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Abstract. We provide a numerical analysis and computation of neural network pro-
jected schemes for approximating one dimensional Wasserstein gradient flows. We ap-
proximate the Lagrangian mapping functions of gradient flows by the class of two-layer
neural network functions with ReLU (rectified linear unit) activation functions. The
numerical scheme is based on a projected gradient method, namely the Wasserstein nat-
ural gradient, where the projection is constructed from the L2 mapping spaces onto the
neural network parameterized mapping space. We establish theoretical guarantees for
the performance of the neural projected dynamics. We derive a closed-form update for
the scheme with well-posedness and explicit consistency guarantee for a particular choice
of network structure. General truncation error analysis is also established on the basis
of the projective nature of the dynamics. Numerical examples, including gradient drift
Fokker-Planck equations, porous medium equations, and Keller-Segel models, verify the
accuracy and effectiveness of the proposed neural projected algorithm.

1. Introduction

Simulating gradient flows of free energies is a central problem in the computational
physics of complex systems [8] and data science [1, 2]. In physics, gradient flows often
arise from first-order principles, such as the Onsager principle [32]. The Onsager gra-
dient flows are widely used in phase fields, chemistry, and biology modeling. In recent
years, a particular type of Onsager gradient flow, known as Wasserstein gradient flow, has
been widely studied in optimal transport communities [3, 33, 37]. It studies an infinite-
dimensional pseudo-Riemannian metric in the probability distribution space known as the
density manifold. The gradient flow in the Wasserstein space naturally captures the free
energy dissipation properties. Depending on the choices of free energies, the Wasserstein
gradient flow contains a vast class of differential equations, such as gradient drift Fokker-
Planck equations, porous medium equations, and Keller-Segel models. These models are
widely used in population dynamics and sampling-related optimization problems.
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In recent years, machine learning has brought a class of new methods in computational
physics, where free energies are identified with the loss functions [11, 30]. Meanwhile,
computing Wasserstein gradient flows of loss functions in terms of samples also finds
their various applications, such as generative artificial intelligence [4] and transport map-
based sampling methods [35]. In these applications, one often relies on the Lagrangian
mapping functions to describe the Wasserstein gradient flows and deep neural networks to
approximate the mapping functions due to their high expressivity and adaptivity from the
compositional structure. While empirical successes of this framework have been observed
in various applications [4, 35], very few theoretical results exist to explain the underlying
mechanism.

Moreover, projected dynamics in neural network space are widely used to approximate
Wasserstein gradient flows [14,25]. These dynamics restrict the space of probabilities onto
a finite-dimensional subspace parameterized by neural network mapping functions. For
this reason, we call it the neural projected gradient dynamics. This approach originates
from the natural gradient method in information geometry [1] and extends the framework
set by [20]. Some basic questions about its accuracy and efficiency remain: Even in one-
dimensional space, how well do the neural projected dynamics approximate the Wasserstein
gradient flow? What is the accuracy of the neural network approximation in Lagrangian
mapping functions?

In this paper, we study the numerical analysis and computational neural network pro-
jected schemes for one-dimensional Wasserstein gradient flows. The main result is sketched
below. By formulating gradient flows in Lagrangian coordinates, the proposed numerical
scheme takes the form of a ‘preconditioned’ gradient descent, where the preconditioner
is the metric tensor of the statistical manifold of the parameter space. Theoretically, we
first provide the derivation of the analytic solution for the inverse neural mapping metric.
It is based on a special class of the ReLU network in theorem 2. We use the analytic
form of the projected gradient flow formula to prove the consistency of the numerical
scheme. Then, we prove in theorem 3 that the numerical schemes derived from the neural
projected dynamics are of first or second-order consistency for the general Wasserstein
gradient directions. These include cases of the heat flow and the Fokker-Planck equation.
Furthermore, viewing our neural network model as a moving mesh method, we show in
proposition 7 that the mesh will not degenerate during the simulation.

In numerics, the advantages of the proposed method are twofold. First, using a two-
layer neural network as our basis function, the proposed method can be regarded as
a ‘moving-mesh’ method in Lagrangian coordinate, which demonstrates very promising
performance even when the number of parameters of the neural network is very limited.
In particular, our numerical examples can achieve an accuracy of 10−3 with less than 100
neurons. Second, using the Wasserstein gradient flow formulation, the proposed method
is very easy to implement since it can make use of the automatic differentiation feature
from popular machine learning libraries such as PyTorch.

Nowadays, the computation of Wasserstein gradient flows (WGFs) has attracted great
interests from researchers in various communities such as mathematics, physics, statistics,
and machine learning. Classical numerical methods [9] have been introduced to directly



NUMERICAL ANALYSIS ON NEURAL PROJECTED DYNAMICS 3

evaluate the probability density function. Recently, algorithms that approximate the La-
grangian mapping functions associated with WGFs have been invented. We refer the
readers to [8] and references therein for related discussions. These treatments automat-
ically preserve non-negativity and total mass. Together with the fast-developing deep
learning techniques, they inspire a series of research on composing scalable, sampling-
friendly computational methods for WGFs in higher-dimensional spaces [13,16,18,25,27].
Recently, deep learning-based algorithms for computing the Lagrangian coordinates of the
Wasserstein Hamiltonian flows, or more generally mean field control problems, have also
been introduced in [28,34,38].

Our treatment of projecting the WGFs onto the parameter space is also known as
the natural gradient method, which are first introduced in [1] (w.r.t. Fisher-Rao metric)
and [10] (w.r.t. Wasserstein metric). Here the projected matrix is often named infor-
mation matrix, namely Fisher information matrix and Wasserstein information matrix,
depending on the usage of metrics in probability space. This method recently finds its
application in large-scale optimization problems [29]. In recent research [7, 12, 14], the
authors aim to calculate general evolution equations by directly leveraging the neural net-
work representation of the time-dependent solution. They endow the evolution of the
equation in the functional space into the parameter space of the neural network to obtain
a finite-dimensional ordinary differential equation, which can be readily integrated via the
Runge-Kutta solvers. Numerical properties of the ReLU neural network families have been
investigated in [15].

Compared to previous studies, we study the numerical analysis of neural network pro-
jected dynamics for approximating WGFs. In one-dimensional space, we provide the error
analysis for the neural projected dynamics with a two-layer neural network. We numer-
ically verify the proposed error analysis. In particular, we formulate a class of explicit
schemes from the neural network projected dynamics. This study continues the study
of the Wasserstein information matrix on neural network models; see related discussions
in [21,22,25].

The paper is organized as follows. In Section 2, we briefly review the formulation of
Wasserstein gradient flows of free energies in both Eulerian and Lagrangian coordinates.
We formulate the projected Wasserstein gradient flows over neural network models in
Section 3. In Section 4, we conduct the numerical analysis of the proposed neural projected
dynamics in two-layer neural network functions. In Section 5, we verify the accuracy of the
proposed algorithm with numerical examples in Fokker-Planck equations, porous medium
equations, and Keller-Segel models.

2. Review of Wasserstein gradient flows and Lagrangian coordinates

In this section, we prepare the theoretical foundations of Wasserstein gradient flows with
a focus on Lagrangian description (diffeomorphism mapping functions) and the associated
microscopic particle dynamics. See details in [3, 37].
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2.1. Wasserstein gradient flows. Suppose Ω is a domain in the Euclidean space Rd.
Denote the probability space

P(Ω) =

{
p(·) ∈ C∞ :

∫
Ω
p(x)dx = 1, p(·) ≥ 0

}
.

Given an energy functional F(·) : Ω → R, we consider the following evolution equation
associated with F(·),

∂tp(t, x) = ∇x · (p(t, x)∇x
δ

δp
F(p)), p(·, 0) = p0, (1)

with Neumann boundary condition p(t, x)∇x
δ
δpF(p)·n = 0 where n is the outward pointing

vector on boundary ∂Ω. δ
δp is the L2 first variation operator w.r.t. density variable p.

The mass of p(t, ·) is conserved and always equals 1. An important fact about (1) is that
this equation can be treated as the gradient flow of F on P(Ω). To be more specific, by
endowing the probability space P(Ω) with the L2 Wasserstein metric gW , we can view
(P(Ω), gW ) as a Riemannian manifold, and (1) is the gradient flow on such manifold with
respect to gW .

Let us briefly review several facts. We first define the metric gW at arbitrary p ∈ P(Ω),
which is identified via the continuity equation (that is, tangent vectors) whose driving
vector field belongs to the closure of all gradient fields ∇xψ : Ω → Rd with ψ ∈ C∞(Ω)
in L2(p)-norm. Consider a smooth curve {pi(t, ·)}t∈(−ϵ,ϵ) (i = 1, 2) passing through p at
t = 0 on P(Ω). Suppose the probability evolution pi(t, ·) is driven by the gradient field
∇xψi(·) at t = 0, i.e., ψi(·) solves

∂tpi(0, x) +∇x · (pi(0, x)∇ψi(x)) = 0, i = 1, 2.

We define the L2 Wasserstein metric gW (·, ·) at p as a symmetric, positive-definite bilinear
form,

gW (∂tp1(0, ·), ∂tp2(0, ·)) =
∫
Ω
∇xψ(x) · ∇xψ2(x)p(x) dx.

Recall the definition of the gradient of a smooth function f on a Riemannian manifold
(M, g) as

g(gradf(x), ẋ(0)) =
d

dt
f(x(t)),

for any smooth curves {x(t)}t ∈ (−ϵ, ϵ) passing through x at t = 0. Switching back to
our case, for the functional F defined on (P(Ω), gW ), we define the gradient of F w.r.t.
Wasserstein metric gW at p as

gW (gradWF(p), ∂tp(0, ·)) =
d

dt
F(p(t, ·))

∣∣∣∣∣
t=0

.

Here {p(t, ·)}t∈(−ϵ,ϵ) is arbitrary curve on P(Ω) with p(0, ·) = p(·). Suppose p(t, ·) is guided
by the gradient field ∇xψ at time t = 0, Then the right-hand side can be computed as

d

dt
F(p(t, ·)) =

∫
Ω

δF(p(0, ·))
δp

(x)∂tp(0, x) dx =

∫
Ω

δF(p)

δp
(x)(−∇x · (p(x)∇xψ(x))) dx

=

∫
Ω
∇δF(p)

δp
(x) · ∇xψ(x)p(x)dx.
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Recall the definition of the metric gW , it is not difficult to verify that the gradient field
associated with gradWF(p) is ∇x

δ
δpF(p). Thus,

gradWF(p) = −∇x · (p(t, x)∇x
δF(p)

δp
(x)),

and the Wasserstein gradient flow ∂tp = −gradWF(p) can be formulated as equation (1).

We provide several examples of WGFs. In these examples, we assume Ω = Rd.

• (Fokker-Planck equation) Consider

F(p) =

∫
Ω
V (x)p(x)dx+ γ

∫
Ω
p(x) log p(x)dx.

Then the Wasserstein gradient of F equals

gradWF(p) =−∇x · (p(x)∇x(V (x) + γ(log p(x) + 1)))

=−∇ · (p(x)∇xV (x))− γ∆xp(x).

The corresponding WGF is the Fokker-Planck equation

∂tp(t, x) = ∇x · (p(t, x)∇xV (x)) + γ∆xp(t, x). (2)

• (Porous medium equation) Consider

F(p) =
pm

m− 1
.

One computes

gradWF(p) = −∇x · (p(t, x)∇x(
m

m− 1
p(x)m−1)) = −∇x · (∇x(p(x)

m)) = −∆xp(x)
m.

Thus, the corresponding WGF yields the porous medium equation

∂tp(t, x) = ∆xp(t, x)
m. (3)

• (Keller-Segel equation) Another well-known WGF is by choosing F as the sum of the
internal energy and the interaction energy

F(p) =

∫
Ω
U(p(x)) dx+

1

2

∫∫
Ω×Ω

W (|x− y|)p(x)p(y) dxdy,

where U is a certain smooth function defined on R+, and W (·) ∈ C(R+;R) is a kernel
function.

We calculate

gradWF(p) = −∇x · (p(x)∇x(U
′(p(x)) +W ∗ p(x))),

where we denote the convolutionW ∗p(x) =
∫
ΩW (|x−y|)p(y) dy. The WGF associated

with this functional is the Keller-Segel equation

∂tp(t, x) = ∇x · (p(t, x)∇xU
′(p(t, x))) +∇x · (p(t, x)∇x(W ∗ pt(x))). (4)
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2.2. Lagrangian coordinates & Particle dynamics. Consider a mapping function
T : Z → Ω. Here z ∈ Z is an input space, Ω ⊂ Rd is the domain on which WGF is defined.
To alleviate our discussion, we assume Z = Ω. Let us further assume T ∈ C∞(Z,Ω),
and the Jacobian matrix DzT (z) is non-singular for all z ∈ Z, i.e., det(DzT (z)) ̸= 0 on
Z. This also guarantees that T is injective. Given a smooth reference probability density
pr ∈ P(Z), we denote the pushforwarded probability density of pr by T as

p = T#pr,

where T# : P(Z) → P(Ω) is the pushforward operator defined as∫
Ω
f(x)T#pr(x) dx =

∫
Z
f(T (z))pr(z) dz, for all f ◦ T ∈ L1(pr).

The density function of p satisfies

p(T (z))det(DzT (z)) = pr(z). ∀ z ∈ Z. i.e., p(x) =
pr

det(DzT )
◦ T−1(x) ∀ x ∈ Ω. (5)

Such pushforward map T used for constructing probability distribution p is usually called
the Lagrangian coordinate. We now imitate the derivation of the WGF to help formulate
its counterpart under the Lagrangian coordinate.

We denote O as the space of smooth, L2(pr) integrable pushforward maps with non-zeros
Jacobian, i.e.,

O =

{
T ∈ C∞(Z,Ω) : det(DzT ) ̸= 0,

∫
Z
|T (z)|2pz(z) dz <∞

}
.

Then the pushforward operation # : O → P(Ω) introduces a submersion from the space
of pushforward maps (diffeomorphisms) to the space of probability densities.

In order to derive the Wasserstein gradient flows (WGFs) on the space O of pushforward
maps instead of the probability space P(Ω), we first build up certain metric ⟨·, ·⟩ on O that
corresponds to the Wasserstein metric gW . As illustrated in [33], gW is obtained by pulling
back the L2(pr) norm on O via submersion #. Thus, a way of choosing the metric is

⟨u1,u2⟩ =
∫
Z
u1(z) · u2(z)pr(z) dz, ∀ u1,u2 ∈ L2(pr)

⋂
C∞(Z,Ω).

Now for any smooth functional F : P(Ω) → R, the composition F# ≜ F ◦ # : O → R
defines its corresponding functional on O. Follow similar arguments presented in 2.1, we
compute the gradient of F# with respect to the metric ⟨·, ·⟩ as

grad⟨·,·⟩F
#(T ) =

1

pr(·)
δF#(T )

δT
(·).

Here, δ
δT is the L2(m) (m denotes the Lebesgue measure) first variational w.r.t. the

pushforward map T .

Thus, the gradient flow of F# on O is formulated as

∂tT (t, ·) = −grad⟨·,·⟩F
#(T (t, ·)) = − 1

pr(·)
δF#(T (t, ·))

δT
(·).
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The variation δ
δT is calculated as

δF#(T )

δT
(z) =

(
∇x

δF(T#pr)

δp

)
◦ T (z)pr(z).

The above equation can also be written as

∂tT (t, z) = −
(
∇x

δF(T (t, ·)#pr)
δp

)
◦ T (t, z). (6)

If we denote p(t, ·) = T (t, ·)#pr, one can verify that p(t, ·) exactly solves equation (1) for
WGF with p0 = T (0, ·)#pr, which justifies the equivalence between the gradient flow (6)
in Lagrangian coordinates (i.e., the map T (t, ·)) and the WGF (1) expressed by using
Eulerian coordinate (i.e., the density function p(t, ·)).

Such gradient flow (6) on the space of diffeomorphisms also forms a microscopic picture
of particle dynamics of the WGF (1). For any random reference sample z ∼ pr, by setting
xt = T (t, z), it is not hard to verify that xt evolves w.r.t. the dynamic

dxt

dt
= −

(
∇x

δ

δp
F(pt)

)
(xt), x0 = T (0, z), z ∼ pr. (7)

Here we denote pt = T (t, ·)#pr. pt can be equivalently treated as the probability density of
the random particle xt. In this dynamic, the movement of a single agent xt is determined
by the instant population density pt evaluated at xt. Such an approach offers a microscopic
and deterministic interpretation of various diffusive processes possessing WGF structures.

The aforementioned examples of WGF can be formulated as the gradient flows under
Lagrangian coordinates (6) as well as the particle dynamics (7). We summarize this in the
following Table 1. We assume T (0, ·)#pr = p0 as the initial condition for (6), and x0 ∼ p0
as the initial distribution of the random particle xt in (7). We denote pt = T (t, ·)#pr
in equation (6). Accordingly, we denote pt as the probability density of the stochastic
particle xt in the dynamic (7).

WGF
Gradient flow in Lagrangian coordinates

Particle dynamic

Fokker-Planck (2)
∂tT (t, z) = −∇x(V + γ log pt) ◦ T (t, z)

dxt
dt = −∇xV (xt)− γ∇x log pt(xt)

Porous-medium (3)
∂tT (t, z) = − m

m−1pt(T (t, z))
m−1∇xpt ◦ T (t, z)

dxt
dt = − m

m−1pt(xt)
m−1∇pt(xt)

Keller-Segel (4)
∂tT (t, z) = −∇x(U

′(pt) +W ∗ pt) ◦ T (t, z)
dxt
dt = −∇xU

′(pt(xt))−∇xW ∗ pt(xt)

Table 1. Gradient flows under Lagrangian coordinates & Particle dynam-
ics associated with the WGFs.
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3. Neural projected Wassersetin gradient flows and their algorithms

As discussed in Section 2, instead of the direct evaluation of the density function of the
Wasserstein gradient flow, it suffices to compute the time-dependent Lagrangian mapping
T (t, ·). In this research, we approximate T (t, ·) via neural networks parametrized by time-
dependent parameter {θt}. The evolution of θt is obtained by projecting the gradient flow
(6) onto the parameter space Θ. In this section, we briefly review the basic definitions
of neural network mapping functions. We next study a metric space for neural mapping
functions and formulate several neural mapping dynamics for {θt}.

3.1. Neural network activation functions. We first provide the definition of a neural
network mapping function. Consider a mapping function

f : Z ×Θ → Ω,

where Z ⊂ Rl is the latent space, Ω ⊂ Rd is the sample space and Θ ⊂ RD is the parameter
space. In this paper, we consider the following network structure

f(θ, z) =
1

N

N∑
i=1

aiσ
(
z − bi

)
,

where θ = (ai, bi) ∈ RD, D = (l + 1)N . Here N is the number of hidden units (neurons).
ai ∈ R is the weight of unit i. bi ∈ Rl is an offset (location variable). σ : R → R is an
activation function, which satisfies σ(0) = 0, 1 ∈ ∂σ(0). From now on, we assume that f
is invertible, monotone, and is continuous w.r.t. both z and θ variables.

For example, let N = d = 1, and b1 = 0. Define a two layer neural network by

z σ x

The following neural network mapping functions have been widely used.

Example 1 (Linear). Denote σ(x) = x. Consider

f(θ, z) = θz, θ ∈ R+.

Example 2 (ReLU). Denote σ(x) = max{x, 0}. Consider

f(θ, z) = θmax{z, 0}, θ ∈ R+.

Example 3 (Sigmoid). Denote σ(x) = 1
1+e−2x . Consider

f(θ, z) =
θ

1 + e−2z
, θ ∈ R+.

In Section 4 (theoretical results) and Section 5 (numerical examples), we focus mainly
on the case where l = d = 1, D = 2N . And σ(·) is the ReLU activation function.
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3.2. Neural mapping models and energies. In this subsection, we consider the fol-
lowing probability density functions generated by neural network mapping functions. We
call them the neural mapping models.

Definition 1 (Neural mapping models). Let us define a fixed input reference probability

density pr ∈ P(Z) =
{
p(z) ∈ C∞(Z) :

∫
Z pr(z)dz = 1, p(z) ≥ 0

}
. Denote a probability

density generated by a neural network mapping function by the pushforward operator:

p = fθ#pr ∈ P(Ω),

In other words, p satisfies the following Monge-Ampère equation by

p(f(θ, z))det(Dzf(θ, z)) = pr(z) , (8)

where Dzf(θ, z) is the Jacobian of the mapping function f(θ, z) w.r.t. variable z.

Definition 2 (Neural mapping energies). Given an energy functional F : P(Ω) → R, we
can construct a neural mapping energy F : Θ → R by

F (θ) = F(fθ#pr).

Many applications in machine learning and scientific computing can be cast into the
following optimization problem

min
θ∈Θ

F (θ).

Here, F often measures the closeness between the neural mapping model and the target
or data density distribution. Several concrete examples of neural mapping energies F are
given below. For simplicity of presentation, we often write the integration operator w.r.t.
density pr over domain Z by the expectation operator Ez∼pr . Later in Section 3.5, we pro-
vide several examples of the energy functional F including the potential, the interaction
(E.g. maximum mean discrepancy ) and the internal (information entropy/divergence)
functionals. They are commonly used in machine learning and optimal transport commu-
nities; see details in [3, Section 9].

To summarize, the neural mapping energies are functionals F written in terms of the
mapping functions f(θ, z). This allows us to perform optimization on the finite dimensional
space Θ instead of the infinite dimensional space P(Ω).

3.3. Neural mapping metric space. We next consider a mapping space parameterized
by a neural mapping function f(θ, ·). We can measure the difference between two neural
mapping functions by the L2 distance thanks to the following definition.

Definition 3 (Neural mapping distance). Define a distance function DistW : Θ×Θ → R
as

DistW(fθ0#pr, fθ1#pr)
2 =

∫
Z
∥f(θ0, z)− f(θ1, z)∥2pr(z)dz

=

d∑
m=1

Ez∼pr

[
∥fm(θ0, z)− fm(θ1, z)∥2

]
,
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where θ0, θ1 ∈ Θ are two sets of neural network parameters and ∥·∥ is the Euclidean norm
in Rd.

In the above definition, DistW represents a distance function for two given neural map-
ping functions f(θ0, ·) and f(θ1, ·). In fact, the L2 distance between neural mapping
functions induces a metric on neural network parameters. Similar Riemannian geometry
for feed-forward neural networks is also studied in [31].

We next consider the Taylor expansion of the distance function. Let ∆θ ∈ RD,

DistW(fθ+∆θ#pr, fθ#pr)
2

=
d∑

m=1

Ez∼pr

[
∥fm(θ +∆θ, z)− fm(θ, z)∥2

]
=

d∑
m=1

D∑
i=1

D∑
j=1

Ez∼pr

[
∂θifm(θ, z)∂θjfm(θ, z)

]
∆θi∆θj + o(∥∆θ∥2)

=∆θTGW(θ)∆θ + o(∥∆θ∥2).
Here GW is a Gram-type matrix function. We summarize its definition below.

Definition 4 (Neural mapping metric). Define a matrix function GW : Θ → RD×D. De-
note GW(θ) = (GW(θ)ij)1≤i,j≤D, such that

GW(θ)ij =
d∑

m=1

Ez∼pr

[
∂θifm(θ, z)∂θjfm(θ, z)

]
.

We also write

GW(θ) = Ez∼pr

[
∇θf(θ, z)∇θf(θ, z)

T
]
,

where we denote ∇θf(θ, z) = (∂θifm(θ, z))1≤i≤D,1≤m≤d ∈ RD×d.

From now on, we call (Θ, GW) the neural mapping metric space. Here we always assume
that GW(θ) is a positive definite matrix in RD×D.

3.4. Neural mapping dynamics. In this subsection, we derive some analogies of Wasser-
stein gradient flows in the neural mapping metric space (Θ, GW). Shortly, we apply them
to define the neural mapping dynamics and compare them with their counterparts in L2

mapping metric space and L2 Wasserstein metric probability space. From now on, we
assume that f is smooth w.r.t. parameter θ. This is not true for the ReLU activation
function, which will be studied in detail in later sections.

The next proposition provides gradient operators of a function F ∈ C2(Θ;R) in the
neural mapping metric space (Θ, GW).

Proposition 1 (Neural mapping gradient operators). The gradient operator of F in
(Θ, GW), gradWF (θ) = (gradWF (θ)k)

D
k=1, is given by

gradWF (θ)k =
D∑
i=1

G−1
W (θ)ki∂θiF (θ).
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Proof. We briefly derive the gradient operator of F in (Θ, GW) below. Suppose θ(t) = θt
is a smooth curve passing through the point θ(0) = θ. Consider a Taylor expansion of
F (θt) at t = 0 by

F (θt) =F (θ) + t · d
dt
F (θt)|t=0 + o(t)

=F (θ) + t · (GW(θ) · gradWF (θ), θ̇) + o(t),
(9)

where we denote d
dtθt|t=0 = θ̇. Comparing linear terms of t in (9), we have

(GW(θ) · gradWF (θ), θ̇) =
d

dt
F (θt)|t=0

=(∇θF (θ), θ̇),

for any θ̇ ∈ TθΘ = Rd. Thus

gradWF (θ) = G−1
W (θ)∇θF (θ).

□

We are ready to present the neural mapping gradient flow, which will be used for our
first-order algorithm in neural mapping optimization problems.

Proposition 2 (Neural mapping gradient flows). Consider an energy functional F : P(Ω) →
R. Then the gradient flow of function F (θ) = F(fθ#pr) in (Θ, GW) is given by

dθ

dt
= −gradWF (θ). (10)

In particular,

dθi
dt

=−
D∑
j=1

d∑
m=1

(
Ez∼pr

[
∇θf(θ, z)∇θf(θ, z)

T
])−1

ij
·

Ez̃∼pr

[
∇xm

δ

δp
F(p)(f(θ, z̃)) · ∂θjfm(θ, z̃)

]
,

where δ
δp(x) is the L2–first variation w.r.t. variable p(x), x = f(θ, z).

Proof. As the neural mapping metric is given in definition 4, it suffices to calculate the
formula for the Euclidean gradient ∂θjF (θ) as follows:

∂θjF (θ) =

∫
Ω
∂θjρθ(x)

δ

δp
F(ρθ)(x)dx

=

∫
Ω
−∇x ·

[
ρθ(x)∂θjf(θ, f(θ, ·)

−1(x)))
] δ
δp

F(ρθ)(x)dx

=

∫
Ω
∂θjf(θ, f(θ, ·)

−1(x)) · ∇x

(
δ

δp
F(ρθ)

)
(x)ρθ(x)dx

= Ez∼pr

[
∂θjf(θ, z) · ∇x

(
δ

δp
F(p)

)
(f(θ, z))

]
.

Here we denote ρθ = fθ#pr. □
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3.5. Neural projected Wasserstein flows. The dynamics in parameter space can be
formulated in terms of mappings and probability densities. For simplicity of discussion,
we demonstrate that the neural mapping gradient flow is a projected Wasserstein gradient
flow. Here the projection is from the full mapping space into a neural parameterized
mapping space. Concretely, we present the following reformulations of equation (10),
which are in terms of mapping functions and probability density functions. The proof is
based on the gradient flow equation in proposition 2 and the application of the chain rule.

Proposition 3 (Neural projected Wasserstein gradient flows). Dynamic (10) in term of
mapping functions f(θ, z) = (fm(θ, z))dm=1 leads to

∂

∂t
fm(θ(t), z) =−

D∑
i=1

D∑
j=1

d∑
n=1

∂θifm(θ, z)
(
Ez̃∼pr

[
∇θf(θ, z̃)∇θf(θ, z̃)

T
])−1

ij
·

Ez̃∼pr

[
∇xn

δ

δp(x)
F(p)(f(θ, z̃)) · ∂θjfn(θ, z̃)

]
.

We present several examples of neural mapping Wasserstein gradient flows from propo-
sition 2.

Example 4 (Neural projected linear transport equation). Consider a linear energy given
by

F(p) =

∫
Ω
V (x)p(x)dx.

In this case, the neural projected gradient flow satisfies

dθ

dt
= −G−1

W (θ) · Ez̃∼pr

[
∇θV (f(θ, z̃))

]
. (11)

In details,

dθi
dt

= −
D∑
j=1

(
Ez∼pr

[
∇θf(θ, z)∇θf(θ, z)

T
])−1

ij
· Ez̃∼pr

[
∇xV (f(θ, z̃)) · ∂θjf(θ, z̃)

]
.

Example 5 (Neural projected interaction transport equation). Consider an interaction
energy given by

F(p) =
1

2

∫
Ω

∫
Ω
W (x1, x2)p(x1)p(x2)dx1dx2.

In this case, the neural mapping gradient flow satisfies

dθ

dt
= −1

2
G−1

W (θ) · E(z1,z2)∼pr×pr

[
∇θW (f(θ, z1), f(θ, z2))

]
. (12)

In details,

dθi
dt

=−
D∑
j=1

(
Ez∼pr

[
∇θf(θ, z)∇θf(θ, z)

T
])−1

ij
·

E(z1,z2)∼pr×pr

[
∇x1W (f(θ, z1), f(θ, z2)) · ∂θjf(θ, z1)

]
.
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Example 6 (Neural projected negative entropy). Consider a negative entropy functional
given by

F(p) =

∫
Ω
U(p(x))dx.

In this case, the neural mapping gradient flow satisfies

dθ

dt
= −G−1

W (θ) · Ez∼pr

[
∇θÛ(

pr(z)

det(Dzf(θ, z))
)
]
, (13)

where Û(p) = U(p)/p. This is because:

F(fθ#pr) =

∫
Ω
U(p(f(θ, z)))df(θ, z)

=

∫
Z
U(

pr(z)

det(Dzf(θ, z))
)
det(Dzf(θ, z))

pr(z)
pr(z)dz

=Ez∼pr

[
Û(

pr(z)

det(Dzf(θ, z))
)
]
.

The choice U(p) = p log(p) and Û(p) = log(p) corresponds to the negative entropy. This
belongs to the family of internal energy. In details,

dθi
dt

=−
D∑
j=1

(
Ez∼pr

[
∇θf(θ, z)∇θf(θ, z)

T
])−1

ij
·

Ez∼pr

[
− tr

(
Dzf(θ, z)

−1 : ∂θjDzf(θ, z)
)
Û ′(

pr(z)

det(Dzf(θ, z))
)

pr(z)

det(Dzf(θ, z))

]
.

Here we denote tr(A : B) = tr(AB), for matrices A, B ∈ Rd×d.

The above examples are projected Wasserstein gradient flows in neural mapping met-
ric space. In particular, Examples 4, 5, 6 correspond to the following classical PDEs,
respectively.

∂tp(t, x) =∇x ·
(
p(t, x)∇xV (x)

)
, (14)

∂tp(t, x) =∇x ·
(
p(t, x)

∫
Ω
∇xW (x, y)p(t, y)dy

)
, (15)

∂tp(t, x) =∇x ·
(
p(t, x)∇xU

′(p(t, x))
)
. (16)

The above dynamics include potential transport, interaction transport, and porous medium
equations. The Fokker-Planck equation is a combination of the above first and third equa-
tions.

3.6. Algorithm. In this section, we discuss the implementations of gradient flows pro-
jected onto the parameter space. We apply the forward Euler discretization of the natural
gradient flow (10). Let h > 0 be the step size. Then the update is given by

θk+1 = θk − h
(
G̃W(θk)

)−1
∇θF̃ (θ

k) , (17)
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where G̃W(θ) = (G̃W(θ)ij)1≤i,j≤D ∈ RD×D, ∇θF̃ (θ) are empirical estimates of the matrix

GW and the gradient ∇F (θ) = {∂θjF (θ)}Dj=1, respectively. In details, if (zi)
M
l=1 ∼ pr,

where M is the number of empirical samples, then

G̃W(θ)ij =
1

M

M∑
l=1

d∑
m=1

∂θifm(zl, θ)∂θjfm(zl, θ) .

In practice, the condition number of G̃W(θ) could be very large and it is more stable to

use instead the pseudoinverse of G̃W(θ) in (17). Therefore, the update is

θk+1 = θk − hG̃W(θ)†∇θF̃ (θ
k) .

When the reference measure is a one-dimensional standard Gaussian distribution, GW(θ)
can be explicitly computed for our choice of neural network. In this case, we have

θk+1 = θk − hGW(θ)†∇θF̃ (θ
k) .

We summarize the above explicitly update formulas below.

Algorithm 1 Projected Wasserstein gradient flows

Input: Initial parameters θ ∈ RD; stepsize h > 0, total number of steps L, samples
{zi}Mi=1 ∼ pr for estimating G̃W(θ) and ∇θF̃ (θ).

for k = 1, 2, . . . , L do

θk+1 = θk − hG̃W(θ)†∇θF̃ (θ
k); (when GW(θ) is unknown)

or

θk+1 = θk − hGW(θ)†∇θF̃ (θ
k); (when GW(θ) is known)

end for

4. Numerical analysis on neural network projected gradient flows

In this section, we establish theoretical guarantees for the performance of the neural
projected dynamics. We start by deriving an analytic formula for the inverse of the
neural mapping metric of a special ReLU family in section 4.1. Based on the closed-
form projected dynamics equations, we can establish the truncated error analysis for the
projected dynamics in section 4.2. The analysis of truncated error for general dynamics
is presented in section 4.3.

4.1. Analytic formula for the inverse of neural mapping metric. In this section,
we consider the following special case of the ReLU model in 1D. We first rewrite the neural
network mapping function into the following form:

f(θ, z) =
1

N

N∑
i=1

aiσ(z − bi), σ(z) =

{
0, z < 0,

z, z ≥ 0.
(18)
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In particular, we combine ai, bi into one parameter in the 1D case. Under this reparam-
eterization, ais represent the slopes of each ReLU component and bis are the intercepts.
To make the last assumption on this ReLU network mapping function which facilitates
the analytic formula of the neural mapping metric, we require all the slope parameters to
stay non-negative, i.e. ai ≥ 0. Although this is an artificial assumption to enforce analyt-
icity, it is natural in the sense that positive slope parameters induce monotone mapping
function. Meanwhile, solutions of the Monge problems in 1D are known to be monotone.
In section 4.1, we plot a typical ReLU mapping function.

Figure 1. ReLU network mapping function considered in this section.
The figure plots a typical monotone map parameterized by the ReLU net-
work where the parameter ai is required to be positive.

We start with the analytic formula for the neural mapping metric, assuming the refer-
ence measure is given by pr(·) with associated cumulative distribution function F0(·).
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Proposition 4 (Neural mapping metric of two-layer ReLU network). The neural mapping
metric of the two-layer ReLU network with reference measure pr(·) is given as

GW =
1

N2

(
Gbb

W Gbw
W(

Gbw
W

)T
Gww

W

)
,

Gbb
W =



a21 (1− F0 (b1)) a1a2 (1− F0 (b2)) · · · a1aN (1− F0 (bN ))
a1a2 (1− F0 (b2)) a22 (1− F0 (b2)) · · · a2aN (1− F0 (bN ))

...
...

. . .
...

a1aN−1 (1− F0 (bN−1)) a2aN−1 (1− F0 (bN−1)) · · · aNaN−1 (1− F0 (bN ))

a1aN (1− F0 (bN )) a2aN (1− F0 (bN )) · · · a2N (1− F0 (bN ))


,

Gba
W = −


a1
∫∞
b1

(z − b1) pr(z)dz a1
∫∞
b2

(z − b2) pr(z)dz · · · a1
∫∞
bN

(z − bN ) pr(z)dz

a2
∫∞
b2

(z − b1) pr(z)dz a2
∫∞
b2

(z − b2) pr(z)dz · · · a2
∫∞
bN

(z − bN ) pr(z)dz
...

...
. . .

...
aN
∫∞
bN

(z − b1) pr(z)dz aN
∫∞
bN

(z − b2) pr(z)dz · · · aN
∫∞
bN

(z − bN ) pr(z)dz

 ,

(Gaa
W)ij =

∫ ∞

max{bi,bj}
(z − bj) (z − bi) pr(z)dz.

(19)

Proof. We first calculate the derivative of the neural network map f(θ, z) w.r.t. network
parameters θ

∂bif(θ, z) =

{
0, z < bi,

− ai
N
, z > bi,

∂aif(θ, z) =
1

N
σ (z − bi) , (20)

while the value at the singular point bi does not exist and can be omitted from the measure-
theoretical perspective. According to definition 4, one can evaluate different blocks of the
metric tensor as the following integral(

Gbb
W

)
ij
=

∫
R
∂bif(θ, z)∂bjf(θ, z)pr(z)dz =

aiaj
N2

(1− F0 (max{bi, bj})) ,(
Gba

W

)
ij
=

∫
R
∂bif(θ, z)∂ajf(θ, z)pr(z)dz = − ai

N2

∫ ∞

max{bi,bj}
(z − bj) pr(z)dz,

(Gaa
W)ij =

∫
R
∂aif(θ, z)∂ajf(θ, z)pr(z)dz =

1

N2

∫ ∞

max{bi,bj}
(z − bj) (z − bi) pr(z)dz.

□

For general reference measure pr(·), the matrix elements of the Gba
W, G

aa
W relate to the

first and second moments of the measure which may not have an analytic formula. Here,
we consider a special neural mapping model with a Gaussian reference measure, thus
rendering the metric with analytic elements.
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Corollary 1. With the same setting as proposition 4 and Gaussian reference measure,
the matrix element of the neural mapping metric can be written analytically as(

Gba
W

)
ij
= pr(bi)− bj(1− F0(bi)), bi > bj .

(Gaa
W)ij = bibj(1− F0(bi))− bjpr(bi) + (1− F0(bi)), bi > bj .

(21)

The other half of the elements can be obtained via switching bi, bj.

Proof. The proof is obtained by elementary integration calculation∫ ∞

bi

(z − bj) pr(z)dz

= pr(z)
∣∣∣bi
∞

− bj(1− F0(bi)) = pr(bi)− bj(1− F0(bi)),∫ ∞

bi

(z − bj) (z − bi) pr(z)dz

= bibj(1− F0(bi))− (bi + bj)pr(bi) + bipr(bi) + (1− F0(bi))

= bibj(1− F0(bi))− bjpr(bi) + (1− F0(bi)).

(22)

□

Now, we focus on the upper right corner Gbb
W of the neural mapping metric. We will

establish an analytical formula for the inverse of this matrix.

Theorem 2 (Analytic inverse of the neural mapping metric). The inverse matrix of the
Gbb

W block in proposition 4 can be written analytically as

1

N2

(
G−1

W (b)
)
ij
=



1

a2i

(
1

F0(bi)− F0(bi−1)
+

1

F0(bi+1)− F0(bi)

)
, i = j ̸= 1, N,

1

a2i

(
1

F0(bN )− F0(bN−1)
+

1

1− F0(bN )

)
, i = j = N,

1

a2i

1

F0(b2)− F0(b1)
, i = j = 1,

− 1

aiai−1

1

F0(bi)− F0(bi−1)
, j = i− 1,

− 1

aiai+1

1

F0(bi+1)− F0(bi)
, j = i+ 1,

0, o.w.

(23)

Proof. First, we decompose the neural mapping metric into the following matrix product

GW =
1

N2
D


1− F0(b1) 1− F0(b2) · · · 1− F0(bN )
1− F0(b2) 1− F0(b2) · · · 1− F0(bN )

...
...

. . .
...

1− F0(bN ) 1− F0(bN ) · · · 1− F0(bN )

D, (24)
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where D = diag(a1, a2, · · · , aN ) is a diagonal matrix. Then, it is direct to check that the
middle matrix has the following tri-diagonal analytic inverse below:

1
F0(b2)−F0(b1)

− 1
F0(b2)−F0(b1)

0 · · · 0

− 1
F0(b2)−F0(b1)

1
F0(b2)−F0(b1)

+ 1
F0(b3)−F0(b2)

− 1
F0(b3)−F (b2)

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
F (bN )−F (bN−1)

+ 1
1−F (bN )

 .

(25)
Multiplying this matrix with the inverse of the diagonal matrix D on both sides concludes
this proof. □

This analytic form of the inverse metric will be used intensively in the next subsection
to prove the consistency of the numerical scheme based on the ReLU neural network.

4.2. Truncated error analysis of the neural projected Wasserstein gradient flows
based on analytic formula. In this section, we perform the numerical analysis of the
neural mapping projected Wasserstein flows introduced in section 3.5 based on the analytic
formula in section 4.1. Because of the analytic inverse of the neural mapping metric, the
right-hand side of the Wasserstein projected gradient flow can be calculated explicitly, and
one can thus talk about its consistency and order of accuracy following the same spirit
as classical numerical analysis. We perform this derivation for the Wasserstein projected
gradient flows of the potential functional explicitly.

Let us first recall that the formula for neural projected Wasserstein gradient flow is
given by

dθ

dt
= −G−1

W (θ) · Ez̃∼pr

[
∇θV (f(θ, z̃))

]
. (26)

We have the following analytic formula for the projected gradient flow in the ReLU network
model that we introduced in section 4.1.

Proposition 5 (Wasserstein gradient flow of potential functionals in ReLU network). The
projected potential flow in the ReLU network model eq. (18) has the following form:

ḃi =
N

ai

[Ez∼pr [V
′(f(b, z))1[bi,bi+1]]

F0(bi+1)− F0(bi)
−

Ez∼pr [V
′(f(b, z))1[bi−1,bi]]

F0(bi)− F0(bi−1)

]
, i ̸= 1, N,

ḃN =
N

aN

[Ez∼pr [V
′(f(b, z))1[bN ,∞)]

1− F0(bN )
−

Ez∼pr [V
′(f(b, z))1[bN−1,bN ]]

F0(bN )− F0(bN−1)

]
,

ḃ1 =
N

a1

Ez∼pr [V
′(f(b, z))1[b1,b2]]

F0(b2)− F0(b1)
.

(27)

Using the trapezoid rule to calculate the integration gives the following spatial discretiza-
tion, which can be used to simulate the projected gradient flow:

ḃi =
N

2ai

(
V ′(f(b, bi+1))− V ′(f(b, bi−1))

)
. (28)

Proof. It suffices to calculate the gradient of the linear potential functional in this model.
Let us start with the calculation of the functional form of the potential energy in the ReLU
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network mapping model as follows

Ex∼fb#pr [V (x)] = Ez∼pr [V (f(b, z))], (29)

where we use the change of the integration variable above. Therefore, the gradient of this
functional w.r.t. b can be simplified to

∂biEz∼pr [V (f(b, z))] = Ez∼pr [∂biV (f(b, z))] = −ai
N

Ez∼pr [V
′(f(b, z))1[bi,∞)(z)], (30)

where we use 1A to denote the characteristic function on the interval A. Now, plugging
this result into the projected gradient flow eq. (26) with the analytical formula for the
inverse matrix G−1

W in theorem 2, we obtain

ḃi =
N2

a2i

(
1

F0(bi)− F0(bi−1)
+

1

F0(bi+1)− F0(bi)

)
ai
N

Ez∼pr [V
′(f(b, z))1[bi,∞)(z)]

− N2

aiai−1

1

F0(bi)− F0(bi−1)

ai−1

N
Ez∼pr [V

′(f(b, z))1[bi−1,∞)(z)]

− N2

aiai+1

1

F0(bi+1)− F0(bi)

ai+1

N
Ez∼pr [V

′(f(b, z))1[bi+1,∞)(z)]

=
N

ai

[Ez∼pr [V
′(f(b, z))1[bi,bi+1](z)]

F0(bi+1)− F0(bi)
−

Ez∼pr [V
′(f(b, z))1[bi,bi+1](z)]

F0(bi)− F0(bi−1)

]
.

(31)

Taking a close look at the terms inside the brackets, one finds that they are calculating
the average value of V ′ inside the intervals [bi−1, bi], [bi, bi+1] weighted by the base distri-
bution pr(·). Lastly, in order to complete the spatial discretization, one needs to choose
a quadrature rule to calculate the integration in the above formula. One example is the
trapezoid rule:

Ez∼pr [V
′(f(b, z))1[bi,bi+1](z)] ≈ (F0(bi+1)− F0(bi))

V ′(f(b, bi)) + V ′(f(b, bi+1))

2
,

which provides the desired discretization. Special attention should be paid to the boundary
node b1, bN to obtain their corresponding evolution equation and discretization. □

Given this spatial discretization, we can analyze the order of consistency of it, which is
treated in the following proposition.

Proposition 6 (Consistency of the projected gradient flow). Assume potential functional
satisfies ∥V ′′∥∞ <∞. The spatial discretization eq. (28) is of first-order accuracy both in
the mapping and the density coordinates.
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Proof. We prove this statement from two directions, i.e. consistency in the space of map-
ping distribution and consistency in the space of mapping function. We have

∂tf(b(t), z) = ḃT∂bf(b, z)

= −
N∑
i=1

N

2ai

(
V ′(f(b, bi+1))− V ′(f(b, bi−1))

) ai
N

1[bi,∞)(z)

= −
N∑
i=1

V ′(f(b, bi+1))− V ′(f(b, bi−1))

2
1[bi,∞)(z)

= − V ′(f(b, bi+1)) + V ′(f(b, bi))

2
, z ∈ [bi, bi+1].

(32)

In the above derivation, we slightly cheat in the derivation so we can use the consistent
formula for the evolution equations for all the nodes bi. It is easy to conclude that our
discretization corresponds to the evolution of the mapping function f of constant speed

−V ′(f(b,bi+1))+V ′(f(b,bi))
2 on each interval [bi, bi+1]. Now, recall that in mapping space, the

Wasserstein gradient flow of the potential function V (x) corresponds to the velocity field
−V ′(x). Therefore, given that the length of each interval is of order ∆b, we conclude that
our spatial discretization is first order consistent on the mapping space.

Next, we prove the statement for the mapping distribution. To do this, we need to
derive the evolution equation for the mapping distribution according to eq. (28). We have
for x ∈ [f(b, bi), f(b, bi+1)]

∂tp(t, x) = ḃT∂bp(t, x)

=
N∑
i=1

N

2ai

(
V ′(f(b, bi+1))− V ′(f(b, bi−1))

) ai
N

(
∂xp(t, x)1[f(b,bi),∞)(x) + p(t, x)δf(b,bi)(x)

)
= ∂xp(t, x)

N∑
i=1

V ′(f(b, bi+1))− V ′(f(b, bi−1))

2
1[f(b,bi),∞)(x)

+ p(t, x)
N∑
i=1

V ′(f(b, bi+1))− V ′(f(b, bi−1))

2
δf(b,bi)(x)

= ∂xp(t, x)
V ′(f(b, bi+1)) + V ′(f(b, bi))

2
− p(t, x)

V ′(f(b, bi+1)) + V ′(f(b, bi−1))

2
δf(b,bi)(x).

(33)
A quick method to derive the formula of ∂bp(t, x) is to view it as a probability flow
corresponds to the cotangent vector ∂bf and then use the Wasserstein metric to calculate
via a continuity equation as in proposition 2. Recall that the potential gradient flow in
the density manifold is given by

∂tp(t, x) = ∇ · (p(t, x)∇V (x)) = ∂xp(t, x)∂xV (x) + ∂xxp(t, x)V (x). (34)

Comparing eq. (33) and eq. (34), it is not difficult to recognize that the first term in eq. (33)
approximates the continuous counterpart in eq. (34) in the first order. The remaining parts
correspond to each other: the approximation is first order not in the strong sense, but
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rather in the weak sense as there is Dirac measure in eq. (33). Combining the above two
parts, we finish the proof. □

4.2.1. Projected dynamics of Negative entropy gradient flow. The potential functional can
be viewed as a linear functional whose projected gradient flow has a rather simple ex-
pression. The corresponding formula has a more complex expression for general nonlinear
internal energy, such as entropy. We begin with calculating the negative entropy functional
of a neural mapping measure f#pr:

H (f#pr) = Ex∼cont(f#pr) [log f#pr (x)] + F0 (b1) logF0 (b1)

= Ez∼cont(pr) [log f#pr (f (z))] + F0 (b1) logF0 (b1)

= Ez∼cont(pr)

[
log

pr (z)

f ′ (z)

]
+ F0 (b1) logF0 (b1)

= Ez∼cont(pr) [log pr (z)]− Ez∼cont(pr)

[
log f ′ (z)

]
+ F0 (b1) logF0 (b1) ,

(35)

where we use the Monge-Ampère equation f#pr (f (z)) =
pr(z)
f ′(z) in one dimension. Moreover,

notice that the last term corresponds to the entropy of the discrete part of distribution f#pr
as the ReLU mapping function maps (−∞, b1] to 0 and cont (·) refers to the continuous
part of a distribution. Similarly, the relative entropy functional is given by

DKL

(
f#pr

∥∥ν) = Ez∼cont(pr) [log pr (z)]− Ez∼cont(pr)

[
log f ′ (z)

]
− Ez∼cont(pr) [log ν (f (z))] + F0 (b1) (logF0 (b1)) .

Moreover, the gradient flow of the KL-divergence differs from that of negative entropy
only by a term that appears in the derivation in the potential functional gradient flow.
This This also manifests in calculus on the density manifold between the heat and Fokker-
Planck equations. Now, one calculates the derivative of continuous parts w.r.t. parameter
bi

∂biEx∼pr

[
log f ′ (x)

]
=


log

∑i−1
j=1 aj∑i
j=1 aj

pr (bi) , i ̸= 1,

− pr (b1)
log a1
N

, i = 1.

∂biEx∼pr [log ν (f (x))] = Ex∼pr

[
ν ′ (y (x)) ∂biy (x)

ν (y (x))

]
.

The first derivation is based on the observation that the function log f ′ (x) is a step function

which changes its value at bi. It takes value log
∑i−1

j=1 aj at interval [bi−1, bi]. Hence

the desired conclusion follows, where pr (bi) comes in since this is the expectation w.r.t.
distribution pr (x). Therefore, the derivative of the entropy and relative entropy functional
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reads as follows

∂biH (f#pr) =


− log

∑i−1
j=1 aj∑i
j=1 aj

pr (bi) , i ̸= 1,

pr (b1)
(
logF0 (b1) + 1 + log

a1
N

)
, i = 1.

∂biDKL

(
f#pr

∥∥ν) = Ex∼p

[
ν ′ (f (x)) ∂bif (x)

ν (f (x))

]
− log

∑i
j=1 aj∑i−1
j=1 aj

pr (bi) .

(36)

With all these preparations, we can write out the gradient flow equation of the entropy
functional:

ḃi =
1

F0 (bi)− F0 (bi−1)

 log
∑i−1

j=1 aj∑i
j=1 aj

pr (bi)

a2i
−

log
∑i−2

j=1 aj∑i−1
j=1 aj

pr (bi−1)

aiai−1



+
1

F0 (bi+1)− F0 (bi)

 log
∑i−1

j=1 aj∑i
j=1 aj

pr (bi)

a2i
−

log
∑i

j=1 aj∑i+1
j=1 aj

pr (bi+1)

aiai+1

 , i = 2, · · · , N − 1,

ḃ1 = − 1

a1(F0(b2)− F0(b1))

pr (b1) (logF0 (b1) + 1 + log a1
N

)
a1

+
log

∑1
j=1 aj∑2
j=1 aj

pr (b2)

a2

 ,

˙bN =
log

∑N−1
j=1 aj∑N
j=1 aj

pr (bN )

a2N (1− F0 (bN ))
− 1

F0 (bN )− F0 (bN−1)

 log
∑N−2

j=1 aj∑N−1
j=1 aj

pr (bN−1)

aNaN−1
−

log
∑N−1

j=1 aj∑N
j=1 aj

pr (bN )

a2N

 .

(37)
Similar to the proof in proposition 6, one can carefully expand the neural projected dy-
namics of the entropy functional and prove that it converges to the heat equation in the
limit that number of neurons tends to infinity and the gap between neurons nodes tends
to zero.

4.2.2. Analysis of the long-time existence of the neural-projected heat flow. In general, the
projected Wasserstein gradient flow does not necessarily need to be a linear dynamics even
though the original gradient flow is linear, e.g., the projected gradient flow correspond-
ing to the heat equation is highly nonlinear. This poses great difficulties in analyzing
and establishing the long-time existence of the projected dynamics, as mentioned in [25].
Specifically, we focus on the nonlinear projected gradient flow of the entropy, which cor-
responds to the Heat equation in the full space. If we view all nodes bi, i ∈ [N ] as grid
points and view the scheme as an example of the moving mesh method [17], then the
mesh quality is an important quantity to observe during simulation. One does not want
the mesh quality to decrease too much and even become degenerate during the simulations.
Therefore, we consider the well-posedness of the non-linear ODE eq. (37).
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Proposition 7. The neural projected dynamics eq. (37) of the heat flow is well-posed, e.g.
the solution extends to arbitrary time.

Proof. We consider a special scenario when two adjacent nodes bi, bi+1 become close to
each other while maintaining a relatively large gap with all other nodes, i.e.

o(1) = bi+1 − bi = o(bp − bq), ∀q ∈ [N ]\{i, i+ 1}, p = i, i+ 1. (38)

WLOG, we assume bi+1 = bi+∆b > bi and reduce the following term which appears both
in their time derivative expression in eq. (37)

1

F0 (bi)− F0 (bi−1)

 log
∑i−1

j=1 aj∑i
j=1 aj

pr (bi)

a2i
−

log
∑i−2

j=1 aj∑i−1
j=1 aj

pr (bi−1)

aiai−1


=

(
1

pr(bi)∆b
+O(1)

)(
log

i− 1

i
pr(bi)− log

i− 2

i− 1
pr(bi−1)

)
=

(
1

pr(bi)∆b
+O(1)

)(
log

i− 1

i
pr(bi)− log

i− 2

i− 1
(pr(bi) +O(∆b))

)
=

(
1

pr(bi)∆b
+O(1)

)(
log

i2 − 2i+ 1

i2 − 2i
pr(bi) +O(∆b)

)
=

1

∆b
log

i2 − 2i+ 1

i2 − 2i
+O(1) → +∞, ∆b→ 0+,

(39)

where we use the simplified model where all the weights ai are set to 1 and Taylor expansion
to conclude that F0 (bi)−F0 (bi−1) = pr(bi)∆b+O(∆b2) and p(bi−1) follows the same spirit.

This term appears with positive sign in the RHS of ḃi and negative sign in the RHS of ḃi−1,
indicating that the left (right) node bi−1(bi) will move fast towards left (right) respectively.
This repulsion behavior guarantees that the Lagrangian coordinates will never collide with
each other and the mesh degeneracy will not appear.

Next, we analyze our scheme using the time derivative of the Lagrangian coordinate.
It is a well-known result that under the heat flow the mean of the distribution is fixed.
Therefore, due to the diffusive nature of the heat equation, one can imagine that the
position of the quantile greater than the mean should move right in the heat equation
and vice versa. Suppose x ∈ [bi, bi+1] is a quantile with bi greater than the mean 0. As
the base measure is a standard Gaussian distribution whose probability density function
decreases over [0,∞), we conclude that

0 < bi < bi+1 =⇒ pr(bi) > pr(bi+1) =⇒ log

∑i−1
j=1 aj∑i
j=1 aj

pr (bi) < log

∑i
j=1 aj∑i+1
j=1 aj

pr (bi+1) < 0.

(40)
Consequently, the Lagrangian coordinate fb(z) is indeed moving towards right, which
matchs the intuition from the heat equation.

□
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The neural projected dynamics can be understood as a Lagrangian scheme [8, 24, 26]
with neural network basis. Specifically, fixing basis as ReLU components in eq. (18),
one can view ai’s and bi’s as the shape and location coefficients of the basis functions
respectively. Updating ai’s is similar to classical finite-element method with fixed basis
functions, while adding the degree of freedom of bi’s is similar to the moving mesh method.
The Lagrangian schemes can handle the problem of the free boundary such as porous
medium, e.g. in [24], they use finite element method to solve the mapping function of the
porous medium equation with high accuracy. While most Lagrangian schemes are based
on updating the ai’s parameters, our methods have more flexibility and expressivity as it
takes more degree of freedom into account. The primal-dual structure of the Wasserstein
gradient flow also leverages a lot of usage of Lagrangian schemes [8].

On the other hand, our numerical algorithm and the moving mesh method. The prin-
cipal ingredients of the moving mesh method include the equidistribution principle, the
moving mesh equation, and the method of lines approach [36]. The moving mesh equation
is solved during the simulation to ensure the adaptivity such that the mesh can resolve
to the detailed structure. In many classical moving mesh methods, the mesh equations
are solved separately from the governing PDE itself to guarantee the adaptivity of the
numerical methods. This implies that how the mesh change will not depend explicitly on
the underlying PDE. There also exist moving mesh methods such that the mesh updates
take into account of the governing PDE (e.g., the arbitrary Lagrangian-Eularian meth-
ods [5]). From this perspective, the projected dynamics provide a PDE-specific moving
mesh equation, i.e. the mesh moved according to the PDE dynamics to simulate which
is more adaptive and efficient. Moreover, through a detailed study of the simple case,
we can establish a theoretical guarantee on the quality of our moving mesh method in
proposition 7.

4.3. Truncated error analysis for general neural projected Wasserstein gradient
flow. The proof of the consistency of the numerical scheme relies on the analytic formula
derived before which is restrictive. In this section, we provide another methodology to
prove the consistency of the numerical scheme we derived in this paper. Instead of calcu-
lating the evolution of the mapping explicitly, we calculate the deviation of the projected
gradient w.r.t. the original gradient direction. Let us first state a geometric proposition
where we attempt to be as general as possible. This result is also proved in [25] and we
prove it here for completeness.

Let X be a manifold (possibly infinite-dimensional) with a Riemannian metric gX, which
provides an inner product on the tangent space TxX (possibly infinite-dimensional Hilbert
space) for each x ∈ X. Let Y ⊂ X be its submanifold with induced metric denoted by gY,
i.e. ∀y ∈ Y:

gY(y) : TyY× TyY → R, gY(y)(v, w) = gX(y)(v, w), ∀v, w ∈ TyY.

Furthermore, let H : X → R be a functional defined over X and we use H̃ : Y → R for its
restriction on Y. We have the following proposition.



NUMERICAL ANALYSIS ON NEURAL PROJECTED DYNAMICS 25

Proposition 8. Let ∇gXH(y) ∈ TyX (∇gYH̃(y) ∈ TyY) denote the gradient of the func-
tional H w.r.t. the metric gX (gY) at y ∈ X (y ∈ Y). Then, we have

∇gYH̃(y) = Π(y)∇gXH(y), (41)

where Π(y) is the orthogonal projection operator from TyX to TyY.

Proof. As Y is a submanfold of X, we have inclusion map I(y) : TyY → TyX and restriction
map I∗(y) : T ∗

yX → T ∗
y Y for each y ∈ Y. Both mappings are linear and are adjoint to each

other. Therefore, viewing the metric tensor gY(y) as a linear mapping between TyY → T ∗
y Y,

we have

gY(y) = I∗(y) ◦ gX(y) ◦ I(y), ∀y ∈ Y.

Moreover, the inner product gX(y) on the Hilbert space TyX induces an orthogonal de-
composition:

TyX = TyY⊕ TyY
⊥, ∀y ∈ Y,

along with an orthogonal projection operator Π(y). Now, recall that the Riemannian
gradient ∇gXH(y) is defined as

gX(y)∇gXH(y) = dH(y).

The differential of H(·) and H̃(·) is related by

dH̃(y) = I∗(y)dH(y), ∀y ∈ Y.

Therefore, gathering all the ingredients, we have the following commutative diagram

TyY TyX

∈∇gXH(y)

dH̃(y) ∈ T ∗
y Y T ∗

yX

∈

dH(y)

I(y)

gY(y) gX(y)

pr(y)

I∗(y)

As Π(y) is the orthogonal projection, we conclude that

∇gYH̃(y) = (I∗(y)gX(y)I(y))
−1I∗(y)dH(y) = Π(y)∇gXH(y).

□

We can prove the consistency of our numerical schemes over different PDEs with the
Wasserstein gradient flow structures by leveraging this proposition in the case X = P∞

2 (R)
is the density manifold and gX is chosen to be the W2 metric. To achieve this, we can
rewrite eq. (41) as

∇gYH̃(y) = argminv∈TyY ∥∇gXH(y)− v∥gX . (42)

Therefore, ∀v ∈ TyY will provide an upper bound for the truncated error of our approx-
imation scheme. Moreover, if we assume that the submanifold Y ⊂ P∞

2 (R) is identical
to a generative model via mapping function fθ#, i.e. Y = fθ#pr with θ ∈ Θ and pr the
base measure. Then, the projected gradient direction can also be characterized using the
metric over the mapping space, i.e.

∇ΘH̃(θ) = argminv∈TθΘ

∫
(∇θH(θ)(x)− v(x))2fθ#pr(x)dx, (43)
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where θ is mapped to point y and we abuse the notion of ∇ΘH(θ) to denote the gradient
vector in the mapping coordinate. Moreover, we can perform truncated error analysis
directly over the mapping space, which is more convenient and clear. Let us focus on
the ReLU network mapping eq. (18). The tangent space in the mapping coordinate is
spanned by the vectors in eq. (20). Meanwhile, the tangent space in the density coordinate
is spanned by

∂bifθ#pr(x) =
ai
N
p′r(x)1[f(θ,bi),∞), ∂aifθ#pr(x) =

f−1
θ (x)− bi

N
p′r(x)1[f(θ,bi),∞), (44)

where the notation fθ(·) = f(θ, ·). Here we use the fact that the mapping fθ is linear with

slope
∑i

j=1 aj
N over the interval [bi, bi+1]. If bis are fixed, the projected dynamics belongs

to projection-based model reduction [6] where the basis is fixed to be neurons. While
changing bis correspond to model reduction with adaptive basis.

Proposition 9. The numerical scheme based on ReLU network mapping is consistent
with order 2 using both a, b parameters and of order 1 with either a or b parameters.

Proof. In view of eq. (20), we have that the approximation using only ∂bifθ is simply piece-
wise constant approximation. As each ingredient has the shape of a Heaviside function,
it is consistent with order 1. While the approximation using both ∂bifθ and ∂aifθ is a
piece-wise linear approximation, thereby consistent of order 2. This is because another set
of ReLU-shape functions is added to the basis. □

The connection between the ReLU neural network and the linear finite element space is
systematically studied in [15]. They theoretically establish that at least two hidden layers
are needed in a ReLU neural network to represent any linear finite element functions in
Ω ⊂ Rd when d ≥ 2.

Based on this concrete understanding of the structure of the tangent space, we can
calculate the local truncation error of the projected gradient flow.

Theorem 3. Given a tangent vector v(x) ∈ Tfθ#prP(R) whose approximated tangent vector
in projected dynamics is given by ∇θH(θ), the local truncation error in the ReLU network
mapping is given by

N∑
i=1

∫ bi+1

bi

v2(fθ(z))pr(z)dx−

(∫ bi+1

bi
v(fθ(z))(z −mi)pr(z)dz

)2
∫ bi+1

bi
(z −mi)2pr(z)dz

−

(∫ bi+1

bi
v(fθ(z))pr(z)dz

)2
F0(bi+1)− F0(bi)

(45)
where mi is the center of mass of pr(z) in [bi, bi+1] and bN+1 is understood as +∞. Under
the assumption that v has bounded second order derivative and bi+1 − bi < ∆b,∀i.

∥v(x)−∇θH(θ)∥2L2(fθ#pr)
=

1

4

(∑N
j=1 aj

N

)2 ∥∥v′′∥∥∞O(∆b4). (46)

Proof. As mentioned in the above theorem, the approximation using ReLU network map-
ping is equivalent to piecewise linear approximation in the mapping coordinate. Moreover,
at each node bi, the slope and value of the The function does not need to be continuous,
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which is exactly the same as the linear spline interpolation. The main difference is that
the grid points bi are not fixed since they can evolve over time. Therefore, we rewrite the
optimization problem eq. (43) as

argmin
ci,di

N∑
i=1

∫ fθ(bi+1)

fθ(bi)
(v(x)− cix− di)

2 fθ#pr(x)dx, (47)

which can be further reduced to N − 1 separated optimization problem of ci, di over small
interval [fθ(bi), fθ(bi+1)]. For each subproblem, we have∫ fθ(bi+1)

fθ(bi)
(v(x)− cix− di)

2 fθ#pr(x)dx =

∫ bi+1

bi

(v(fθ(z))− cifθ(z)− di)
2 pr(z)dz.

This is a quadratic optimization problem of ci, di with positive definite Hessian matrix.
Taking derivative w.r.t. ci, di, we obtain∫ bi+1

bi

(v(fθ(z))− cifθ(z)− di) pr(z)dz = 0,∫ bi+1

bi

fθ(z) (v(fθ(z))− cifθ(z)− di) pr(z)dz = 0.

Now, using the fact that fθ(z) is a linear function over the interval [bi, bi+1], we have

cifθ(z) + di =

∫ bi+1

bi
v(fθ(z))(z −mi)pr(z)dx∫ bi+1

bi
(z −mi)2pr(z)dz

(z −mi) +

∫ bi+1

bi
v(fθ(z))pr(z)dx

F0(bi+1)− F0(bi)
. (48)

Plugging back, we obtain the approximation error as∫ bi+1

bi

(v(fθ(z))− cifθ(z)− di)
2 pr(z)dz

=

∫ bi+1

bi

v(fθ(z)) (v(fθ(z))− cifθ(z)− di) pr(z)dz

=

∫ bi+1

bi

v2(fθ(z))pr(z)dz −

(∫ bi+1

bi
v(fθ(z))(z −mi)pr(z)dz

)2
∫ bi+1

bi
(z −mi)2pr(z)dz

−

(∫ bi+1

bi
v(fθ(z))pr(z)dz

)2
F0(bi+1)− F0(bi)

.

(49)
Next, we assume all the intervals [bi, bi+1] are short (of scale O(∆)) and consider expanding
the v as Taylor series around mi, i.e.

v(fθ(z)) = v(fθ(mi)) +

∑i
j=1 aj

N
v′(fθ(mi))(z −mi)

+
1

2

(∑i
j=1 aj

N

)2

v′′(fθ(mi))(z −mi)
2 +O(∆3).

(50)
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Here, we use the fact that fθ(z) is a linear function with slope
∑i

j=1 aj
N over the interval

[bi, bi+1]. Plugging into eq. (48), we obtain

cifθ(z)− di =

∑i
j=1 aj

N
v′(fθ(mi))(z −mi) + v(fθ(mi))

+
1

2

(∑i
j=1 aj

N

)2

v′′(fθ(mi))

∫ bi+1

bi
(z −mi)

2pr(z)dz

F0(bi+1)− F0(bi)

+
1

2

(∑i
j=1 aj

N

)2

v′′(fθ(mi))

∫ bi+1

bi
(z −mi)

3pr(z)dz∫ bi+1

bi
(z −mi)2pr(z)dz

(z −mi) +O(∆3).

(51)
Notice that the first two terms are exactly the zero-th and first order term of the v(fθ(z))
function which is similar to classical linear function approximation by discarding all the
higher order term. The appearance of residue terms is due to approximation in L2(p)
sense. To calculate the L2-approximation error, we have1

2

(∑i
j=1 aj

N

)2

v′′(fθ(mi))

2

∫ bi+1

bi

(
(z −mi)

2 −
∫ bi+1

bi
(z −mi)

2pr(z)dz

F0(bi+1)− F0(bi)
−
∫ bi+1

bi
(z −mi)

3pr(z)dz∫ bi+1

bi
(z −mi)2pr(z)dz

(z −mi) +O(∆3)

)2

pr(z)dz

=

1
2

(∑i
j=1 aj

N

)2

v′′(fθ(mi))

2

O((bi+1 − bi)
5)pr(bi) +O((bi+1 − bi)

6)pr(bi).

(52)
In summary, the L2 approximation error consists of the sum over all the interval [bi, bi+1],

with each term depends on ai through the factor
∑i

j=1 aj
N , on bi through (bi+1 − bi)

5 and
the term v′′(fθ(mi)), which also contains ai, bi. □

Let us calculate a special case of the Fokker-Planck equation

∂tp(t, x)−∇ · (p(t, x)∇V (x))− γ∆p(t, x) = 0.

Under the Wasserstein metric, the tangent vector in the mapping space is given by

v(x) = −V ′(x)− γ
p′(t, x)

p(t, x)
.

In this case, we have that

v′′(x) = −V (3)(x)− γ
p(3)(t, x)p(t, x)2 + 2p′(t, x)3 − 3p(t, x)p′(t, x)p′′(t, x)

p(t, x)3
.

The above function will determine the approximation quality of the projected dynamics.

Remark 1. The high-order neural mapping function class and associated high-order pro-
jected dynamics can also be derived following a similar procedure. For example, we can
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add a quadratic term of the ReLU function into the network mapping function as

f (θ, z) =
1

N

N∑
i=1

aiσ (z − bi) + ciσ
2 (z − bi) . (53)

Notice that adding high order ReLU term is different from increasing the layers in the
ReLU neural network which corresponds to function composition. We leave the detailed
analysis and numerical experiments on high-order methods in future work.

5. Numerical Examples

In this section, we provide several numerical experiments to test our algorithm and
theories. We focus our attention on the linear transport equation, Fokker-Planck equation,
porous medium equations, and Keller-Segel equation. They all correspond to some specific
energy functionals in the probability space equipped with the Wasserstein-2 distance.

5.1. Neural Network structure. We first describe the structure of our neural network
for the experiment. We focus on two-layer neural network with ReLU as activation func-
tions.

f(θ, z) =
N∑
i=1

ai · σ(z − bi) +
2N∑

i=N+1

ai · σ(bi − z) . (54)

Here θ ∈ R4N represents the collection of weights {ai}2Ni=1 and bias {bi}2Ni=1. To simplify
our notation, we have absorbed the 1/N factor into ai’s. At initialization, we set ai = 1/N
for i ∈ {1, . . . , N} and ai = −1/N for i ∈ {N + 1, . . . , 2N}. To choose the bi’s, we first
set b = linspace(−B,B,N) for some positive constant B (e.g. B = 4 or B = 10). We
then set bi = b[i] for i = 1, . . . , N and bj = b[j − N ] + ε for j = N + 1, . . . , 2N . Here
ε = 5×10−6 is a small offset which will be explained later in Section 5.3. Our initialization
is chosen such that f(θ, ·) approximates the identity map at initialization. In practice, we
find it beneficial to perform a rescaling of the weights ai’s. We replace ai with ai/β for
some fixed constant β > 0. And we initialize ai = β/N for i ∈ {1, . . . , N} and ai = −β/N
for i ∈ {N + 1, . . . , 2N}. This rescaling makes sure that f(θ, ·) still approximates the
identity map at initialization. We provide a brief intuition for rescaling. Let us consider
g(a, b, z) = a · σ(b− z) for b = O(1), z = O(1), a = O(1/N). Then ∂ag = σ(z − b) = O(1).
On the other hand, ∂bg = a · σ′(b− z) = O(1/N). This simple calculation shows that the
partial gradient of (54) with respect to weights and bias are of different scales. Therefore,
to make them the same scale, a natural choice is choosing β = O(N).

Remark 2. The choice of neural network (54) is slightly more complicated than the one
studied in Section 4. This symmetric structure is used in numerical experiments to over-
come ReLU’s drawback such that only the positive input is activated. Moreover, (54)
allows us to construct an approximation to the identity map over R easily. However, the
results of Proposition 9 still hold for (54). And Theorem 3 can be generalized to neural
network of the form given in (54) in a straightforward manner. The metric tensor GW is
now a 4N × 4N matrix. The calculations of the individual components of GW follow the
same procedure presented in proposition 4.
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Remark 3. We remind our readers that our algorithm takes the form of

θk+1 = θk − hGW(θ)†∇θF̃ (θ
k) .

During implementation, ∇θF̃ (θ) can be obtained by backpropagating F̃ (θ) in the case of
Example 4 and Example 5. However, we need to pay special attention to ∂biF (θ) when
dealing with Example 6. This will be elaborated further in Section 5.3 and Section 5.4.

5.2. Linear transport PDE. We investigate the linear transport PDE given by Eq. (14)
with several choices of potential V (x), corresponding to the gradient flow of them under
the Wasserstein metric. For a simple potential function, this example can serve as a sanity
check of the projected dynamics formulation. The trajectories of the particles for Eq. (14)
(i.e. Lagrangian formulation) follows the following ODE

ẋ(t) = −∇V (x) . (55)

Let us denote by T (t, z0) the solution to Eq. (55) with initial condition x(0) = z0. In other
words, T (t, z0) is the transport map at time t starting from position z0. We define the
error at time t by

error =

∫ ∞

−∞
|f(θt, z0)− T (t, z0)|p0(z0) dz0

≈ 1

N1

N1∑
j=1

|f(θt, zj)− T (t, zj)|p0(zj) , (56)

where we discretize the integration domain by N1 equally spaced points to approximate
the integral. And p0(z0) denotes the initial distribution of z0. Below we test our projected
dynamics under three choices of potential functions and investigate the convergence behav-
ior of two projected dynamics: (i) fixing the bias terms bi and only updating the weights
ai and (ii) updating both bias bi and weights ai. Note that when the bias terms bi’s are
fixed, we have that GW ∈ R2N×2N . Recall that we are essentially simulating the gradient
flow on parameter θt given by Eq. (11). We use M = 5 × 105 particles sampled from a

standard Gaussian distribution for approximating Ez̃∼pr

[
V (f(θ, z̃))

]
. Once we have the

empirical loss function

Ez̃∼pr

[
V (f(θ, z̃))

]
≈ 1

M

M∑
i=1

V (f(θ, zi)) ,

we can backpropagate this loss to obtain

Ez̃∼pr

[
∇θV (f(θ, z̃))

]
≈ 1

M

M∑
i=1

∇θV (f(θ, zi)) ,

which will be used in the update of θt given by Eq. (11).

5.2.1. Quadratic potential. As the first example for linear transport PDE, we consider the
quadratic potential V (x) = 1

2(x− µ0)
2 as a sanity check. The stationary distribution will

be the delta mass supported at µ0. Using the method of characteristics, one can show
that the solution at time t > 0 is given by

p(t, x) = p0
(
(x− µ0)e

t + µ0
)
et , (57)
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Figure 2. Left: log-log plot of linear transport PDE with a quadratic
potential. The y-axis represents log10 error defined by (56). x-axis rep-
resents log10(N). The bias terms bi are initialized based on Section 5.1
with B = 4. Red line represents results when only the weights terms are
updated. Black line represents results when both weights and bias are up-
dated. Right: Mapping comparison between T (t, z) given by Eq. (58) and
our computed solution f(θt, z).

where p0(x) = p(0, x) is the initial distribution. In Lagrangian coordinates, the transport
map of a point z0 at time t is given by

T (t, z0) = µ0 + e−t(z0 − µ0) . (58)

One can check that T (z0, 0) = z0 and T (t, z0) → µ0 as t→ ∞. It is worthwhile mentioning
that at each t > 0, the Lagrangian map xt(z0) : z0 7→ T (t, z0) is a linear map. For
simplicity, we take δ0 = 0. We choose dt = 10−3 and run for 1000 steps. We compare
our numerical results with Eq. (58). The result is demonstrated in Fig. 2. In Fig. 2b,
we have provided a visualization of the analytic solution to the linear transport PDE in
Lagrangian coordinates at t = 1 and our computed solution. As shown in Fig. 2b, the
analytic transport map is linear while the neural mapping function is piecewise linear.
Increasing N does not necessarily give a smaller approximation error. In fact, we see
in Fig. 2a that larger N usually gives a larger error, commonly known as overfitting in
machine learning.

5.2.2. Quartic potential. Let us consider V (x) = (x − 1)4/4 − (x − 1)2/2. The analytic
solution of the transport map is given by

T (t, z0) =

sgn(z0 − 1)
et√

(z0 − 1)−2 + e2t − 1
+ 1, z0 ̸= 1 ,

1, z0 = 1 .

(59)

Basic settings are the same as the previous case. We choose dt = 2×10−4 and run for 1000
steps. We compare our numerical results with Eq. (59). We present our results in Fig. 3.
In Fig. 3a, we observe a clear decrease in error as the number of neurons becomes larger.
In Fig. 3b, we visualize the analytic solution to the linear transport PDE in Lagrangian
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Figure 3. Left: log-log plot of linear transport PDE with quartic poly-
nomial potential. The y-axis represents log10 error defined by (56). x-axis
represents log10(N). The bias terms bi are initialized based on Section 5.1
with B = 4. Red line represents results when only the weights terms are
updated. Black line represents results when both weights and bias are up-
dated. Right: Mapping comparison between T (t, z) given by Eq. (59) and
our computed solution f(θt, z).

coordinates at t = 0.2 and our computed solution. We can see that even when the optimal
transport map is nonlinear, our computed solution still matches the analytic solution very
accurately.

5.2.3. Sixth order polynomial potential. Let us consider V (x) = (x− 4)6/6. The analytic
solution of the transport map is given by

T (t, z0) =


4 + sgn(z0 − 4)

1√
2
√

1
4(z0−4)4

+ t

, z0 ̸= 4 ,

4, z0 = 4 .

(60)

We choose dt = 10−6 and run for 1000 steps. The reason to choose such a small step
size is that the ODE (55) is stiff when V (x) is a sixth order polynomial. This can be
readily seen by considering the forward Euler scheme for solving (55), which results in
the popular gradient descent algorithm. The step size that can guarantee convergence in
gradient descent is at most 2/L where L is the Lipschitz constant of the gradient function.
In our case, the gradient function ∇V (x) is not globally Lipschitz. Even if we consider a
fixed interval (−l, l), the Lipschitz constant is L = 5(l+4)4. If we take l = 10, then we get

L = O(10−6). We compare our numerical results with Eq. (60). We have chosen {zj}N1
j=1

to be a uniform mesh of size N1 = 4 × 106 on [−6, 6] in Eq. (56) and p0 is the standard
Gaussian distribution. Note that N1 is chosen to be much larger than the number of
neurons N in the network mapping function as it is used to evaluate the accuracy of our
algorithm. We present our results in Fig. 4. We can see a clear decrease in error when
N increases from Fig. 4a. It is also clear from Fig. 4a that updating both weights and
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Figure 4. Left: log-log plot of linear transport PDE with sixth order
polynomial potential. The y-axis represents log10 error defined by (56). x-
axis represents log10(N). The bias terms bi are initialized based on Section
5.1 with B = 10 for dashed line and B = 4 for solid line. Red lines
represent results when only the weights terms are updated. Black lines
represent results when both weights and bias are updated. Right: Mapping
comparison between T (t, z) given by Eq. (60) and our computed solution
f(θt, z).

bias tends to have a smaller error than just updating the weights, although the difference
becomes smaller when N increases and more mesh points become available. Comparing
dashed and solid lines in Fig. 4a, we find that the initialization of bi also plays a role in
the overall performance of our solution. The error is smaller when the initial mesh points
(i.e., the bi’s) are more concentrated near the center of the reference measure. In our case,
the reference measure is a standard Gaussian, whose measure is “almost” supported on
[−4, 4]. Hence we see that the solid lines show a smaller error than the dashed lines in
Fig. 4a. In Fig. 4b, we have given a visualization of the analytic solution to the linear
transport PDE in Lagrangian coordinates at t = 10−3 and our computed solution. It is
worth noting from Fig. 4b that our learned Lagrangian map approximates the analytic
Lagrangian map well near the center of the reference distribution, which is concentrated
near the origin. Even though the error of the learned Lagrangian map is larger outside of
[−4, 4], the overall error from Eq. (56) is still small since the reference measure (standard
Gaussian measure) on R \ [−4, 4] is exponentially small.

Remark 4. According to Proposition 9, updating both ai and bi is a second order method.
This can be seen from Fig. 4a when N is small. When N is large, the numerical advantage
of updating both ai and bi is less significant compared with updating only ai. This is
partially explained by the condition number of the GW(θ) grows too large when θ contains
all of ai and bi. This phenomenon is also observed in our other experiments. Using the
implicit scheme or proximal scheme (without solving the linear system that involves GW(θ)
directly) might help with this difficulty, which we leave as a future study.
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5.3. Fokker-Planck Equation. We consider Fokker-Planck equations. In general, there
is no closed-form solution for either the Eulerian or Lagrangian coordinate except for some
special forms of potential V (e.g. quadratic). We can still have an approximation of the
analytic transport map by realizing that the optimal transport map of a point z0 at time
t is given by

T (t, z0) = Ft

(
F−1
0 (z0)

)
(61)

where Ft is the cumulative distribution function (CDF) of p(t, x). F0 has a closed form
expression when we choose our reference measure to be a standard Gaussian. But we
still need to know p(t, x). Therefore, to investigate the performance of our algorithm, we
need to use a numerical solver to solve for p(t, x). We choose a center difference in space,
implicit in time discretization as our choice of numerical solver with vanishing boundary
condition. Recall that we are essentially simulating the gradient flow on parameter θt
given by Eq. (11) and Eq. (13). To calculate the derivative of the energy functionals, we
used M = 106 particles sampled from a standard Gaussian distribution for approximating

Ez∼pr

[
V (f(θ, z)) + Û( pr(z)

Dzf(θ,z)
)
]
. Approximating Ez∼pr

[
∇θV (f(θ, z))

]
is straightforward

and has been explained in detail in Section 5.2. On the other hand, some care needs to be

taken when approximating Ez∼pr

[
∇θÛ( pr(z)

Dzf(θ,z)
)
]
as explained in Section 4.2.1. Suppose

that all of the {bk}2Nk=1 are different. Take 2 ≤ j ≤ N . Let us also assume that the bk’s
are ordered so that b1 ≤ b2 ≤ · · · ≤ bN .

Ez∼pr∂bj log(Dzf(θ, z)) = Ez∼pr∂bj log

(
N∑
i=1

ai1[bi,∞)(z)−
2N∑

i=N+1

ai1(−∞,bi](z)

)

= pr(bj) log

(∑j−1
i=1 ai −

∑2N
i=N+1 ai1(−∞,bi](bj)∑j

i=1 ai −
∑2N

i=N+1 ai1(−∞,bi](bj)

)
. (62)

And

Ez∼pr∂b1 log(Dzf(θ, z)) = pr(b1) log

( ∑2N
i=N+1−ai1(−∞,bi](b1)

a1 −
∑2N

i=N+1 ai1(−∞,bi](b1)

)
. (63)

Similarly, if we assume that bN+1 ≥ bN+2 ≥ · · · ≥ b2N and let N + 2 ≤ j ≤ 2N , we have

Ez∼pr∂bj log(Dzf(θ, z)) = Ez∼pr∂bj log

(
N∑
i=1

ai1[bi,∞)(z)−
2N∑

i=N+1

ai1(−∞,bi](z)

)

= pr(bj) log

(∑N
i=1 ai1[bi,∞)(bj)−

∑j
i=N+1 ai∑N

i=1 ai1[bi,∞)(bj)−
∑j−1

i=N+1 ai

)
. (64)

And

Ez∼pr∂bN+1
log(Dzf(θ, z)) = pr(bN+1) log

(∑N
i=1 ai1[bi,∞)(bN+1)− aN+1∑N

i=1 ai1[bi,∞)(bN+1)

)
. (65)

Note that during implementation, we do not have to order the bj ’s in order to evaluate
the above partial derivatives. Let 0 < δ ≤ 1

2 mini ̸=j |bi − bj |. Then by a straightforward
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calculation, we have

Ez∼pr∂bj log(Dzf(θ, z)) =

pr(bj) log
(
Dzf(θ,bj−δ)
Dzf(θ,bj)

)
, 1 ≤ j ≤ N .

pr(bj) log
(

Dzf(θ,bj)
Dzf(θ,bj+δ)

)
, N + 1 ≤ j ≤ 2N .

(66)

In our experiment, we set δ = ε/2 where ε is the small offset we introduced in Section 5.1
during initialization.

5.3.1. Quadratic potential. As a first example for the Fokker-Planck equation, we use the
quadratic potential as a sanity check. Here V (x) is chosen to be a quadratic function.
This is one of the rare cases where the Fokker-Planck equation has a closed-form analytic
solution. In Lagrangian coordinates, the trajectories of the particles follow the following
SDE, commonly known as the Ornstein-Uhlenbeck process:

dXt = −γ0(Xt − µ0)dt+ σ0dWt . (67)

The corresponding Langevin equation for the density p(t, x) is given by

∂p

∂t
= γ0

∂

∂x

(
(x− µ0)p

)
+D

∂2p

∂x2
, (68)

where D = σ20/2. It can be shown that the solution to (68) is given by

p(t, x) =

√
γ0

2πD(1− e−2γ0t)

∫ ∞

−∞
exp
(
− γ0

2D

(x− µ0 − x′e−γ0t)2

1− e−2γ0t

)
p0(x

′) dx′ , (69)

where p0(x) = p(0, x) is the initial distribution. In our experiment, p0(x) is a standard
Gaussian. Then (69) implies that p(t, x) is also Gaussian with mean µ0(1 − e−γ0t) and

variance e−2γ0t + D(1−e−2γ0t)
γ0

. Then the transport map is given by the optimal transport

map between two Gaussians, which has a closed form expression. In this example, the
transport map is

T (t, z) = µ0(1− e−γ0t) + z
√
e−2γ0t +D(1− e−2γ0t)/γ0 , (70)

which is always a linear map, no matter the choice of µ0, γ0 and D. We useM = 106 parti-

cles sampled from a standard Gaussian distribution for approximating Ez∼pr

[
∇θV (f(θ, z))+

∇θÛ( pr(z)
Dzf(θ,z)

)
]
. We choose dt = 10−3 and run for 1000 steps. We used a neural network

with m = 32 and B = 4 following the setup in Section 5.1. We have the following two
choices of parameters corresponding to different dynamics.

• Moving and widening Gaussian. We choose γ0 = 1, µ0 = 30, σ0 = 4. Under this
setting, the solution at time t is a Gaussian distribution with mean 30(1 − e−t)
and variance e−2t+8(1−e−2t). This evolution is shown on the left panel of Fig. 5.

• Moving and shrinking Gaussian. We choose γ0 = 1, µ0 = 10, σ0 = 0.01. Under
this setting, the solution at time t is a Gaussian distribution with mean 10(1−e−t)
and variance e−2t +5× 10−5(1− e−2t). This evolution is shown on the right panel
of Fig. 5.

Our results are demonstrated in Fig. 5. As shown in Fig. 5, the computed density closely
follows the analytic density of the Fokker-Planck equation from t = 0 to t = 1.
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Figure 5. Density evolution of Eq. (68). Orange curve represents the
solution given by Eq. (69). Blue rectangles represent the histogram using
106 particles in 100 bins from t = 0 to t = 1. Left panel: a Gaussian
distribution shifting to the right with increasing variance. Right panel: a
Gaussian distribution shifting to the right with decreasing variance.

5.3.2. Quartic potential. We consider V (x) = (x − 1)4/4 − (x − 1)2/2. We choose dt =
2 × 10−4 and run for 1000 steps. We compare our numerical results with the transport
map computed from Eq. (61). The results are shown in Fig. 6. In Fig. 6a, we observe
a clear decrease in error when the number of neurons increases. In Fig. 6b, we plot a
comparison between our computed Lagrangian map f(θ, z) vs the transport map computed
from Eq. (61) using a numerical solver. The evolution of the density is demonstrated in
Fig. 6c from t = 0 to t = 0.2.

5.3.3. Sixth order polynomial potential. We consider V (x) = (x − 4)6/6. We choose
dt = 10−6 and run for 1000 steps. We compare our numerical results with the trans-
port map computed from Eq. (61). The results are shown in Fig. 7. We have observed
similar behavior as in the case of linear transport PDE: the error becomes smaller when N
increases. Moreover, comparing dashed and solid lines in Fig. 7a we see that as the initial
mesh points (i.e. the bi’s) concentrate nearer the center of our reference measure, the
errors are smaller. In Fig. 7b we show a comparison between Lagrangian maps computed
by our method and the numerical solver. We have also plotted the evolution of the density
in Fig. 7c from t = 0 to t = 10−3.

5.4. Porous Medium Equation. We consider Example 6 with the functional U(p(x)) =
1

m−1p(x)
m, m > 1. This choice of U yields the porous medium equation

∂tp(t, x) = ∆p(t, x)m . (71)

It is known that Eq. (71) admits solutions given by the Barenblatt profile

p(t, x) = (t0 + t)−α
(
C − β∥x∥2(t0 + t)−2α/d

) 1
m−1

+
, (72)

where x ∈ Rd, α = d
d(m−1)+2 , β = (m−1)α

2dm , t0 > 0 and C is a normalization constant so

that Eq. (72) integrates to 1 for all t ≥ 0. In this example, we consider the case when
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Figure 6. Left: log-log plot of Fokker-Planck equation with a quartic
polynomial potential. The y-axis represents log10 error defined by (56).
x-axis represents log10(N). The bias terms bi are initialized based on Sec-
tion 5.1 with B = 4. Red lines represent results when only the weights
terms are updated. Black lines represent results when both weights and
bias are updated. Middle: mapping comparison between T (t, z) (using
Eq. (61)) and our computed solution f(θt, z). Right: density evolution of
the Fokker-Planck equation with a quartic polynomial potential. Orange
curve represents the density p(t, x) computed by a numerical solver. Blue
rectangles represent the histogram of 106 particles in 100 bins from t = 0
to t = 0.2.

m = 2. Then α = 1
3 , β = 1

12 and C = 31/3

4 . Eq. (72) also suggests that the support of

the reference measure p0(x) = p(x, 0) is bounded in [−32/3t
1/3
0 , 32/3t

1/3
0 ], which could help

us with initializing the bias. More precisely, we cound initialize our bi’s following Section

5.1 with B = 32/3t
1/3
0 . In our experiment, we set t0 = 1. We use dt = 10−3 and run

for 1000 steps. We use M = 106 particles sampled from p(x, 0) defined in Eq. (72) using

importance sampling to approximate Ez∼pr

[
∇θÛ( pr(z)

Dzf(θ,z)
)
]
, where Û(p) = p. Similar

to the case of Fokker-Planck equation, special care needs to be taken when evaluating

∂biEz∼pr

[
Û( pr(z)

Dzf(θ,z)
)
]
. Using similar analysis from Section 5.3, we have that

∂biEz∼pr

[
Û(

pr(z)

Dzf(θ, z)
)
]
=

{
pr(bi)

2

Dzf(θ,bi−δ) −
pr(bi)

2

Dzf(θ,bi)
, 1 ≤ i ≤ N .

pr(bi)
2

Dzf(θ,bi)
− pr(bi)

2

Dzf(θ,bi+δ) , N + 1 ≤ i ≤ 2N .
(73)

Our results are demonstrated in Fig. 8. In Fig. 8b, 8c we have N = 32; both the bias and
weights are updated.

5.5. Keller-Segel equation. We consider the one-dimensional modified Keller-Segel equa-
tion, which is a combination of interaction energy in Example 5 and potential energy in
Example 6:

∂tp(t, x) = ∇ ·
(
p(t, x)∇(U ′(p) +W ∗ p)

)
, (74)

where U(p) = p log p and W (x) = 2χ log |x|, χ > 0 is a constant. The second moment of
p(t, x) has an analytic form given by

Ez∼p(·,t)[z
2] = 2(1− χ)tEz∼p(·,0)[z

2] . (75)



38 ZUO, ZHAO, LIU, OSHER, AND LI

0.6 0.8 1.0 1.2 1.4

3.0

2.5

2.0

1.5

1.0

(a) Error

6 4 2 0 2 4 6

0

1

2

3

4

5

6
analytic
computed

(b) Mapping comparison

4 2 0 2 4
0.0

0.2

0.4
t=0.0000

2 0 2 4
0.0

0.2

0.4

t=0.0002

0 2 4
0.00

0.25

0.50

t=0.0004

0 2 4
0.0

0.5

t=0.0006

0 2 4
0.0

0.5

1.0
t=0.0008

0 2 4
0.0

0.5

1.0

t=0.0010

(c) Density evolution

Figure 7. Left: log-log plot of Fokker-Planck equation with a sixth order
polynomial potential. The y-axis represents log10 error defined by (56). x-
axis represents log10(N). The bias terms bi are initialized based on Section
5.1 with B = 10 for the dashed line and B = 4 for the solid line. Red
lines represent results when only the weights terms are updated. Black
lines represent results when both weights and bias are updated. Middle:
mapping comparison between T (t, z) (using Eq. (61)) and our computed
solution f(θt, z). Right: density evolution of the Fokker-Planck equation
with a sixth order polynomial potential. Orange curve represents the den-
sity p(t, x) computed by a numerical solver. Blue rectangles represents the
histogram of 106 particles in 100 bins from t = 0 to t = 10−3.
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Figure 8. Left: log-log plot of porous medium equation. The y-axis rep-
resents log10 error defined by (56). x-axis represents log10(N). The bias

terms bi are initialized based on Section 5.1 with B = 32/3. Red lines repre-
sent results when only the weights terms are updated. Black lines represent
results when both weights and bias are updated. Middle: mapping compar-
ison between T (t, z) (using Eq. (61)) and our computed solution f(θt, z).
Right: density evolution of the porous medium equation. Orange curve
represents the density p(t, x) given by Eq. (71). Blue rectangles represent
the histogram of 106 particles in 100 bins from t = 0 to t = 1.

It is clear from Eq. (75) that χ = 1 is a critical value. When χ > 1, the solution blows
up as t → ∞. So we consider two cases: χ = 1.5, and χ = 0.5. We present our results in
Fig. 9, 10 and 11. We used 2000 particles with a standard Gaussian initial distribution.
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Figure 9. Second moment comparison between our numerical solution
and analytic solution (75). x-axis represents time.
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Figure 10. Density evolution of Keller-Segel equation with different χ.
Blue rectangles represent the histogram of 106 particles in 100 bins from
t = 0 to t = 0.3.
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Figure 11. Lagrangian mapping of Keller-Segel equation with different χ
at t = 0.3.
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We set dt = 3 × 10−4 and run for 1000 steps. The interaction term W ∗ p is evaluated
using the 2000 particles with self-interaction excluded. We used a neural network with
N = 32 and B = 4 following the setup and initialization in Section 5.1. We update both
the bias and weights terms in our experiment.

6. Discussion

This paper analyzes the neural network projected dynamics for one-dimensional Wasser-
stein gradient flows of general energy functionals. For two-layer neural network functions
with ReLU activations, we analyze the convergence and stability issues for the proposed
numerical schemes from location parameter b and scale parameter a. In numerical ex-
periments, we demonstrate the second-order spatial domain accuracy as discussed in the
numerical analysis.

In future work, we shall study neural projected dynamics as a computational framework
for building theoretical guaranteed machine learning numerical schemes. Various topics in
this direction remain to be studied. First, we shall design neural network approximations
to approximate the initial value of high-dimensional PDEs, which traditional PDE solvers
cannot efficiently solve due to the curse of dimensionality. In particular, how can we
understand the numerical accuracy of deep neural network functions in high dimensions
when approximating PDEs? Next, we shall generalize the neural projected dynamics to
dynamical systems for conservative-dissipative equations in statistical physics. The equa-
tion includes Hamiltonian structures induced from the conservative system and the related
mean-field control problems. Furthermore, considering the closed relationship between the
Wasserstein density manifold and sampling algorithms, we shall investigate sampling us-
ing the projected dynamics on neural parameter spaces and study their theoretical and
statistical properties. We also consider the time-implicit (proximal-type) computations of
the proposed algorithm [19,23], which could improve the performance and stability of the
scheme.
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[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space

of probability measures. Springer Science & Business Media, 2005.
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