OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM. PLEASE USE BLANK PAGES AT END FOR ADDITIONAL SPACE.

1. (10 points) Consider Ax = b with

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 7 & 2 \\ 1 & 2 & 4 \end{pmatrix},$$

and b = (1, 9, -2).

- (a) With $x_0 = (1, 1, 1)$, carry out one iteration of Gauss-Seidel method to find x_1 .
- (b) If we keep running the iterations, will the method converge? Why?

Optimization / Numerical Linear Algebra (ONLA)

2. (10 points) Recall that the standard Conjugate Gradient algorithm can be described as

$$r_{0} = b - Ax_{0}, p_{0} = r_{0},$$

for $i = 0, 1, 2, ...$
 $\alpha_{i} = (r_{i}^{T}r_{i})/(p_{i}^{T}Ap_{i})$
 $x_{i+1} = x_{i} + \alpha_{i}p_{i}$
 $r_{i+1} = r_{i} - \alpha_{i}Ap_{i}$
 $\beta_{i} = (r_{i+1}^{T}r_{i+1})/(r_{i}^{T}r_{i})$
 $p_{i+1} = r_{i+1} + \beta_{i}p_{i}$

Show that CG for Ax = b starting with x_0 is the same as applying the method to $Ay = r_0 = b - Ax_0$ starting with $y_0 = 0$, in the sense of producing the same iterates.

Optimization / Numerical Linear Algebra (ONLA)

- 3. (10 points) Let $A \in \mathbb{R}^{n \times n}$ with entries $a_{i+1,i} = 1$ for i = 1, ..., n-1, $a_{1n} = 1$, and all other entries 0. Let b have entries $b_1 = 1$, $b_i = 0$ for i = 2, ..., n. Let x_0 be the zero vector. Prove that GMRES applies to Ax = b with initial guess x_0
 - (a) $||b Ax_k|| = 1$ for $1 \le k \le n 1$, and
 - (b) takes n steps to find the true solution.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- 4. (10 points) Let A be Hermitian and tridiagonal and assume that the subdiagonal and superdiagonal entries of A are all nonzero.
 - (a) Prove that all the eigenvalues of A must be distinct.
 - (b) Prove that the matrix is diagonalizable.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- 5. (10 points) Assume A is such that ||A|| = 1. Recall there exist methods for numerically computing eigenvalues of A that compute exactly the eigenvalues of some perturbed matrix $A + \delta A$ with $||\delta A|| = O(\epsilon)$ (machine precision).
 - (a) Prove that λ is an eigenvalue of $A + \delta A$ for some δA with $\|\delta A\|_2 \leq \varepsilon$, if and only if $\|(\lambda I A)^{-1}\|_2 \geq 1/\varepsilon$.
 - (b) Is it true that the eigenvalues numerically computed for A, that end up being the exact eigenvalues of some perturbed matrix $A + \delta A$ with $\|\delta A\| = O(\epsilon)$, are close to the desired exact eigenvalues of A? Explain.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

6. (10 points) Consider the singular value decomposition (SVD) of the matrix $A = U\Sigma V$, and consider the truncated SVD A_k obtained by extracting the upper left $k \times k$ submatrix of Σ (and appropriately resizing U and V). Prove that A_k is the best rank-k approximation of A in the Euclidean (spectral norm) sense, and that $||A - A_k|| = \sigma_{k+1}$, where σ_{k+1} is the (k + 1)th singular value of A.

Optimization / Numerical Linear Algebra (ONLA)

7. (10 points) Consider the problem to find the extremizers of

 $x_1^2 + x_1 x_2$ subject to $x_1^2 \le x_2 \le 1$.

Answer the following giving a complete reasoning for your answers:

- (a) Write down the KKT conditions for this problem and find all points that satisfy them.
- (b) Determine whether or not the points in part (a) satisfy the second order necessary conditions (SONC) for being local maximizers or minimizers.
- (c) Determine whether or not the points that satisfy the SONC in part (b) satisfy the second order sufficient conditions (SOSC) for being local maximizers or minimizers.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- 8. (10 points) Recall that the subdifferential of a convex function f at x is defined as $\partial f(x) = \{g \in \mathbb{R}^n : f(y) \ge f(x) + \langle g, y x \rangle$ for all $y \in \mathbb{R}^n\}$. Show the following:
 - (a) If f is a convex, closed, proper function on \mathbb{R}^m , $A \in \mathbb{R}^{m \times n}$, and g(x) = f(Ax), then

 $\partial g(x) \supseteq A^T \partial f(Ax)$ for all $x \in \mathbb{R}^n$.

(b) If f and g are convex, closed, proper functions on \mathbb{R}^n , then

 $\partial (f+g)(x) \supseteq \partial f(x) + \partial g(x)$ for all $x \in \mathbb{R}^n$.

(c) When does equality hold in (a) and when does it hold in (b)?

Optimization / Numerical Linear Algebra (ONLA)

9. (10 points) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex and differentiable function that satisfies $\|\nabla f(y) - \nabla f(x)\|_2 \le L \|y - x\|_2$ for any $x, y \in \mathbb{R}^n$, for some L > 0. Show that if we run gradient descent with fixed step size $\gamma \le 1/L$, then $O(1/\epsilon)$ iterations suffice to obtain an iterate $x^{(k)}$ with $f(x^{(k)}) - f(x^*) \le \epsilon$, where $f(x^*)$ is the optimum value.