Algebra Qualifying Exam Fall 2023

Complete 8 of the following 10 problems. (If attempting more than 8, indicate which 8 you wish to have graded.)

1. Let G be a group, let $H \subset G$ be a subgroup of finite index $n \geq 2$, and let $x \in G$. Prove that $[H: H \cap xHx^{-1}] \leq n-1$.

2. Let A be a commutative Noetherian ring. Prove that every nonzero ideal I of A contains a finite product of nonzero prime ideals.

3. Show that there is an isomorphism of Q-algebras $\mathbb{Q}[t] \otimes_{\mathbb{Q}[t^2]} \mathbb{Q}[t] \cong \mathbb{Q}[x, y]/(x^2 - y^2)$.

4. Let K/F be a (finite) Galois extension of fields, and let $\alpha \in K \setminus F$. Let E be a subfield of K containing F of largest degree over F such that $\alpha \notin E$. Prove that $E(\alpha)/E$ is a Galois extension of prime degree.

5. Let F be a field, and let $f(x) = \sum_{i=0}^{n} a_i x^i$ be a polynomial of degree $n \ge 1$ with coefficients $a_i \in F$. Show that the splitting field of $f(x^2)$ over F contains a square root of $(-1)^n a_0 a_n^{-1}$.

6. For a positive integer n, let C_n be the category with objects $[1, n] := \{1, 2, ..., n\}$ and morphisms Mor(i, j) an empty set if i > j and a singleton otherwise. For positive integers m and n, a nonstrictly increasing function $f: [1, n] \to [1, m]$ can be viewed as a functor $C_n \to C_m$. Prove that this functor f has right adjoint if and only if f(1) = 1.

7. Let R be a PID and $n \ge 1$. Let M be a finitely generated \mathbb{R}^n -module, where \mathbb{R}^n is the product of n copies of R. Show that there exists an exact sequence

$$0 \to P \to Q \to M \to 0$$

with P and Q finitely generated projective \mathbb{R}^n -modules.

8. Let A be a domain that is normal (i.e., integrally closed in its quotient field), and let \mathfrak{p} be a prime ideal of A.

a. Show that the localization $A_{\mathfrak{p}}$ is a normal domain.

b. Suppose that A is Noetherian and that \mathfrak{p} is a minimal nonzero prime ideal of A. Show that $A_{\mathfrak{p}}$ is a DVR.

9. Find the dimensions and characters of all irreducible \mathbb{Q} -representations of the cyclic group of order a prime p.

10. Let $\rho: G \to \operatorname{GL}(V)$ be a finite dimensional irreducible representation of a finite group G over the field of complex numbers. Prove that for every central element $g \in G$, the operator $\rho(g)$ is multiplication by a scalar.