Algebra Qualifying Exam

Fall 2023
Complete 8 of the following 10 problems.
(If attempting more than 8 , indicate which 8 you wish to have graded.)

1. Let G be a group, let $H \subset G$ be a subgroup of finite index $n \geq 2$, and let $x \in G$. Prove that $\left[H: H \cap x H x^{-1}\right] \leq n-1$.
2. Let A be a commutative Noetherian ring. Prove that every nonzero ideal I of A contains a finite product of nonzero prime ideals.
3. Show that there is an isomorphism of \mathbb{Q}-algebras $\mathbb{Q}[t] \otimes_{\mathbb{Q}\left[t^{2}\right]} \mathbb{Q}[t] \cong \mathbb{Q}[x, y] /\left(x^{2}-y^{2}\right)$.
4. Let K / F be a (finite) Galois extension of fields, and let $\alpha \in K \backslash F$. Let E be a subfield of K containing F of largest degree over F such that $\alpha \notin E$. Prove that $E(\alpha) / E$ is a Galois extension of prime degree.
5. Let F be a field, and let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ be a polynomial of degree $n \geq 1$ with coefficients $a_{i} \in F$. Show that the splitting field of $f\left(x^{2}\right)$ over F contains a square root of $(-1)^{n} a_{0} a_{n}^{-1}$.
6. For a positive integer n, let C_{n} be the category with objects $[1, n]:=\{1,2, \ldots, n\}$ and morphisms $\operatorname{Mor}(i, j)$ an empty set if $i>j$ and a singleton otherwise. For positive integers m and n, a nonstrictly increasing function $f:[1, n] \rightarrow[1, m]$ can be viewed as a functor $C_{n} \rightarrow C_{m}$. Prove that this functor f has right adjoint if and only if $f(1)=1$.
7. Let R be a PID and $n \geq 1$. Let M be a finitely generated R^{n}-module, where R^{n} is the product of n copies of R. Show that there exists an exact sequence

$$
0 \rightarrow P \rightarrow Q \rightarrow M \rightarrow 0
$$

with P and Q finitely generated projective R^{n}-modules.
8. Let A be a domain that is normal (i.e., integrally closed in its quotient field), and let \mathfrak{p} be a prime ideal of A.
a. Show that the localization $A_{\mathfrak{p}}$ is a normal domain.
b. Suppose that A is Noetherian and that \mathfrak{p} is a minimal nonzero prime ideal of A. Show that $A_{\mathfrak{p}}$ is a DVR.
9. Find the dimensions and characters of all irreducible \mathbb{Q}-representations of the cyclic group of order a prime p.
10. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a finite dimensional irreducible representation of a finite group G over the field of complex numbers. Prove that for every central element $g \in G$, the operator $\rho(g)$ is multiplication by a scalar.

