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Abstract. In the present work, we develop a novel particle method for a general class of mean field control
problems, with source and terminal constraints. Specific examples of the problems we consider include the dynamic
formulation of the 𝑝-Wasserstein metric, optimal transport around an obstacle, and measure transport subject to accel-
eration controls. Unlike existing numerical approaches, our particle method is meshfree and does not require global
knowledge of an underlying cost function or of the terminal constraint. A key feature of our approach is a novel way
of enforcing the terminal constraint via a soft, nonlocal approximation, inspired by recent work on blob methods for
diffusion equations. We prove convergence of our particle approximation to solutions of the continuum mean-field
control problem in the sense of Γ-convergence. A byproduct of our result is an extension of existing discrete-to-
continuum convergence results for mean field control problems to more general state and measure costs, as arise
when modeling transport around obstacles, and more general constraint sets, including controllable linear time in-
variant systems. Finally, we conclude by implementing our method numerically and using it to compute solutions
the example problems discussed above. We conduct a detailed numerical investigation of the convergence properties
of our method, as well as its behavior in sampling applications and for approximation of optimal transport maps.
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1. Introduction. The goal of the present paper is to develop a particle method for solving
the following mean-field control problem:

min
(𝜇,𝐮)∈(𝑚0,𝑚1)∫

1

0 ∫ℝ𝑑
𝜓(𝐮(𝑦, 𝑡))𝑑𝜇𝑡(𝑦)𝑑𝑡 + ∫

1

0 ∫ℝ𝑑
𝐿(𝑦, 𝜇𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡(⋆)

(𝑚0, 𝑚1) ∶=
{

(𝜇,𝐮) ∶ 𝜇 ∈ 𝐴𝐶([0, 1];1(ℝ𝑑)) , 𝐮 ∈ 𝐿1
𝑑𝜇𝑡⊗𝑑𝑡

(ℝ𝑑 × [0, 1];𝑈 ))

𝜕𝑡𝜇𝑡 + ∇ ⋅
(

(𝐅(⋅, 𝜇𝑡)𝜇𝑡 + 𝐮(⋅, 𝑡)𝜇𝑡
)

= 0, 𝜇0 = 𝑚0 𝜇1 = 𝑚1
}

.

In particular, we seek an evolving probability measure 𝜇 and a control 𝐮, constrained to take
values in a vector space 𝑈 , so that (i) 𝜇 evolves from an initial measure 𝑚0 toward a terminal
measure 𝑚1, (ii) (𝜇,𝐮) satisfy the continuity equation constraint, subject to additional affects
from a measure dependent vector field 𝐅, and (iii) (𝜇,𝐮) accomplish this while minimizing the
integrals of the control cost 𝜓 and the state and measure cost 𝐿. See section 2.1 for precise
definitions of the relevant function spaces and notion of solution.

Problems of the form (⋆) arise in a variety of contexts, including statistical mechanics,
biology, economics, and control theory; see [32, 16, 17, 20, 31, 39, 41, 42, 15, 12, 21, 35, 13]
and the references therein. More recently, problems of this form have also attracted interest in
the machine learning community, in the context of sampling and generative modeling [3, 36].
The main contribution of the present work is a new method for computing optimal solutions of
(⋆) via a particle approximation: see equation (MFC𝜀,𝛿,N) and its numerical implementation
in section 4. We prove convergence of this approximation, in the sense of Γ-convergence, and
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then implement the method numerically to compute several fundamental examples of (⋆),
including the dynamic formulation of the 𝑝-Wasserstein distance, optimal transport around
obstacles, and measure transport subject to acceleration controls.

Traditionally, numerical methods for solving mean field control problems with terminal
constraints have relied on an Eulerian grid-based approach, such as that proposed in Benamou
and Brenier’s original work on the dynamic formulation of the 2-Wasserstein distance [11].
While this approach has been valuable, especially in lower-dimensional contexts [1, 26, 27], it
presents a notable limitation in high dimensions. In contrast, our particle method is inherently
meshfree, thus feasible in high dimensions.

A second difference between our method and classical methods is that our approach com-
putes the optimal trajectory from𝑚0 to𝑚1 by updating the location of each individual particle
using only local information from 𝑚1 near that particle. This is in contrast to classical grid-
based approaches, for which the terminal constraint 𝑚1 must be known globally at all grid
points. As a consequence of this, we believe our approach has promise as an optimal trans-
port based sampling method, interpreting the final particle locations at time 𝑡 = 1 as the
samples of 𝑚1. Furthermore, as is evident in our numerical experiments (see section 4.4), the
final particle locations obtained by our method exhibit more structure than traditional iid sam-
ples, which can be advantageous when using the samples to approximate integrals of smooth
functions against 𝑚1.

Our approach is also different from existing methods for solving (⋆) based on a La-
grangian transport map approach, in which one reformulates the problem as a Monge problem
and the solution is given by an optimal transport map [2, 34, 22]. Classical methods for com-
puting such a map demand an explicit, closed-form expression for the cost function, which is
unavailable in many scenarios, such as optimal transport around obstacles. Furthermore, even
when an optimal transport map is found, further computation is required to infer the optimal
trajectories. In contrast, our particle approach does not require global knowledge of an un-
derlying cost function, and it directly outputs approximate optimal trajectories. Moreover, in
cases where the exact optimal transport map possesses strong monotonicity properties, such
as the dynamic formulation of the p-Wasserstein distance, interpolating between these parti-
cle trajectories can then give a numerical approximation of the optimal transport map. (See
section 4.8 for an error analysis of this approximation in the case 𝑝 = 2.)

Our approach is strongly inspired by recent work by Fornasier, Lisini, Orrieri, and Savaré
[30], which studied the convergence of finite agent controls to (⋆), in the mean field limit.
In this work, the authors analyze when solutions of a mean field control problem without a
terminal constraint, 𝜇1 = 𝑚1, may be approximated by particle solutions of a spatially discrete
optimization problem. The heuristic idea behind this approach can be seen as follows: given
an approximation of 𝑚0 by an empirical measure, 𝑚0 ≈ (1∕𝑁)

∑𝑁
𝑖=1 𝛿𝑦𝑖 , {𝑦𝑖}

𝑁
𝑖=1 ⊆ ℝ𝑑 , if

the velocity field 𝐯 = 𝐅 + 𝐮 in the continuity equation constraint is sufficiently regular, the
continuity equation constraint reduces to a system of ordinary differential equations for the
trajectories of the particles, �̇�𝑖(𝑡) = 𝐯(𝑦𝑖(𝑡), 𝑡), where 𝜇𝑡 = (1∕𝑁)

∑

𝑖=1 𝛿𝑦𝑖(𝑡), and the spatial
integrals in the objective function reduce to finite sums.

The main strategy of the present paper is to extend the approach developed by Fornasier
et. al. [30] to the setting of mean field problems with terminal constraints (⋆), while at the
same time generalizing the hypotheses on the state and measure cost 𝐿 and the constraint
set 𝑈 . Indeed, a byproduct of our result is that we prove convergence of the discrete to the
continuum problems under these weaker assumptions, which is new even in the absence of
a terminal constraint. On the other hand, our extension to control problems with a terminal
constraint requires a novel approach, via a soft, nonlocal approximation of the constraint. This
is inspired by classical vortex blob methods for the Euler and Navier Stokes equations [9, 10]
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and the aggregation equation [23], which have more recently been extended to the case of
diffusion equations [18, 24, 25, 19, 37, 38, 14].

With this strategy in mind, we consider solutions of (⋆) under the following assumptions
on the source and target distributions 𝑚0 and 𝑚1, the range of the control map 𝑈 , the state and
measure cost 𝐿, the control cost 𝜓 , and the measure dependent vector field 𝐅:

ASSUMPTION 1.1. We suppose that the following hold:
(i) 𝑚0, 𝑚1 ∈ 1(ℝ𝑑) with 𝑑𝑚1(𝑥) = 𝑚1(𝑥)𝑑𝑥 for 𝑚1 ∈ 𝐿2(ℝ𝑑).

(ii) 𝑈 ⊆ ℝ𝑑 is a subspace.
(iii) 𝐿 ∶ ℝ𝑑 × 1(ℝ𝑑) → [0,+∞] satisfies one of the following:

(a) 𝐿 is jointly uniformly continuous and {𝐿 = +∞} = ∅;
(b) 𝐿 is independent of the second variable, i.e., 𝐿(𝑦, 𝜇) = 𝐿(𝑦, 𝜈), for all 𝑦 ∈ ℝ𝑑 ,

𝜇, 𝜈 ∈ 1(ℝ𝑑), {𝐿 = +∞} is open, and 𝐿 is continuous on {𝐿 < +∞}.
(iv) 𝜓 ∶ 𝑈 → [0,+∞) ∶ 𝑢 ↦ 1

𝑝 |𝑢|
𝑝, for 𝑝 > 1,

or, more generally, 𝜓 may be any function satisfying Assumption 2.1 below;
(v) 𝐅 ∶ ℝ𝑑 × 1(ℝ𝑑) → ℝ𝑑 is jointly uniformly continuous and there exist constants

𝐶𝐹 , 𝐶 ′
𝐹 ≥ 0 so that

|𝐅(𝑦, 𝜇)| ≤ 𝐶𝐹 + 𝐶 ′
𝐹

(

|𝑦| + ∫ℝ𝑑
|𝑧|𝑑𝜇(𝑧)

)

, ∀𝑦 ∈ ℝ𝑑 , 𝜇 ∈ 1(ℝ𝑑).

The main distinction between the above hypotheses and previous work by Fornasier, et. al.
[30] is item (iiib), which is of interest when the state and measure cost 𝐿 is used to enforce an
obstacle; see section 1.2 below. We also note that we commit a mild notational abuse in part
(i) above: if a measure 𝑚 is absolutely continuous with respect to Lebesgue measure, we use
𝑚 to denote both the measure and its density with respect to Lebesgue. See also Remark 4.1
below, for an approach to relaxing the assumption 𝑚1 ∈ 𝐿2(ℝ𝑑) in the context of numerical
simulation.

Of particular interest in the present paper, and the cases for which we obtain the strong-
est convergence results, are the cases of an unconstrained control 𝑈 = ℝ𝑑 and the case of a
controllable linear time invariant system, 𝐿 = 0, 𝐹 (𝑦, 𝜇) = 𝐴𝑦, for which the system is con-
trollable between any two states and supp 𝑚0 ⊆ 𝑁(𝐴); see Theorem 1.9. While the former was
considered by Fornasier, et. al. [30], to our knowledge the latter is new in context of particle
approximation of mean field control, with or without a terminal constraint. A key motivation
underlying both of these hypotheses is that they ensure the discrete optimization problem at
the particle level is feasible, in the sense that there exists an element of the constraint set for
which the objective function is finite.

The remainder of the introduction is organized as follows. In Section 1.1, we describe
our particle approximation and state our main results. In Section 1.2, we describe three key
examples of mean field control problems that motivate our Assumption 1.1 above. In Section
1.3, we outline the strategy of our approach.

1.1. Main results. In order to state our main results, we begin by introducing an equiv-
alent formulation of our mean-field control problem (⋆) in momentum coordinates. This is
motivated by the fact that, in the original formulation, 𝐮 belongs to a function space that de-
pends on 𝜇, and we seek to remove this dependence.

Define the control cost functional
Ψ ∶ (ℝ𝑑 × [0, 1];𝑈 ) × 𝐶([0, 1];1(ℝ𝑑)) → [0,+∞],

Ψ(𝝂|𝜇) ∶=

{

∫ 1
0 ∫ℝ𝑑 𝜓(𝐮(𝑦, 𝑡))𝑑𝜇𝑡(𝑦)𝑑𝑡 if 𝑑𝝂(𝑦, 𝑡) = 𝐮(𝑦, 𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡,
+∞ otherwise.
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Likewise, define the penalization for the terminal constraint,  ∶ 1(ℝ𝑑) → [0,+∞],

(1.1)  (𝜇) ∶=

{

0 if 𝜇 = 𝑚1,
+∞ otherwise.

The original problem (⋆) is equivalent to the following mean field control problem in mo-
mentum coordinates

min
(𝜇,𝝂)∈(𝑚0)

(𝜇, 𝝂), (𝜇, 𝝂) ∶= (𝜇, 𝝂) +  (𝜇1),(MFC)

(𝜇, 𝝂) ∶= Ψ(𝝂|𝜇) + ∫

1

0 ∫ℝ𝑑
𝐿(𝑦, 𝜇𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡,

(𝑚0) ∶= {(𝜇, 𝝂) ∈ 𝐴𝐶([0, 1];1(ℝ𝑑)) ×(ℝ𝑑 × [0, 1];𝑈 ) ∶
𝜕𝑡𝜇𝑡 + ∇ ⋅

(

(𝐅(⋅, 𝜇𝑡)𝜇𝑡 + 𝝂𝑡
)

= 0, 𝜇0 = 𝑚0}.

See Lemma 2.3 below for a proof of this equivalence.
With this formulation of the problem in hand, we now describe our approach to softening

the terminal constraint and constructing the particle approximation. The first step is to replace
the characteristic function  with the soft 𝐿2 penalty:

𝜀(𝜇) ∶=

{

1
𝜀 ∫ℝ𝑑 |𝜇(𝑦) − 𝑚1(𝑦)|2𝑑𝑦 if 𝑑𝜇(𝑦) = 𝜇(𝑦)𝑑𝑦 and 𝜇 ∈ 𝐿2(ℝ𝑑),
+∞, otherwise.(1.2)

This leads to the optimization problem
min

(𝜇,𝝂)∈(𝑚0)
𝜀(𝜇, 𝝂), 𝜀(𝜇, 𝝂) ∶= (𝜇, 𝝂) + 𝜀(𝜇1).(MFC𝜀)

We have the following convergence result for solutions of (MFC𝜀) to (MFC) as 𝜀→ 0.
PROPOSITION 1.2 (Convergence as 𝜀 → 0). Suppose Assumption 1.1 holds and (MFC)

is feasible. Suppose that (𝜇𝜀, 𝝂𝜀) is a sequence of solutions to (MFC𝜀). Then, there exists
(𝜇, 𝝂) ∈ (𝑚0) so that, up to a subsequence,

(𝜇𝜀, 𝝂𝜀) → (𝜇, 𝝂) in 𝐶([0, 1];1(ℝ𝑑)) ×(ℝ𝑑 × [0, 1];𝑈 )(1.3)
and (𝜇, 𝝂) solves (MFC).

REMARK 1.3 (Convergence to unique minimizer). The fact that the preceeding conver-
gence result only holds “up to a subsequence” is due the generality of our assumptions, which
do not necessarily ensure that solutions of (MFC) are unique. In particular, it is possible that
different subsequences of (𝜇𝜀, 𝝂𝜀) approximate different minimizers of (MFC).

On the other hand, if one imposes additional hypotheses to ensure that the minimizer
(𝜇, 𝝂) of (MFC) is unique, as is true in many important examples (see section 1.2), then
Proposition 1.2 implies that every sequence (𝜇𝜀, 𝝂𝜀) has a further subsequence that converges
to (𝜇, 𝝂). Therefore, (𝜇𝜀, 𝝂𝜀) itself must converge to (𝜇, 𝝂).

While smaller values of 𝜀 lead to minimizers 𝜇𝜀 that are closer to the desired target mea-
sure 𝑚1 at time 𝑡 = 1, it is clear from the definition of 𝜀 that minimizers are forced to satisfy
𝜇1 ∈ 𝐿2, which will always fail in the case of particle measures, 𝜇𝑡 = (1∕𝑁)

∑

𝑖=1 𝛿𝑦𝑖(𝑡). We
navigate this issue by incorporating an additional regularization into the terminal constraint.

Consider a mollifier 𝑘𝛿 satisfying the following assumption:
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ASSUMPTION 1.4. Suppose 𝑘 ∈ 𝐶𝑏(ℝ𝑑) is nonnegative, even, and ∫ |𝑥|𝑘(𝑥)𝑑𝑥 < +∞.

For any 𝛿 > 0, let 𝑘𝛿(𝑦) = 𝑘(𝑦∕𝛿)∕𝛿𝑑 .
For a probability measure 𝜈, the convolution of 𝜈 with 𝑘𝛿 is a bounded, continuous function,
given by

𝑘𝛿 ∗ 𝜈(𝑦) = ∫ℝ𝑑
𝑘𝛿(𝑦 − 𝑥)𝑑𝜈(𝑥).

In this way, we can define the regularized functional
𝜀,𝛿(𝜇) ∶=

1
𝜀 ∫ℝ𝑑

|

|

𝑘𝛿 ∗ 𝜇(𝑦) − 𝑘𝛿 ∗ 𝑚1(𝑦)||
2 𝑑𝑦.(1.4)

When ∫ 𝑘 = 1 and 𝜇 ∈ 𝐿2(ℝ𝑑), 𝜀,𝛿(𝜇) converges to 𝜀(𝜇) as 𝛿 → 0. However, unlike
𝜀(𝜇), 𝜀,𝛿(𝜇) is always finite — in fact, bounded by 2‖𝑘‖∞∕(𝜀𝛿𝑑) — for all 𝜇 ∈ (ℝ𝑑).
This leads to the optimization problem

min
(𝜇,𝝂)∈(𝑚0)

𝜀,𝛿(𝜇, 𝝂), 𝜀,𝛿(𝜇, 𝝂) ∶= (𝜇, 𝝂) + 𝜀,𝛿(𝜇1).(MFC𝜀,𝛿)

We will often use that, expanding the square, using associativity of convolution, and abbrevi-
ating 𝐾𝛿 ∶= 𝑘𝛿 ∗ 𝑘𝛿 , we may express 𝜀,𝛿 as follows:

𝜀,𝛿(𝜇) =
1
𝜀

[

∫ (𝑘𝛿 ∗ 𝑘𝛿 ∗ 𝜇)𝑑𝜇 − 2∫ (𝑘𝛿 ∗ 𝑘𝛿 ∗ 𝑚1)𝑑𝜇 + ∫ (𝑘𝛿 ∗ 𝑘𝛿 ∗ 𝑚1)𝑑𝑚1

]

(1.5)

= 1
𝜀

[

∫
(

(𝐾𝛿 ∗ 𝜇) − 2(𝐾𝛿 ∗ 𝑚1)
)

𝑑𝜇 + 𝐶𝛿,𝑚1

]

,

where 𝐶𝛿,𝑚1
∶= ∫ (𝐾𝛿 ∗ 𝑚1)𝑑𝑚1 is a constant independent of 𝜇.

Under mild hypotheses, we show that, as long as (MFC𝜀) feasible, solutions of (MFC𝜀,𝛿)converge to a solution of (MFC𝜀) as 𝛿 → 0, in the sense of the following theorem. (Note that,
if (MFC) is feasible, then both (MFC𝜀) and (MFC𝜀,𝛿) are feasible for all 𝜀, 𝛿 > 0.)

THEOREM 1.5 (Convergence as 𝛿 → 0). Suppose Assumptions 1.1 and 1.4 hold and
∫ 𝑘 = 1. Fix 𝜀 > 0, and suppose that (MFC𝜀) is feasible. Then, for any sequence (𝜇𝛿 , 𝝂𝛿) of
solutions to (MFC𝜀,𝛿), there exists (𝜇, 𝝂) so that, up to a subsequence,

(𝜇𝛿 , 𝝂𝛿) → (𝜇, 𝝂) in 𝐶([0, 1];1(ℝ𝑑)) ×(ℝ𝑑 × [0, 1];𝑈 )(1.6)
and (𝜇, 𝝂) solves (MFC𝜀).
As described in Remark 1.3, if one additionally assumes that the solution of (MFC𝜀) is unique,
then any sequence of minimizers of (MFC𝜀,𝛿) converges to this unique solution, without pass-
ing to a subsequence.

As indicated above, the key advantage of the regularized problem (MFC𝜀,𝛿), compared
to (MFC), is that the regularized problem admits a natural particle discretization. Replacing
𝜇0 with its empirical approximation,

𝜇0 ≈
1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,0 , 𝐲0 ∶= [𝑦𝑖,0]𝑁𝑖=1 ∈ (ℝ𝑑)𝑁 ,

we obtain the following finite dimensional, ODE constrained optimization problem:
min

(𝐲,𝐮)∈𝑁 (𝐲0)
𝜀,𝛿,𝑁 (𝐲,𝐮)(MFC𝜀,𝛿,N)
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where

𝜀,𝛿,𝑁 (𝐲,𝐮) ∶= 1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖(𝑡))𝑑𝑡 +

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝐿𝑁 (𝑦𝑖(𝑡), 𝐲(𝑡))𝑑𝑡(1.7)

+ 1
𝜀

[

1
𝑁2

𝑁
∑

𝑖,𝑗=1
𝐾𝛿(𝑦𝑖(1) − 𝑦𝑗(1)) −

2
𝑁

𝑁
∑

𝑖=1
(𝐾𝛿 ∗ 𝑚1)(𝑦𝑖(1)) + 𝐶𝛿,𝑚1

]

𝑁 (𝐲0) ∶=
{

(𝐲,𝐮) ∶ 𝐲 ∈ 𝐴𝐶
(

[0, 1]; (ℝ𝑑)𝑁
)

, 𝐮 ∈ 𝐿1([0, 1];𝑈𝑁 )
�̇�𝑖(𝑡) = 𝐅𝑁 (𝑦𝑖(𝑡), 𝐲(𝑡)) + 𝑢𝑖(𝑡) , ∀𝑖 = 1,… , 𝑁 , 𝐲(0) = 𝐲0

}

.

where 𝐶𝛿,𝑚1
is the constant from equation (1.5), 𝑈𝑁 denotes the cartesian product of 𝑈 , and

the system of ordinary differential equations holds in the Carathéodory sense.
In order to describe our hypotheses on 𝐿𝑁 and 𝐅𝑁 , which follow Fornasier et. al., we

begin by recalling the notions of symmetry and convergence introduced in their work [30]. A
map 𝐺𝑁 ∶ ℝ𝑑 × (ℝ𝑑)𝑁 → ℝ𝑘 is symmetric if

𝐺𝑁 (𝑥, 𝐲) = 𝐺𝑁 (𝑥, 𝜎(𝐲)) for all permutations 𝜎 ∶ (ℝ𝑑)𝑁 → (ℝ𝑑)𝑁 .

Given a symmetric and continuous map 𝐺𝑁 , we will consider the following notion of conver-
gence to 𝐺 ∶ ℝ𝑑 × 1(ℝ𝑑) → ℝ𝑘:

for any sequence of natural numbers 𝑁 → +∞(1.8)

and 𝐲𝑁 ∶=
[

𝑦𝑖,𝑁
]𝑁
𝑖=1 ⊆ (ℝ𝑑)𝑁 satisfying 𝜇𝑁 ∶= 1

𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁

𝑁→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝜇 in 𝑊1,

we have lim
𝑁→+∞

sup
𝑧∈𝐶

|

|

𝐺𝑁 (𝑧, 𝐲𝑁 ) − 𝐺(𝑧, 𝜇)|
|

= 0, for all 𝐶 ⊂⊂ ℝ𝑑 .

With this in hand, we turn to the hypotheses on 𝐿𝑁 and 𝐅𝑁 :
ASSUMPTION 1.6. We assume 𝐿𝑁 and 𝐹𝑁 satisfy either of the following hypotheses:

(i) (a) If 𝐿 satisfies Assumption 1.1(iiia), we assume 𝐿𝑁 ∶ ℝ𝑑 × (ℝ𝑑)𝑁 → [0,+∞) is
symmetric and continuous and 𝐿𝑁 converges to 𝐿 as in equation (1.8).

(b) If 𝐿 satisfies Assumption 1.1(iiib), we assume 𝐿𝑁 ∶ ℝ𝑑 × (ℝ𝑑)𝑁 → [0,+∞]
is symmetric, lower semicontinuous, and independent of the second variable, i.e.
𝐿𝑁 (𝑥, 𝐲) = 𝐿𝑁 (𝑥, 𝐳) for all 𝑥 ∈ ℝ𝑑 , 𝐲, 𝐳 ∈ (ℝ𝑑)𝑁 . Furthermore, we assume
𝐿𝑁 ↗ 𝐿 pointwise.

(ii) 𝐅𝑁 ∶ ℝ𝑑 × (ℝ𝑑)𝑁 → ℝ𝑑 is continuous, symmetric, and there exist 𝐶𝐹𝑁 , 𝐶
′
𝐹𝑁

≥ 0 so
that

|𝐅𝑁 (𝑧, 𝐲)| ≤ 𝐶𝐹𝑁 + 𝐶 ′
𝐹𝑁

(|𝑧| + ‖𝐲‖), ∀𝑧 ∈ ℝ𝑑 , 𝐲 ∈ (ℝ𝑑)𝑁 .

Furthermore, we assume the compatibility condition

𝐅𝑁 (𝑧, 𝐲) − 𝐅(𝑧, 𝜇) ∈ 𝑈 for all 𝑧 ∈ ℝ𝑑 , 𝐲 ∈ (ℝ𝑑)𝑁 , 𝜇 ∈ 1(ℝ𝑑).

Lastly, we assume 𝐅𝑁 converges to 𝐅 in as in equation (1.8).
We now consider existence of solutions to (MFC𝜀,𝛿,N). We show that if either (i) the

control is unconstrained and the initial locations lie in the domain of the state and measure
cost 𝐿𝑁 or if (ii) the state and measure cost 𝐿𝑁 is continuous, then (MFC𝜀,𝛿,N) feasible. It
then follows quickly that, whenever (MFC𝜀,𝛿,N) is feasible, a solution exists. Our proof is a
mild adaptation of [30, Proposition 4.2], extending this result to the case when 𝐿𝑁 satisfies
Assumption 1.6(ib).
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PROPOSITION 1.7. Suppose Assumptions 1.1, 1.4 and 1.6 hold. Fix 𝜀 > 0, 𝛿 > 0,𝑁 ∈ ℕ

and 𝐲0 ∈ (ℝ𝑑)𝑁 . Suppose at least one of the following structural assumptions holds:
(a) the control is unconstrained, 𝑈 = ℝ𝑑 and 𝑦𝑖,0 ∈ {𝐿𝑁 < +∞} for all 𝑖 = 1,… , 𝑁;
(b) the state and measure cost 𝐿𝑁 satisfies Assumption 1.6(ia) .
Then (MFC𝜀,𝛿,N) is feasible.

Furthermore, whenever (MFC𝜀,𝛿,N) is feasible, then a solution of (MFC𝜀,𝛿,N) exists.
As a corollary of this and the preceding convergence results, we obtain sufficient condi-

tions for existence of minimizers to the continuum optimization problems we consider.
COROLLARY 1.8. Suppose Assumptions 1.1, 1.4, and 1.6 hold and ∫ 𝜙(|𝑥|)𝑑𝑚0 < +∞,

where 𝜙 is as in Assumption 2.1 below. Furthermore, suppose that (MFC) is feasible and that
at least one of the following holds:
(a) the control is unconstrained, 𝑈 = ℝ𝑑 , and supp 𝑚0 ⊆ {𝐿 < +∞};
(b) the state and measure costs 𝐿 and 𝐿𝑁 satisfy Assumptions 1.1(iiia) and 1.6(ia) .
Then, for all 𝜀, 𝛿 > 0, solutions of (MFC𝜀,𝛿), (MFC𝜀), and (MFC) exist.

Finally, we consider the convergence of the discrete particle approximation (MFC𝜀,𝛿,N)
to the continuum. In particular, we show that, if the problem either has an unconstrained
control or is a controllable linear time invariant system, then, for fixed 𝜀, 𝛿 > 0, solutions of
(MFC𝜀,𝛿,N) converge to a solution of (MFC𝜀,𝛿) as 𝑁 → +∞.

THEOREM 1.9 (Convergence of minimizers as 𝑁 → +∞). Suppose Assumptions 1.1,
1.4, and 1.6 hold, and 𝜙 is as in Assumption 2.1 below. Suppose there exists a convex set Ω
so that

supp 𝑚0 ⊂⊂ Ω ⊆ {𝐿 < +∞}.
Fix 𝜀, 𝛿 > 0, and suppose (MFC𝜀,𝛿) is feasible. Furthermore, assume at least one of the
following structural assumptions holds:
(a) Unconstrained control: 𝑈 = ℝ𝑑

(b) Controllable linear time invariant system:
(i) 𝐿 = 𝐿𝑁 = 0;

(ii) There exists 𝐴 ∈𝑀𝑑×𝑑(ℝ𝑑) so that 𝐅𝑁 (𝑦, ⋅) = 𝐅(𝑦, ⋅) = 𝐴𝑦;
(iii) There exists a full rank matrix 𝐵 ∈𝑀𝑑×𝑘(ℝ𝑑) with 𝑅(𝐵) = 𝑈 for which the system

is controllable: that is, the controllability grammian, Γ(𝑇 ) = ∫ 𝑇0 𝑒−𝜏𝐴𝐵𝐵𝑇 𝑒−𝜏𝐴𝑇 𝑑𝜏
is nonsingular for all 𝑇 > 0.

(iv) For any sequence 𝜂 → 0,

𝜂𝜙(|Γ−1(𝜂)(𝐼 − 𝑒−𝜂𝐴)𝑧|) → 0 uniformly for 𝑧 ∈ supp 𝑚0.

In particular, it is sufficient that supp 𝑚0 ⊆ 𝑁(𝐴).
Fix 𝐲𝑁,0 ∈ Ω𝑁 with sup𝑖,𝑁 |𝑦𝑖,𝑁,0| < +∞, satisfying

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,0

𝑁→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑚0 in 1(ℝ𝑑).(1.9)

Then, for any sequence (𝐲𝑁 ,𝐮𝑁 ) ∈ (𝐲𝑁,0) of minimizers of (MFC𝜀,𝛿,N), there exists (𝜇, 𝝂) ∈
(𝑚0) so that, up to a subsequence,

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑)),(1.10)

1
𝑁

𝑁
∑

𝑖=1
𝑢𝑖,𝑁 (𝑡)𝛿𝑦𝑖,𝑁 (𝑡)𝑑𝑡 → 𝝂 in (ℝ𝑑 × [0, 1];𝑈 ).(1.11)



8 KATY CRAIG, KARTHIK ELAMVAZHUTHI, AND HARLIN LEE

Furthermore, any such limit point (𝜇, 𝝂) is a minimizer of (MFC𝜀,𝛿).

REMARK 1.10 (Discrete to continuum in the absence of a terminal constraint). While the
main focus on the present paper is mean field control in the presence of a terminal constraint,
we note that the previous theorem includes the case of no terminal constraint, which arises
when 𝑘 = 𝑘𝛿 = 0, so 𝜀,𝛿 = 0. In this way, the previous theorem extends the gamma conver-
gence result of Fornasier, Lisini, Orrieri, and Savaré [30, Theorem 3.3] to the following two
cases:

∙ unbounded state and measure costs 𝐿 and 𝐿𝑁 , as arise when modeling an obstacle,
∙ controllable linear time invariant systems, with constrained controls, 𝑈 ≠ ℝ𝑑 .

We now state our main result, which shows that solutions of (MFC𝜀,𝛿,N) converge to a
solution of (MFC) in the limit 𝜀, 𝛿 → 0 and 𝑁 → +∞.

THEOREM 1.11 (Convergence of Minimizers as 𝜀, 𝛿 → 0 and 𝑁 → ∞). Suppose As-
sumptions 1.1, 1.4, and 1.6 hold and ∫ 𝑘 = 1. Suppose (MFC) is feasible and there exists a
convex set Ω so that

supp 𝑚0 ⊂⊂ Ω ⊆ {𝐿 < +∞}.

Furthermore, assume either the unconstrained control hypothesis (a) or the controllable linear
time invariant system hypothesis (b) from Theorem 1.9.

Fix 𝐲𝑁,0 ∈ Ω𝑁 with sup𝑖,𝑁 |𝑦𝑖,𝑁,0| < +∞ satisfying

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,0

𝑁→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑚0 in 1(ℝ𝑑).

Then, for any sequence (𝐲𝜀,𝛿,𝑁 ,𝐮𝜀,𝛿,𝑁 ) ∈ (𝐲𝑁,0) of minimizers of (MFC𝜀,𝛿,N), there exists
subsequences 𝜀𝑚, 𝛿𝑚, and 𝑁𝑚 so that, defining

𝐲𝑚 ∶= 𝐲𝜀𝑚,𝛿𝑚,𝑁𝑚
, 𝐮𝑚 = 𝐮𝜀𝑚,𝛿𝑚,𝑁𝑚

,(1.12)

𝜇𝑚 ∶= 1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑚 , 𝝂𝑚 ∶= 1

𝑁

𝑁
∑

𝑖=1
𝑢𝑖,𝑚(𝑡)𝛿𝑦𝑖,𝑚 ,(1.13)

we have

𝜇𝑚 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑)),(1.14)
𝝂𝑚 → 𝝂 in (ℝ𝑑 × [0, 1];𝑈 ),(1.15)

where (𝜇, 𝝂) is a minimizer of (MFC).

Note that, in the preceding theorem, even if (MFC) has a unique minimizer, our conver-
gence result will only hold up to subsequences. This is due to the facts that the discretization
parameter 𝑁 must grow sufficiently quickly with respect to 𝜀 and 𝛿 and that 𝛿 must decay
sufficiently quickly with respect to 𝜀. We leave the question of quantifying the relationship
between 𝜀, 𝛿, and𝑁 for which convergence holds, without passing to a subsequence, to future
work.

1.2. Motivating Examples. We now describe three important examples of mean field
control problems of the form (⋆), which motivate our numerical study.

A first special case is the dynamic formulation of the p-Wasserstein distance on 𝑝(ℝ𝑑),
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the space of probability measures with finite 𝑝th moment, 𝑀𝑝(𝜇) = ∫ |𝑥|𝑝𝑑𝜇(𝑥), 𝑝 > 1,

min
(𝜇,𝐮)∈𝑊 (𝑚0,𝑚1)∫

1

0 ∫ℝ𝑑
|𝐮(𝑦, 𝑡)|𝑝𝑑𝜇𝑡(𝑦)𝑑𝑡(𝑊 𝑝

𝑝 )

𝑊 (𝑚0, 𝑚1) ∶=
{

(𝜇,𝐮) ∶ 𝜇 ∈ 𝐴𝐶([0, 1],1(ℝ𝑑)), 𝐮 ∈ 𝐿1
𝑑𝜇𝑡⊗𝑑𝑡

(ℝ𝑑 × [0, 1];ℝ𝑑))

𝜕𝑡𝜇𝑡 + ∇ ⋅
(

𝐮𝑡𝜇𝑡
)

= 0 , 𝜇0 = 𝑚0, 𝜇1 = 𝑚1
}

,

which arises from (⋆) by taking the choices 𝜓 = | ⋅ |𝑝, 𝐿 = 0, 𝑈 = ℝ𝑑 , and 𝐅 = 0, as
introduced in the 𝑝 = 2 case by Benamou and Brenier [11] and generalized to 𝑝 > 1 by
Ambrosio, Gigli, and Savaré [7]. To discretize this problem via a particle approximation,
(MFC𝜀,𝛿,N), we take 𝐿𝑁 = 0 and 𝐅𝑁 = 0. When 𝑚0, 𝑚1 ∈ 𝑝(ℝ𝑑) and 𝑚1 is absolutely
continuous with respect to Lebesgue measure, there exists a unique minimizer of (𝑊 𝑝

𝑝 ), and
the optimal value of the objective function coincides with the 𝑝th power of the 𝑝-Wasserstein
distance

𝑊 𝑝
𝑝 (𝑚0, 𝑚1) = (𝑊 𝑝

𝑝 ).
A second special case of the mean field control problem is the dynamic formulation of

the 𝑝-Wasserstein distance around an obstacle Ω, represented by a open subset of ℝ𝑑 on which
the interpolating measure 𝜇𝑡 is forbidden from placing mass,

min
(𝜇,𝐮)∈Ω𝑐 (𝑚0,𝑚1)∫

1

0 ∫ℝ𝑑
|𝐮(𝑦, 𝑡)|𝑝𝑑𝜇𝑡(𝑦)𝑑𝑡(𝑊 𝑝

𝑝 (Ω𝑐))

Ω𝑐 (𝑚0, 𝑚1) ∶=
{

(𝜇,𝐮) ∶ 𝜇 ∈ 𝐴𝐶([0, 1],1(ℝ𝑑)),𝐮 ∈ 𝐿1
𝑑𝜇𝑡⊗𝑑𝑡

(ℝ𝑑 × [0, 1];ℝ𝑑))

𝜕𝑡𝜇𝑡 + ∇ ⋅ (𝐮𝑡𝜇𝑡) = 0, 𝜇0 = 𝑚0, 𝜇1 = 𝑚1, supp 𝜇𝑡 ⊆ Ω𝑐 for a.e. 𝑡 ∈ [0, 1]
}

.

This arises from (⋆) under the same choices as the preceding example, with the exception that

𝐿(𝑦, 𝜇) = 𝜒Ω𝑐 (𝑦), 𝜒Ω𝑐 (𝑦) ∶=

{

0 if 𝑦 ∈ Ω𝑐 ,
+∞ if 𝑦 ∈ Ω.

To discretize this problem with the nonlocal terminal constraint, (MFC𝜀,𝛿,N), we may take
𝐅𝑁 = 0 and 𝐿𝑁 to be any lower semicontinuous function 𝐿𝑁 (𝑦, 𝜇𝑡) = 𝐿𝑁 (𝑦) that vanishes
on Ω𝑐 and converges up to +∞ on Ω. This variant of the optimal transport problem can also
be interpreted, more geometrically, as optimal transport on the manifold with holes, ℝ𝑑 ⧵ Ω.
Unlike in the case without obstacles, minimizers in general are not unique, unlessΩ𝑐 is convex.

A third important example of the mean field control problem arises when an acceleration
control is imposed on the evolution of the measure 𝜇𝑡,

min
(𝜇,𝐚)∈𝑎(𝑚0,𝑚1)∫

1

0 ∫ℝ2𝑑
|𝐚(𝑥, 𝑣, 𝑡)|2𝑑𝜇𝑡(𝑥, 𝑣)𝑑𝑡(MFC𝑎)

𝑎(𝑚0, 𝑚1) =
{

(𝜇, 𝐚) ∶ 𝜇 ∈ 𝐴𝐶([0, 1],1(ℝ2𝑑)), 𝐚 ∈ 𝐿1
𝑑𝜇𝑡⊗𝑑𝑡

(ℝ2𝑑 × [0, 1];ℝ𝑑))

𝜕𝑡𝜇𝑡 + ∇ ⋅ ([𝑣 0]𝑡𝜇𝑡) + ∇ ⋅ ([0 𝐚]𝑡𝜇𝑡) = 0, 𝜇0 = 𝑚0, 𝜇1 = 𝑚1
}

,

which arises from (⋆) by the choices 𝑦 = (𝑥, 𝑣) ∈ ℝ2𝑑 , 𝜓 = | ⋅ |2, 𝐿 = 0, 𝐮 = (0, 𝐚) ∈ 𝑈 =
{0} × ℝ𝑑 ⊆ ℝ2𝑑 , and 𝐅((𝑥, 𝑣), 𝜇) = 𝐅((𝑥, 𝑣)) = [𝑣 0]𝑡. To discretize this problem with the
nonlocal terminal constraint, (MFC𝜀,𝛿,N), we take 𝐿𝑁 = 0 and 𝐅𝑁 ((𝑥, 𝑣), 𝐳) = [𝑣 0]𝑡. In this
case, uniqueness of solutions is known [34, 22], when the probability measures are absolutely
continuous and have compact support.
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1.3. Strategy of approach. The remainder of the paper is organized as follows. In sec-
tion 2, we specify the precise function spaces and notions of solution that we consider and
prove the equivalence of the original formulation of the mean field control problem and the
formulation in momentum coordinates. In section 3, we prove our main convergence results,
relating minimizers of the optimization problems (MFC𝜀,𝛿,N), (MFC𝜀,𝛿), (MFC𝜀), and (MFC)
in the limits as 𝜀, 𝛿 → 0 and 𝑁 → +∞. Finally, in section 4, we implement our particle
method numerically and use it to compute solutions of the dynamical formulation of the p-
Wasserstein metric, optimal transport around an obstacle, and measure transport with acceler-
ation constraints, as well as numerically analyzing the convergence properties of the method.

2. Preliminaries.

2.1. Notation. Given 𝑋 ⊆ ℝ𝑑 , let (𝑋) denote the space of finite signed Borel mea-
sures on 𝑋, let (𝑋) denote the space of Borel probability measures, and, for any 𝑝 ≥ 1, let
𝑝(𝑋) denote the subset of (𝑋) with finite 𝑝th moments, 𝑀𝑝(𝜇) ∶= ∫𝑋 |𝑥|𝑝𝑑𝜇(𝑥) < +∞.
We consider the space 𝑝(ℝ𝑑) to be endowed with the 𝑝-Wasserstein metric, 𝑊𝑝. We will of-
ten use the fact that convergence in the 𝑊𝑝 metric for any 𝑝 ≥ 1 implies narrow convergence,
which is to say, convergence in the duality with bounded continuous functions 𝑓 ∶ ℝ𝑑 → ℝ.
For further details on the Wasserstein metrics and optimal transport, we refer the reader to one
of the many excellent textbooks on the subject [7, 44, 43, 28, 4].

Given 𝑈 , a subspace of ℝ𝑑 , let (𝑋;𝑈 ) denote the space of vector-valued finite signed
Borel measures on 𝑋 with range in 𝑈 . We will consider (𝑋;𝑈 ) to be endowed with the
narrow topology, which is to say, convergence in (𝑋;𝑈 ) is given by convergence in the
duality with bounded continuous functions 𝑓 ∶ 𝑋 → 𝑈 . For 𝑋 ⊆ ℝ𝑑 , 𝑌 ⊆ ℝ𝑑 , and a Borel
map 𝐭 ∶ 𝑋 → 𝑌 , define 𝐭# ∶ (𝑋) → (𝑌 ) by (𝐭#𝜇)(𝐵) = 𝜇(𝐭−1(𝐵)) for all Borel subsets
𝐵 ⊆ 𝑌 . For any Borel set 𝐵, we let 1𝐵 denote the indicator function on 𝐵, that is, 1𝐵(𝑥) = 1
if 𝑥 ∈ 𝐵 and 1𝐵(𝑥) = 0 if 𝑥 ∉ 𝐵.

For any product space Π𝑁𝑖=1𝑋𝑖, 𝑋𝑖 ⊆ ℝ𝑑 , let 𝜋𝑖 denote the projection onto the 𝑖th co-
ordinate. When elements of the product space are denoted by a distinguished variable, e.g.
(𝑥, 𝑦, 𝑧) ∈ 𝑋×𝑌 ×𝑍, we write 𝜋𝑥, 𝜋𝑦, 𝜋𝑧 for projections onto the corresponding components.

The set of continuous curves in 1(ℝ𝑑) will be denoted by 𝐶([0, 1];1(ℝ𝑑)) and the set
of absolutely continuous curves will be denoted by𝐴𝐶([0, 1];1(ℝ𝑑)). We will often identify
curves 𝜇 ∈ 𝐶([0, 1];1(ℝ𝑑)) with the element �̃� ∈ 1(ℝ𝑑 × [0, 1]) satisfying

∫ℝ𝑑×[0,1]
𝑓 (𝑦, 𝑡)𝑑�̃�(𝑦, 𝑡) = ∫

1

0 ∫ℝ𝑑
𝑓 (𝑦, 𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡(2.1)

for all 𝑓 ∈ 𝐶𝑏(ℝ𝑑 × [0, 1]). We will abbreviate �̃� by 𝑑𝜇𝑡 ⊗ 𝑑𝑡. Under the hypotheses of
Assumption 1.1, 𝜇 ∈ 𝐴𝐶([0, 1];1(ℝ𝑑)) and 𝐮 ∈ 𝐿1

𝑑𝜇𝑡⊗𝑑𝑡
(ℝ𝑑 × [0, 1];𝑈 )) is a distributional

solution of the equation 𝜕𝑡𝜇𝑡 +∇ ⋅
(

(𝐅(⋅, 𝜇𝑡)𝜇𝑡 + 𝐮(⋅, 𝑡)𝜇𝑡
)

= 0 if, for all 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑 × [0, 1]),

∫

1

0 ∫ℝ𝑑
𝜕𝑡𝜑(𝑦, 𝑡) + ∇𝜑(𝑦, 𝑡) ⋅

(

(𝐅(𝑦, 𝜇𝑡) + 𝐮(𝑦, 𝑡)
)

𝑑𝜇𝑡(𝑦) 𝑑𝑡 = 0.(2.2)

Given 𝝂 ∈ (ℝ𝑑 × [0, 1];𝑈 ) and 𝜇 ∈ 𝐶([0, 1];1(ℝ𝑑)), if 𝝂 is absolutely continuous
with respect to the measure �̃� = 𝑑𝜇𝑡 ⊗ 𝑑𝑡, we let 𝐮 ∶ ℝ𝑑 × [0, 1] → 𝑈 denote the Radon
Nikodym derivative: 𝐮(𝑦, 𝑡) 𝑑�̃�(𝑦, 𝑡) = 𝐮(𝑦, 𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡 = 𝑑𝝂(𝑦, 𝑡). Furthermore, for any 𝝂 ∈
(ℝ𝑑 × [0, 1];𝑈 ), we let 𝝂𝑡 denote the disintegration of 𝝂 with respect to 𝜋𝑡#𝝂 ∈ ([0, 1]),
where 𝜋𝑡 denotes the projection onto the second, temporal component of ℝ𝑑 × [0, 1]. In this
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way, for all 𝑓 ∈ 𝐶𝑏(ℝ𝑑 × [0, 1]),

∫ℝ𝑑×[0,1]
𝑓 (𝑦, 𝑡)𝑑𝝂(𝑦, 𝑡) = ∫

1

0

(

∫ℝ𝑑
𝑓 (𝑦, 𝑡)𝑑𝝂𝑡(𝑦)

)

𝑑(𝜋𝑡#𝝂)(𝑡).

We say that (𝜇, 𝝂) ∈ 𝐴𝐶([0, 1];1(ℝ𝑑)) × (ℝ𝑑 × [0, 1];𝑈 ) is a distributional solution of
𝜕𝑡𝜇𝑡 + ∇ ⋅

(

(𝐅(⋅, 𝜇𝑡)𝜇𝑡 + 𝝂𝑡
)

= 0 if, for all 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑 × [0, 1]),

∫

1

0 ∫ℝ𝑑
(

𝜕𝑡𝜑(𝑦, 𝑡) + ∇𝜑(𝑦, 𝑡) ⋅ 𝐅(𝑦, 𝜇𝑡)
)

𝑑𝜇𝑡(𝑦)𝑑𝑡 + ∫

1

0 ∫ℝ𝑑
∇𝜑(𝑦, 𝑡) ⋅ 𝑑𝝂(𝑦, 𝑡) = 0.(2.3)

2.2. Control cost and momentum coordinates. We now state the general hypothesis
on our control cost 𝜓 , following previous work by Fornasier, et. al. [30, Section 2.2].

ASSUMPTION 2.1. Assume the control cost 𝜓 ∶ 𝑈 → [0,+∞) is convex, lower semi-
continuous, and satisfies 𝜓(0) = 0. Furthermore, assume there exists a moderating function
𝜙 ∶ [0,+∞) → [0,+∞) that is strictly convex, continuously differentiable, satisfies 𝜙(0) = 0
and 𝜙′(0) = 0, is superlinear at +∞, and for which there exists 𝐾 > 0 so that

𝜙(2𝑟) ≤ 𝐾(1 + 𝜙(𝑟)) for all 𝑟 ∈ [0,+∞).(2.4)
Finally, assume that the control cost and the moderating function are related as follows: there
exists 𝐶 > 0 so that

𝜙(|𝑥|) − 1 ≤ 𝜓(𝑥) ≤ 𝐶(1 + 𝜙(|𝑥|)) , ∀𝑥 ∈ 𝑈.(2.5)
Examples of control costs satisfying this assumption include
∙ 𝜓(𝑥) = 1

𝑝 |𝑥|
𝑝 for 𝑝 > 1;

∙ 𝜓(𝑥) =

{ 1
𝑝 |𝑥| for |𝑥| ≤ 1
1
𝑝 |𝑥|

𝑝 for |𝑥| > 1
for 𝑝 > 1.

In particular, the role of the moderating function𝜙 is that it allows one to decouple the smooth-
ness and monotonicity properties from the local behavior of 𝜓 . In the following lemma, we
gather two elementary observations about the relationship between 𝜓 and 𝜙 that we will use
in what follows.

LEMMA 2.2. Suppose 𝜙 and 𝜓 satisfy Assumption 2.1.
(i) There exists 𝑅𝜙 > 0 so that |𝑥| ≤ 𝜙(|𝑥|) + 𝑅𝜙 ≤ 𝜓(𝑥) + 𝑅𝜙 + 1 , ∀𝑥 ∈ 𝑈 .

(ii) There exists𝐾 ′ > 0 so that, for all𝐷 ≥ 1, 𝜙(𝐷𝑟)+𝐷𝑟 ≤ 𝐾 ′𝐷𝐾′ (𝜙(𝑟)+𝑟), ∀𝑟 ∈ [0,+∞).
We now make precise the sense in which (⋆) and its the momentum formulation (MFC)

are equivalent. See Appendix A for the proof.
LEMMA 2.3. If (𝜇,𝐮) solves (⋆), then (𝜇,𝐮 𝑑𝜇𝑡 ⊗ 𝑑𝑡) solves (MFC). On the other hand,

if (𝜇, 𝝂) solves (MFC), then 𝑑𝝂 ≪ 𝑑𝜇𝑡 ⊗ 𝑑𝑡 and (𝜇, 𝑑𝝂∕(𝑑𝜇𝑡 ⊗ 𝑑𝑡)) solves (⋆).

3. Convergence of minimizers as 𝜀 → 0, 𝛿 → 0, and ℕ → +∞. We now turn to
the proofs of our major results, relating minimizers of the problems (MFC𝜀,𝛿,N), (MFC𝜀,𝛿),(MFC𝜀), and (MFC) in the limits as 𝜀 → 0, 𝛿 → 0, and 𝑁 → +∞. We begin, in section
3.1, by establishing some fundamental lower semicontinuity and compactness properties of
the continuum mean field control problem. In section 3.2, we consider the 𝜀 → 0 limit. In
section 3.3, we consider the behavior as 𝛿 → 0, focusing on the proof of Γ-convergence of
the objective functionals, after which convergence of minimizers follows quickly. Finally,
in section 3.4, we consider the 𝑁 → +∞ limit. Our arguments in section 3.4 are strongly
inspired by previous work by Fornasier, et. al. [30]. Furthermore, as explained in Remark
1.10, we succeed in extending these arguments to our more general hypotheses on the state
and measure cost 𝐿 and to controllable linear time invariant systems, with 𝑈 ≠ ℝ𝑑 .
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3.1. Lower semicontinuity and compactness. In this section, we collect some funda-
mental lower semicontinuity and compactness properties for the continuum mean field control
problem. See appendix A for the proofs.

First, we note that, under the hypotheses of Assumption 1.1, the functional  is lower
semicontinuous.

LEMMA 3.1. Suppose Assumption 1.1 holds. Then the functional , defined in (MFC), is
lower semicontinuous on 𝐶([0, 1],1(ℝ𝑑)) ×(ℝ𝑑 × [0, 1];𝑈 ).

Next, we observe that sublevels of  in the constraint set (𝑚0) are sequentially compact.
LEMMA 3.2. Suppose Assumption 1.1 holds. If (𝜇𝑛, 𝝂𝑛) ∈ (𝑚0) and sup𝑛 (𝜇𝑛, 𝝂𝑛) <

+∞, then there exists (𝜇, 𝝂) ∈ (𝑚0) so that, up to a subsequence,

(𝜇𝑛, 𝝂𝑛) converges to (𝜇, 𝝂) in 𝐶([0, 1];1(ℝ𝑑)) ×(ℝ𝑑 × [0, 1];𝑈 )(3.1)
and (𝜇, 𝝂) ≤ sup𝑛 (𝜇𝑛, 𝝂𝑛).

3.2. Convergence as 𝜀 → 0: soft to hard terminal constraint. We now collect our
results on the convergence of (MFC𝜀) to (MFC) as 𝜀 → 0. The proofs follow standard Γ-
convergence arguments, which we defer to Appendix B.

We first observe that the sequence of functionals 𝜀, defined in (MFC𝜀), Γ−converges to
the functional  , defined in (MFC), as 𝜀 → 0.

PROPOSITION 3.3 (Γ-convergence as 𝜀→ 0). Suppose Assumption 1.1 holds.
(i) For every sequence (𝜇𝜀, 𝝂𝜀) converging in 𝐶([0, 1];1(ℝ𝑑)) × (ℝ𝑑 × [0, 1];𝑈 ) to

(𝜇, 𝝂), we have (𝜇, 𝝂) ≤ lim inf𝜀→0 𝜀(𝜇𝜀, 𝝂𝜀).
(ii) For every (𝜇, 𝝂) ∈ 𝐶([0, 1];1(ℝ𝑑))×(ℝ𝑑×[0, 1];𝑈 ), (𝜇, 𝝂) ≥ lim sup𝜀→0 𝜀(𝜇, 𝝂).

It is then an immediate consequence of this result that minimizers of (MFC𝜀) converge to
a minimizer of (MFC), up to a subsequence, as stated in Proposition 1.2; see appendix B.

3.3. Convergence as 𝛿 → 0: nonlocal to local penalization on terminal measure. In
the present section, we show that, for fixed 𝜀 > 0, the sequence of functionals 𝜀,𝛿 , defined in
(MFC𝜀,𝛿), Γ−converges to the functional 𝜀, defined in equation MFC𝜀, as 𝛿 → 0.

PROPOSITION 3.4 (Γ-convergence as 𝛿 → 0). Suppose Assumptions 1.1 and 1.4 hold and
∫ 𝑘 = 1. Fix 𝜀 > 0.

(i) For every sequence (𝜇𝛿 , 𝝂𝛿) converging in 𝐶([0, 1];1(ℝ𝑑)) × (ℝ𝑑 × [0, 1];𝑈 ) to
(𝜇, 𝝂), we have 𝜀(𝜇, 𝝂) ≤ lim inf𝛿→0 𝜀,𝛿(𝜇𝛿 , 𝝂𝛿).

(ii) For all (𝜇, 𝝂) ∈ 𝐶([0, 1];1(ℝ𝑑))×(ℝ𝑑×[0, 1];𝑈 ), 𝜀(𝜇, 𝝂) ≥ lim sup𝛿→0 𝜀,𝛿(𝜇, 𝝂).

Proof. First, we consider part (i). Without loss of generality, we may pass to a subse-
quence so that

lim
𝛿→0

𝜀,𝛿(𝜇𝛿 , 𝝂𝛿) = lim inf
𝛿→0

𝜀,𝛿(𝜇𝛿 , 𝝂𝛿) < +∞.(3.2)
In particular, this ensures that

sup
𝛿
𝜀−1‖𝑘𝛿 ∗ 𝜇𝛿,1 − 𝑘𝛿 ∗ 𝑚1‖

2
𝐿2(ℝ𝑑 ) = sup

𝛿
𝜀,𝛿(𝜇𝛿,1) < +∞.

Since 𝑚1 ∈ 𝐿2(ℝ𝑑), 𝑘𝛿 ∗ 𝑚1 → 𝑚1 in 𝐿2(ℝ𝑑), and in particular, 𝑘𝛿 ∗ 𝑚1 is uniformly
bounded in𝐿2(ℝ𝑑). Thus 𝑘𝛿 ∗ 𝜇𝛿,1 must be uniformly bounded in𝐿2(ℝ𝑑), and, up to another
subsequence, 𝑘𝛿 ∗ 𝜇𝛿,1 converges weakly in 𝐿2(ℝ𝑑). By the convergence of 𝜇𝛿 to 𝜇, we have
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that 𝜇𝛿,1 converges to 𝜇1 in 1(ℝ𝑑). Furthermore, [18, Lemma 2.3] ensures 𝑘𝛿 ∗ 𝜇𝛿,1 → 𝜇1
in distribution. Thus, by uniqueness of limits, 𝑘𝛿 ∗ 𝜇𝛿,1 converges to 𝜇1 weakly in 𝐿2(ℝ𝑑)
and, in particular, 𝜇1 ∈ 𝐿2(ℝ𝑑).

Now we consider the limits of the functionals along these sequences. Since 𝜇𝛿,1 converges
to 𝜇1 in 1(ℝ𝑑), by [18, Theorem 4.1],

lim inf
𝛿→0 ∫ 𝐾𝛿 ∗ 𝜇𝛿,1𝑑𝜇𝛿,1 ≥ ∫ 𝜇21 .(3.3)

Since 𝑘𝛿 ∗ 𝜇𝛿,1 → 𝜇1 weakly in 𝐿2(ℝ𝑑) and 𝑘𝛿 ∗ 𝑚1 → 𝑚1 strongly in 𝐿2(ℝ𝑑), for 𝐶𝛿,𝑚1
as

in equation (1.5), we obtain

lim inf
𝛿→0

−2∫ (𝐾𝛿 ∗ 𝑚1)𝑑𝜇𝛿,1 + 𝐶𝛿,𝑚1
(3.4)

= lim inf
𝛿→0

−2∫ (𝑘𝛿 ∗ 𝜇𝛿,1)(𝑘𝛿 ∗ 𝑚1) + ∫ (𝐾𝛿 ∗ 𝑚1)𝑑𝑚1 ≥ −2∫ 𝑚1𝜇1 + ∫ 𝑚2
1.

Thus, combining equation (3.3) and (3.4) with the expression for 𝜀,𝛿 in equation (1.5), we
obtain

𝜀(𝜇1) =
1
𝜀
‖𝜇1 − 𝑚1‖

2
𝐿2(ℝ𝑑 ) ≤ lim inf

𝛿→0
𝜀,𝛿(𝜇𝛿,1)

Due to the lower semicontinuity of the functional , shown in Lemma 3.1, we can there-
fore conclude that

𝜀(𝜇, 𝝂) ≤ lim inf
𝛿→0

𝜀,𝛿(𝜇𝛿 , 𝝂𝛿).

Now, we turn to part (ii). We may assume that 𝜀(𝜇, 𝝂) < ∞, otherwise the inequality
is trivial. Thus, 𝜀(𝜇1) < +∞, so 𝜇1 ∈ 𝐿2(ℝ𝑑) and 𝑘𝛿 ∗ 𝜇1 → 𝜇1 in 𝐿2(ℝ𝑑). Thus,
lim𝛿→0 𝜀,𝛿(𝜇1) = 𝜀(𝜇1). Therefore, we conclude that,

𝜀(𝜇, 𝝂) ≥ lim sup
𝛿→0

𝜀,𝛿(𝜇𝛿 , 𝝂𝛿).

Theorem 1.5, on the convergence of minimizers of (MFC𝜀,𝛿) to a minimizer of (MFC𝜀)now follows from this Γ-convergence result via a standard argument; see Appendix B.
3.4. Convergence as 𝑁 → +∞: discrete to continuum. We now turn to the conver-

gence of the spatially discrete problem, in the continuum limit 𝑁 → +∞. Note that, by
definition of 𝜀,𝛿,𝑁 in equation (1.7), for any (𝐲,𝐮) ∈ (ℝ𝑑)𝑁 × 𝑈𝑁 ,

𝜀,𝛿,𝑁 (𝐲,𝐮) = 𝑁 (𝐲,𝐮) + 𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖(1)

)

𝑁 (𝐲,𝐮) ∶= 1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖(𝑡))𝑑𝑡 +

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝐿𝑁 (𝑦𝑖(𝑡), 𝐲(𝑡))𝑑𝑡.

We begin with the following lemma.
LEMMA 3.5. Suppose Assumptions 1.1 and 1.4 hold, and suppose 𝐲𝑁 ∈ (ℝ𝑑)𝑁 satisfies

1
𝑁
∑𝑁
𝑖=1 𝛿𝑦𝑖 → 𝜇 narrowly for some 𝜇 ∈ (ℝ𝑑). Then, for all 𝜀, 𝛿 > 0,

lim
𝑁→+∞

𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖

)

= 𝜀,𝛿(𝜇).
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Proof. Let 𝜇𝑁 = 1
𝑁
∑𝑁
𝑖=1 𝛿𝑦𝑖 . Note that, using the expression (1.5) and neglecting the

constant 𝐶𝛿,𝑚1
, we may rewrite the left hand side of the expression in the following way:

∫
[

𝐾𝛿 ∗ 𝜇𝑁 − 2(𝐾𝛿 ∗ 𝑚1)
]

𝑑𝜇𝑁 =
x

𝐾𝛿(𝑥 − 𝑦)𝑑𝜇𝑁 (𝑥)𝑑𝜇𝑁 (𝑦) − 2∫ (𝐾𝛿 ∗ 𝑚1)𝑑𝜇𝑁

By Assumption 1.4, (𝑥, 𝑦) ↦ 𝐾𝛿(𝑥− 𝑦) and 𝑥↦ 𝑘𝛿 ∗ 𝑚1(𝑥) are bounded and continuous, so
the result is an immediate consequence of the definition of narrow convergence.

Now, combining the preceding lemma with the Γ-convergence result of Fornasier et.
al.[30, Theorem 3.2], making appropriate adaptations when the state and measure costs satisfy
our alternative assumptions 1.1(iiib) and 1.6(ib), we obtain the following result.

PROPOSITION 3.6 (Γ-convergence as 𝑁 → +∞). Suppose Assumptions 1.1, 1.4, and
1.6 hold. Fix 𝜀 > 0 and 𝛿 > 0.

(i) Consider (𝐲𝑁 ,𝐮𝑁 ) ∈ 𝐶([0, 1]; (ℝ𝑑)𝑁 × 𝐿1([0, 1];𝑈𝑁 ), and suppose there exists (𝜇, 𝝂)
for which

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑),(3.5)

1
𝑁

𝑁
∑

𝑖=1
𝑢𝑖,𝑁 (𝑡)𝛿𝑦𝑖,𝑁 (𝑡)𝑑𝑡→ 𝝂 in (ℝ𝑑 × [0, 1];𝑈 ).(3.6)

Then, lim inf𝑁→+∞ 𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≥ 𝜀,𝛿(𝜇, 𝝂).
(ii) Suppose ∫ 𝜙(|𝑥|)𝑑𝑚0(𝑥) < +∞. For every (𝜇, 𝝂) ∈ 𝐶(𝑚0) such that (𝜇, 𝝂) < +∞ and

𝑁 ∈ ℕ, there exists 𝐲𝑁,0 ∈ (ℝ𝑑)𝑁 and (𝐲𝑁 ,𝐮𝑁 ) ∈ 𝑁 (𝐲𝑁,0) with 𝑦𝑖,𝑁,𝑡 ⊆ supp 𝜇𝑡 for
every 𝑖 = 1,… , 𝑁 and 𝑡 ∈ [0, 1], so that

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑),(3.7)

1
𝑁

𝑁
∑

𝑖=1
𝑢𝑖,𝑁 (𝑡)𝛿𝑦𝑖,𝑁 (𝑡)𝑑𝑡→ 𝝂 in (ℝ𝑑 × [0, 1];𝑈 ),(3.8)

lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ 𝜀,𝛿(𝜇, 𝝂).(3.9)

Proof. First, we show part (i). Up to passing to a subsequence, we may assume without
loss of generality that

lim
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) = lim inf
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) < +∞.(3.10)
By Lemma 3.5,

𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁 (1)

)

→ 𝜀,𝛿(𝜇1).(3.11)

Suppose that 𝐿 and 𝐿𝑁 satisfy Assumption 1.1(iiia) and Assumption 1.6(ia). By [30,
Theorem 3.2(i)], we have

lim inf
𝑁→+∞

𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≥ (𝜇, 𝝂).

Since 𝜀,𝛿(𝜇, 𝝂) = (𝜇, 𝝂) + 𝜀,𝛿(𝜇1), combining the preceding inequality with (3.11) gives
the result.
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On the other hand, suppose that 𝐿 and 𝐿𝑁 satisfy Assumption 1.1(iiib) and Assumption

1.6(ib). By [30, Theorem 3.2(i)], we have

lim inf
𝑁→+∞

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖(𝑡))𝑑𝑡 ≥ Ψ(𝝂|𝜇).(3.12)

Furthermore, for 𝜇𝑁 ∶= 1
𝑁
∑𝑁
𝑖=1 𝛿𝑦𝑖,𝑁 , Fatou’s lemma ensures

lim inf
𝑁→+∞

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝐿𝑁 (𝑦𝑖,𝑁 (𝑡))𝑑𝑡 = lim inf

𝑁→+∞ ∫

1

0 ∫ℝ𝑑
𝐿𝑁𝑑𝜇𝑁,𝑡𝑑𝑡

≥ ∫

1

0
lim inf
𝑁→+∞ ∫ℝ𝑑

𝐿𝑁𝑑𝜇𝑁,𝑡𝑑𝑡.

For any 𝑀 ∈ ℕ, the fact that 𝐿𝑁 ↗ 𝐿 and 𝐿𝑀 is lower semicontinuous and nonnegative
ensures

lim inf
𝑁→+∞ ∫ℝ𝑑

𝐿𝑁𝑑𝜇𝑁,𝑡 ≥ lim inf
𝑁→+∞ ∫ℝ𝑑

𝐿𝑀𝑑𝜇𝑁,𝑡 ≥ ∫ℝ𝑑
𝐿𝑀𝑑𝜇𝑡.

Sending 𝑀 → +∞ on the right hand side, the monotone convergence theorem ensures

lim inf
𝑁→+∞ ∫ℝ𝑑

𝐿𝑁𝑑𝜇𝑁,𝑡 ≥ ∫ℝ𝑑
𝐿𝑑𝜇𝑡.(3.13)

Combining this with (3.12), we obtain lim inf𝑁→+∞ 𝑁 (𝐲𝑁 , 𝑢𝑁 ) ≥ (𝜇, 𝝂). Finally, combin-
ing this with (3.11) gives the result.

We now show part (ii). It is an immediate consequence of [30, Theorem 3.2(i)] that (3.7)
and (3.8) hold and

lim sup
𝑁→+∞

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖(𝑡))𝑑𝑡 ≤ Ψ(𝝂|𝜇).(3.14)

(The fact that we may choose 𝑦𝑖,𝑁 (𝑡) ∈ supp (𝜇𝑡) for every 𝑖 = 1,… , 𝑁 and 𝑡 ∈ [0, 1] can
be seen by inspection of the proof: in the equation following [30, equation (6.21)], we may
assume 𝛾𝑖,𝑘,𝑚 ∈ supp �̃�𝑘 ⊆ supp 𝜋.) As before, by Lemma 3.5,

𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁 (1)

)

→ 𝜀,𝛿(𝜇1).(3.15)

If 𝐿 and 𝐿𝑁 satisfy Assumption 1.1(iiia) and Assumption 1.6(ia), [30, Theorem 3.2(i)]
also gives lim sup𝑁→+∞ 𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ (𝜇, 𝝂). Since 𝜀,𝛿(𝜇, 𝝂) = (𝜇, 𝝂) + 𝜀,𝛿(𝜇1), com-
bining the preceding inequality with (3.15) gives the result in this case.

On the other hand, suppose 𝐿 and 𝐿𝑁 satisfy Assumption 1.1(iiib) and Assumption
1.6(ib). Without loss of generality, we may assume (𝜇, 𝝂) < +∞, so that

∫

1

0 ∫ℝ𝑑
𝐿𝑑𝜇𝑡𝑑𝑡 < +∞ ⟹ ∫ℝ𝑑

𝐿𝑑𝜇𝑡 < +∞ for a.e. 𝑡 ∈ [0, 1]

⟹ {𝑦𝑖,𝑁 (𝑡)}𝑁𝑖=1 ⊆ supp 𝜇𝑡 ⊆ {𝐿 < +∞} for a.e. 𝑡 ∈ [0, 1].
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Thus, the fact that 𝐿𝑁 ↗ 𝐿 implies

lim sup
𝑁→+∞ ∫

1

0 ∫ℝ𝑑
𝐿𝑁𝑑𝜇𝑁,𝑡𝑑𝑡 ≤ lim sup

𝑁→+∞ ∫

1

0 ∫ℝ𝑑
𝐿𝑑𝜇𝑁,𝑡𝑑𝑡

= lim sup
𝑁→+∞ ∫

1

0 ∫ℝ𝑑
𝐿1{𝐿<+∞}𝑑𝜇𝑁,𝑡𝑑𝑡 ≤ ∫

1

0 ∫ℝ𝑑
𝐿1{𝐿<+∞}𝑑𝜇𝑡𝑑𝑡 ≤ ∫

1

0 ∫ℝ𝑑
𝐿𝑑𝜇𝑡𝑑𝑡,

where the second to last inequality follows since𝐿 is continuous on the closed set {𝐿 < +∞},
so𝐿1{𝐿<+∞} is upper semicontinuous. Combining this with (3.14) and (3.15) gives the result.

The preceding convergence result can now be used to show that, for fixed 𝜀, 𝛿 > 0, as
𝑁 → +∞, minimizers of the spatially discrete problem (MFC𝜀,𝛿,N) converge to a solution of
(MFC𝜀,𝛿), up to a subsequence. The result follows from a standard argument, which we defer
to Appendix B.

THEOREM 3.7 (Convergence of minimizers as 𝑁 → +∞). Suppose Assumptions 1.1,
1.4, and 1.6 hold, and suppose ∫ 𝜙(|𝑥|)𝑑𝑚0(𝑥) < +∞. Fix 𝜀, 𝛿 > 0, and suppose (MFC𝜀,𝛿)
is feasible.

Then, there exists 𝐲𝑁,0 ∈ (ℝ𝑑)𝑁 satisfying

𝑦𝑖,𝑁,0 ∈ supp 𝑚0 for all 𝑖 = 1,… , 𝑁,(3.16)
1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,0 → 𝑚0 in 1(ℝ𝑑),(3.17)

so that, if (𝐲𝑁 ,𝐮𝑁 ) ∈ (𝐲𝑁,0) is a minimizer of (MFC𝜀,𝛿,N), then

lim
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) = inf
(𝜇,𝝂)∈(𝑚0)

𝜀,𝛿(𝜇, 𝝂).(3.18)

and there exists (𝜇, 𝝂) ∈ (𝑚0) so that, up to a subsequence,

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑)),(3.19)

1
𝑁

𝑁
∑

𝑖=1
𝑢𝑖,𝑁 (𝑡)𝛿𝑦𝑖,𝑁 (𝑡)𝑑𝑡 → 𝝂 in (ℝ𝑑 × [0, 1];𝑈 ).(3.20)

Furthermore, any such limit point (𝜇, 𝝂) is a minimizer of (MFC𝜀,𝛿).

As described in Remark 1.3, if one additionally knows that the solution of (MFC𝜀,𝛿) is unique,
then any sequence of minimizers (𝐲𝑁 ,𝐮𝑁 ) converges to the unique solution, without passing
to a subsequence. However, note that while the above theorem ensures there exists a sequence
of initial conditions 𝐲𝑁,0 for which minimizers of (MFC𝜀,𝛿,N) converge to a minimizer of
(MFC𝜀,𝛿), at this level of generality, it is not known if the result is true for all choices of initial
conditions.

In the special cases of unconstrained controls and controllable linear time invariant sys-
tems, Theorem 1.9 ensures that this result indeed continues to hold for all well-prepared ini-
tial conditions 𝐲𝑁,0. Our argument is strongly inspired by the proof of [30, Theorem 3.3(iii)],
which we adapt to our more general hypotheses on the state and measure cost𝐿 and the setting
of controllable linear time invariant systems.
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Proof of Theorem 1.9. Let 𝐲𝑁,0 ∈ Ω𝑁 be an arbitrary sequence s.t. sup𝑖,𝑁 |𝐲𝑖,𝑁,0| < +∞

and (1.9) holds. Suppose we can show that, for any sequence of minimizers (𝐲𝑁 ,𝐮𝑁 ) ∈
𝑁 (𝐲𝑁,0) of (MFC𝜀,𝛿,N) we have

lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ 𝑒𝑚0
< +∞,(3.21)

with 𝑒𝑚0
as in equation (B.1). Then, up to a subsequence, we must have

sup
𝑁

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖,𝑁 (𝑡))𝑑𝑡 < +∞.

Thus [30, Theorem 3.1] ensures there exists (𝜇, 𝝂) ∈ (𝑚0) so that, up to a subsequence,
(1.10)-(1.11) hold. Furthermore, for any such limit point (𝜇, 𝝂), Proposition 3.6(i) ensures

𝑒𝑚0
≤ 𝜀,𝛿(𝜇, 𝝂) ≤ lim inf

𝑁→+∞
𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ 𝑒𝑚0

.(3.22)
Thus, (𝜇, 𝝂) is a minimizer of (MFC𝜀,𝛿).In this way, it suffices to show (3.21). Let �̃�𝑁,0 be the sequence of initial conditions from
Theorem 3.7. Since 𝑚0 is compactly supported, we have sup𝑖,𝑁 |�̃�𝑖,𝑁,0| < +∞. Let

𝑅 = max{sup
𝑖,𝑁

|𝑦𝑖,𝑁,0|, sup
𝑖,𝑁

|�̃�𝑖,𝑁,0|}.

Fix (�̃�𝑁 , �̃�𝑁 ) ∈ (�̃�𝑁,0) that minimize (MFC𝜀,𝛿,N). Theorem 3.7 ensures that
lim

𝑁→+∞
𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 ) = 𝑒𝑚0

,(3.23)
and there exists (�̃�, �̃�) ∈ (𝑚0) so that, up to a subsequence, (3.19-3.20) hold. For the remain-
der of the proof, we work with this subsequence of 𝑁 .

Define
𝜁 (𝑟) ∶= 𝜙(𝑟) + 𝑟.(3.24)

By Lemma 2.2, 𝜁 (𝑟) ≤ 2𝜙(𝑟) + 𝑅𝜙. Thus, by [30, Lemma 2.5],

lim
𝑛→+∞

𝐶𝜁

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,0 ,

1
𝑁

𝑁
∑

𝑖=1
𝛿�̃�𝑖,𝑁,0

)

= 0,

where 𝐶𝜁 (𝜇, 𝜈) denotes the optimal value of the optimal transport problem between 𝜇 and 𝜈
with cost matrix 𝜁 (𝑥−𝑦). By Birkhoff’s theorem, up to a permutation of the indices 𝑖 ↦ 𝑦𝑖,𝑁 ,
we may assume that

𝑐𝑁 ∶= 𝐶𝜁

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,0 ,

1
𝑁

𝑁
∑

𝑖=1
𝛿�̃�𝑖,𝑁,0

)

= 1
𝑁

𝑁
∑

𝑖=1
𝜁 (|𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0|) for all 𝑁.

We now seek to make a small modification to (�̃�𝑁 , �̃�𝑁 ) so that the initial condition agrees
with 𝐲𝑁,0 and, as𝑁 → +∞, the value of the discrete energy along the modified sequence con-
verges to 𝑒𝑚0

. Our modification takes different forms, depending on the structural assumptions
we consider. Fix 𝜂 ∈ (0, 1), and recall that 𝜙 is increasing, convex, and satisfies the doubling
condition (2.4). Note that, for any 𝑟, 𝐶 ≥ 0,

𝜙(𝑟 + 𝐶) ≤

{

𝜙(2𝑟) if 𝑟 ≥ 𝐶
𝜙(2𝐶) if 𝑟 ≤ 𝐶

≤ 𝜙(2𝑟) + 𝜙(2𝐶).
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In case (a), in which 𝑈 = ℝ𝑑 , define

𝑦(𝑎)𝑖,𝑁,𝜂(𝑡) =

{

(1 − 𝑡∕𝜂)𝑦𝑖,𝑁,0 + (𝑡∕𝜂)�̃�𝑖,𝑁,0 if 𝑡 ∈ [0, 𝜂),
�̃�𝑖,𝑁 (𝑡 − 𝜂) if 𝑡 ∈ [𝜂, 1],

𝑢(𝑎)𝑖,𝑁,𝜂(𝑡) =

{

(𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0)∕𝜂 − 𝐅𝑁 (𝑦(𝑎)𝑖,𝑁,𝜂(𝑡), 𝐲
(𝑎)
𝑁,𝜂(𝑡)) if 𝑡 ∈ [0, 𝜂),

�̃�𝑖,𝑁 (𝑡 − 𝜂) if 𝑡 ∈ [𝜂, 1].

By construction, we have (𝐲(𝑎)𝑁,𝜂 ,𝐮
(𝑎)
𝑁,𝜂) ∈ 𝐴(𝐲𝑁,0). Furthermore, there exists 𝑅 > 0 so that,

for all 𝑡 ∈ [0, 𝜂), 𝜂 ∈ (0, 1),
sup
𝑖,𝑁

|𝑦(𝑎)𝑖,𝑁,𝜂(𝑡)| ≤ 𝑅 < +∞.(3.25)

Thus, the convergence of 𝐅𝑁 (𝑥, 𝐲𝑁,𝜂) to 𝐅(𝑥, 𝑚0) as 𝑁 → +∞ locally uniformly in 𝑥 and 𝑡,
implies there exists 𝐶𝐹 > 0 so that

sup
𝑡∈[0,𝜂),𝑖,𝑁

|𝐅𝑁 (𝑦(𝑎)𝑖,𝑁,𝜂(𝑡), 𝐲
(𝑎)
𝑁,𝜂(𝑡)| < 𝐶𝐹 .

Now, we estimate the state and measure cost in case (a) for 𝑡 ∈ [0, 𝜂). If 𝐿 and 𝐿𝑁satisfy Assumptions 1.1(iiia) and 1.6 (ia), then the convergence of 𝐿𝑁 (𝑥, 𝐲𝑁,𝜂) to 𝐿(𝑥, 𝑚0) as
𝑁 → +∞ locally uniformly in 𝑥 and 𝑡, and the estimate (3.25) implies

sup
𝑡∈[0,𝜂),𝑖,𝑁

|𝐿𝑁 (𝑦(𝑎)𝑖,𝑁,𝜂(𝑡), 𝐲
(𝑎)
𝑁,𝜂(𝑡)| < +∞.

On the other hand, if 𝐿 and 𝐿𝑁 satisfy Assumptions 1.1(iiib) and 1.6(ib),
sup

𝑡∈[0,𝜂),𝑖,𝑁
𝐿𝑁 (𝑦(𝑎)𝑖,𝑁,𝜂(𝑡), 𝐲

(𝑎)
𝑁,𝜂(𝑡)) ≤ sup

𝑡∈[0,𝜂],𝑖,𝑁
𝐿(𝑦(𝑎)𝑖,𝑁,𝜂(𝑡)) < +∞,

where we use that {𝑦(𝑎)𝑖,𝑁,𝜂(𝑡)}𝑡∈[0,𝜂),𝑖,𝑁 is a bounded subset of Ω ⊆ {𝐿 < +∞}, so the image
of this set under 𝐿 is also bounded. Thus, under either assumption on 𝐿, there exists 𝐶𝐿 > 0
so that

1
𝑁

𝑁
∑

𝑖=1
∫

𝜂

0
𝐿𝑁 (𝑦(𝑎)𝑖,𝑁,𝜂(𝑡), 𝐲

(𝑎)
𝑁,𝜂(𝑡))𝑑𝑡 ≤ 𝜂𝐶𝐿.

Finally, we estimate the control cost in case (a), estimating first in terms of the admissible
function 𝜙. For 𝑡 ∈ [0, 𝜂),

𝜙
(

|

|

|

𝑢(𝑎)𝑖,𝑁,𝜂(𝑡))
|

|

|

)

= 𝜙
(

|

|

|

(𝑦(𝑎)𝑖,𝑁,0 − �̃�
(𝑎)
𝑖,𝑁,0)∕𝜂 − 𝐅𝑁 (𝑦(𝑎)𝑖,𝑁,𝜂(𝑡), 𝐲

(𝑎)
𝑁,𝜂(𝑡))

|

|

|

)

≤ 𝜙
(

|

|

|

(𝑦(𝑎)𝑖,𝑁,0 − �̃�
(𝑎)
𝑖,𝑁,0)∕𝜂

|

|

|

+ 𝐶𝐹
)

≤ 𝜙
(

2 ||
|

(𝑦(𝑎)𝑖,𝑁,0 − �̃�
(𝑎)
𝑖,𝑁,0)∕𝜂

|

|

|

)

+ 𝜙(2𝐶𝐹 )

Now, we turn to case (b). In this case, define

𝑦(𝑏)𝑖,𝑁,𝜂(𝑡) =

{

𝑒𝑡𝐴𝑦𝑖,𝑁,0 + ∫ 𝑡0 𝑒
−𝜏𝐴𝑢(𝑏)𝑖,𝑁,𝜂(𝜏)𝑑𝜏 if 𝑡 ∈ [0, 𝜂),

�̃�𝑖,𝑁 (𝑡 − 𝜂) if 𝑡 ∈ [𝜂, 1],

𝑢(𝑏)𝑖,𝑁,𝜂(𝑡) =

{

−𝐵𝐵𝑇 𝑒−𝑡𝐴𝑇 Γ−1(𝜂)[𝑦𝑖,𝑁,0 − 𝑒−𝜂𝐴�̃�𝑖,𝑁,0] if 𝑡 ∈ [0, 𝜂),
�̃�𝑖,𝑁 (𝑡 − 𝜂) if 𝑡 ∈ [𝜂, 1].
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Again, by construction, we have (𝐲(𝑏)𝑁,𝜂 ,𝐮

(𝑏)
𝑁,𝜂) ∈ 𝐴(𝐲𝑁,0). (See, for example, [8, Theorem

5.2].) Likewise, in case (b), for 𝑡 ∈ [0, 𝜂),

𝜙
(

|

|

|

𝑢(𝑏)𝑖,𝑁,𝜂(𝑡))
|

|

|

)

= 𝜙
(

|

|

|

−𝐵𝐵𝑇 𝑒−𝑡𝐴
𝑇
Γ−1(𝜂)[𝑦𝑖,𝑁,0 − 𝑒−𝜂𝐴�̃�𝑖,𝑁,0]

|

|

|

)

≤ 𝜙
(

|

|

|

𝐵𝐵𝑇 𝑒−𝑡𝐴
𝑇
Γ−1(𝜂)[𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0]

|

|

|

+ |

|

|

𝐵𝐵𝑇 𝑒−𝑡𝐴
𝑇
Γ−1(𝜂)[𝐼 − 𝑒−𝜂𝐴]�̃�𝑖,𝑁,0]

|

|

|

)

≤ 𝜙
(

2 ||
|

𝐵𝐵𝑇 𝑒−𝑡𝐴
𝑇
Γ−1(𝜂)[𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0]

|

|

|

)

+ 𝜙
(

2 ||
|

𝐵𝐵𝑇 𝑒−𝑡𝐴
𝑇
Γ−1(𝜂)[𝐼 − 𝑒−𝜂𝐴]�̃�𝑖,𝑁,0]

|

|

|

)

≤ 𝜙
(

𝐶𝐴,𝐵‖Γ−1(𝜂)‖ ||𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0||
)

+ 𝜙
(

𝐶𝐴,𝐵|Γ−1(𝜂)(𝐼 − 𝑒−𝜂𝐴)�̃�𝑖,𝑁,0|
)

for some 𝐶𝐴,𝐵 > 0, depending on 𝐴 and 𝐵.
Since ‖Γ−1(𝜂)‖ is a continuous function of 𝜂 > 0 that diverges to +∞ as 𝜂 → 0, there

exists a decreasing function 𝜎 ∶ (0, 1) → ℝ so that 𝜎(𝜂) ≥ 1
𝜂 and 𝜎(𝜂) ≥ ‖Γ−1(𝜂)‖ for all

𝜂 ∈ (0, 1). Define

𝜔(𝜂, �̃�𝑖,𝑁,0) =

{

0 in case (a),
𝐶𝐴,𝐵|Γ−1(𝜂)(𝐼 − 𝑒−𝜂𝐴)�̃�𝑖,𝑁,0| in case (b).

Therefore, considering both case (a) and case (b) simultaneously, there exists 𝐶 ′ ≥ 1 so
that, for 𝐾 ′ > 0 as in Lemma 2.2 and 𝜁 (|𝑥|) = 𝜙(|𝑥|) + |𝑥|,

𝜙
(

|

|

|

𝑢𝑖,𝑁,𝜂(𝑡))
|

|

|

)

≤ 𝜙(𝐶 ′𝜎(𝜂) |
|

𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0||) + 𝜙(𝜔(𝜂, �̃�𝑖,𝑁,0)) + 𝐶
′

≤ 𝐾 ′(𝐶 ′𝜎(𝜂))𝐾
′
𝜁 (|
|

𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0||) + 𝜙(𝜔(𝜂, �̃�𝑖,𝑁,0)) + 𝐶
′

Combining this estimate with inequality (2.5), there exists 𝐶 ′′ > 0 depending on 𝐾 ′, 𝐶 ′, and
𝐶 so that

1
𝑁

𝑁
∑

𝑖=1
∫

𝜂

0
𝜓(𝑢𝑖,𝑁,𝜂(𝑡))𝑑𝑡

≤ 𝜂𝐶 + 𝐶
𝑁

𝑁
∑

𝑖=1
∫

𝜂

0
𝜙(|𝑢𝑖,𝑁,𝜂(𝑡)|)𝑑𝑡

≤ 𝜂𝐶 ′′ + 𝐶 ′′𝜂(𝜎(𝜂))𝐾
′

(

1
𝑁

𝑁
∑

𝑖=1
𝜁 (|(𝑦𝑖,𝑁,0 − �̃�𝑖,𝑁,0|)

)

+ 𝜂𝐶 ′′ 1
𝑁

𝑁
∑

𝑖=1
𝜙(𝜔(𝜂, �̃�𝑖,𝑁,0))

= 𝐶 ′′𝜂(𝜎(𝜂))𝐾
′
𝑐𝑁 + 𝑜(1), as 𝜂 → 0,

where we use the fact that, in case (a), 𝜔 ≡ 0, and in case (b), hypothesis (biv) ensures that

𝜂𝜙(𝜔(𝜂, �̃�𝑖,𝑁,0)) ≤ 𝜂𝐾 ′(𝐶𝐴,𝐵)𝐾
′
𝜁 (|Γ−1(𝜂)(𝐼 − 𝑒−𝜂𝐴)�̃�𝑖,𝑁,0|)

≤ 𝜂𝐾 ′(𝐶𝐴,𝐵)𝐾
′
(2𝜙(|Γ−1(𝜂)(𝐼 − 𝑒−𝜂𝐴)�̃�𝑖,𝑁,0|) + 𝑅𝜙) → 0,

uniformly in 𝑖,𝑁 .
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Finally note that, by definition of 𝑦𝑖,𝑁,𝜂 in both case (a) and case (b),

𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,𝜂(1)

)

− 𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿�̃�𝑖,𝑁 (1)

)

= 𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿�̃�𝑖,𝑁 (1 − 𝜂)

)

− 𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿�̃�𝑖,𝑁 (1)

)

.

By Lemma 3.5, this vanishes as 𝑁 → +∞ and 𝜂 → 0, since the empirical measures in both
arguments converge to �̃�1.

Combining the above estimates, we have shown that, in both case (a) and case (b),
𝜀,𝛿,𝑁 (𝐲𝑁,𝜂 ,𝐮𝑁,𝜂)

≤ 1
𝑁

𝑁
∑

𝑖=1
∫

𝜂

0
𝜓(𝐮𝑁,𝜂(𝑡))𝑑𝑡 +

1
𝑁

𝑁
∑

𝑖=1
∫

𝜂

0
𝐿𝑁 (𝑦𝑖,𝑁,𝜂(𝑡), 𝐲𝑁,𝜂(𝑡))𝑑𝑡 + 𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 )

+ 𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑦𝑖,𝑁,𝜂(1)

)

− 𝜀,𝛿

(

1
𝑁

𝑁
∑

𝑖=1
𝛿�̃�𝑖,𝑁 (1)

)

≤ 𝐶 ′′𝜂(𝜎(𝜂))𝐾
′
𝑐𝑁 + 𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 ) + 𝑜(1), as 𝜂 → 0, 𝑁 → +∞.

Taking 𝜂 = 𝜎−1(𝑐−1∕𝐾
′

𝑁 ) implies 𝜎(𝜂) = 𝑐−1∕𝐾
′

𝑁 and 𝜂(𝜎(𝜂))𝐾′𝑐𝑁 = 𝜂
𝑁→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0. Thus,

lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁,𝜂 ,𝐮𝑁,𝜂) ≤ lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 ) = 𝑒𝑚0

Finally, since (𝐲𝑁,𝜂 ,𝐮𝑁,𝜂) ∈ (𝐲𝑁,0) for all 𝜂 ∈ (0, 1), for any sequence of minimizers
(𝐲𝑁 ,𝐮𝑁 ) ∈ (𝐲𝑁,0) of (MFC𝜀,𝛿,N), we have

lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁,𝜂 ,𝐮𝑁,𝜂) ≤ 𝑒𝑚0
.

This shows (3.21), which completes the proof.
Our main theorem, Theorem 1.11, is now an immediate consequence of Theorem 1.2,

Theorem 1.5, and Theorem 1.9, via a standard diagonal argument. See appendix B.
4. Numerics.

4.1. Numerical Implementation. We now apply the particle approximation developed
in the previous sections to compute three key examples of the mean field optimal control
problem (⋆): the dynamic formulation of the 2-Wasserstein distance, 2-Wasserstein optimal
transport around obstacles, and measure transport with acceleration constraints; see section
1.2 for more details. For simplicity of exposition, we describe our approach in the context of
the first two 2-Wasserstein examples. See section 4.6 for the case of acceleration controls.

For classical 𝑝 = 2 optimal transport, with and without obstacles, the particle discretiza-
tion of the mean field optimal control problem (MFC𝜀,𝛿,N) becomes

inf
𝑦𝑖,𝑢𝑖

{

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
|𝑢𝑖(𝑡)|2𝑑𝑡 +

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝐿𝑁 (𝑦𝑖(𝑡))𝑑𝑡(4.1)

+1
𝜀

[

1
𝑁2

𝑁
∑

𝑖,𝑘=1
𝐾𝛿(𝑦𝑖(1) − 𝑦𝑘(1)) −

2
𝑁

𝑁
∑

𝑖=1
(𝐾𝛿 ∗ 𝑚1)(𝑦𝑖(1))

]}
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subject to the differential equations

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡), 𝑦𝑖(0) = 𝑦𝑖,0.(4.2)
(Note that we neglect the constant 𝐶𝛿,𝑚1

in the objective functional, since it does not affect
minimizers.) In order to numerically approximate solutions of this constrained optimization
problem, we must discretize time, incorporate the ODE constrains, and develop a method for
approximating the minimizer.

First, we discretize time 𝑡 ∈ [0, 1] on a uniform grid with 𝑀 grid points and time step
ℎ = 1∕(𝑀 − 1), approximating 𝑦𝑖(𝑡) by the vector

[𝑦𝑖,𝑗]𝑀𝑗=1 ≈
[

𝑦𝑖,0, 𝑦𝑖(ℎ), 𝑦𝑖(2ℎ),… , 𝑦𝑖(1 − ℎ), 𝑦𝑖(1)
]

,(4.3)
which, by definition, incorporates initial condition constraint (4.2). Next, we approximate the
velocity by a first order finite difference,

𝑢𝑖(𝑡) ≈
𝑦𝑖(𝑡 + ℎ) − 𝑦𝑖(𝑡)

ℎ
.(4.4)

Substituting into the objective function (4.1), we arrive at a fully discrete problem, which is
to minimize the sum of the kinetic energy, the potential energy, and the nonlocal energy,

min
𝑦𝑖,𝑗

{

KE(𝑦𝑖,𝑗) + PE(𝑦𝑖,𝑗) + NE(𝑦𝑖,𝑗) ∶ 𝑦𝑖,1 = 𝑦𝑖,0 ∀𝑖 = 1,… , 𝑁
}

,(4.5)

for

KE(𝑦𝑖,𝑗) ∶=
𝑀 − 1
𝑁

𝑁
∑

𝑖=1

|

|

|

diff(𝑦𝑖,𝑗)
|

|

|

2(4.6)

PE(𝑦𝑖,𝑗) ∶=
1

𝑁(𝑀 − 1)

𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝐿𝑁 (𝑦𝑖,𝑗)(4.7)

NE(𝑦𝑖,𝑗) ∶=
1
𝜀

[

1
𝑁2

𝑁
∑

𝑖,𝑘=1
𝐾𝛿

(

𝑦𝑖,𝑀 − 𝑦𝑘,𝑀
)

− 2
𝑁

𝑁
∑

𝑖=1
(𝐾𝛿 ∗ 𝑚1)(𝑦𝑖,𝑀 )

]

,(4.8)

where 𝑖 = 1,… , 𝑁 and 𝑗 = 2,… ,𝑀 , with
diff(𝑦𝑖,𝑗) ∶=

[

𝑦𝑖,2 − 𝑦𝑖,1, 𝑦𝑖,3 − 𝑦𝑖,2,… , 𝑦𝑖,𝑀 − 𝑦𝑖,𝑀−1, 0
]

.

The resulting optimization problem is unconstrained. In what follows, we commit a mild abuse
of notation and let 𝑦𝑖(𝑡) denote the linear interpolation of {𝑦𝑖,𝑗}𝑀𝑗=1 in time. In the majority
of the simulations that follow, we consider the case without obstacles 𝐿𝑁 ≡ 0; section 4.5
considers the optimal trajectories in the presence of obstacles.

In the present simulations, we choose 𝑘𝛿 , 𝐾𝛿 ∶ ℝ𝑑 → ℝ to be Gaussian mollifiers,
(4.9) 𝐾𝛿(𝜃) = (2𝜋𝛿2)−𝑑∕2 exp (−‖𝜃‖2∕2𝛿2), 𝑘𝛿 = 𝐾𝛿∕

√

2.

REMARK 4.1 (target measures𝑚1 ∉ 𝐿2(ℝ𝑑)). While our theoretical convergence results
require 𝑚1 ∈ 𝐿2(ℝ𝑑) (see Assumption 1.1), our numerical approach extends naturally to
empirical target measures, 𝑚1 =

1
𝑁
∑𝑁
𝑖=1 𝛿𝑤𝑖 . In this case, NE becomes

NE(𝑦𝑖,𝑗) =
1

𝜀𝑁2

𝑁
∑

𝑖,𝑘=1

[

𝐾𝛿
(

𝑦𝑖,𝑀 − 𝑦𝑘,𝑀
)

− 2𝐾𝛿(𝑦𝑖,𝑀 −𝑤𝑘)
]

.(4.10)
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Finally, once we have arrived at the fully discrete minimization problem (4.5), we com-
pute an approximate minimizer by gradient descent. With this approach, updating the tra-
jectory of the 𝑖th particle only requires local information at the terminal time regarding the
proximity to other particles and the value of the target 𝑚1. Derivatives are calculated auto-
matically by PyTorch [40], with a prescribed learning rate 𝛼 and maximum number of descent
steps 𝑛. In addition, we use standard learning rate reduction and early stopping mechanisms.
If the objective function value does not decrease for two steps, the learning rate 𝛼 is reduced to
0.2𝛼, as long as the reduction is larger than 10−8, as implemented in PyTorch. If the objective
function value does not decrease for 5 steps, the algorithm is terminated early.

As we illustrate in our simulations (see section 4.7), we do not expect the loss landscape
to be convex, so we do not have guarantees that our gradient descent approach will converge to
a global minimizer of (4.5). However, as our numerical results attest, even our simple gradient
descent approach leads to reasonable results. We leave the important question of developing
more accurate methods for computing an approximate minimizer to future work, as the main
focus of the present paper is to analyze the effects of discretizing dynamic optimal transport
by a regularized particle method.

Due to the nonconvexity of the loss landscape, we expect that the results of gradient
descent will depend strongly on the initialization. In the following simulations, we initialize
the trajectories to be straight lines terminating at the center of mass of the target distribution.
In other words, we choose 𝑦𝑖,𝑗 so that

𝑦𝑖,𝑀 = ∫ 𝑦𝑚1(𝑦)𝑑𝑦 for all 𝑖 = 1,… , 𝑁,(4.11)
[𝑦𝑖,𝑗]𝑀−1

𝑗=2 linearly interpolates between 𝑦𝑖,0 and 𝑦𝑖,𝑀 for all 𝑖 = 1,… , 𝑁.(4.12)
Python code for all experiments is available at https://github.com/HarlinLee/BlobOT.
4.2. Parameter selection. In practice, we expect the gradient descent dynamics for

computing an approximate minimizer of (4.5) to depend on the choice of the parameters
𝑁, 𝛿, 𝜀,𝑀, 𝛼 and 𝑛. For the continuum formulation of the problem, there is no downside
to choosing 𝜀 to be arbitrarily small, independent of 𝑁 and 𝛿, since it simply enforces the
terminal constraint more exactly. For this reason, in our simulations, we typically choose 𝜀 to
be a fixed, very small parameter.

On the other hand, we cannot hope for good results by choosing 𝛿 arbitrarily small without
regard to 𝑁 . When 𝛿 is very small, the “sensing radius” of the mollifier 𝐾𝛿 becomes very
small, preventing particles from detecting the correct target distribution, unless they were
coincidentally initialized very close to target. For example, when the target distribution is
an empirical measure, particles would not be able to detect desired target locations 𝑤𝑖 too far
from their current terminal location 𝑦𝑖,𝑀 because the small radius of concentration of𝐾𝛿 . In a
similar way, if one chooses𝑁 arbitrarily large without regard to 𝛿, assuming that the empirical
measure 1

𝑁
∑𝑁
𝑖=1 𝛿𝑦𝑖,𝑀 narrowly converges to a limiting probability measure 𝜇1 the nonlocal

energy approximates

NE(𝑦𝑖,𝑗) ≈ 𝐹𝜀,𝛿(𝜇1) =
1
𝜀
‖𝑘𝛿 ∗ 𝜇1 − 𝑘𝛿 ∗ 𝑚1‖

2
𝐿2 .

It is a classical result that there exist 𝜇1, 𝑚1 arbitrarily far apart for which the 𝐿2 differences
of their regularizations is arbitrarily small, so in this way, when 𝛿 > 0 is fixed too large with
respect to 𝑁 , NE(𝑦𝑖,𝑗) is not as accurate for imposing the terminal constraint.

For these reasons, we allow 𝛿 → 0 and𝑁 → +∞ simultaneously. Inspired by quantitative
error estimates available for classical vortex blob methods for the Euler and Navier-Stokes

https://github.com/HarlinLee/BlobOT
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equations [9, 10] and blob methods for the aggregation equation [23], we let 𝛿 scale with 𝑁 ,

𝛿 = 𝑁−𝑘∕𝑑 , for 0≪ 𝑘 < 1.(4.13)
In the present manuscript, we take 𝑘 = 0.99. As a consequence, two particles distance
𝑂(𝑁−1∕𝑑) apart in 𝑑-dimensions will be able to “sense” one another via the mollifier 𝐾𝛿 .In particular, when 𝐾𝛿 is a Gaussian mollifier, equation (4.13) ensures its standard deviation
is slightly larger than the interparticle distance on a regular grid.

With regard to the number of time steps 𝑀 , since we expect good regularity in time, we
anticipate higher accuracy when 𝑀 is large, at the expense of increasing the dimension of
the optimization problem (4.5). Due to the fact that the optimal trajectories of the dynamic
2-Wasserstein problem will always follow straight lines, in the case 𝐿𝑁 ≡ 0, it suffices to take
𝑀 = 2. However, we allow for flexibility in choice of 𝑀 , to accommodate more general for-
mulations of the problem, including obstacles and acceleration constraints. In the numerical
experiments that follow, we choose 𝑀 > 2, even though this is an unnecessarily computa-
tional expense in the 𝐿𝑁 ≡ 0 case, in order to illustrate that the kinetic energy KE on its own
is able to effectively straighten the trajectories.

Finally, we consider the choice of parameters 𝛼 and 𝑛 for our gradient descent dynamics.
As shown in section 4.7, when 𝜀 is large, the energy landscape flattens, but we can still achieve
good results with a larger learning rate 𝛼. For this reason, we typically take 𝛼 to scale with 𝜀.
As a consequence, when 𝜀 is small, the learning rate 𝛼 is small, and it may take more steps
𝑛 to reach an approximate global minimizer. In this way, while from the perspective of the
continuum problem, there is no downside to taking 𝜀 arbitrarily small, from the perspective of
the fully discrete problem, we do see that when 𝜀 is very small, it can require more iterations
of gradient descent to reach an approximate global minimizer; see section 4.8.

4.3. Comparison with Python Optimal Transport. In Figure 4.1, we begin by compar-
ing the results of Blob OT to classical approaches for solving the 2-Wasserstein optimal trans-
port problem. In particular, we compare our method to the Python Optimal Transport emd
(POT-emd) function, which computes optimal transport between two empirical measures via
solving the Kantorovich formulation of the problem using the Hungarian algorithm [29]. As
illustrated in the figure, our source and target measures are given by𝑁 = 30 equally weighted
Dirac masses in 𝑑 = 2 spatial dimensions. We choose 𝑀 = 3 time steps, 𝛿 = 𝑁−0.99∕𝑑 ,
𝜀 = 0.01, learning rate 𝛼 = 0.01, and 𝑛 = 2000 gradient descent steps. (See section 4.9 for a
more detailed discussion of the relationship between the parameters 𝛿, 𝑁 , and 𝜀 and section
4.8 for a discussion of how these relate to the gradient descent parameters 𝛼 and 𝑛.)

The top left panel of Figure 4.1 shows the trajectories {𝑦𝑖,𝑗} computed by our method, lin-
early interpolating between the𝑀 = 3 time steps to better illustrate the paths of the particles.
The top right panel compares the terminal values of the trajectories {𝑦𝑖,𝑀} to the locations of
particles in the target {𝑤𝑖}. While our method uses a soft constraint to match source to target
particles, we observe overall good agreement. The bottom left panel shows the optimal trans-
port matching computed via POT-emd, which is qualitatively similar to our solution, though
not identical. However, in the bottom right panel, we see by comparing the Blob OT and
POT-emd solutions in terms of the value of the objective function (4.5), they are extremely
close in terms of the degree to which they match source to target measure with the smallest
possible kinetic energy. While the gradient descent of Blob-OT is initialized far from opti-
mum, we see that, over the course of the gradient descent, it converges to the nearly optimal
objective function value achieved by POT-emd. After 𝑛 = 2, 000 steps, Blob OT has objective
function value of 1.9884 = 1.9779 (kinetic energy, 4.6) + 0.0105 (nonlocal energy, 4.8), while
POT-emd has objective function value of 1.9908 = 1.9908 (kinetic energy, 4.6) + 0 (nonlocal
energy, 4.8), rounded to 4 decimal points. Note that while the kinetic energy for the Blob OT
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y(1)

Fig. 4.1: Comparison between our particle method for computing the dynamic formulation
of the 2-Wasserstein distance and classical approaches to computing optimal transport, e.g.,
via the Kantorovich formulation of the problem, as implemented in Python Optimal Transport
emd (POT-emd).

is smaller than POT-emd, this is due to the fact that Blob OT has a soft terminal constraint,
not because it has indeed found a superior matching between source and target.

4.4. Continuous target Gaussian distribution. In Figure 4.2, we contrast the behavior
of our method for computing the 2-Wasserstein optimal transport when the target distribution
is given by a continuum Gaussian distribution  (𝜇, 𝜎2), with 𝜇 = (1.5, 1.5), 𝜎 = 0.5, versus
when the target is given by iid samples from the same Gaussian, in 𝑑 = 2 dimensions. In both
cases, we take our source distribution to be𝑁 = 225 equally weighted Dirac masses arranged
on a grid, as an approximation of the uniform measure on the square𝑚0 = 1[0,1]×[0,1]. We take
𝑀 = 5 time steps, 𝜀 = 0.01, 𝛿 = 𝑁−0.99∕𝑑 , 𝑛 = 5 ⋅ 106 gradient descent steps, and learning
rate 𝛼 = 0.01𝜀.

In the top row of Figure 4.2, we use our method to compute trajectories from the source
measure to iid samples of the Gaussian, drawn using the numpy function randn. In the bot-
tom row, we compute trajectories from the source measure to the continuum gaussian, tak-
ing 𝑚1(𝑦) = 𝜑0.5(𝑦 − (1.5, 1.5)) and using the approximation 𝐾𝛿 ∗ 𝑚1(𝑦) = 𝜑√

0.5+𝛿2
(𝑦 −

(1.5, 1.5)) ≈ 𝑚1(𝑦) in the definition of the nonlocal energy, equation (4.8). The left column
shows the trajectories {𝑦𝑖,𝑗} computed by our method, linearly interpolating between time
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y(1)

Fig. 4.2: Comparison between our particle method for computing the dynamic formulation of
the 2-Wasserstein distance between a uniform grid and iid samples from a Gaussian (top row)
and the continuum Gaussian itself (bottom row).

steps to show the path of each particle. The right column shows the terminal locations of the
trajectories, which can be interpreted as samples of 𝑚1, and compares them to the target mea-
sure. The dotted circles around the Gaussian target measure illustrate its standard deviations,
𝜎 and 2𝜎.

In both the top and bottom row, we see that the particles primarily end up within two
standard deviations of the Gaussian mean, largely ignoring outliers/tails. We believe this is due
to the finite particle nature of our approximation, and we anticipate that, as𝑁 → +∞, 𝛿 → 0,
and 𝜀 → 0, minimizers of (4.5) will indeed match to more outliers/tails. While our method
succeeds at capturing the irregular samples in the top row, we find it especially interesting
that, when the source measure is taken to be a continuum Gaussian in the second row, the
final particle locations self-organize with much more regular structure. For this reason, we
believe that methods based on our approach may show promise within the context of sampling,
especially when the samples are used to discretize integrals of smooth functions.

In order to illustrate the importance of the choice of parameters on behavior of our method,
we illustrate how the behavior of the previous figure changes when 𝛿 is chosen too small. In
Figure 4.3, we consider the same numerical experiment as in the previous Figure 4.2, except
that instead of choosing 𝛿 = 𝑁−0.99∕𝑑 , we choose 𝛿 = 𝜎𝑑−0.5𝑁−0.99∕𝑑 . For this smaller value
of 𝛿, we observe that the particles are less able to match the outliers/tails of the target Gaussian.
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y(1)

Fig. 4.3: Comparison between computing optimal transport from a uniform grid to iid samples
from a Gaussian (top row) and the continuum Gaussian itself (bottom row) when the regular-
ization parameter 𝛿 is intentionally chosen too small.

The reason for this is similar in both the iid sample case (top row) and the continuum Gaussian
case (bottom row). In the case of iid samples, this is due to the fact that, in our objective
function (4.5), the terminal locations of our particles {𝑦𝑖,𝑀} are less able to sense the samples
{𝑤𝑖} when 𝛿 is too small, since 𝑦 ↦ 𝜑𝛿(𝑦 −𝑤𝑖) decays quickly away from 𝑤𝑖. Interestingly,
in this case, when the terminal locations of our particles are unable to sense a sufficiently near
sample, they organize themselves to be roughly evenly spaced in the empty regions.

In the case of a continuum Gaussian, 𝑦↦ 𝑚1(𝑦) becomes very small outside two standard
deviations of the mean. In both cases, the particle interactions mediated by the first term in
the nonlocal energy 𝐾𝛿(𝑦𝑖,𝑀 − 𝑦𝑗,𝑀 ) become weak when 𝛿 is too much smaller than the
distance between particles, preventing the particles from repelling each other and exploring
more regions of parameter space.

4.5. Obstacles. Building on the preceding section, we now consider optimal transport
in the presence of an obstacle Ω, which is given by the union of the interior of two circles of
radius 𝑟𝑘 = 0.2 centered at 𝑐1 = (1.0, 1.5) and 𝑐2 = (1.25, 1.25) . We represent the obstacle
in our optimization problem via the state and measure cost

(4.14) 𝐿𝑁 (𝑦) = 𝑐Ω(𝑁)
2
∑

𝑘=1
max{𝑟2𝑘 − (𝑦 − 𝑐𝑘)2, 0}.
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(a) 𝑡 = 0.3 (b) 𝑡 = 0.55

(c) 𝑡 = 0.85 (d) 𝑡 = 1

Fig. 4.4: 2-Wasserstein optimal transport from an empirical measure on a uniform grid to a
continuum Gaussian distribution, in the presence of two circular obstacles.

for 𝑐Ω(𝑁) satisfying lim𝑁→+∞ 𝑐Ω(𝑁) = +∞. By definition, we see that 𝐿𝑁 ↗ 𝐿, where

𝐿(𝑦) =

{

0 if 𝑦 ∈ Ω𝑐 ,
+∞ if 𝑦 ∈ Ω.

The source measure is given by 𝑁 = 25 equally weighted Dirac masses arranged in a
uniform grid on the unit square, 𝑚0 = 1[0,1]×[0,1]. For the continuum gaussian target measure,
we take 𝑚1(𝑦) = 𝜑0.2(𝑦 − (1.5, 1.7)) and use the approximation 𝐾𝛿 ∗ 𝑚1(𝑦) ≈ 𝑚1(𝑦) in
the definition of the nonlocal energy, equation (4.8). We take 𝑀 = 21 time steps, 𝜀 = 0.1,
𝛿 = 𝑁−0.99∕𝑑 , 𝑛 = 2 ⋅ 105 gradient descent steps, and learning rate 𝛼 = 0.001𝜀. The obstacle
constant is 𝑐Ω(𝑁) = (ℎ𝜀)−1.

Figure 4.4 shows the evolution of the linear interpolations of the trajectories 𝑦𝑖(𝑡), 𝑖 =
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1,…𝑁 at times 𝑡 = 0.3, 0.55, 0.85, and 1.0. For the time continuous problem in the limit
𝛿 → 0, 𝜀→ 0, the particles should follow straight lines, bending only to follow the boundaries
of the obstacles and straightening again as they leave the obstacle and approach their terminal
points. Overall, we observe good agreement between our numerical approximation and the
continuum solution, with only mild bending close to the obstacle.

4.6. Acceleration control. We now consider the performance of our method in the case
of measure transport subject to acceleration controls. We begin by describing how to discretize
the time continuous approach, in analogy with our approach for the velocity control problem,
described at the beginning of section 4.1.

In order to solve (MFC𝑎), we apply the nonlocal terminal constraint and particle dis-
cretization (MFC𝜀,𝛿,N), to arrive at the continuous time formulation:

inf
𝑥𝑖,𝑣𝑖,𝑎𝑖

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
|𝑎𝑖(𝑡)|2𝑑𝑡(4.15)

+ 1
𝜀

[

1
𝑁2

𝑁
∑

𝑖,𝑘=1
𝐾𝛿((𝑥𝑖(1), 𝑣𝑖(1)) − (𝑥𝑘(1), 𝑣𝑘(1))) −

2
𝑁

𝑁
∑

𝑖=1
(𝐾𝛿 ∗ 𝑚1)(𝑥𝑖(1), 𝑣𝑖(1))

]

subject to the constraints
{

�̇�𝑖(𝑡) = 𝑣𝑖(𝑡)
𝑥𝑖(0) = 𝑥𝑖,0

{

�̇�𝑖(𝑡) = 𝑎𝑖(𝑡)
𝑣𝑖(0) = 𝑣𝑖,0

(4.16)

As before, we discretize time 𝑡 ∈ [0, 1] on a uniform grid with 𝑀 grid points and time step
ℎ = 1∕(𝑀 − 1), approximating 𝑥𝑖(𝑡) by the vector

[𝑥𝑖,𝑗]𝑀𝑗=1 ≈
[

𝑥𝑖,0, 𝑥𝑖,0 + ℎ𝑣𝑖,0, 𝑥𝑖(2ℎ),… , 𝑥𝑖(1 − ℎ), 𝑥𝑖(1)
]

,(4.17)
which, by definition, incorporates initial condition constraints (4.16). As before, we approxi-
mate the velocity and the acceleration by first order finite differences,

𝑣𝑖,𝑗 ∶=
𝑥𝑖,𝑗 − 𝑥𝑖,𝑗−1

ℎ
, 𝑎𝑖,𝑗 ∶=

𝑣𝑖,𝑗 − 𝑣𝑖,𝑗−1
ℎ

.

Substituting into the objective function (4.15), we arrive at the fully discrete problem, which
is to minimize the sum of the control cost and the nonlocal position/velocity energy

min
𝑥𝑖,𝑗

{

CC(𝑥𝑖,𝑗) + NPVE(𝑥𝑖,𝑗) ∶ 𝑥𝑖,1 = 𝑥𝑖,0, 𝑥𝑖,2 = 𝑥𝑖,0 + ℎ𝑣𝑖,0 ∀𝑖 = 1,… , 𝑁
}

for

CC(𝑥𝑖,𝑗) ∶=
(𝑀 − 1)3

𝑁

𝑁
∑

𝑖=1

|

|

|

ddiff(𝑥𝑖,𝑗)
|

|

|

2

NPVE(𝑥𝑖,𝑗) ∶=

1
𝜀

[

1
𝑁2

𝑁
∑

𝑖,𝑘=1
𝐾𝛿((𝑥𝑖,𝑀 , 𝑣𝑖,𝑀 ) − (𝑥𝑘,𝑀 , 𝑣𝑘,𝑀 )) − 2

𝑁

𝑁
∑

𝑖=1
(𝐾𝛿 ∗ 𝑚1)(𝑥𝑖,𝑀 , 𝑣𝑖,𝑀 )

]

where 𝑖 = 1,… , 𝑁 and 𝑗 = 2,… ,𝑀 , with
ddiff(𝑥𝑖,𝑗) ∶=

[

𝑥𝑖,1 − 2𝑥𝑖,2 + 𝑥𝑖,3, 𝑥𝑖,2 − 2𝑥𝑖,3 + 𝑥𝑖,4,… , 𝑥𝑖,𝑀−2 − 2𝑥𝑖,𝑀−1 + 𝑥𝑖,𝑀 , 0, 0
]

.
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As in the velocity control case, while the continuum problem motivating the above prob-

lem is well-posed only when 𝑚1 ∈ 𝐿2(ℝ𝑑 × ℝ𝑑), one particular case of interest is the case
when the target measure 𝑚1 is given by a sum of Dirac masses, 1

𝑁
∑𝑁
𝑖=1 𝛿(𝑤𝑥𝑖 ,𝑤𝑣𝑖 ). This can be

handled within our framework analogously to the previously described velocity control case.
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Fig. 4.5: Measure transport subject to acceleration control in one spatial dimension, between
two well-ordered empirical distributions. In the top row, we show the initialization of our
gradient descent, and in the bottom row, we show the approximate optimizer.

In Figure 4.5, we plot the results of an acceleration control optimization problem in one
spatial dimension, in the case that the source distribution is an empirical measure with𝑁 = 10
particles evenly spaced on [0, 1], with initial velocities zero, and the target distribution is an
empirical measure with 𝑁 = 10 particles evenly spaced on [2, 2.5], with target velocities
evenly spaced on [−2, 2]. Note that this example satisfies the condition of our main theorem
that supp 𝑚0 ⊆ 𝑁(𝐴). We consider 𝑀 = 11 time steps, 𝜀 = 10−4, 𝛿 = 𝑁−0.99∕2, 𝑛 = 106
iterations, and 𝛼 = 4𝜀∕103 learning rate. (Note that the dimension in our choice of 𝛿 is two
dimensional, since our mollifier 𝜑𝛿(𝑥, 𝑣) is a function on ℝ ×ℝ.)
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The top left panel of Figure 4.5 shows our initialization of the gradient descent 𝑥𝑖,𝑗 , lin-
early interpolating in time. The top right panel zooms in on this initialization and compares
it to the desired target distribution. The bottom left panel shows the approximate minimizer
𝑥𝑖,𝑗 obtained via gradient descent, again linearly interpolating in time, and the bottom right
panel compares this to the desired target distribution. The approximate minimizer computed
by our method exhibits trajectories with low acceleration and that agree with the desired target
distribution in position and velocity.

y1,2

y 2
,2

Fig. 4.6: Contour plots of nonconvex loss landscape for our optimization problem (4.5) be-
tween two Dirac masses, as a function of the terminal points 𝑦1,2 and 𝑦2,2, for different choices
of 𝜀 and 𝛿.

4.7. Illustrating the Loss Landscape. We now turn to an example illustrating basic
properties of the loss landscape for our particle discretization of the optimal transport problem
(4.5). For simplicity of visualization, we consider 𝐿𝑁 = 0, 𝑁 = 2 and 𝑀 = 2, with one
dimensional source distribution 1

2 (𝛿0+𝛿0.5) and target distribution 1
2 (𝛿1+𝛿1.5). In Figure 4.6,

we plot the loss landscape as a function of 𝑦1,2 and 𝑦2,2, for different choices of 𝛿 and 𝜀.
For reference, we have plotted the following values on the loss landscape:
∙ Source distribution, +: the value of the objective function if the particles stay at

their initial locations (𝑦1,2, 𝑦2,2) = (𝑦1,1, 𝑦2,1) = (0, 0.5); we observe that the objec-
tive function is large at the source distribution, reflecting the fact that the particles
are far from the desired target distribution.

∙ Target distribution, ×: the value of the objective function if the particles are opti-
mally transported from source to target, with the leftmost particle in the source get-
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ting mapped to the leftmost particle in the target (𝑦1,2, 𝑦2,2) = (1.0, 1.5); we observe
that the objective function is minimized for this configuration.

∙ Flipped distribution, ⬟: the value of the objective function if the particles in the
source are exactly mapped to the particles in the target, but in a nonoptimal order,
with the leftmost source particle mapped to the rightmost target particle (𝑦1,2, 𝑦2,2) =
(1.5, 1.0); we observe that the value of the objective function is small, since the ter-
minal configuration agrees exactly matches the target distribution, but not minimal,
since the kinetic energy of achieving this configuration is not as small as possible.

∙ Initial distribution, ∙: the value of the objective function at our initialization of
gradient descent, as described in equations (4.11-4.12).

Note that the value of the objective function is the same at the “Target” and “Flipped” distri-
butions in all four plots, due to the fact that, for both of these configurations, the value of the
nonlocal energy term in the objective function (4.5) is zero for any 𝛿 and 𝜀.

As anticipated, for all values of 𝛿 and 𝜀, the loss landscape is nonconvex. Comparing the
first row and second row of Figure 4.6, we observe that smaller values of 𝛿 (top row) better
distinguish between small changes in (𝑦1,2, 𝑦2,2), due to the fact that, when 𝛿 is small, there is
less smoothing in our approximation of the source and target measures.

Comparing the first column and second column of Figure 4.6, we observe that smaller
values of 𝜀 (left column) place more weight on the nonlocal energy term on the objective
function (4.5), rewarding proximity to the target measure. We observe that the plots in the
left column are highly symmetric across 𝑦1,2 = 𝑦2,2, due to the fact that the objective function
primarily considers the final locations of the particles, rather than whether the particles were
optimally transported to those locations. On the other hand, larger values of 𝜀 (right column)
place more weight on the kinetic energy term. In this case, we observe less symmetry across
𝑦1,2 = 𝑦2,2, due to the fact that the kinetic energy term prioritizes moving particles a shorter
distance from source to target.

Finally, we observe that larger values of 𝛿 (bottom row) and 𝜀 (right column) flatten the
energy landscape. In this way, when using a gradient-based optimization method to compute
minimizers of the objective function (4.5), an optimal choice of learning rate will depend on
the choices of 𝛿 and 𝜀. Since, in the present simulations, we typically choose 𝛿 very small,
the size of 𝜀 is the main factor in the flatness of the energy landscape. For this reason, we
choose our learning rate 𝛼 to scale with 𝜀, taking bigger steps on the flatter energy landscape
and smaller steps on the steeper landscape.

4.8. Estimating the error from the optimal transport map. We now analyze the error
between the approximate solution of the 2-Wasserstein optimal transport problem computed
by our method and the exact optimal transport map. In particular, we examine how this error
behaves along the gradient descent which computes the approximate optimizer. On one hand,
we expect higher accuracy when 𝜀 is small, given that this more strongly imposes the terminal
constraint via the nonlocal energy (4.5). On the other hand, due to the fact that we let the
learning rate 𝛼 depend on 𝜀 (see sections 4.2 and 4.7), when 𝜀 is small, we also have to run
gradient descent for more iterations to compute our approximate minimizer. Consequently, in
practice, one seeks a value of 𝜀 that is small enough to give accurate results but large enough
to be computationally efficient.

In the following figures, we consider optimal transport in one dimension, where the source
measure is given by 𝑚0 = 1[0,1], discretized as 𝑁 = 20 particles on a uniform grid on [0, 1].
The target measure is given by 𝑚1 = 2 ⋅1[2,2.5]. In both cases, we take nonlocal regularization
𝛿 = 𝑁−0.99, 𝑀 = 5 time steps, and learning rate 𝛼 = max(0.001𝜀, 10−5) .
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y(1)

y(t)

Fig. 4.7: Illustration of how trajectories change along gradient descent to compute an approx-
imate minimizer of (4.5), when computing 2-Wasserstein optimal transport problem between
two empirical measures.

At the continuum level, the 2-Wasserstein geodesic from 𝑚0 to 𝑚1 at time 𝑡 is given by
𝑇 (𝑦, 𝑡) ∶= (1 − 𝑡)𝑦 + 𝑡(0.5𝑦 + 2).(4.18)

Likewise, 𝑇 (𝑦, 1) is the optimal transport map from 𝑚0 to 𝑚1. We consider two measures of
error: the average error across all time points in our discretization,

(4.19) [Error at all time points] =
√

√

√

√

√

1
𝑁(𝑀 − 1)

𝑁
∑

𝑖=1

𝑀
∑

𝑗=2

|

|

|

|

|

𝑦𝑖,𝑗 − 𝑇
(

𝑦𝑖,1,
𝑗 − 1
𝑀 − 1

)

|

|

|

|

|

2

,

and the error at terminal time 𝑡 = 1,

(4.20) [Error at 𝑡 = 1] =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖,𝑀 − 𝑇 (𝑦𝑖,1, 1)||
2.

We also analyze the decay of both the kinetic energy term (4.6) and the nonlocal energy term
(4.10), as well as the total loss, given by their sum (4.5).
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Figure 4.7 shows the gradient descent dynamics for a very small choice of 𝜀 = 0.001

and 𝑛 = 106 gradient descent steps. The top left panel shows the initialization of the gradient
descent 𝑦𝑖,𝑗 , the top right panel shows 𝑦𝑖,𝑗 after 10 gradient descent steps, the bottom left shows
the behavior after 105 steps, and the bottom right panel shows the behavior after 106 steps.
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Fig. 4.8: Error analysis between the approximate solution of an optimal transport problem,
computed by our method, and the exact solution of the optimal transport problem. Left: While
the error at 𝑡 = 1 quickly decays, many more gradient descent steps are required for the error
at all time points to decay. Middle: Illustration of how the kinetic energy and nonlocal energy
contribute to the total loss. Right: While the nonlocal energy quickly decreases to its optimal
value, many more gradient descent steps are required for the kinetic energy to approach its
optimal value. Note the dual axis.

A similar phenomena can be observed in Figure 4.8, which shows the behavior of the
error and loss function along the gradient descent iterations. In the left plot, we see that both
the error at terminal time and the error at all time points decay to zero, though the error at all
time points requires a very large number of iterations to decay. This reflects the fact that the
very small value of 𝜀 forces the trajectories to match the terminal points more strongly than it
enforces the kinetic energy, which straightens the trajectories. In the middle plot, we observe
the decay of both the kinetic energy and nonlocal energy along iterations. In the right plot,
plotting the kinetic energy and nonlocal energy on different axes, we see again that the small
value of 𝜀 causes the nonlocal energy to decay first, while the kinetic energy takes many more
iterations to decay.

4.9. Numerical analysis of rate of convergence to continuum. We conclude by ana-
lyzing the rate of convergence to the continuum formulation of the optimal transport problem
as 𝜀→ 0, 𝛿 → 0, and𝑁 → +∞. We consider one dimensional source and target distributions
given by 𝑚0 = 1[0,1] and 𝑚1 = 2 ⋅ 1[2,2.5], discretized on a uniform grid with 𝑁 particles,
where we allow 𝑁 to vary. We consider 𝜀 = 0.01, 𝑀 = 5 time steps, 𝑛 = 2 ⋅ 106 gradient
descent steps, and learning rate 𝛼 = 0.003𝜀. As explained in section (4.2), we allow 𝛿 → 0
and 𝑁 → +∞ simultaneously according to the rate in equation (4.13), with 𝑘 = 0.99.

In order to obtain numerical estimates on the rate of convergence as 𝑁 → +∞ and
𝛿 → 0, we consider the error at the terminal time 𝑡 = 1, see equation (4.20), using the fact
that, in the present example the optimal transport map for the continuum problem is given by
𝑇 (𝑦, 1) = 𝑦∕2 + 2.

The results of our numerical study are shown in Figure 4.9. Here, we plot how the error
from the optimal transport map at time 𝑡 = 1 varies as the number of particles 𝑁 increases
from 5, 10, 20, 40, 80, to 100. Comparing the decay of the error on a log-log scale to the line
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Fig. 4.9: Analysis of the rate of convergence of our particle approximation of 2-Wasserstein
optimal transport to the exact solution in one dimension, as 𝑁 → +∞ and 𝛿 = 𝑁−0.99 → 0.
We observe slightly slower than first order convergence in 𝑁 .

of best fit (calculated by minimizing least squares deviation as implemented in NumPy [33]),
we observe slightly slower than first order convergence as 𝑁 → +∞.

Appendix A. Basic Properties of Mean Field Control Problems. In this section, we
collect several results and proofs regarding basic properties of mean field control problems.
We begin by proving Lemma 2.2, on elementary properties of our control cost 𝜓 and admis-
sible function 𝜙.

Proof of Lemma 2.2. Part (i) is an immediate consequence of the fact that𝜙 is superlinear
at +∞ and inequality (2.5).

Now, we show part (ii). To begin, we show that there exists 𝐾 ′′ > 1 so that
𝜙(2𝑟) + 2𝑟 ≤ 𝐾 ′′(𝜙(𝑟) + 𝑟), for all 𝑟 ∈ [0,+∞).(A.1)

For any 𝜙 satisfying Assumption 2.1, there exists 𝑟0 so that 𝜙(𝑟0) = 1. Then, for all 𝑟 ≥ 𝑟0,
the fact that 𝜙 is increasing ensures

𝜙(2𝑟) ≤ 𝐾(1 + 𝜙(𝑟)) ≤ 2𝐾𝜙(𝑟) ⟹ 𝜙(2𝑟) + 2𝑟 ≤ 2𝐾𝜙(𝑟) + 2𝑟.

On the other hand, by the convexity of 𝜙, 𝜙(𝑟) + 𝜙′(𝑟)(𝑠 − 𝑟) ≤ 𝜙(𝑠) for all 𝑟, 𝑠 ∈ [0,+∞).
Thus, for all 𝑟 ≤ 𝑟0,

𝜙(2𝑟) ≤ 𝜙(𝑟) + 𝑟𝜙′(2𝑟) ≤ 𝜙(𝑟) + 𝑟𝜙′(2𝑟0) ⟹ 𝜙(2𝑟) + 2𝑟 ≤ 𝜙(𝑟) + (2 + 𝜙′(2𝑟0))𝑟.

Therefore, letting 𝐾 ′′ = max{2𝐾, 2 + 𝜙′(2𝑟0)} gives inequality (A.1).
To prove part (ii), note that, for any 𝐷 ≥ 1, choosing 𝑛 = ⌈log2(𝐷)⌉,

𝜙(𝐷𝑟) +𝐷𝑟 ≤ 𝜙(2𝑛𝑟) + 2𝑛𝑟 ≤ (𝐾 ′′)𝑛(𝜙(𝑟) + 𝑟) ≤ (𝐾 ′′)log2(𝐷)+1(𝜙(𝑟) + 𝑟)

= 𝐾 ′′𝐷log2(𝐾′′)(𝜙(𝑟) + 𝑟).
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Now, we prove Lemma 2.3 on the equivalence of the original formulation of the mean

field control problem (⋆) and the formulation in momentum coordinates (MFC).
Proof of Lemma 2.3. By definition of distributional solutions to the respective PDE con-

straints, as in equations (2.2) and (2.3), if (𝜇,𝐮) ∈ (𝑚0, 𝑚1) and the value of the (⋆) objective
function is finite, then (𝜇,𝐮 𝑑𝜇𝑡 ⊗ 𝑑𝑡) ∈ (𝑚0),  (𝜇1) = 0, and (𝜇,𝐮 𝑑𝜇𝑡 ⊗ 𝑑𝑡) < +∞.
Conversely, if (𝜇, 𝝂) ∈ (𝑚0) and (𝜇, 𝝂) < +∞, then Ψ(𝝂|𝜇) < +∞ and  (𝜇1) < +∞. The
fact that Ψ(𝝂|𝜇) < +∞ implies that 𝑑𝝂(𝑦, 𝑡) = 𝐮(𝑦, 𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡 for some 𝐮 ∈ 𝐿1

𝑑𝜇𝑡⊗𝑑𝑡
(ℝ𝑑 ×

[0, 1];𝑈 ), and the fact  (𝜇1) < +∞ implies 𝜇1 = 𝑚1. Thus (𝜇,𝐮) ∈ (𝑚0, 𝑚1) and at this
point, the value of the objective function in (⋆) is finite.

In this way, there is a one to one correspondence between feasible points for (⋆) and
(MFC). Furthermore, at any feasible point of either problem, the value of the objective func-
tions coincide. This gives the result.

Now, we prove Lemma 3.1, which shows the energy  that appears in (MFC) is lower
semicontinuous.

Proof of Lemma 3.1. First, note that convergence in 𝐶([0, 1],1(ℝ𝑑)) implies narrow
convergence in (ℝ𝑑 × [0, 1]). The lower semicontinuity of the functional Ψ follows from [6,
Lemma 5.4.4].

It remains to consider lower semicontinuity of the second term in . If𝐿 satisfies assump-
tion (iiib), it is is independent of the measure and lower semicontinuous, and this is an imme-
diate consequence of [6, Lemma 5.1.7]. Now suppose 𝐿 satisfies assumpetion (iiia), so that it
depends on the measure but is uniformly continuous and real-valued. Suppose (𝜇𝑛, 𝝂𝑛)∞𝑛=1 is
a sequence in 𝐶([0, 1],1(ℝ𝑑)) ×(0, 𝑇 ×ℝ𝑑 , 𝑈 ) converging to a limit (𝜇, 𝝂). Then,

|

|

|∫ℝ𝑑
𝐿(⋅, 𝜇𝑡)𝑑𝜇𝑡 − ∫ℝ𝑑

𝐿(⋅, 𝜇𝑛𝑡 )𝑑𝜇
𝑛
𝑡
|

|

|

≤ |

|

|∫ℝ𝑑
𝐿(⋅, 𝜇𝑡)𝑑𝜇𝑡 − ∫ℝ𝑑

𝐿(⋅, 𝜇𝑡)𝑑𝜇𝑛𝑡
|

|

|

+ ∫ℝ𝑑
|

|

|

𝐿(⋅, 𝜇𝑡) − 𝐿(⋅, 𝜇𝑛𝑡 )
|

|

|

𝑑𝜇𝑛𝑡

As 𝑛 → +∞, both terms tend to zero uniformly in 𝑡 ∈ [0, 1], since 𝐿 is jointly uniformly
continuous. Fatou’s lemma then ensures that

(A.2) ∫

𝑇

0 ∫ℝ𝑑
𝐿(𝑥, 𝜇𝑡)𝑑𝜇𝑡(𝑥) ≤ lim inf

𝑛→∞ ∫

𝑇

0 ∫ℝ𝑑
𝐿(𝑥, 𝜇𝑛𝑡 )𝑑𝜇𝑡(𝑥).

Next, we prove the following estimate on the time regularity of feasible measures.
PROPOSITION A.1. Under the hypotheses of Assumption 1.1, suppose

(𝜇, 𝝂) ∈ 𝐶([0, 1];1(ℝ𝑑)) ×(ℝ𝑑 × [0, 1];𝑈 ),

with 𝜇0 = 𝑚0 and 𝜕𝑡𝜇𝑡+∇ ⋅
(

(𝐅(⋅, 𝜇𝑡)𝜇𝑡 + 𝝂𝑡
)

= 0, in the sense of distributions. Furthermore,
assume Ψ(𝝂|𝜇) < +∞. Then, there exists 𝐶 ′ > 0 depending on 𝐶𝐹 , 𝐶 ′

𝐹 , 𝜓 , Ψ(𝝂|𝜇), and
𝑀1(𝑚0) so that

𝑊1(𝜇𝑠, 𝜇𝑡) ≤ 𝐶 ′(𝑡 − 𝑠) + ∫

𝑡

𝑠 ∫ℝ𝑑
|𝐮(⋅, 𝑟)|𝑑𝜇𝑟𝑑𝑟.(A.3)

Proof. Since Ψ(𝝂|𝜇) < +∞, we have 𝑑𝝂(𝑦, 𝑡) = 𝐮(𝑦, 𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡 where

∫

1

0 ∫ℝ𝑑
𝜓(𝐮(𝑦, 𝑡))𝑑𝜇𝑡(𝑦)𝑑𝑡 < +∞.
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Thus, recalling our notions of distributional solution from equations (2.2) and (2.3), we see
that 𝜇 is a distributional solution of the continuity equation with velocity

𝐯(𝑦, 𝑡) ∶= 𝐅(𝑦, 𝜇𝑡) + 𝐮(𝑦, 𝑡).

Furthermore, by Lemma 2.2, we have

∫

1

0 ∫ℝ𝑑
|𝐮(𝑦, 𝑡)|𝑑𝜇𝑡(𝑦)𝑑𝑡 ≤ ∫

1

0 ∫ℝ𝑑
𝜓(𝐮(𝑦, 𝑡))𝑑𝜇𝑡(𝑦)𝑑𝑡 + 𝑅𝜙 + 1 < +∞.(A.4)

Combining the above inequalities with our assumptions on 𝐅, we have
‖

‖

𝐅(⋅, 𝜇𝑡) + 𝐮(⋅, 𝑡)‖
‖𝐿1(𝜇𝑡)

≤ ∫ℝ𝑑
(𝐶𝐹 + 𝐶 ′

𝐹 |𝑦| + 𝐶
′
𝐹𝑀1(𝜇𝑡))𝑑𝜇𝑡(𝑦) + ∫ℝ𝑑

|𝐮(⋅, 𝑡)| 𝑑𝜇𝑡

≤ 𝐶𝐹 + 2𝐶 ′
𝐹𝑀1(𝜇𝑡) + ∫ℝ𝑑

|𝐮(⋅, 𝑡)| 𝑑𝜇𝑡

= 𝐶𝐹 + 2𝐶 ′
𝐹𝑊1(𝜇𝑡, 𝛿0) + ∫ℝ𝑑

|𝐮(⋅, 𝑡)| 𝑑𝜇𝑡.(A.5)

In particular, since 𝜇 ∈ 𝐶([0, 1];1(ℝ𝑑)), we have 𝑡 ↦ 𝑊1(𝜇𝑡, 𝛿0) is uniformly bounded
on [0, 1]. Combining this with (A.4), we see that the right hand side of equation (A.5) is
integrable in time.

Thus, by [5, Theorem 3.4], there exists 𝜼 ∈ (ℝ𝑑 × 𝐶([0, 1];ℝ𝑑)) so that 𝜼 is concen-
trated on sets of pairs so that 𝛾 is an absolutely continuous integral solution of

�̇�(𝑡) = 𝐯(𝛾(𝑡), 𝑡), 𝛾(0) = 𝑥

and 𝜇𝑡 = 𝑒𝑡#𝜼, where 𝑒𝑡 ∶ ℝ𝑑 ×𝐶([0, 1];ℝ𝑑) → ℝ𝑑 ∶ (𝑥, 𝛾) → 𝛾(𝑡). Therefore, (𝑒𝑡, 𝑒𝑠)#𝜼 is a
transport plan from 𝜇𝑡 to 𝜇𝑠, so applying the definition of the 1-Wasserstein metric, Jensen’s
inequality, Tonelli, and inequality (A.5), we obtain

𝑊1(𝜇𝑠, 𝜇𝑡) ≤ ∫ℝ𝑑×ℝ𝑑
|𝜋1 − 𝜋2|𝑑(𝑒𝑠, 𝑒𝑡)#𝜼(A.6)

= ∫ℝ𝑑×𝐶([0,1];ℝ𝑑 )
|𝑒𝑠 − 𝑒𝑡|𝑑𝜼

= ∫ℝ𝑑×𝐶([0,1];ℝ𝑑 )
|𝛾(𝑠) − 𝛾(𝑡)|𝑑𝜼(𝑥, 𝛾)

≤ ∫ℝ𝑑×𝐶([0,1];ℝ𝑑 ) ∫

𝑡

𝑠
|�̇�(𝑟)|𝑑𝑟 𝑑𝜼(𝑥, 𝛾)

= ∫ℝ𝑑×𝐶([0,1];ℝ𝑑 ) ∫

𝑡

𝑠
|𝐅(𝛾(𝑟), 𝜇𝑟) + 𝐮(𝛾(𝑟), 𝑟)|𝑑𝑟 𝑑𝜼(𝑥, 𝛾)

= ∫

𝑡

𝑠
‖

‖

𝐅(⋅, 𝜇𝑟) + 𝐮(⋅, 𝑟)‖
‖𝐿1(𝜇𝑟)

𝑑𝑟

≤ ∫

𝑡

𝑠

(

𝐶𝐹 + 2𝐶 ′
𝐹𝑀1(𝜇𝑟) + ∫ℝ𝑑

|𝐮(⋅, 𝑟)| 𝑑𝜇𝑟
)

𝑑𝑟.

In particular, for all 𝑡 ∈ [0, 1], inequality (A.4) ensures that, for all 𝑡 ∈ [0, 1],
𝑀1(𝜇𝑡) = 𝑊1(𝜇𝑡, 𝛿0) ≤ 𝑊1(𝜇0, 𝜇𝑡) +𝑊1(𝜇0, 𝛿0)

≤ (𝐶𝐹 + 𝑅𝜙 + 1) + 2𝐶 ′
𝐹 ∫

𝑡

0
𝑀1(𝜇𝑟)𝑑𝑟 + Ψ(𝝂|𝜇) +𝑀1(𝑚0).
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Thus, by Gronwall’s inequality, there exists𝐶 > 0 depending on𝐶𝐹 , 𝑅𝜙, Ψ(𝝂|𝜇), and𝑀1(𝑚0)so that

𝑀1(𝜇𝑡) ≤ 𝐶(1 + 2𝐶 ′
𝐹 𝑡𝑒

2𝐶′
𝐹 𝑡) ≤ 𝐶(1 + 2𝐶 ′

𝐹 𝑒
2𝐶′

𝐹 ) ∶= 𝐶 ′ , ∀𝑡 ∈ [0, 1], ∀𝑛 ∈ ℕ.(A.7)
Substituting this fact into inequality (A.6), we obtain the result.

Next, we prove Lemma 3.2, which shows that sublevels of  in the constraint set (𝑚0)are sequentially compact.
Proof of Lemma 3.2. We begin by observing that, since sup𝑛 (𝜇𝑛, 𝝂𝑛) < +∞, we also

have
sup
𝑛

Ψ(𝝂𝑛|𝜇𝑛) < +∞(A.8)
and, for all 𝑛 ∈ ℕ, there exists 𝐮𝑛 so that 𝑑𝝂𝑛(𝑦, 𝑡) = 𝐮𝑛(𝑦, 𝑡)𝑑𝜇𝑛,𝑡(𝑦)𝑑𝑡 and

Ψ(𝝂𝑛|𝜇𝑛) = ∫

1

0 ∫ℝ𝑑
𝜓(𝐮𝑛(𝑦, 𝑡))𝑑𝜇𝑛,𝑡(𝑦)𝑑𝑡.(A.9)

Furthermore, by inequality (2.5) and Lemma 2.2, we have
sup
𝑛 ∫

1

0 ∫ℝ𝑑
|𝐮𝑛(𝑦, 𝑡)|𝑑𝜇𝑛,𝑡(𝑦)𝑑𝑡 ≤ sup

𝑛 ∫

1

0 ∫ℝ𝑑
𝜙(|𝐮𝑛(𝑦, 𝑡)|)𝑑𝜇𝑛,𝑡(𝑦)𝑑𝑡 + 𝑅𝜙 < +∞.(A.10)

First, we apply Arzelá-Ascoli to show the convergence of 𝜇𝑛, up to a subsequence. We
begin by showing {𝜇𝑛,𝑡}𝑛∈ℕ,𝑡∈[0,1] is relatively sequentially compact with respect to𝑊1. Since
(𝜇𝑛, 𝝂𝑛) ∈ (𝑚0) and sup𝑛 (𝜇𝑛, 𝝂𝑛) < +∞, by [30, Proposition 5.3], there exists 𝐶 > 0 and a
nonnegative, continuously differntiable, convex, and superlinear at +∞ function 𝜃, depending
on the choice of 𝜓,𝐅 and 𝑚0, as in Assumption 1.1, and the value of sup𝑛 (𝜇𝑛, 𝝂𝑛) so that

sup
𝑡∈[0,1],𝑛∈ℕ∫ℝ𝑑

𝜃(|𝑥|)𝑑𝜇𝑛,𝑡(𝑥) ≤ 𝐶
(

1 + ∫ℝ𝑑
𝜃(|𝑥|)𝑚0(𝑥)𝑑𝑥

)

< +∞.

Since 𝜃 is superlinear at +∞, for all 𝜀 > 0, there exists 𝑅 so that 𝑟 ≥ 𝑅 ensures 𝜃(𝑟)∕𝑟 ≥ 1∕𝜀
and

∫ℝ𝑑⧵𝐵0(𝑅)
|𝑥|𝑑𝜇𝑛,𝑡(𝑥) ≤ 𝜀∫ℝ𝑑⧵𝐵0(𝑅)

𝜃(|𝑥|)𝑑𝜇𝑛,𝑡(𝑥) ≤ 𝜀𝐶
(

1 + ∫ℝ𝑑
𝜃(|𝑥|)𝑚0(𝑥)𝑑𝑥

)

.

Thus, {𝜇𝑛,𝑡}𝑛∈ℕ,𝑡∈[0,1] have uniformly integrable first moments, so by [6, Proposition 7.1.5],
{𝜇𝑛,𝑡}𝑛∈ℕ,𝑡∈[0,1] is relatively sequentially compact with respect to 𝑊1 convergence.

Next, we show equicontinuity of 𝜇𝑛,𝑡. By Proposition A.1, there exists 𝐶 ′ > 0 so that, for
all 𝑛 ∈ ℕ, 𝑠, 𝑡 ∈ [0, 1],

𝑊1(𝜇𝑛,𝑠, 𝜇𝑛,𝑡) ≤ 𝐶 ′(𝑡 − 𝑠) + ∫

𝑡

𝑠 ∫ℝ𝑑
|𝐮𝑛(⋅, 𝑟)|𝑑𝜇𝑛,𝑟𝑑𝑟.(A.11)

Since 𝜙 is strictly increasing, 𝜙−1 ∶ [0,+∞) → (0,+∞) is well defined and strictly
increasing. Since 𝜙 is superlinear at +∞, we must have lim𝑠→+∞ 𝜙−1(𝑠)∕𝑠 = 0. Therefore,
we may use Jensen’s inequality to estimate the second term above by

∫

𝑡

𝑠 ∫ℝ𝑑
|𝐮𝑛(⋅, 𝑟)|𝑑𝜇𝑛,𝑟𝑑𝑟 = (𝑡 − 𝑠)𝜙−1◦𝜙

(

1
𝑡 − 𝑠 ∫

𝑡

𝑠 ∫ℝ𝑑
|𝐮𝑛(⋅, 𝑟)|𝑑𝜇𝑛,𝑟𝑑𝑟

)

(A.12)

≤ (𝑡 − 𝑠)𝜙−1
(

1
𝑡 − 𝑠 ∫

𝑡

𝑠 ∫ℝ𝑑
𝜙(|𝐮𝑛(⋅, 𝑟)|)𝑑𝜇𝑛,𝑟𝑑𝑟

)

≤ (𝑡 − 𝑠)𝜙−1
(

𝐶 ′′

𝑡 − 𝑠

)
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where the last inequality follow from (A.10), for some 𝐶 ′′ > 0 independent of 𝑛 ∈ ℝ𝑑 and
𝑠, 𝑡 ∈ [0, 1]. Combining (A.11) and (A.12) shows that {𝜇𝑛,𝑡}𝑛∈ℕ are equicontinuous.

Thus, by Arzelá-Ascoli, there exists 𝜇 ∈ 𝐶([0, 1];1(ℝ𝑑)) so that, up to a subsequence,
𝜇𝑛 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑)).(A.13)

In particular, this implies 𝜇0 = 𝑚0 and 𝑑𝜇𝑛,𝑡 ⊗ 𝑑𝑡 → 𝑑𝜇𝑡 ⊗ 𝑑𝑡 narrowly in (ℝ𝑑 × [0, 1]).
Now, we turn to the convergence of 𝝂𝑛. By inequality (A.8), equation (A.9), and equation

(A.13), we may argue in a similar way to [6, Theorem 5.4.4] to obtain that there exists 𝐮 ∶
ℝ𝑑 × [0, 1] → 𝑈 so that, up to a subsequence, for all 𝜉 ∈ 𝐶∞

𝑐 (ℝ𝑑 × [0, 1];ℝ𝑑),

lim
𝑛→+∞∫

1

0 ∫ℝ𝑑
𝜉(𝑦, 𝑡)𝐮𝑛(𝑦, 𝑡)𝑑𝜇𝑛,𝑡(𝑦)𝑑𝑡 = ∫

1

0 ∫ℝ𝑑
𝜉(𝑦, 𝑡)𝐮(𝑦, 𝑡)𝑑𝜇𝑡(𝑦),

and

∫

1

0 ∫ℝ𝑑
|𝐮(𝑦, 𝑡)|𝑑𝜇𝑡(𝑦)𝑑𝑡 ≤ ∫

1

0 ∫ℝ𝑑
𝜓(𝐮(𝑦, 𝑡))𝑑𝜇𝑡(𝑦)𝑑𝑡 + 𝑅𝜙 + 1 < +∞.(A.14)

Thus, defining 𝑑𝝂(𝑦, 𝑡) ∶= 𝐮(𝑦, 𝑡)𝑑𝜇𝑡(𝑦)𝑑𝑡, we see that, up to a subsequence, 𝝂𝑛 → 𝝂 narrowly
in (ℝ𝑑 × [0, 1];𝑈 ).

It remains to show that (𝜇, 𝝂) ∈ (𝑚0). We have already shown that 𝜇0 = 𝑚0. Since
(𝜇𝑛, 𝝂𝑛) is a distributional solution of the continuity equation, in the sense of equation (2.3),
for all 𝑛 ∈ ℕ and 𝜑 ∈ 𝐶∞

𝑐 (ℝ𝑑 × [0, 1]), we have

∫

1

0 ∫ℝ𝑑
𝜕𝑡𝜑𝑑𝜇𝑛,𝑡𝑑𝑡 + ∫

1

0 ∫ℝ𝑑
∇𝜑 ⋅ 𝐅(⋅, 𝜇𝑛,𝑡)𝑑𝜇𝑛,𝑡𝑑𝑡 + ∫

1

0 ∫ℝ𝑑
∇𝜑 ⋅ 𝑑𝝂𝑛 = 0.

By the convergence in equation (3.1), it is clear that we may pass to the limit in the first and
third terms. For the second term, note that, since 𝐅 is uniformly continuous we can conclude
that

∫

1

0 ∫ℝ𝑑
∇𝜙 ⋅ [𝐅(⋅, 𝜇𝑛,𝑡) − 𝐅(⋅, 𝜇𝑡)]𝑑𝜇𝑛,𝑡𝑑𝑡→ 0.

Thus, we may likewise pass to the limit in the second term, since (𝑦, 𝑡) ↦ 𝐅(𝑦, 𝜇𝑡) is continuous
and 𝑑𝜇𝑛,𝑡⊗𝑑𝑡→ 𝑑𝜇𝑡⊗𝑑𝑡 narrowly in (ℝ𝑑×[0, 1]). This shows that (𝜇, 𝝂) is a distributional
solution of the continuity equation.

It remains to show 𝜇 ∈ 𝐴𝐶([0, 1];1(ℝ𝑑)). By Proposition A.1, there exists 𝐶 ′ > 0 so
that, for all 𝑛 ∈ ℕ, 𝑠, 𝑡 ∈ [0, 1],

𝑊1(𝜇𝑠, 𝜇𝑡) ≤ 𝐶 ′(𝑡 − 𝑠) + ∫

𝑡

𝑠 ∫ℝ𝑑
|𝐮(⋅, 𝑟)|𝑑𝜇𝑟𝑑𝑟 = ∫

𝑡

𝑠
𝜔(𝑟)𝑑𝑟(A.15)

for
𝜔(𝑟) ∶= 𝐶 ′ + ∫ℝ𝑑

|𝐮(⋅, 𝑟)|𝑑𝜇𝑟.

By inequality (A.14), we have 𝜔 ∈ 𝐿1(ℝ𝑑). Therefore 𝜇 ∈ 𝐴𝐶([0, 1];1(ℝ𝑑)).
Finally, the fact that (𝜇, 𝝂) ≤ sup𝑛 (𝜇𝑛, 𝝂𝑛) is an immediate consequence of the lower

semicontinuity proved in Lemma 3.1.
Appendix B. Convergence as 𝜀 → 0, 𝛿 → 0, 𝑁 → +∞. We begin with our proof

of Proposition 3.3, which shows Γ-convergence of the objective functionals from (MFC𝜀) to
(MFC) as 𝜀 → 0.
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Proof of Proposition 3.3. First we prove part (i). Without loss of generality, we may pass

to a subsequence so that
lim
𝜀→0

𝜀(𝜇𝜀, 𝝂𝜀) = lim inf
𝜀→0

𝜀(𝜇𝜀, 𝝂𝜀) < +∞.

Thus 𝜀(𝜇𝜀,1), as defined in equation (1.2), must be bounded uniformly in 𝜀, which shows
that lim𝜀→0 ‖𝜇𝜀,1 − 𝑚1‖2 = 0. Since, 𝜇𝜀 → 𝜇 in 𝐶([0, 1];1(ℝ𝑑)), we have 𝜇𝜀,1 converges
to 𝜇1 in 1(ℝ𝑑). Thus, by uniqueness of limits, 𝜇1 = 𝑚1, so  (𝜇1) = 0. Due to the lower
semicontinuity of the functional  from Lemma 3.1, we can conclude that

(𝜇, 𝝂) = (𝜇, 𝝂) ≤ lim inf
𝜀→0

𝜀(𝜇𝜀, 𝝂𝜀).

Next, we show part (ii). We may assume without loss of generality that (𝜇, 𝝂) < +∞,
so  (𝜇1) = 0 and 𝜇1 = 𝑚1 ∈ 𝐿2(ℝ𝑑). The result then follows, since 𝜀(𝜇1) ≡ 0.

We now apply this Γ-convergence result to prove Proposition 1.2, which shows that, as
𝜀→ 0, minimizers of (MFC𝜀) converge to a minimizer of (MFC), up to a subsequence.

Proof of Proposition 1.2. First, note that by the feasibility of (MFC), there exist (𝜇′,𝐮′) ∈
(𝑚0) so that (𝜇′,𝐮′) < +∞, so 𝜇′1 = 𝑚1. Combining this with the fact that (𝜇𝜀, 𝝂𝜀) are
minimizers of (MFC𝜀), we have

(𝜇𝜀, 𝝂𝜀) ≤ 𝜀(𝜇𝜀, 𝝂𝜀) ≤ 𝜀(𝜇′,𝐮′) = (𝜇′,𝐮′) + 𝜀(𝜇′1) = (𝜇′,𝐮′) + 0, ∀𝜀 > 0.

Therefore, sup𝜀 (𝜇𝜀, 𝝂𝜀) < +∞. By Lemma 3.2, there exists (𝜇, 𝝂) ∈ (𝑚0) so that, up to a
subsequence, (1.3) holds.

Furthermore, for any (𝜇′′, 𝝂′′) ∈ 𝐶(𝑚0), Proposition 3.3 and the fact that (𝜇𝜀, 𝝂𝜀) are
minimizers ensure that

(𝜇′′, 𝝂′′) ≥ lim sup
𝜀→0

𝜀(𝜇′′, 𝝂′′) ≥ lim inf
𝜀→0

𝜀(𝜇𝜀, 𝝂𝜀) ≥ (𝜇, 𝝂)

Since (𝜇′′, 𝝂′′) ∈ (𝑚0) was arbitrary, this gives the result.
Next we prove Theorem 1.5, on the convergence of minimizers of (MFC𝜀,𝛿) to minimizers

of (MFC𝜀) as 𝛿 → 0.
Proof of Theorem 1.5. First, note that, by the assumption that (MFC𝜀) is feasible, there

exist (𝜇′, 𝝂′) ∈ (𝑚0) so that 𝜀(𝜇′, 𝝂′) < +∞. Combining this with the fact that (𝜇𝛿 , 𝝂𝛿) are
minimizers, we have

(𝜇𝛿 , 𝝂𝛿) ≤ 𝜀,𝛿(𝜇𝛿 , 𝝂𝛿) ≤ 𝜀,𝛿(𝜇′, 𝝂′) = (𝜇′, 𝝂′) + 𝜀−1‖𝑘𝛿 ∗ 𝜇′1 − 𝑘𝛿 ∗ 𝑚1‖
2
𝐿2(ℝ𝑑 ).

Since 𝜀(𝜇′, 𝝂′) < +∞, 𝜇′1 ∈ 𝐿2(ℝ𝑑), and the right hand side is bounded uniformly in 𝛿.
Thus, by Lemma 3.2, there exists (𝜇, 𝝂) ∈ (𝑚0) so that, up to a subsequence, (1.6) holds.

Furthermore, for any (𝜇′′, 𝝂′′) ∈ 𝐶(𝑚0), Proposition 3.4 and the fact that (𝜇𝛿 , 𝝂𝛿) are
minimizers ensure that

𝜀(𝜇′′, 𝝂′′) ≥ lim sup
𝛿→0

𝜀,𝛿(𝜇′′, 𝝂′′) ≥ lim inf
𝛿→0

𝜀,𝛿(𝜇𝛿 , 𝝂𝛿) ≥ (𝜇, 𝝂)

Since (𝜇′′, 𝝂′′) ∈ (𝑚0) was arbitrary, this gives the result.
Now, we prove Proposition 1.7, which develops sufficient conditions to ensure that a so-

lution of (MFC𝜀,𝛿,N) exists. Our proof is a mild adaptation of [30, Proposition 4.2], extending
to the case when 𝐿𝑁 satisfies Assumption 1.6(ib).
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Proof of Proposition 1.7. First, we consider feasibility of (MFC𝜀,𝛿,N). As observed in the
paragraph following [30, equation (3.8)], classical results on existence of solutions to ordinary
differential equations ensure that there exists (𝐲, 0) ∈ 𝑁 (𝐲0) is nonempty. If 𝐿𝑁 satisfies
Assumption 1.6(ia), then for (𝐲, 0) ∈ 𝑁 (𝐲0), 𝜀,𝛿,𝑁 (𝐲,𝐮) < +∞.

On the other hand, suppose 𝐿𝑁 satisfies Assumption 1.6(ib), the control is unconstrained
𝑈 = ℝ𝑑 , and the initial particle locations are contained in {𝐿𝑁 < +∞}. If we consider the
curve 𝑦𝑖(𝑡) ≡ 𝑦𝑖,0 and the velocity 𝑢𝑖(𝑡) = −𝐅𝑁 (𝑦𝑖(𝑡), 𝐲(𝑡)) = −𝐅𝑁 (𝑦𝑖,0, 𝐲0), then (𝐲,𝐮) ∈
𝑁 (𝐲0), and since 𝑦𝑖(𝑡) ∈ {𝐿𝑁 < +∞} for all 𝑡 ∈ [0, 1], we have 𝜀,𝛿,𝑁 (𝐲,𝐮) < +∞.

Now, suppose (MFC𝜀,𝛿,N) is feasible, and we will show that a minimizer exists. Take a
minimizing sequence (𝐲𝑘,𝐮𝑘) ∈ 𝑁 (𝐲0). Since

sup
𝑘

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖,𝑘(𝑡))𝑑𝑡 < +∞,

as in [30, Proposition 4.2], we obtain that there exist (𝐲,𝐮) ∈ 𝑁 (𝐲0) so that, up to a subse-
quence, 𝐲𝑘 → 𝐲 in 𝐶([0, 1]; (ℝ𝑑)𝑁 ) and 𝐮𝑘 → 𝐮 in 𝐿1([0, 1];𝑈𝑁 ). Furthermore, the proof of
[30, Proposition 4.2] shows that

lim inf
𝑘→+∞

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖,𝑘(𝑡))𝑑𝑡 +

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝐿𝑁 (𝑦𝑖,𝑘(𝑡), 𝐲𝑘(𝑡))𝑑𝑡

≥ 1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖(𝑡))𝑑𝑡 +

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝐿𝑁 (𝑦𝑖(𝑡), 𝐲(𝑡))𝑑𝑡.

By continuity of 𝐾𝛿 and 𝐾𝛿 ∗ 𝑚1, we may likewise pass to the limit in 𝑘 in the third term in
𝜀,𝛿,𝑁 . This shows lim inf𝑘→+∞ 𝜀,𝛿,𝑁 (𝐲𝑘,𝐮𝑘) ≥ 𝜀,𝛿,𝑁 (𝐲,𝐮). Since (𝐲𝑘,𝐮𝑘)was a minimizing
sequence, this shows that (𝐲,𝐮) is a minimizer of (MFC𝜀,𝛿,N).

Now, we prove Theorem 3.7, which shows that, for fixed 𝜀, 𝛿 > 0, as 𝑁 → +∞, mini-
mizers of the spatially discrete problem (MFC𝜀,𝛿,N) converge to a solution of (MFC𝜀,𝛿), up to
a subsequence.

Proof of Theorem 3.7. First, we will show that there exists such a sequence 𝐲𝑁,0. Let
𝑒𝑚0

∶= inf
(𝜇,𝝂)∈(𝑚0)

𝜀,𝛿(𝜇, 𝝂), 𝜀,𝛿(𝜇, 𝝂) ∶= (𝜇, 𝝂) + 𝜀,𝛿(𝜇1).(B.1)
By our hypothesis that (MFC𝜀,𝛿) is feasible, we have that 𝑒𝑚0

< +∞. Thus, for all 𝑁 ∈
ℕ, there exists (𝜇𝑁 , 𝝂𝑁 ) ∈ 𝐶(𝑚0) so that 𝜀,𝛿(𝜇𝑁 , 𝝂𝑁 ) < 𝑒𝑚0

+ 1∕𝑁 . By Proposition
3.6(ii), there exists 𝐲𝑁,0 so that (3.17-3.16) hold and there exist (�̃�𝑁 , �̃�𝑁 ) ∈ 𝑁 (𝐲𝑁,0) so
that 𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 ) ≤ 𝑒𝑚0

+ 2∕𝑁 . Now, suppose (𝐲𝑁 ,𝐮𝑁 ) ∈ 𝑁 (𝐲𝑁,0) is an optimizer of
(MFC𝜀,𝛿,N). Then, we have

lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ lim sup
𝑁→+∞

𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 ) ≤ 𝑒𝑚0
(B.2)
and

sup
𝑁

1
𝑁

𝑁
∑

𝑖=1
∫

1

0
𝜓(𝑢𝑖,𝑁 (𝑡))𝑑𝑡 ≤ sup

𝑁
𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ) ≤ sup

𝑁
𝜀,𝛿,𝑁 (�̃�𝑁 , �̃�𝑁 ) ≤ 𝑒𝑚0

+ 1 < +∞.

Then [30, Theorem 3.1] ensures that there exists (𝜇, 𝝂) ∈ (𝑚0) so that (3.19)-(3.20) hold.
Furthermore, for any such limit point (𝜇, 𝝂), by Proposition 3.6(i),

𝑒𝑚0
≤ 𝜀,𝛿(𝜇, 𝝂) ≤ lim inf

𝑁→+∞
𝜀,𝛿,𝑁 (𝐲𝑁 ,𝐮𝑁 ).(B.3)

Combining (B.2) and (B.3), we obtain (3.18) and that (𝜇, 𝝂) is a minimizer of (MFC𝜀,𝛿).
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Now, we turn to the proof of Corollary 1.8, which provides sufficient conditions to ensure

existence of minimizers to the continuum optimization problems we consider.
Proof of Corollary 1.8. Since (MFC) is feasible, we have that (MFC𝜀) and (MFC𝜀,𝛿) are

feasible for all 𝜀, 𝛿 > 0. Likewise, Proposition 1.7 ensures that, for any 𝐲0 ∈ (ℝ𝑑)𝑁 with
𝑦𝑖,0 ∈ {𝐿𝑁 < +∞} for all 𝑖 = 1,… , 𝑁,(B.4)

minimizers of (MFC𝜀,𝛿,N) exist.
By Theorem 3.7, for all𝑁 ∈ ℕ, there exists 𝐲𝑁,0 ∈ (ℝ𝑑)𝑁 satisfying (B.4) so that, for any

sequence of minimizers (𝐲𝑁 ,𝐮𝑁 ) ∈ (𝐲𝑁,0) of (MFC𝜀,𝛿,N), up to a subsequence, (𝐲𝑁 ,𝐮𝑁 )
converges to a minimizer of (MFC𝜀,𝛿). Thus, minimizers of (MFC𝜀,𝛿) exist.

By Theorem 1.5, any sequence of minimizers of (MFC𝜀,𝛿) converges, up to a subsequence,
to a minimizer of (MFC𝜀), so minimizers of (MFC𝜀) exist.

Finally, by Proposition 1.2, any sequence of minimizers of (MFC𝜀) converges, up to a
subsequence, to a minimizer of (MFC), so minimizers of (MFC) exist.
We conclude with the proof of our main theorem, Theorem 1.11, on the convergence of min-
imizers of (MFC𝜀,𝛿,N) to a minimizer of (MFC) as 𝜀→ 0, 𝛿 → 0, and 𝑁 → +∞.

Proof of Theorem 1.11. Recall that, as a consequence of our assumption that (MFC) is
feasible, we also have that (MFC𝜀) and (MFC𝜀,𝛿) are feasible.

By Theorem 1.9, for any 𝜀, 𝛿 > 0, if (𝐲𝜀,𝛿𝑁 ,𝐮𝜀,𝛿𝑁 ) ∈ 𝑁 (𝐲𝑁,0) minimizes (MFC𝜀,𝛿,N), there
is a subsequence 𝑁𝜀,𝛿

𝑙 of 𝑁 and (𝜇𝜀,𝛿 , 𝝂𝜀,𝛿) ∈ (𝑚0) that minimizes (MFC𝜀,𝛿) for which

1
𝑁𝜀,𝛿
𝑙

𝑁𝜀,𝛿
𝑙

∑

𝑖=1
𝛿𝑦𝜀,𝛿

𝑖,𝑁𝜀,𝛿𝑙

𝑙→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝜇𝜀,𝛿 in 𝐶([0, 1];1(ℝ𝑑))(B.5)

1
𝑁𝜀,𝛿
𝑙

𝑁𝜀,𝛿
𝑙

∑

𝑖=1
𝑢𝜀,𝛿
𝑖,𝑁𝜀,𝛿

𝑙

(𝑡)𝛿𝑦𝜀,𝛿
𝑖,𝑁𝜀,𝛿𝑙

(𝑡)𝑑𝑡
𝑙→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝝂𝜀,𝛿 in (ℝ𝑑 × [0, 1];𝑈 ).(B.6)

Likewise, for any 𝜀, Theorem 1.5 ensures that there exists a subsequence 𝛿𝜀𝑘 of 𝛿 so that
(𝜇𝜀,𝛿𝜀𝑘 , 𝝂𝜀,𝛿𝜀𝑘 ) converges to some (𝜇𝜀, 𝝂𝜀) ∈ (𝑚0), where (𝜇𝜀, 𝝂𝜀) minimizes (MFC𝜀). Finally,
by Theorem 1.2, up to a subsequence, (𝜇𝜀, 𝝂𝜀) converges to some (𝜇, 𝝂), where (𝜇, 𝝂) is a
minimizer of (MFC).

To obtain the result, we now apply a standard diagonal argument. For simplicity of nota-
tion, recall that convergence in the topologies of equations (1.14-1.15) is metrizable, and let
𝑑 denote such a metric. For 𝑚 ∈ ℕ, we may choose a subsequence (𝜇𝜀𝑚 , 𝝂𝜀𝑚 ) so that

𝑑
(

(𝜇𝜀𝑚 , 𝝂𝜀𝑚 ), (𝜇, 𝝂)
)

< 1
3𝑚

.

Likewise, we may choose a subsequence
(

𝜇𝜀𝑚,𝛿𝜀𝑚𝑚 , 𝝂𝜀𝑚,𝛿𝜀𝑚𝑚
)

so that

𝑑
((

𝜇𝜀𝑚,𝛿𝜀𝑚𝑚 , 𝝂𝜀𝑚,𝛿𝜀𝑚𝑚
)

, (𝜇𝜀𝑚 , 𝝂𝜀𝑚 )
)

< 1
3𝑚

.

Finally, we may choose a subsequence
(

𝐲𝜀𝑚,𝛿𝑚
𝑁𝑗𝑚,𝑘𝑚
𝑚

,𝐮𝜀𝑚,𝛿𝑚
𝑁𝑗𝑚,𝑘𝑚
𝑚

)

so that, defining 𝜇𝑚 and 𝝂𝑚 as on
the left hand side of (1.12-1.13),

𝑑
(

(𝜇𝑚, 𝝂𝑚),
(

𝜇𝜀𝑚,𝛿𝜀𝑚𝑚 , 𝝂𝜀𝑚,𝛿𝜀𝑚𝑚
))

< 1
3𝑚

.
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The result then follows by the triangle inequality.
Acknowledgements: K. Craig would like to thank Amir Sagiv for an interesting discus-

sion on the case of optimal transport around obstacles and the connection to manifolds with
holes.
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