QUALIFYING EXAM

Geometry/Topology
September 2023

Attempt all ten problems. Each problem is worth 10 points. You must fully justify your answers.

1. Consider the space of all straight lines in \mathbb{R}^{2} (not necessarily those passing through the origin). Explain how to give it the structure of a smooth manifold. Is it orientable?
2. Let ω be a closed 2 -form on a smooth manifold M and let X, Y be smooth vector fields on M. Show that if $i_{X} \omega=i_{Y} \omega=0$, then $i_{[X, Y]} \omega=0$.
3. Consider the map $d_{f}: \Omega^{i}(M) \rightarrow \Omega^{i+1}(M)$ given by $\omega \mapsto d \omega+d f \wedge \omega$, where M is a smooth manifold, $\Omega^{i}(M)$ is the set of smooth i-forms on M, and f is a smooth function on M.
(a) (3 pts) Show that d_{f} is a cochain map, i.e., $d_{f} \circ d_{f}=0$.
(b) (7 pts) Let $H_{f}^{i}(M)$ be the i th cohomology group of the cochain complex $\left(\Omega^{i}(M), d_{f}\right)$. Show that $H_{f}^{0}(M) \simeq \mathbb{R}$ when M is the real line \mathbb{R}.
4. Let X and Y be submanifolds of \mathbb{R}^{n}. Prove that, for almost all $a \in \mathbb{R}^{n}$, the translate $X+a:=\{x+a \mid x \in X\}$ intersects Y transversely.
5. Let $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be the 2-dimensional torus and let C be the curve which is the image of the line $\{2 x-5 y=0\} \subset \mathbb{R}^{2}$ under the projection $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$.
(a) Write a differential form on T^{2} which represents the Poincaré dual to C.
(b) Is there a differential form which represents the Poincaré dual to C and is zero on a neighborhood of the point $(0,0) \in T^{2}$?
6. Compute the integral homology groups of the complex projective space $\mathbb{C P}^{n}$. If n is even, prove that it does not cover any manifold except itself.
7. Let $X=\Sigma_{g}$ and $Y=\Sigma_{h}$ be surfaces of genus g and h respectively, with $0<g<h$. Prove that every map $X \rightarrow Y$ induces the zero map on the second homology H_{2}. Construct a map $X \rightarrow Y$ which induces a non-zero map on the first homology H_{1}.
8. Consider the following group with $2 n$ generators and 1 relation

$$
G_{n}=\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right\rangle
$$

For which pairs (m, n) does G_{n} contain a finite index subgroup isomorphic to G_{m} ?
9. Define the orientation double cover of a manifold. Explicitly identify the space which is the orientation double cover of the real projective plane $\mathbb{R} \mathbb{P}^{n}$. (Hint: $\mathbb{R P}^{n}$ is the quotient of S^{n} by the antipodal map; is the antipodal map orientation-preserving or orientation-reversing?)
10. Let D^{2} be the unit disk in \mathbb{C}, and let $S^{1}=\partial D^{2}$. Let $X=D^{2} \times S^{1} \times\{0,1\} / \sim$ where

$$
(x, y, 0) \sim\left(x y^{5}, y, 1\right)
$$

for all $x, y \in S^{1}$. Compute the homology groups of X.

