (Uk)∥)2

≤ σ2(|1− γ̃ϵ| · ∥Qk+1∥+ γ̃σ∥Uk − U∗∥)2

≤ 2σ2((1− γ̃ϵ)2∥Qk+1∥2 + γ̃2σ2∥Uk − U∗∥2).
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The second inequality on (E) is due to

∥F̂ (Uk)∥ =∥F̂ (Uk)− F̂ (U∗)∥ =
∥∥∥∫ 1

0

(
d

ds
F̂ (U∗ + s(Uk − U∗))

)
ds
∥∥∥

=
∥∥∥∫ 1

0
DF̂ (U∗ + s(Uk − U∗))(Uk − U∗) ds

∥∥∥
≤
∫ 1

0
σ∥Uk − U∗∥ ds = σ∥Uk − U∗∥.

Combining the estimations on term (A)-(E), we obtain

Jk+1 − Jk

= −τU

(
γ̃(1− 2ση − σ2

η)∥Uk − U∗∥2 − (|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)σ̄η)∥Uk − U∗∥∥Qk+1∥

+ ϱϵ∥Qk+1∥2 − τU (σ
2(1− γ̃ϵ)2∥Qk+1∥2 + γ̃2σ2∥Uk − U∗∥2)

)
= −τU [∥Uk − U∗∥, ∥Qk+1∥] (Γ− τUΘ)

[
∥Uk − U∗∥
∥Qk+1∥

]
. (B.20)

Here

Γ =

[
γ̃(1− 2ση − σ2

η) −1
2(|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)σ̄η)

−1
2(|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)σ̄η) ϱϵ

]
,

Θ =

[
γ̃2σ4

σ2(1− γ̃ϵ)2

]
.

Recall that we assume bTζa,b,c(ht)Lip(R) ≤ θ, this leads to ση ≤ θ. By Lemma 6, we also have
σ ≤ 1 + θ. Thus, γ̃(1− 2ση − σ2

η) > γ̃(1− 2θ − θ2) > 0 as θ ∈ [0,
√
2− 1). Hence,

det(Γ) =ϱγ̃ϵ(1− 2ση − σ2
η)−

1

4
(|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)σ̄η)

2

≥ϱγ̃ϵ(1− 2θ − θ2)− 1

4
(|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)θ)2.

We denote Ψ(θ) = 1− 2θ− θ2 and Ω(u, ϱ, θ) = |1− u− ϱ|+(|1− u|+ ϱ)θ. Lemma 16 guarantees
that there exist γ̃, ω, ϵ, such that (3.16) holds. The condition (3.16) leads to det(Γ) > 0, which
guarantees the positive definiteness of Γ.

Furthermore, we have Γ ⪰ λ2(Γ)I, where λ2(Γ) represents the smallest eigenvalue of Γ and I is
an identity matrix. One can bound λ2(Γ) from below as

λ2(Γ) =
γ̃(1− 2ση − σ2

η) + ϱϵ−
√
(γ̃(1− 2ση − σ2

η) + ϱϵ)2 − 4det(Γ)

2

≥
4(ϱγ̃ϵ(1− 2θ − θ2)− 1

4(|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)θ)2)

2(γ̃(1− 2ση − σ2
η) + ϱϵ+

√
(γ̃(1− 2ση − σ2

η) + ϱϵ)2 − 4det(Γ))

≥
ϱγ̃ϵ(1− 2θ − θ2)− 1

4(|1− γ̃ϵ− ϱ|+ (|1− γ̃ϵ|+ ϱ)θ)2

γ̃(1− 2ση − σ2
η) + ϱϵ

≥
ϱγ̃ϵΨ(θ)− 1

4Ω(γ̃ϵ, ϱ, θ)
2

γ̃ + ϱϵ
.

On the other hand, we have

Θ ≺ σ2max{γ̃2σ2, |1− γ̃ϵ|2}I ≺ (1 + θ)2max{γ̃2(1 + θ)2, |1− γ̃ϵ|2}I.
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Thus we have

Γ− τΘ ≻

(
ϱγ̃ϵΨ(θ)− 1

4Ω(γ̃ϵ, ϱ, θ)
2

γ̃ + ϱϵ
− τ(1 + θ)2max{γ̃2(1 + θ)2, |1− γ̃ϵ|2}

)
︸ ︷︷ ︸

denote as C(θ,γ̃,ϵ,ϱ,τ)

I.

Plug this estimation to (B.20), we obtain

Jk+1 − Jk ≤ −τC(θ, γ̃, ϵ, ϱ, τ)(∥Uk − U∗∥2 + ∥Qk+1∥2).
Since we set the PDHG step size as

0 < τ < τ̄(θ, γ̃, ϵ, ϱ, τ) ≜
ϱγ̃ϵΨ(θ)− 1

4Ω(γ̃ϵ, ϱ, θ)
2

2(γ̃ + ϱϵ)(1 + θ)2max{γ̃2(1 + θ)2, (1− γ̃ϵ)2}
,

this guarantees C(θ, γ̃, ϵ, ϱ, τ) > 0.
Furthermore, as a function of τ , τC(θ, γ̃, ϵ, ϱ, τ) reaches its maximum value at τ = 1

2 τ̄(θ, γ̃, ϵ, ϱ, τ).
We then set (here τ̄ denotes τ̄(θ, γ̃, ϵ, ϱ))

Φ =
1

2
τ̄C(θ, γ̃, ϵ, ϱ,

1

2
τ̄) =

(ϱγ̃ϵΨ(θ)− 1
4Ω(γ̃ϵ, ϱ, θ)

2)2

2(1 + θ)2max{γ̃2(1 + θ)2, (1− γ̃ϵ)2}(γ̃ + ϱϵ)2
.

Thus we have

Jk+1 − Jk ≤ −Φ · 1
2
(∥Uk − U∗∥2 + ∥Qk+1∥2).

Now we prove the exponential decay of Jk. To do so, we sum up the above inequality at time index
k and k + 1 to obtain,

Jk+2 − Jk ≤ −Φ · 1
2
(∥Uk+1 − U∗∥2 + ∥Qk+2∥2 + ∥Uk − U∗∥2 + ∥Qk+1∥2), k ≥ 0.

It is not hard to see that the right-hand side of the above inequality is no larger than −ΦJk+1.
Hence,

Jk+2 − Jk ≤ −ΦJk+1. (B.21)
Now, by Lemma 18, we obtain

Jk ≤
(

2

Φ +
√
Φ2 + 4

)k+1
(
J1 +

Φ+
√
Φ2 + 4

2
J0

)
, for k ≥ 1.

This concludes our proof.
□
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