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1. ABSTRACT

This study meticulously explores the numerical implementation of Leblond et
al.’s sophisticated model for phase transformation, concentrating on its application
to crucial thermo-mechanical processes such as welding and quenching. The empha-
sis lies in assessing the precision and reliability of this implementation within finite
element analysis, offering valuable insights into the intricate interplay of thermal,
metallurgical, and mechanical phenomena. The practical applications of Leblond
et al.’s model in predicting phase transformation phenomena in A.508cl. and A533
steels are showcased, underscoring its robustness and efficiency in providing ac-
curate numerical simulations of thermo-mechanical processes. This research con-
tributes significantly to advancing our understanding of material responses during
phase transformations, thereby enhancing the predictive capabilities of computa-
tional tools in industrial applications.
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2. INTRODUCTION

In thermo-mechanical processes like welding and quenching, prevalent in vari-
ous industries, three key physical phenomena interact: thermal, metallurgical, and
mechanical. To enable accurate numerical simulations of welding and quenching
processes, it’s essential to incorporate these thermal, metallurgical, and mechanical
effects into computational codes. This ensures the development of robust numer-
ical tools for predicting the behavior of industrial components undergoing these
thermo-mechanical procedures. During these processes, thermal and mechanical
actions cause phase transformations, leading to transformation deformations. In
this study, the mechanical-induced phase changes are disregarded, attributing these
phase changes solely to thermal effects, while simplifying certain aspects of the
transformation process.

During thermal heating, steel undergoes austenization, transforming alpha iron
into gamma iron. Subsequent cooling results in various transformations depending
on the rate, with a focus on the γ austenite to α ferrite transformation in this
study. These phase changes are driven by thermally and sometimes mechanically
activated atomic network rearrangements, classified into two mechanisms: diffusive
and displacive transformations. Diffusive transformations involve slower atom move-
ments over longer distances, impacting atomic network compactness significantly,
while displacive transformations are characterized by rapid atom displacements over
shorter distances, distorting the crystalline structure into a metastable form. These
phase transformations are primarily responsible for transformation deformations, pre-
dominantly due to volume changes, with the effects of shape changes disregarded
for simplicity in this investigation.

During thermo-mechanical processes such as welding and quenching, which are
widely used in industries, three main physical phenomena interact: thermal, metal-
lurgical, and mechanical. In order to faithfully reproduce numerical simulations of
welding processes ( Inoue et al. [5] ) and quenching processes (Inoue and Wang
[6]), it is necessary to consider the thermal, metallurgical, and mechanical effects
in the computational codes, making them robust tools for predicting the behavior
of industrial components subjected to these thermo-mechanical processes.

During these processes, the thermal and mechanical operations induce phase
transformations (Thermal and Mechanical → Metallurgical), which, in turn, result
in a transformation deformation (Metallurgical → Mechanical). In this study, the
phase changes induced by mechanical loading are neglected (Mechanical → Metal-
lurgical). Therefore, these phase changes are solely due to thermal effects (Thermal
→ Metallurgical). Additionally, the thermal deformation (Thermal → Mechanical)
will be considered isotropic, and intrinsic dissipation (Mechanical → Thermal) will
not be taken into account, as it is considered negligible in relation to the studied
phenomenon.

During a thermal heating process, steel undergoes austenization, meaning that
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the α-iron (ferrite phase) transforms into γ-iron (austenite phase). During cooling,
this austenite transforms into martensite, bainite, ferrite, perlite, or a mixture (α
structure) depending on the cooling rate. This study focuses on the latter transfor-
mation (γ austenite → α ferrite), which occurs during cooling. At the microscopic
level, these phase changes result from rearrangements of thermally (and/or mechan-
ically) activated atomic networks and are described by two mechanisms: displacive
and diffusive. A phase change can be distinguished by these two types of transfor-
mations:

Diffusive transformations involve slow movements of atoms over long distances
(greater than the interatomic distance) and generally occur at relatively slow cooling
rates of the material. This diffusional transformation of carbon provides the time
required for a stable rearrangement of carbon atoms. It is generally accompanied
by a significant change in the atomic network’s compactness. Consequently, the
transformation deformation is predominantly dilatometric in nature in this transfor-
mation.

Displacive transformations involve rapid atom displacements over short distances
(less than the inter-atomic distance) and generally occur at relatively high cooling
rates. This non-diffusional transformation of carbon does not provide enough time
for carbon atoms to move freely, resulting in a distorted crystalline structure. As a
result, the transformation deformation has a dominant deviatoric component. These
transformations are also referred to as shear transformations.

These phase transformations are responsible for the transformation deforma-
tions. In fact, the transformation deformation is mainly due to the change in shape
and/or volume of different constituents (phases) during their transformations (Met-
allurgical → Mechanical). In this study, the effects of shape changes are neglected,
and only the effects due to volume changes are considered, for reasons that will be
discussed later.

The volume change arises from the difference in compactness between phases.
The austenitic phase, with a compactness of 74%, has a face-centered cubic struc-
ture, while the ferritic phase, with a compactness of 68%, has a body-centered cubic
structure.

These volume variations during phase transformations lead to changes in the
mechanical behavior of structures. This is the primary motivation for developing
mechanical models that can be integrated into finite element analysis software.
These models aim to predict the behavior of these structures with the highest pos-
sible accuracy through numerical simulations of welding and quenching processes.
These simulations include the evaluation of residual stresses and distortions that
occur within the material during these thermo-mechanical processes.

One consequence of the transformation deformation resulting from thermo-
mechanical interactions, as discussed in the previous section, is transformation
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plasticity. Transformation plasticity occurs during thermo-mechanical treatments
of steels and metallic alloys, such as quenching and welding, which induce residual
stresses and material distortions, thereby altering their macroscopic mechanical be-
havior. It is commonly accepted that transformation plasticity is attributed to two
primary mechanisms, one being diffusive (Greenwood and Johnson [4] ) and the
other being displacive (Magee and Paxton [9] ).

The principle of Greenwood and Johnson [4] transformation plasticity mecha-
nism lies in the plastic accommodation of the austenite phase (the softer phase)
during the phase transformation. During cooling, the austenitic γ phase gives rise
to a ferritic, bainitic, or martensitic α phase, which has a greater specific volume
than its parent phase. When both phases coexist, the volume difference between
them generates a field of heterogeneous deformation, resulting in internal stresses
and macroscopic plastic flow, even if the macroscopic applied stress is below the
yield strength of both phases or even zero. The first micro-mechanical model of this
mechanism, established by Leblond et al. [7, 8], considers a representative spherical
volume element of an expanding α phase core, surrounded by a concentric spherical
shell of γ phase. When considering low macroscopic stresses, this approach leads
to an expression for the rate of transformation plastic deformation that is linearly
dependent on the deviatoric part of stresses.

To delve deeper into this subject, it is imperative to recognize that the behavior
of metals during phase transformations is a critical aspect of materials engineering.
Phase transformations can dramatically influence a material’s properties, such as
strength, ductility, and thermal conductivity, making them central to the design and
performance of various engineering structures and components. The work hardening
isotropic-kinematic model is particularly significant in this context because it offers
a versatile and robust tool for characterizing and predicting the mechanical response
of materials as they undergo phase transformations. It encompasses both isotropic
hardening, which accounts for the evolution of the yield stress with deformation,
and kinematic hardening, which considers the evolution of the material’s anisotropy.

Moreover, the integration of this model within the finite element analysis (FEA)
framework is a pivotal development. When applied to phase transformations in
metals, FEA combined with the mixed work hardening isotropic-kinematic model
enables to gain insights into the deformation and stress distribution within materi-
als as they undergo phase changes. This can facilitate the optimization of material
selection and the design of components with enhanced performance and durability.

This opportunity will be taken to simplify and rationalize the numerical imple-
mentation of this behavior for the other types of hardening (namely, ideal perfect
plasticity, isotropic hardening, kinematic hardening). First, in fact, this numerical
implementation presents some unnecessary complications, such as the use some-
times of a semi-implicit algorithm whereas a totally explicit, much simpler, algo-
rithm does not lead to a significant degradation of the precision. Second, various
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additional effects have been introduced into the modeling (for example, restoration
or the memory of work hardening during transformations, effect of large transfor-
mations, etc.), their numerical implementation not always being carried out in the
same mind than the initial numerical implementation (usually for the sake of sim-
plicity). A general “grooming” therefore seems desirable.

Some new needs have recently appeared concerning the possibility of a mixed
work hardening isotropic-kinematic in the modeling of the plastic behavior of metals
during phase transformation developed by Leblond et al. [7, 8]. The objective of
this note is to describe without insisting on the theoretical aspects, such a modeling,
as well as its numerical implementation within the framework of the finite element
element analysis of phase transformations in metals.

The remainder of the paper unfolds in the subsequent sections as follows:

1. In Section 1, a comprehensive overview of the constitutive equations proposed
by Leblond et al. [7, 8] is presented, outlining their constitutive model for
phase transformation.

2. Moving forward to Section 2, a detailed account of the numerical implemen-
tation of this model into a finite element code is provided.

3. Finally, Section 3 showcases the practical application of the model by pre-
senting numerical predictions for a phase transformation scenario involving
A.508cl. and A533 steels. The obtained results not only affirm the robust-
ness of the implemented numerical framework but also underscore the model’s
efficiency in accurately predicting phase transformation phenomena in steels.

.

3. THERMO-PLASTICITY BEHAVIOR FOR AMIXED ISOTROPIC-KINEMATIC
HARDENING.

Let us begin for the sake of completeness by recalling the model of plastic be-
havior with mixed work hardening used in the standard finite element codes, in the
absence of phase transformation. We consider the general case of a variable tem-
perature and large deformations.

Let σ0(T ) be the initial limit of elasticity, before work hardening, function only
of the temperatureT . Let σ(εeq, T ) be the stress observed in an initial tensile test
at the temperature T , function of this temperature and of the cumulated plastic
deformation εeq. Let

σ(εeq, T ) ≡ σ(εeq, T )− σ0(T ) (1)

the part of this stress coming from work hardening. Finally, let p be the proportion
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of work hardening which is of an isotropic nature.

The limit of elasticity is therefore

σY (εeq, T ) ≡ σ0(T ) + pσ(εeq, T ) (2)

The yield criterion is then written as

σeq ≡
[
3

2
(s− a) : (s− a)

] 1
2

≤ σY (εeq, T ) (3)

where s denotes the deviatoric stress. The evolution equation of the center a of the
domain of elasticity is:

v
a ≡ ȧ+

(
ȧ
)
GT

=
2

3
(1− p)

∂σ

∂εeq
(εeq, T )d

p +
1

σ

∂σ

∂T
(εeq, T )aṪ (4)

In this equation,
v
a denotes the objective derivative of a chosen (for example, those

of Jaumann or Molinari) and
(
ȧ
)
GT

the part, in the expression of this objective
derivative, due to large deformations. In addition, dp denotes the plastic strain rate
(Eulerian). Finally, for the record, the plastic constitutive law is the same as usual.

dp =
3

2

˙εeq
σeq

(s− a), ε̇eq =

(
2

3
dp : dp

) 1
2

(5)

4. PLASTIC BEHAVIOR DURING PHASE TRANSFORMATION IN THE
CASE OF MIXED ISOTROPIC-KINEMATIC HARDENING

We will not include here the details to the homogenization approach leading to
the macroscopic equations of plastic behavior during phase transformations. Details
on this derivation can be found in the works of Leblond et al. [7, 8] We will only
indicate the results, within the framework of a mixed isotropic-kinematic hardening.

4.1. Generalities

The parent-phase (γ) is denoted with an index of 1, and the daughter-phase
α with an index of 2; z denotes the proportion of daughter-phase (ż). We denote

σ
(
iε

eff
i , T ) the part coming from the work hardening in the stress observed in a sim-

ple tensile test, carried out on a sample of pure phase i. This quantity is a function
of the effective plastic strain eff of the phase i, which may differ from the equivalent
strain due to the phenomena of memory and restoration of work hardening during
the transformations. We denote σY

i (εeffi , T ) the limit of elasticity of phase i, given
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by a formula analogous to Eq.2 ( with σ0
i and σi instead of σi and σ0 ). We denote

a
i
the center of the elasticity domain of phase i.

Finally, the overall limit stress is given by the formula.

σY (εeff1 , εeff2 , z, T ) = [1− f(z)]σY
1 (εeff1 , T ) + f(z)σY

2 (εeff2 , T ) (6)

4.2. Case where the stress is less than the yield limit

This case is defined by the condition

σeq < σY , σeq ≡
[
3

2
(s− a) : (s− a)

] 1
2

, a ≡ (1− z)a
1
+ za

2
(7)

The other part of the plastic strain rate corresponding to the plasticity of transfor-
mation is written as

dpt = −3
εth2 (T )− εth1 (T )

σY
1 (εeff1 , T )

h
(σeq

σY

)
(lnz)(s− a

1
)ż (8)

where εthi (T ) is the thermal deformation of the phase i. The part of the rate of
plastic deformation corresponding to the plastic plasticity is decomposed into 2
terms, one, dpc

σ
coming from the variations of σ and the other, dpc

T
, coming from

the variations of T is given by

dpc
σ

=
3

2

1− z

σY
1 (εeff1 , T )

g(z)

E
(s− a

1
)(σ̇eq

1 )s (9)

(σ̇eq
1 )s ≡

3

2σeq
1

(s− a
1
) :

v
s, σeq

1 ≡
[
3

2
(s− a

1
) : (s− a

1
)

] 1
2

(10)

dpc
T

= 3
α1 − α2

σY
1 (εeff1 , T )

z(lnz)(s− a
1
)Ṫ (11)

where αi denotes the coefficient of the thermal dilatation of the phase i.

The evolution equations of the effective plastic deformation of the phases are
as follow

ε̇eff1 = −2
εth1 (T )− εth2 (T )

1− z
h
(σeq

σY

)
(lnz)ż +

g(z)

E
(σ̇eq

1 )s +

2
α1 − α2

1− z
z(lnz)Ṫ

(12)
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ε̇eff2 =
ż

z
εeff2 + θ

ż

z
ε̇eff1 (13)

where θ denotes the memory coefficient of the work hardening during the trans-
formation (θ = 0 means that the hardening of the mother-phase is completely
forgotten by the daughter-phase during the transformation, θ = 1, that this work
hardening is, on the contrary, entirely transferred to the daughter-phase. ) Finally,
the evolution equations of the centers of the elasticity domain of the phases are as
follows:

v
a
1
≡ ȧ

1
+ (ȧ

1
)GT =

2

3

1− p

1− z

∂σ1

∂εeff1
(εeff1 , T )(dpt + dpc

σ
+ dpc

T
)+

1

σ1

∂σ1

∂T
(εeff1 , T )a

1
Ṫ

(14)

v
a
2
≡ ȧ

2
+ (ȧ

2
)GT = − ż

z
a
2
+ θ

ż

z
a
1
+

1

σ2

∂σ2

∂T
(εeff2 , T )a

2
Ṫ (15)

4.3. Case where the stress equals the yield limit

This case is defined by the condition

σeq = σY (16)

where σeq is always defined by by the relations Eq.(7). The flow rule is then

dp =
3

2

ε̇eq
σeq

(s− a) (with ε̇eq =

(
2

3
d
p
: d

p

) 1
2

) (17)

The evolution equations of the work hardening are written as follows:

ε̇eff1 = ε̇eq (18)

ε̇eff2 = ε̇eq − ż

z
εeff2 + θ

ż

z
ε̇eff1 (19)

v
a
1
=

2

3
(1− p)

∂σ1

∂εeff1
(εeff1 , T )dp +

1

σ1

∂σ1

∂T
(εeff1 , T )a

1
Ṫ (20)

v
a
2
=

2

3
(1− p)

∂σ2

∂εeff2
(εeff2 , T )dp +

1

σ2

∂σ2

∂T
(εeff2 , T )a

2
Ṫ − ż

z
a
2
+ θ

ż

z
a
1 (21)
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5. NUMERICAL IMPLEMENTATION

About each equation arises the problem of the choice of the algorithm: explicit,
implicit, semi implicit. The choices made here, which do not coincide exactly with
the previous choice, are dictated by the following considerations.

a. An explicit algorithm is preferable if it makes it possible to simplify the digitization
without significantly degrading its accuracy;

b. an implicit algorithm is preferable with respect to the direction of the plastic
flow (given by the stress deviator) for the sake of consistency with the standard
programming in finite element codes;

c. a semi-implicit algorithm is preferable if it significantly improves accuracy, or if,
even if it doesn’t, it doesn’t significantly complicate the numerization.

5.1. Case where the yield limit is not reached

The partition of the deviator of the increment of the total strain (thermal part
substracted) between the times t and t+∆t is written as

∆e = ∆ee +∆εp = ∆ee + (∆εp)′ + (∆εp)′′ (22)

where the term

(
(∆εp)′

)
corresponds to

(
d
pt

+ dpc
T

)
∆t and

(
(∆εp)′′

)
to(

dpc
σ

)
∆t. The expressions of these terms are the following, where F denotes

the function of the von Mises

(
F (X) =

(
3
2X : X

)1/2)
:

(∆εp)′ =
A

2

[
1 +

F (s− a
1
)

F (s+∆s− a
1
−∆a

1
)

]
(s+∆s− a

1
−∆a

1
) (23)

(∆εp)′′ =
B

2

[
1 +

F (s− a
1
)

F (s+∆s− a
1
−∆a

1
)

]
(∆σeq

1 )s(s+∆s− a
1
−∆a

1
)

(24)

In the expression Eq.(23), A is given by

A = −3
εth2 (T )− εth1 (T ) + εth2 (T +∆T )− εth1 (T +∆T )

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )
h
(σeq

σY

)
{(z +∆z)[ln(z +∆z)− 1]− z(lnz − 1)}

+ 3
εth1 (T +∆T )− εth1 (T ) + εth2 (T +∆T )− εth2 (T )

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )
[zlnz + (z +∆Z)ln(z +∆z)]

(25)

The term h(σeq /̄σ
Y ) in this expression is discretized explicitly. Moreover, the term

comes from an exact integration of ln(z) between z and z+∆z in Eq.(8), the other

12



terms being considered constant. Numerical experiments have shown the impor-
tance of such exact integration to conveniently reproduce stress dilatometry tests.

The quantity B in Eq.(24) is given by

B = 3
(1− z)g(z) + (1− z −∆z)g(z +∆z)[

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )
]
[E(T ) + E(T +∆T )]

(26)

In addition, (∆σeq
1 )s, is given by

(∆σeq
1 )s =

3

2F (s+∆s− a
1
−∆a

1
)
(s+∆s− a

1
−∆a

1
) : (∆s)OBJ (27)

where (∆s)OBJ

(
≡ š

)
is the objective part of the deviatoric stress rate

(∆s)OBJ ≡ ∆s+ (∆s)GT (28)

The hypo-elasticity law is given by

(∆s)OBJ (= ∆s+ (∆s)GT ) = 2µ∆ee + (∆s)T (29)

where µ denotes the shear coefficient at the time t+∆t (this notation is used here
rather than the more logical notation µ+∆µ to simplify the writing ) and (∆s)T
the part of ∆s coming from the variation of the temperature (via its influence on

µ.) The evolution equation of εeff1 is discretized as the following equation:

∆εeff1 =
2

3

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )

(1− z) + (1− z +∆z)
[A+B(∆σeq

1 )s] (30)

The equation of εeff1 is written in the form d
dt

(
0zεeff1

)
= θεeff1 ż before being

discrtized by

∆(zεeff2 ) ≡ (z +∆z)(εeff2 +∆εeff2 )− zεeff2 = θεeff1 ∆z (31)

Similarly, the evolution equations of a
1
and a

2
are discretized as follows:

(∆a
1
)OBJ ≡ ∆a

1
+ (∆a

1
)GT =

2

3

1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T )[

(∆εp)′ + εp)′′
]
+ (∆a

1
)T

=⇒ ∆a
1
=

2

3

1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T )

[
(∆εp)′ + (∆εp)′′

]
− (∆a

1
)GT + (∆a

1
)T

(32)
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Note in Eq.(32) the use of the hardening slope ∂σ1

∂εeff1
(εeff1 , T +∆T ) instead of the

secant as previously. The interest of this replacement is to lead to an explicit reso-
lution not requiring iterations on the parameter of work hardening εeff1 +∆εeff1 ; it
is licit insofar as there are no criteria to be satisfied exactly at the time t +∆t (it
will not be the same if the yield limit is reached.) Moreover, note that the terms
(∆a

i
)GT and (∆a

i
)T are discretized in an explicit way and therefore known from

the beginning.

Now let us move on to solving these equations; the principal unkowns used are

∆(za
2
) ≡ (z +∆z)(a

2
+∆a

2
)− za

2
= θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T
(33)

Combining Eq.(22) and Eq.(29) we get

X = F (s+∆s− a
1
−∆a

1
), Y = (∆σeq

1 )s (34)

∆s = 2µ∆ee − (∆s)GT + (∆s)T =⇒
s+∆s ≡ (s+∆s)el − 2µ

[
(∆εp)′ + (∆εp)′′

] (35)

(s+∆s)el ≡ s+ 2µ∆e− (∆s)GT + (∆s)T (36)

where (s + ∆s)el , known quantity, is the deviatoric stress at t + ∆t elastically
calculted, that is by considering the deviatoric part of the increment of the total
strain ∆e (with the termal part not being accounted for) as purely elastic. Adding
−a

1
−∆a

1
to the two sides of Eq.(35) and taking into account Eq.(32), we get

s+∆s− a
1
−∆a

1
= (s+∆s)el − a

1
−∆a

1
− 2µ

[
(∆εp)′ + (∆εp)′′

]
= (s+∆s)el − a

1
+ (∆a

1
)GT − (∆a

1
)T

−

[
2µ+

2

3

1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T )

] [
(∆εp)′ + (∆εp)′′

]
which, by setting

s∗ ≡ (s+∆s)el − a
1
+ (∆a

1
)GT − (∆a

1
)T (37)

is equivalent to

H ≡ 1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T ) (38)

(these quantities are known):

s+∆s− a
1
−∆a

1
= s∗ − 2

(
µ+

H

3

)[
(∆εp)′ + (∆εp)′′

]
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According to Eq.(23) and Eq.(24) and the notations Eq.(34) we get

(∆εp)′ + (∆εp)′′ =
1

2
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
)

(39)

which by reporting in the previous equation reads

s+∆s− a
1
−∆a

1
= s∗ −

(
µ+

H

3

)
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
)

⇒

[
1 +

(
µ+

H

3

)
(A+BY )

(
1 +

F (s− a
1
)

X

)]
(s+∆s− a

1
−∆a

1
) = s∗

(40)

This equation implies that the (unknown) tensor s + ∆s − a
1
−∆a

1
is positively

parallel to the (unknown) tensor s∗. Thus,

s+∆s− a
1
−∆a

1
=

X

F (s∗)
s∗ (41)

which brings the calculation of the unknown s+∆s− a
1
−∆a

1
to the same of the

norm of X. Moreover, by taking the Von Mises function of Eq.(41), we obtain:

X +

(
µ+

H

3

)
(A+BY )

(
X + F (s− a

1
)
)
= F (s∗)

⇒ A+BY =
F (s∗)−X(

µ+ H
3

) (
X + F (s− a

1
)
)

⇔ Y =
1

B

 F (s∗)−X(
µ+ H

3

) (
X + F (s− a

1
)
) −A


(42)

The unknown quantity Y can now be expressed as a function of the unknown X, it
remains to calculate the latter. For this, let us re-express s+∆s− a

1
−∆a

1
using

the equations Eq. 28 and Eq.(28) and Eq. ( 30 ) as well as the definition Eq. (38)
as:

s+∆s− a
1
−∆a

1
= s− (∆s)GT + (∆s)OBJ − a

1
− 2

3
H
[
(∆εp)′ + (∆εp)′′

]
+ (∆a

1
)GT − (∆a

1
)T

which, by accounting for Eq.39 and Eq. 42, reads

s+∆s− a
1
−∆a

1
= s− (∆s)GT − a

1
+ (∆a

1
)GT − (∆a

1
)T

− H

3
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
) + (∆s)OBJ

= s− (∆s)GT − a
1
+ (∆a

1
)GT − (∆a

1
)T

+
H
(
X − F (s∗)

)
(H + 3µ)

(
X + F (s− a

1
)
) (1 + F (s− a

1
)

X

)
(s+∆s− a

1
−∆a

1
) + (∆s)OBJ
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Contracting this equation with 3
2s

∗ gives, taking into account the definition Eq.(
27) of (∆σeq

1 )s ≡ Y and the property Eq.( 41)

XF (s∗) = P +
H
(
X − F (s∗)

)
(H + 3µ)

(
X + F (s− a

1
)
) (X + F (s− a

1
)
)
F (s∗) + F (s∗)Y

where we assumed that

P ≡ 3

2

(
s− (∆s)GT − a

1
+ (∆a

1
)GT − (∆a

1
)T

)
: s∗

(P is a known quantity). Multiplying by (H + 3µ)
(
X + F (s− a

1
)
)
and account-

ing for Eq.(42 )

(H + 3µ)
(
X + F (s− a

1
)
)
XF (s∗) = P (H + 3µ)

(
X + F (s− a

1
)
)

+H
(
X − F (s∗)

) (
X + F (s− a

1
)
)
F (s∗)

+
F (s∗)

B

[
3
(
F (s∗)−X

)
−A (H + 3µ)

(
X + F (s− a

1
)
)]

which gives after multiplication by B and re-arrangment:

Equation 43 is missing (43)

LX2 +MX +N = 0 (44)

L ≡ 3µBF (s∗) (45)

M ≡ 3µBF (s− a
1
)F (s∗) +BHF 2(s∗) +A(H + 3µ)F (s∗)−B(H + 3µ)P

(46)

The roots of this equation are 1
2L

(
−M ±

√
M2 − 4LN

)
. The choice of the sign

in front of the radical is not obvious a priori because as much as it is clear that
L > 0, M and N can a priori take any sign. However, in practice, the coefficient B
is small. We then see from Eq.(46) that M > 0, the − sign in front of the radical
then leads to a negative root, which is impossible since the equation is greater than

X ≡ F
(
s+∆s− a

1
−∆a

1
()
)
> 0, therefore the + sign that must be retained.

N ≡ −3F 2(s∗) +BHF (s− a
1
)F 2(s∗) +A(H + 3µ)F (s− a

1
)F (s∗)−

B(H + 3µ)PF (s− a
1
)

(47)

X =
1

2L

(
−M +

√
M2 − 4LN

)
(48)
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However, even with this choice of signs in front of the radical, the sign of the solution
is not clear because it depends on that of N , which is not itself clear (even with B
small.) It is therefore not impossible that Eq. (48) provides a negative root. In this
case, it is better to adopt another algorithm which may be less precise but certainly
leads to a positive root. It suffices for this purpose to replace the expressions Eq.
(23) and Eq. (24), semi-implicit with respect to the norm ofs− a

1
, by the implicit

expressions:

(∆εp)′ = A(s+∆s− a
1
−∆a

1
) (23’)

(∆εp)′′ = B(∆σeq
1 )s(s+∆s− a

1
−∆a

1
) (24’)

L′X2 +M ′X +N ′ = 0 (44’)

We can see that to find these epressions from Eq. (23) and Eq. (24), we shall

replace F (s− a
1
) by F

(
s+∆s− a

1
−∆a

1

)
≡ X. We obtain therefore the same

equation Eq. (44) on X as previously, but by performing this substitution in the
expressions Eq. (45), Eq. (46) and Eq. (47) of L, M , N , this equation becomes

L′ = 6µBF (s∗) (45’)

M ′ = 2BHF 2(s∗) + 2A(H + 3µ)F (s∗)− 2B(H + 3µ)P (46’)

N = −3F 2(s∗) (47’)

The coefficients L′ and N ′ are here clearly positive and negative, respectively;
therefore the product of the roots N ′/L′ is negative, so that there are two roots
reals, one positive and the other one negative, as desired; the positive root is

X =
1

2L′

(
−M ′ +

√
M ′2 − 4L′N ′

)
(48’)

Once X is calculated by Eq. (48), we can deduce Y by equation Eq. (42) (
eventually by replacing F (s − a

1
) by X ), s + ∆s − a

1
− ∆a

1
by Eq. (41),

(∆εp)′ + (∆εp)′′ by Eq. (39) (by replacing again eventually X by F (s − a
1
) ),

s+∆s by Eq. (35). It remains to update the parameter of strain hardening. The

variations of εeff2 and a
2
are given by Eq. (30) and Eq. (32). The variations of εeff2

and and a
2
are obtained from Eq. (31) and Eq. (33) which can be re-written as

εeff2 ∆z + (z +∆z)εeff2 = θεeff1 ∆z ⇒ ∆εeff2 =
∆z

z +∆z
(−εeff2 + θεeff1 ) (49)

a
2
∆z + (z +∆z)∆a

2
= θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T ⇒

∆a
2
=

1

z +∆z

[
(−a

2
+ θa

1
)∆z − z(∆a

2
)GT + z(∆a

2
)T

] (50)
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(Let us note that due the discretization explicit of ∆a
2
)GT and (∆a

2
)T , the vari-

ations of εeff2 and a
2
can, in fact, be calculated at the beginning, before the calcu-

lation of X and Y .)

σeq +∆σeq ≡ F (s+∆s− a−∆a) < σY +∆σY (51)

It is finally necessary to verify the stress-limit condition not reached. defining the
case considered. The calculation of σY +∆σY is immediate knowing εeff1 +∆εeff1 ,

εeff2 +∆εeff2 , z +∆z, T +∆T . Finding the value of σeq +∆σeq necessitates to
evaluate (s+∆s− a−∆a. We obtain:

s+∆s− a−∆a = s+∆s− (1− z −∆z)(a
1
+∆a

1
)− (z +∆z)(a

2
+∆a

2
)

All tensors being known here, we deduce (s + ∆s − a − ∆a. However, we can
calculate this expression before evaluating ∆a

1
using X, Y and the tensors known

a priori s⋆,
(
∆a

1

)
GT

,
(
∆a

1

)
T
and ∆a

2
. Indeed, from Eq.(32) and Eq.(39),

a
1
+∆a

1
= a

1
+

H

3
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
)

−(∆a
1
)GT + (∆a

1
)T

where we deduce, using the previous expression of (s+∆s− a−∆a and Eq.(41):

s+∆s− a−∆a = s+∆s− a
1
−∆a

1
+ (z +∆z)(a

1
+∆a

1
− a

2
−∆a

2
)

=

[
1 + (z +∆z)

H

3
(A+BY )

(
1 +

F (s− a
1
)

X

)]
(s+∆s− a

1
−∆a

1
)

+ (z +∆z)(a
1
− (∆a

1
)GT + (∆a

1
)T − a

2
−∆a

2
)

=

[
X + (z +∆z)

H

3
(A+BY )

(
X + F (s− a

1
)
)] s∗

F (s∗)

+ (z +∆z)(a
1
− (∆a

1
)GT + (∆a

1
)T − a

2
−∆a

2
)

(52)

( of course, it is still possible to substitute X with F (s− a) in this expression ).
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5.2. Case where the limit stress is reached

The discretized equations can be written as:

∆e = ∆ee +∆εP (53)

σeq +∆σeq ≡ F (s+∆s− a−∆a) = σY (εeff1 +∆εeff1 , εeff2 +∆εeff2 , z +∆z, T +∆T )

(54)

∆σP =
3

2

∆εeq
F (s+∆s− a−∆a)

(s+∆s− a−∆a) (55)

∆s
OBJ

= ∆s+ (∆s)GT = 2µ∆ee + (∆s)T

⇒ ∆s = 2µ∆ee − (∆s)GT + (∆s)T
(56)

∆εeff1 = ∆εeq (57)

∆(zεeff2 ) =

(
z +

∆z

2

)
∆εeq + θεeff1 ∆z ⇒

∆εeff2 =
1

z +∆z

[(
z +

∆z

2

)
∆εeq + (−εeff2 + θεeff1 )∆z

] (58)

(∆a
1
)OBJ = ∆a

1
+ (∆a

1
)GT =

2

3
(1− p)

∆σ1

∆εeff1
∆εp + (∆a

1
)T ⇒

∆a
1
=

2

3
(1− p)

∆σ1

∆εeff1
∆εp − (∆a

1
)GT + (∆a

1
)T

(59)

∆(za
2
) =

2

3
(1− p)(z +

∆z

2
)
∆σ2

∆εeff2
∆εp + θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T

(60)

The quantities ∆σ1/∆εeff1 and ∆σ2/∆εeff2 intervening in the evolutions equations
of the parameters of the kinematic hardening are here the secant of strain hardening
defined by

∆σi

∆εeffi
=

1

∆εeffi

[
σi(ε

eff
i +∆εeffi , T +∆T )− σi(ε

eff
i , T +∆T )

]
(61)

This choice rather than that of the slopes of work hardening, as previously, is jus-
tified by compatibility with the resolution which follows, which will naturally make
use again of the secants, this time for the isotropic part of the work hardening, via
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the exact respect of the criterion at the time t +∆t . Note also that Eq.(60) will
be used in the given form, and not in the form of an expression of ∆a

2
which will

be less convenient here.

Now let us solve these equations by adopting ∆εeq as a key unknown. Proceed-
ing as before from Eq.(53) and Eq.(56), we obtain

s+∆s = s+ 2µ∆e− (∆s)GT + (∆s)T − 2µ∆εp

which, by assuming as previously

(s+∆s)el = s+ 2µ∆e− (∆s)GT + (∆s)T (62)

and using Eq.(55), is equivalent to

s+∆s = (s+∆s)el − 3µ
∆εeq

F (s+∆s− a−∆a)
(s+∆s− a−∆a)

By adding −a−∆a to the two sides of the equations, and by writing a+∆a in the
form

a+∆a = (1− z −∆z)(a
1
+∆a

1
) + za

2
+∆(za

2
)

and using Eq.(59) and Eq.(60), we get

s+∆s− a−∆a = (s+∆s)el − 3µ
∆εeq

F (s+∆s− a−∆a)
(s+∆s− a−∆a)

− (1− z −∆z)(a
1
+∆a

1
)− za

2
−∆(za

2
)

= (s+∆s)el − (1− z −∆z)
[
a
1
− (∆a

1
)GT + (∆a

1
)T

]
− za

2

− 3µ
∆εeq

F (s+∆s− a−∆a)
(s+∆s− a−∆a)

− (1− z −∆z)
2

3
(1− p)

∆σ1

∆εeff1
· 3
2

∆εeq
F (s+∆s− a−∆a)

(s+∆s− a−∆a)

− 2

3
(1− p)(z +

∆z

2
)
∆σ2

∆εeff2
· 3
2

∆εeq
F (s+∆s− a−∆a)

(s+∆s− a−∆a)

− θa
1
∆z + z(∆a

2
)GT − z(∆a

2
)T

By using

s∗ ≡ (s+∆s)el − (1− z −∆z)
[
a
1
− (∆a

1
)GT + (∆a

1
)T

]
− za

2
− θa

1
∆z + z(∆a

2
)GT − z(∆a

2
)T

(63)

(note that this definition is not the same as that of Eq.( 37 ), in the case where the
stress limit is not reached), and

H̃ ≡ (1− z −∆z)(1− p)
∆σ1

∆εeff1
+ (z +

∆z

2
)(1− p)

∆σ2

∆εeff2
(64)
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this can be written as1 +
(
H̃ + 3µ

)
∆εeq

F (s+∆s− a−∆a)

 (s+∆s− a−∆a) = s∗ (65)

Before going any further, let us give a simple and more meaningful expression of
s∗. Let us denote a

1
+ (∆a

1
)GT ,T and a

2
+ (∆a

2
)GT ,z ,T the values of a

1
and

a
2
obtained by taking into account, in the variation ∆a

1
and ∆a

2
, only the terms

due to large transformations and variations of z and T (that is omitting the term
proportional to ∆εp). We have, by Eq.(59) and Eq.(60):

a
1
+ (∆a

1
)GT ,T = a

1
− (∆a

1
)GT + (∆a

1
)T ,

(z +∆z)⌊a
2
+ (∆a

2
)GT ,z ,T ⌋ − za

2
= θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T

⇒ (z +∆z)⌊a
2
+ (∆a

2
)GT ,z ,T ⌋ = za

2
+ θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T

From these two expressions and Eq.(63) we can deduce that

s∗ = (s+∆s)el − (1− z −∆z)⌊a
1
+ (∆a

1
)GT ,z ,T ⌋−

(z +∆z)⌊a
2
+ (∆a

2
)GT ,z ,T ⌋

(66)

This expression allows an easy calculation of s∗, having previously carried out the
pre-corrections of a

1
and a

2
due to large transformations and variations of z and T .

Eq.(65) implies that the (unknown) tensor s+∆s− a−∆a is positively collinear
with the (known) tensor, s∗; thereby

s+∆s− a−∆a =
F (s+∆s− a−∆a)

F (s∗)
s∗ (67)

In addition, we obtain by taking the Von Mises function of the two sides of Eq.(65):

F (s+∆s− a−∆a) + (H̃ + 3µ)∆εeq = F (s∗) (68)

The equation Eq.(54) gives, by expliciting the yield limit thanks Eq.(6):

F (s+∆s− a−∆a) = [1− f(z +∆z)]σY
1 (εeff1 +∆εeff1 , T +∆T )

+ f(z +∆z)σY
2 (εeff2 +∆εeff2 , T +∆T )

= [1− f(z +∆z)]

[
σY
1 (εeff1 , T +∆T ) + p

∆σ1

∆εeff1
∆εeff1

]

+ f(z +∆z)

[
σY
2 (εeff1 , T +∆T ) + p

∆σ2

∆εeff2
∆εeff2

]
= σY (εeff1 , εeff2 , z +∆z, T +∆T )

+ [1− f(z +∆z)] p
∆σ1

∆εeff1
∆εeff1 + f(z +∆z)p

∆σ2

∆εeff2
∆εeff2
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which gives, by reporting in Eq.(68):

σY (εeff1 , εeff2 , z +∆z, T +∆T ) + [1− f(z +∆z)] p
∆σ1

∆εeff1
∆εeff1

+ f(z +∆z)p
∆σ2

∆εeff2
∆εeff2 + (H̃ + 3µ)∆εeq = F (s∗)

This equation can be written as, according to Eq.(57) and Eq.(58):

(H + 3µ)∆εeq = ∆ (69)

H ≡ H̃ + [1− f(z +∆z)] p
∆σ1

∆εeff1
+ f(z +∆z)

z +∆z/2

z +∆z
p
∆σ2

∆εeff2

= (1− z −∆z)(1− p)
∆σ1

∆εeff1
+

(
z +

∆z

2

)
(1− p)

∆σ2

∆εeff2

+ [1− f(z +∆z)] p
∆σ1

∆εeff1
+ f(z +∆z)

z +∆z/2

z +∆z
p
∆σ2

∆εeff2

(70)

∆ ≡ F (s∗)− σY
1 (εeff1 +∆εeff1 , T +∆T ) + f(z +∆z)p

∆σ2

∆εeff2

∆z

z +∆z
×

(εeff2 − θεeff1 )

(71)

Eq.(69) relates to the only unknown ∆εeq, the strain hardening secants depends on

the εeff1 which are expressed as a function of ∆εeq, thanks to the equations Eq.( 57
) and Eq.( 58 ). It can be solved, for example, by the method of the fixed point.
The quantity F (s + ∆s − a −∆a) is then deduced from Eq.( 54 ), and then the
tensor s+∆s−a−∆a is deduced from Eq.( 67 ). Finalyy, we calculate ∆εp thanks
to Eq.( 55 ), then a

1
and a

2
thanks to Eq.( 59 ) and Eq.( 60 ).
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5.3. Particular case: isotropic strain hardening with the yield limit not reached

If the yield limit is not reached, the expression of Eq.(27 ) proposed for (∆σeq
1 )s

is applicable whatever the type of the work hardening. However, for a pure isotropic
work hardening p ≡ 1 is equivalent to the expression Eq.(10 ) of (σ̇eq

1 )s can also be
written equivalently ( with ( a

1
≡ 0) ) as:

(σ̇eq
1 )s ≡

3

2σeq
s :

v
s = ˙σeq , σeq ≡

(
3

2
s : s

) 1
2

We can then assume that a simple expression for (∆σeq
1 )s, than Eq.(27 )

(∆σeq
1 )s ≡ Y ≡ ∆σeq = F (s+∆s)− F (s) ≡ X − F (s) (27”)

This simplification is adopted in several finite element codes. It is necessary to take
again the elements of the numerisation exposed in the Section 4.1 in the case of
the purely isotropic work hardening where the yield stress is not reached.

The equation Eq.(40 ) being obtained without using the expression Eq.(27 ) of
(∆σeq

1 )s ≡ Y ≡ ∆σeq is valid here also; it can be written as, with a
1
≡ 0, ∆a

1
≡ 0,

p ≡ 1 (thus, H = 0 from Eq.(38 ) ):[
1 + µ(A+BY )

(
1 +

F (s)

X

)]
(s+∆s) = s∗

s∗ is always given by Eq.(37 ), with a
1
≡ 0, (∆a

1
)T ≡ 0

X + µ(A+BY )(X + F (s)) = X + µ[A+B(X − F (s))](X + F (s)) = F (s∗)

The equation Eq.(41 ) then applied always, with a
1
≡ 0, ∆a

1
≡ 0. In addition,

taking into account the function of Von Mises of the two sides of Eq.(40” ) and
taking into account Eq.(27” ), we obtain:

L′′X2 +M ′′X +N ′′ = 0 (44”)

which gives by re-ordering the terms

L′′ + µB (45”)

M ′′ = 1 + µA (46”)

N ′′ = µAF (s)− µBF 2(s)− F (s∗) (47”)

As in the usual case, this formulation does not necessarily ensure that there exists a
positive real solution X. If this is not the case, we can adopt a completely implicit
algorithm (replacement of Eq.(23) and Eq.(24) by Eq.(23’) and Eq.(24’). This leads
to replacing F (s) by F (s+∆s ≡ X in Eq.(40’), which becomes:

[1 + 2µ(A+BY )](s+∆s) = s∗ (40”’)
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By taking the von Mises function of the two sides of the previous equations and
taking into account Eq.(27”), we then obtain

X + 2µX[A+B(X − F (s))] = F (s∗)

which is equivalent to

L′′′X2 +M ′′′X +N ′′′ = 0 (44”’)

L′′′ + 2µB (45”’)

M ′′′ = 1 + 2µ(A−BF (s)) (46”’)

N ′′′ = −F (s∗) (47”’)

Since L′′′ > 0 and N ′′′ > 0, the existence of this unique psoitve solution is therefore
guaranteed.
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6. Numerical Results / Comparisons with Experiments / Discussion

The algorithm described above is implemented in SYSTUS to evaluate the model
described above. The numerical modeling pertains to a martensitic transformation
of A508 steel. The transformation deformation is solely induced by thermal de-
formation (the expansion of the daughter phase) without including any deviatoric
component (neglecting shape change). The results of this modeling provide a bet-
ter understanding of the behavior of A508 steel during its martensitic transforma-
tion. This data is crucial for optimizing heat treatment processes and designing
A508 steel components for specific applications, such as nuclear construction. The
thermo-mechanical properties assumed for the two phases are as follows:

The transformation of an element occurs through a change in its thermo-elastic
properties from phase γ to phase α. During this transformation, a uni-axial stress
with a constant amplitude of approximately 1/3 of the yield strength of the weaker
phase is applied to the material. This study demonstrates that the first type of
transformation (diffusive progression of the elements to be transformed) provides
a better agreement with the theoretical predictions of the author’s analytical model.

We will numerically investigate transformation plasticity, focusing on Greenwood
and Johnson’s mechanism. In this study, a finite element mesh will undergo external
loading, with sequential element transformations other by changing their thermal
strain and yield stress from those of the γ phase to those of the α phase. The
transformation strain will consist only of the difference of thermal strain between
the phases and will not include any deviatoric part (change of shape). The trans-
formation studied is the martensitic transformation of the A.508 cl. 3 steel. The
temperature dependence of the thermo-mechanical characteristics is disregarded.
These characteristics are provided in the document Appendix A appended to this
paper.

The chosen Representative Elementary Volume (REV) for modeling transforma-
tion plasticity is a regular 5× 5× 5 mesh cube. The phases exhibit perfectly plastic
behavior (without hardening). Two types of transformations are studied:

1. Elements are transformed in a specific order, from the center of the REV to
its boundaries.

2. Elements are transformed in a random order within the REV.

The transformation of an element occurs through a change in its thermo-elastic
properties from phase γ to phase α. During this transformation, a uni-axial stress
with a constant amplitude of about 1/3 of the yield strength of the weakest phase
is applied to the REV.

This study demonstrates that the first type of transformation (diffusive pro-
gression of the elements to be transformed) provides a better agreement with the
theoretical predictions of the author’s analytical model.
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Figure 1: Transformation plastic strain in a 5 × 5 × 5 cube for a stress equals to 50 MPa : 1)
Theory; 2) Ordered transformation, Σxx = 50 MPa; 3) Random transformation

Figure 1 illustrates the plastic strain resulting from transformation in a 5 × 5
× 5 cube under an applied stress of 50 MPa, capturing both ordered and random
transformations. This visual depiction serves as a comprehensive snapshot of the
material’s response to the specified stress conditions, offering a comparative analysis
between the two transformation scenarios.

Examining the intricate dynamics of the random transformation process reveals
a captivating interplay between theoretical expectations and empirical observations.
The conspicuous deviation in the associated curve from the theoretical baseline
serves as an intriguing cue, inviting us to delve into the nuanced mechanics at play.
A critical determinant of this notable discrepancy lies in the profound influence ex-
erted by elements positioned on the surface of the cube.

As the transformation unfolds, the surface elements exhibit a distinctive response
characterized by a more facile outward expansion in contrast to their inward progres-
sion. This asymmetry in the transformation dynamics stems from the augmented
volume experienced by the surface elements during the process. Consequently, the
plastic strains induced in the austenitic phase manifest with diminished prominence
when compared to their counterparts within the cube’s interior. This nuanced
phenomenon intricately underpins the underestimation of the Greenwood-Johnson
effect, attributing this discrepancy to the ostensibly inconsequential yet influential
presence of surface elements.

26



Figure 2: Normalized transformation plastic strain in a 10 × 10 × 10 cube for lower stresses : 1)
Theory; 2) Ordered transformation, Σxx = 50 MPa; 3) Ordered transformation, Σxx = 100 MPa;
4) Same as in 2) except that difference of thermal strain between the two phases is divided by 2;
5) random transformation, Σxx = 100 MPa

Extending our scrutiny to an ordered transformation originating from the center,
a compelling narrative emerges. In the initial stages, wherein only interior elements
partake in the transformation, the resultant curve exhibits a slope twice as steep as
its random transformation counterpart. This phase aligns seamlessly with theoret-
ical expectations, portraying a harmonious relationship between computation and
theory. However, the plot takes a fascinating turn when surface elements become
integral to the transformation process.

Upon the involvement of surface elements, a sudden and pronounced decrease in
slope unfolds, ushering in a phase marked by a notable misalignment between com-
putational outcomes and theoretical predictions. This inflection point underscores
the critical role played by surface elements in shaping the transformation dynamics,
offering a deeper understanding of the complex interplay between internal and sur-
face influences on the observed mechanical behavior. In essence, the juxtaposition
of random and ordered transformations unravels a rich tapestry of insights, shedding
light on the multifaceted nature of material transformations and the consequential
impact of seemingly peripheral factors.

Figure 2, serving as the counterpart to Figure 1, replicates the experimental
setup, albeit with a diminished mesh size, featuring a cube measuring 10 × 10 ×
10 units. A notable adjustment in the applied stresses has been introduced, ele-
vating them from 50 MPa to a more substantial 100 MPa. Furthermore, both
random and ordered modes of ”normalized” transformation were deliberately incor-
porated into the experimental conditions.
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In contrast to its predecessor, Figure 2 encapsulates the same experimental
essence but with a finer spatial resolution achieved through a reduced mesh size.
The alteration in stress parameters, escalating from 50 MPa to 100 MPa, in-
troduces a heightened mechanical loading scenario, accentuating the influence of
external forces on the transformation phenomena. This augmentation in stress levels
serves to amplify the mechanical responses within the 10 × 10 × 10 cube, providing
a nuanced perspective on the material’s behavior under varying stress conditions.

The intentional inclusion of both random and ordered transformations in this it-
eration broadens the scope of the investigation, allowing for a comprehensive analysis
of the material’s response to distinct transformation mechanisms. This deliberate
diversification in transformation types enriches the experimental landscape, facili-
tating a more thorough exploration of the material’s mechanical behavior and its
sensitivity to different transformation pathways. The juxtaposition of these transfor-
mation modes within the refined experimental setup introduces a layer of complexity,
offering a more nuanced understanding of the material’s response to varying stress
regimes.

It is noteworthy that both transformation orders now yield results that are mutu-
ally consistent and align with theoretical expectations. This observation indicates a
significant reduction in the influence of surface elements, underscoring the enhanced
congruence between the outcomes and theoretical predictions.

We can envisage to investigate the case of very large applied stresses, surpassing
the critical yield strength (Σy) threshold of 145 MPa. This represents a significant
departure from conventional stress levels, introducing a novel challenge in under-
standing material behavior under extreme conditions.

At such elevated stress levels, it becomes evident that traditional experimental
methods and existing theoretical frameworks may no longer suffice to comprehen-
sively capture the intricate nuances of material response. The absence of empirical
data and established theories for stress magnitudes beyond σy = 145MPa under-
scores the need for alternative approaches to model transformation plasticity.

In this context, numerical simulations emerge as indispensable tools for bridg-
ing the knowledge gap. They play a pivotal role in not only compensating for the
lack of experimental data but also in establishing a robust and realistic model for
transformation plasticity under these unprecedented stress regimes. The reliance
on numerical simulations becomes paramount as they offer a flexible and efficient
means to explore and comprehend complex material behaviors that elude conven-
tional experimental techniques.

In essence, our exploration of very large applied stresses necessitates a paradigm
shift in our approach. The synergy between experimental insights, theoretical frame-
works, and numerical simulations is key to advancing our understanding of trans-
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formation plasticity under these challenging conditions.

Also, comparisons of the model predictions with experiments conducted on A533
steel transformation plasticity by Desalos [3] serve as a another crucial benchmark
for validating our numerical implementation. The insights gained from these com-
parisons add a significant layer of confidence to the reliability of our simulations.
The physical constants employed in our numerical model for this case, characterizing
the γ- and α- phases of A533 steel, closely mirror those derived from the metic-
ulous experimental investigations of Desalos [3] and Coret et al. [1, 2]. Notably,
our material properties feature identical values for Young’s modulus (E = 182, 000
MPa) and Poisson’s ratio (ν = 0.3) across both phases, for the rest of the material
constants used for the simulations with the A533 steel can be found in Desalos [3]
and Coret et al. [1, 2].

Furthermore, our choice of yield stress parameters is well-founded, with σm =
145MPa assigned to the mother-phase and σD = 950MPa to the daughter-
phase. This meticulous adherence to established values enhances the credibility of
our numerical model. Additionally, we account for the relative change of specific
volume from the mother- to the daughter-phase. These constants, consistently
applied and well-documented, collectively contribute to the robustness of our nu-
merical model, thereby fortifying the reliability and validity of our research findings.

In the examined cases for comparative analysis, the Representative Volume
Element (RVE) experiences a uni-axial stress denoted as Σ, consistently applied
throughout. This volume undergoes external loading via homogeneous boundary
stress (HBStress) or homogeneous boundary strain (HBStrain) conditions to en-
sure robustness. The primary goal is to strengthen the theoretical analysis, with a
specific emphasis on HBStress conditions, while rigorously examining the influence
of boundary conditions. The consequential plastic strain transformation along the
loading direction is identified as Ep

t (f), capturing the intricate evolution of the
material under this specific stress condition. (Any other components are omitted,
either being zero or directly correlated to Ep

t (f) owing to considerations of incom-
pressibility.)

In Figure 3, the progression of the transformation plastic strain is depicted, il-
lustrating the dynamic evolution as the transformation unfolds. This evolution is
characterized by the ratio Ep

t (f)/E
p
t (1), a metric that ascends from 0 to 1. The

dependence on the volume fraction f of the daughter-phase is evident in the plot.
The graph not only captures this transformational journey but also highlights the
significant variations in the ratio across different values of f .

The depicted data is a comparative analysis involving the predictions of three
distinct formulas. Firstly, the original formula (19) proposed by Leblond et al.. [8]
is represented. Secondly, an allegedly improved variant (20) of the original formula
is included in the comparison. Lastly, Desalos [3] introduces a phenomenological
formula, Ep

t (f)/E
p
t (1) ≈ f(2− f), which he found to be universally applicable to
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Figure 3: Comparison of evolutions of the transformation plastic strain: Theories and experiments

all his experimental results for the A533 steel, regardless of the stress applied. The
juxtaposition of these formulas provides a comprehensive view of their predictive
capabilities and sheds light on their performance across the spectrum of volume
fractions and stress values.

All theoretical curves, with the exception of the one corresponding to the pur-
portedly enhanced variant of Leblond et al.. [8]’s original formula, Eq.11, offer
sensible depictions of Desalos [3]’s experimental findings. Nevertheless, across all
scenarios, the projected escalation in transformation plastic strain proves somewhat
accelerated during the initial half of the transformation process.

In Figure 4, a comparative analysis is presented, juxtaposing the outcomes de-
rived from micro-mechanical simulations conducted under both HBStress and HB-
Strain conditions. Notably, these simulations were executed under a low stress
condition, precisely Σ = 20MPa. It is imperative to highlight that, for contextual
reference, the curve representing Desalos [3]’s heuristic formula, previously discussed
and applicable across the entire spectrum of stresses he considered, is once again
included. This additional visual cue serves as a point of reference, facilitating a
comprehensive understanding of the observed results and their alignment with es-
tablished heuristic models.

A substantial disparity exists in the numerical outcomes derived under HBStress
and HBStrain conditions, underscoring the profound impact of boundary conditions.
This stark contrast serves to highlight the inherent limitations associated with an
approach centered on a simplistic and diminutive Representative Volume Element
(RVE), exemplified by a spherical volume of the mother phase housing a solitary
growing core of the daughter phase. This discrepancy not only underscores the sen-
sitivity of the results to the chosen boundary conditions but also provides tangible
evidence of the inadequacies inherent in employing such a rudimentary RVE model.
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Next, we embark on an exploration of the ”amplitude” of transformation plas-
ticity, denoted by the value of the transformation plastic strain after the completion
of the transformation process, Ep

t (1). In the illustrative Figure 5, this parame-
ter unfolds its dependencies in response to the applied overall stress. Specifically,
this juxtaposes diverse perspectives, offering a comprehensive comparison among
Leblond et al. [8]’s original formula Eq.11, and Desalos[3]’s experimental findings
for the A533 steel.

Desalos [3]’s empirical findings, encapsulated in the heuristic formula Ep
t (1) =

10−4Σ (with units in MPa), remarkably align with the predicted outcomes, sub-
stantiating the robustness and applicability of our general formula Eq.11 in captur-
ing the amplitude of transformation plasticity. This comparative analysis not only
serves as a validation of existing models but also unveils the intricate relationship
between theoretical predictions and experimental observations in the realm of trans-
formation plasticity, providing a nuanced understanding of material behavior under
varying stress conditions.

In Figure 6, a comprehensive comparison unfolds between the predictions derived
from our overarching formula Eq.11 and the outcomes gleaned from micromechan-
ical simulations conducted under HBStress and HBStrain conditions. Notably, for
reference, Desalos [3]’s experimental results are once again presented, lending an
additional layer of context and validation to the juxtaposition of our theoretical
predictions with real-world observations.

The numerical outcomes derived under HBStress and HBStrain conditions ex-
hibit a notable disparity, further highlighting the divergence in their respective in-
fluences. However, a noteworthy reversal of this trend is observed when considering
the ratio Ep

t (f)/E
p
t (1). In contrast to the previous scenario, results associated with

HBStrain conditions surpass those under HBStress conditions in this context, with
reference to Desalos [3]’s experimental findings.

It becomes apparent that under HBStress conditions, there is a conspicuous
tendency for an overestimation of the amplitude of transformation plasticity. This
discrepancy underscores the critical role of the chosen stress conditions in influenc-
ing the accuracy of predictions, particularly in comparison to experimental bench-
marks. The inversion of performance between HBStress and HBStrain conditions
underscores the nuanced interplay of factors and the need for a comprehensive un-
derstanding of the material response under varying conditions.
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Figure 4: Evolution of Transformation Plastic Strain: A Comparative Analysis between Experiments
and Micro-Mechanical Simulations.

Figure 5: A Comparative Analysis of Plastic Strains Following Full Transformation: Bridging the
Divide Between Theoretical Projections and Experimental Realities.
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Figure 6: Comparative Analysis of Plastic Strains Following Full Transformation: Experiments
Versus Micro-mechanical Simulations

7. CONCLUSION

In conclusion, this study has undertaken a thorough examination of the numer-
ical implementation of Leblond et al.’s advanced model for phase transformation,
with a specific focus on its application to critical thermo-mechanical processes such
as welding and quenching. The investigation has been meticulous, centering on
the precision and reliability of this implementation within finite element analysis
and providing valuable insights into the complex interplay of thermal, metallurgical,
and mechanical phenomena. Through the practical application of Leblond et al.’s
model to predict phase transformation phenomena in A.508 cl and A533 steels,
the research has effectively demonstrated the model’s robustness and efficiency in
delivering accurate numerical simulations of thermo-mechanical processes.

This work contributes significantly to the advancement of our understanding
of material responses during phase transformations, offering enhanced predictive
capabilities for computational tools in industrial applications. By showcasing the
practical utility of the model in a specific steel context, the study not only validates
its effectiveness but also provides a foundation for further refinement and appli-
cation in diverse material scenarios. Overall, the findings presented here mark a
valuable contribution to the field, paving the way for improved modeling and sim-
ulation techniques in the realm of thermo-mechanical processes and reinforcing the
role of computational tools in advancing industrial practices.
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Appendix A. The Material Properties for the A508 cl Steel

The material properties for the A508 cl steel include the young modulus, thermal
conductivity, Poisson ratio, yield limit, and hardening rate. These properties play
crucial roles in determining the mechanical and thermal behavior of the steel alloy.
These properties are summarized in the table below for each of the phase the steel
is made of:

phase α phase γ
Young modulus
(MPa)

182 000 182 000

Poison ratio 0.3 0.3
Yield limit (MPa) 950 145
Hardening rate 0 0
Thermal
deformation

0 0.84%

Table A.1: The Material Properties for the A508 cl Steel
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Appendix A. The Material Properties for the A533 steel

The material properties for the A533 steel include the young modulus, Poisson
ratio, and yield limit. These properties play crucial roles in determining the me-
chanical of the steel alloy. These properties are summarized in the table below for
each of the phase the steel is made of:

phase α phase γ
Young modulus
(MPa)

182 000 182 000

Poison ratio 0.3 0.3
Yield limit (MPa) 950 145

Table A.2: The Material Properties for the A533 steel
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