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Abstract

We propose a deep learning approach to compute mean field control problems
with individual noises. The problem consists of the Fokker-Planck (FP) equation
and the Hamilton-Jacobi-Bellman (HJB) equation. Using the differential of the
entropy, namely the score function, we first formulate the deterministic forward-
backward characteristics for the mean field control system, which is different from
the classical forward-backward stochastic differential equations (FBSDEs). We
further apply the neural network approximation to fit the proposed determinis-
tic characteristic lines. Numerical examples, including the control problem with
entropy potential energy, the linear quadratic regulator, and the systemic risks,
demonstrate the effectiveness of the proposed method.

Keywords: Mean field control; Forward-backward score dynamics; Deep learning
algorithms.

1 Introduction

Mean Field Control (MFC) has emerged as a powerful framework in the realm of con-
trol theory, offering a versatile approach to model and optimize large-scale systems
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with a multitude of interacting components among agents. This paradigm finds appli-
cations across various domains, such as economics and finance [1], herd behavior [2],
robotics [3], and data science [4]. Its significance lies in its ability to address com-
plex systems with a large number of interacting agents by considering their mean field
behaviors, thereby reducing the computational burden associated with analyzing each
individual agent.

Along with the MFC problem, two important equations characterize the optimal-
ity condition of the system. The first one is the Fokker-Planck (FP) equation, which
describes the evolution of the density of the system. The second one is the Hamilton–
Jacobi-Bellman (HJB) equation, which describes the optimal expected cost w.r.t.
certain initialization. Solving the coupled FP–HJB system below is crucial for solving
the MFC problem8>><>>:

@t�(t; x) +rx � (�(t; x)DpH(t; x;rx�(t; x))) =
1

�
∆x�(t; x);

@t�(t; x) +H(t; x;rx�(t; x)) +
1

�
∆x�(t; x) = f(t; x; �(t; x)):

Here H(t; x; p) : R�Rd�Rd ! R is the Hamiltonian of the system, x 2 Rd and p 2 Rd
are the space and adjoint variables respectively. Dp denotes the gradient of H w.r.t.
adjoint variable p. And 1=� > 0 is a diffusion coefficient parameter, which characterizes
the intensity of diffusion. The function f : R�Rd�R! R involves the density �, which
represents the interaction behaviors of agents. The density dependency in Hamilton-
Jacobi equations distinguishes the MFC problem from the standard stochastic control.
The details for the system are introduced in Section 2.

One traditional way to solve the MFC problem is through the FBSDE sys-
tem, which utilizes the stochastic characterization of the problem. The viscous state
dynamic, also known as the stochastic characteristic curve, is often studied together
with the backward adjoint equation that describes the cost [5] or shadow price [6].
This gives the classic FBSDE system [7]. The theoretical analysis for this method is
elegant. However, these approaches heavily rely on the sampling of Brownian motions
(BM), which may give large numerical errors from random trajectories.

In recent years, the score function has emerged as a powerful tool in many problems,
such as the generative model and the MFC. The score function is the gradient of
the logarithm of the density function r log �(t; x). Based on this score function, the
probability flow [8] is defined to characterize the stochastic state dynamic with a
deterministic ODE, potentially alleviating the issue of sampling the Brownian motion.

In this paper, we propose a new framework to solve the MFC problem based
on the score function. This is to formulate deterministic characteristics lines for the
Fokker-Planck equations and Hamilton-Jacobi equations. In detail, we denote xt as
the probability flow of the state, which satisfies an ODE whose velocity is subtracted
by the score function. We also define yt = �(t; xt) as an analog for the adjoint process.
These two dynamics form a forward-backward score ODE system, which is summarized
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below.8>><>>:
@txt = DpH(t; xt; zt)�

1

�
rx log �(t; xt);

@tyt = ft �
1

�
ht �H(t; xt; zt) + z>t DpH(t; xt; zt)�

1

�
z>t rx log �(t; xt);

(1)

with given initial condition x0 and terminal condition yT . Here, zt, ht, and ft are short
for rx�(t; xt), ∆x�(t; xt), and f(t; xt; �(t; xt)) respectively. A detailed description of
system (1) is given in Section 2. Clearly, when � = 1, equation (1) is the classical
deterministic characteristic for the HJB without viscosity.

In the algorithm, we parameterize � as a neural network and construct a loss
function to match the adjoint process yt with its neural network parametrization.
Meanwhile, we also formulate a density estimation method to approximate the gradient
of the logarithm of the density function. This density estimation distinguishes our
method from those that require sampling of Brownian motions. The validity of the
proposed method is justified through several numerical examples including mean field
control problems with an entropy potential energy, linear quadratic control, and system
risks.

Many studies have been conducted on MFC problems. Some of the works focus
on the McKean–Vlasov equation for the system [9–12]. Others focus on controlling
the physical and social systems, arising from conservation laws [13, 14] and reaction-
diffusion equations [15]. In recent years, there has been a growing trend to use machine
learning approaches to compute the MFG/MFC problem, such as [16–19]. There is also
research studying convergence properties of these machine learning methods [20, 21].
There are also other algorithms to compute the MFC problem such as the Picard
iterations method [22]. Many of the works mentioned above rely heavily on the theory
of FBSDE [23]. This FBSDE is usually computed through the shooting method, where
one matches the terminal condition with its approximation. However, such methods
rely heavily on the sampling of Brownian motion, which only has an accuracy of
order one-half. In numerical examples, our deterministic score dynamic provides an
alternative for this problem. We leave the theoretical comparison for algorithms using
forward-backward score dynamics and FB SDEs in future works.

The rest of this paper is organized as follows. Section 2 provides a theoretical back-
ground for the MFC problem and introduces our forward-backward ODE score system.
In Section 3, we present a detailed description of our numerical method, including the
construction of the loss function, accompanied by theoretical justification, the esti-
mation for the density function, and the numerical discretization. Finally, Section 4
shows numerical examples that validate the effectiveness of our proposed algorithm,
including the control problem with an entropy potential energy, the linear quadratic
regulator, and the systemic risks.
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2 Formulation of the score-base mean field control
problem

In this section, we briefly review the MFC problem and formulate the deterministic
forward-backward ODE system, with the score functions to represent the viscosity for
the density function.

We consider the mean field control problem described by the cost functional:

inf
v

Z T

0

Z
Rd

(L(t; x; v(t; x))�(t; x) + F (t; x; �(t; x))) dx dt+

Z
Rd

V (x)�(T; x) dx (2)

where L : R � Rd � Rd ! R is the Lagrangian of the system, v : R � Rd ! Rd is the
velocity field, F : R � Rd � R ! R is the running cost that involves the density, and
V : Rd ! R is the terminal energy. Here, the density �(t; x) satisfies the Fokker-Planck
equation

@t�(t; x) +rx � (�(t; x)v(t; x)) =
1

�
∆x�(t; x); �(0; x) = �0(x): (3)

The objective is to minimize the cost functional (2) over all feasible velocity fields of
control.

We give the following assumption for the system.
Assumption 1. The Lagrangian L(t; x; v) is strongly convex in v.

This assumption guarantees the well-posedness of the MFC problem, which is
necessary in our setting. In more general control problems, where the drift is nonlinear
in the control field and the volatility is not constant, well-posedness may be guaranteed
even if the Lagrangian is not convex. The well-posedness is determined by the concavity
(or convexity, depending on the definition,) of the generalized Hamiltonian [6, 24].

Under Assumption 1, the Hamiltonian, defined as the Legendre transform of the
Lagrangian, attains a well-defined expression

H(t; x; p) = sup
v2Rd

v>p� L(t; x; v): (4)

Applying standard results in convex analysis, we know that the maximum in (4) is
realized at

v� = DpH(t; x; p); (5)

where Dp refers to the gradient w.r.t. p (cf. [25] chapter 2).
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Next, we analyze the mean field control (MFC) problem by introducing a Lagrange
multiplier, �(t; x), resulting in the following expression

inf
v
sup
�

Z T

0

Z
Rd

[L(t; x; v(t; x))�(t; x) + F (t; x; �(t; x))

+ �(t; x)

�
@t�(t; x) +rx � (�(t; x)v(t; x))�

1

�
∆x�(t; x)

��
dxdt

+

Z
Rd

V (x)�(T; x) dx

(6)

Solving the critical point system for the above inf-sup problem yields the following
proposition.
Proposition 1. Under Assumption 1, there exists a function � : [0; T ] � Rd ! R,
such that the optimal velocity �eld satis�es

v(t; x) = DpH(t; x;rx�(t; x));

and the solution of the MFC is described by the FP{HJB system8>>>><>>>>:
@t�(t; x) +rx � (�(t; x)DpH(t; x;rx�(t; x))) =

1

�
∆x�(t; x);

@t�(t; x) +H(t; x;rx�(t; x)) +
1

�
∆x�(t; x) = f(t; x; �(t; x));

�(0; x) = �0(x); �(T; x) = �V (x);

(7)

where f(t; x; �(t; x)) =
@F

@�
(t; x; �(t; x)).

Proof. For illustration purposes, we take the functional derivative of the inf-sup prob-
lem (6) for all the variables and derive the critical point system for the problem. Taking
the derivative of (6) w.r.t. � directly results in the Fokker Planck equation (3). To
obtain other equations for the critical point system, we perform integration by part
and reformulate (6) as

inf
v
sup
�

Z T

0

Z
Rd

[L(t; x; v(t; x))�(t; x) + F (t; x; �(t; x))� @t�(t; x)�(t; x)

�rx�(t; x)>v(t; x)�(t; x)�
1

�
∆x�(t; x)�(t; x)

�
dxdt

+

Z
Rd

(V (x)�(T; x) + �(T; x)�(T; x)� �(0; x)�(0; x)) dx:

(8)

Taking derivative of (8) w.r.t. �, we obtain

L(t; x; v(t; x))� @t�(t; x)�rx�(t; x)>v(t; x)�
1

�
∆x�(t; x) +

@F

@�
(t; x; �(t; x)) = 0;
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which simpli�es to

@t � (t; x ) + r x � (t; x )> v(t; x ) � L (t; x; v (t; x )) +
1
�

� x � (t; x ) = f (t; x; � (t; x )) : (9)

Taking derivative of (8) w.r.t. v, we arrive at

(r v L(t; x; v (t; x )) � r x � (t; x )) � (t; x ) = 0 ;

which implies
v(t; x ) = D pH (t; x; r x � (t; x )) (10)

according to (5). Finally, taking derivative of (8) w.r.t. � (T; �), we arrive at the terminal
condition � (T; x) = � V (x). If we plug (10) into the Fokker{Planck equation and (9),
we recover the FP{HJB system (7).

Remark 1. The HJB equation in (7) is slightly di�erent from the traditional HJB
equation, which is de�ned as the optimal expected cost given a starting point. In our
case, there is a sign shift and part of the density information is not involved in the
HJB equation. But r x � still decides the optimal velocity. For a more comprehensive
model, the Lagrange multiplier � should also depend on the density� , and the value
function will be the solution to the master equation [26].

As an illustrative example, consider the case whereL(t; x; v ) = 1
2 jvj2. This choice

leads to H (t; x; p) = 1
2 p2, resulting in the following simpli�ed FP{HJB system

8
>>>><

>>>>:

@t � (t; x ) + r x � (� (t; x )r x � (t; x )) =
1
�

� x � (t; x );

@t � (t; x ) +
1
2

jr x � (t; x )j2 +
1
�

� x � (t; x ) = f (t; x; � (t; x )) ;

� (0; x) = � 0(x); � (T; x) = � V (x):

(11)

When f = 0, the problem reduces to an optimal control one and the HJB equation
becomes the viscous Burgers equation.

Traditional methods such as backward stochastic di�erential equations (BSDEs)
often involve sampling for Brownian motion, leading to potential errors. In this work,
we innovatively propose an alternative ODE system based on the score function. The
probability 
ow [8] associated with the Fokker-Planck equation (3) is de�ned as

@t x t = v(t; x t ) �
1
�

r x log � (t; x t ); (12)

where the density� is involved. The term r x log � (t; x t ) is known as the score function,
commonly used in generative models [27]. This probability 
ow constitutes an ODE
system, with the only source of randomness being the initial conditionx0. If x0 follows
the distribution � 0, then the density for x t in (12) precisely corresponds to the solution
of the FP equation (3).
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According to Proposition 1, the probability 
ow under optimal velocity becomes
the following ODE system

@t x t = D pH (t; x t ; r x � (t; x t )) �
1
�

r x log � (t; x t ): (13)

This deterministic system liberates us from the need for Brownian motion
sampling. We next introduce our forward-backward ODE system.
Proposition 2. Let � , � be the solution to the FP{HJB system (7). Let x t be the
probability 
ow de�ned by (13). Let yt = � (t; x t ). Then, x t and yt satis�es the forward-
backward ODE system

8
>><

>>:

@t x t = D pH (t; x t ; zt ) �
1
�

r x log � (t; x t );

@t yt = f t �
1
�

ht � H (t; x t ; zt ) + z>
t DpH (t; x t ; zt ) �

1
�

z>
t r x log � (t; x t );

(14)

with initial condition x0 � � 0 and terminal condition yT = � V (xT ). Here, f t is short
for f (t; x t ; � (t; x t )) , zt = r x � (t; x t ), and ht = � x � (t; x t ).

Proof. The dynamic for x t comes from equation (13). Foryt = � (t; x t ), we have

@t yt =
d
dt

� (t; x t ) = @t � (t; x t ) + r x � (t; x t )> @t x t

= f (t; x t ; � (t; x t )) �
1
�

� x � (t; x t ) � H (t; x t ; r x � (t; x t ))

+ r x � (t; x t )>
�

DpH (t; x t ; r x � (t; x t )) �
1
�

r x log � (t; x t )
�

;

where we used the HJB equation and the probability 
ow is the second equality. This
recovers the second ODE in (14).

Remark 2. This forward-backward ODE system can be viewed as a deterministic
analog of the FBSDE, which is commonly studied in MFC problems. To present the
FBSDE in our scenario, we �rst give the stochastic version of our MFC

inf
v

E

" Z T

0
(L (t; X t ; v(t; X t )) + F (t; X t ; � (t; X t ))=� (t; X t )) d t + V (X T )

#

subject to
dX t = v(t; X t ) dt +

p
2=� dWt X 0 � � 0: (15)

Here, � (t; x ) is the density function for X t , Wt is a standard Wiener process inRd, and
the expectation is taken over the whole trajectoryX t � � (t; �). The optimal stochastic
state dynamic (15), together with the adjoint dynamic for value, forms the FBSDE for
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our MFC problem

(
dX t = D pH (t; X t ; Z t ) dt +

p
2=� dWt ; X 0 � � 0;

dYt = ( L(t; X t ; DpH (t; X t ; Z t )) + f (t; X t ; � (t; X t ))) d t +
p

2=�Z >
t dWt ; YT = � V (X T ):

(16)
Here, Z t is the auxiliary variable for the BSDE. The unique solution to the BSDE
above isYt = � (t; X t ) and Z t = r x � (t; X t ). In this case, (X t ; Yt ; Z t ) are based on the
solutions of stochastic dynamics(16). In comparison, (x t ; yt ; zt ) are solutions from
equation system(14). They interact with each other through the density ofx t .

3 Numerical method

In this section, we apply a neural network parametrization to � and construct a loss
function to match the forward-backward ODE system. Then, we introduce the density
estimation function based on the kernel method.

3.1 Construction of loss function

In practice, we can parametrize � as a neural network � N and represent zt and ht

through auto-di�erentiation. Then we construct a loss function that try to match the
dynamic yt from (14) and � N (t; x t )

L = E
Z T

0
j� N (t; x t ) � yt j

2 dt; (17)

where the expectation is taken overx0 � � 0. x t and yt are computed through the
ODE system (14), with y0 = � N (0; x0), zt = r x � N (t; x t ), and ht = � x � N (t; x t ).
Proposition 3. Let � N be a function such that� N (T; �) = � V (�). Let � be the solution
to the Fokker-Planck equation

@t � (t; x ) + r x � (� (t; x ) DpH (t; x; r x � N (t; x ))) =
1
�

� x � (t; x );

with initial condition � (0; �) = � 0(�). If the loss L de�ned by (17) is 0, then � and � N

is the solution to the FP{HJB system (7).

Proof. According to the ODE system (14), we obtain

� N (t; x t ) = � N (0; x0) +
Z t

0

�
@s � N (s; xs) + r x � N (s; xs)> @sxs

�
ds

= y0 +
Z t

0

�
@s � N (s; xs) + z>

s

�
DpH (s; xs; zs) �

1
�

r x log � (s; xs)
��

ds:
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Also, yt satis�es

yt = y0 +
Z t

0
@sys ds

= y0 +
Z t

0

�
f s �

1
�

� x � N (s; xs) � H (s; xs; r x � N (s; xs))

+ z>
s

�
DpH (s; xs; r x � N (s; xs)) �

1
�

r x log � (s; xs)
��

ds:

Subtracting the above two equations, we obtain

� N (t; x t ) � yt =
Z t

0

�
@s � N (s; xs) +

1
�

� x � N (s; xs) + H (s; xs; r x � N (s; xs)) � f s

�
ds:

So

L = E
Z T

0

� Z t

0

�
@s � N (s; xs) +

1
�

� x � N (s; xs) + H (s; xs; r x � N (s; xs)) � f s

�
ds

� 2

dt:

Note that the integrand above is exactly the residual of the HJB equation, soL = 0
implies that � N is the solution to the HJB equation. Therefore, � and � N is the
solution to the FP{HJB system (7).

3.2 Density estimation

Computing the density information is usually necessary and unavoidable in the mean-
�eld control problem. In this work, we consider the classic kernel density estimate
(KDE) with a Gaussian Kernel.

Let

� ref =
1
N

NX

i =1

� x i

be the reference measure from sampling. We de�ne the kernel density

b� (t; x ) = K (�; � K ) � � ref (x) =
Z

K (x � y; � K ) � ref (y) dy;

where K (z; � K ) = (2 �� 2
K ) � d=2 exp(�j zj2=(2� 2

K )) is the Gaussian kernel with � K > 0.
The bandwidth � K is a hyperparameter.

We remark that we have also tested other kernels such as the Wasserstein proximal
kernel proposed in [28]. Its performance is similar to the Gaussian kernel. Thus, we
just report Gaussian KDE in this work.

3.3 Numerical implementation of the score-based MFC solver

In this section, we present the numerical implementation of the algorithm.
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The function � (t; x ) is parametrized by a neural network � N (t; x ). As for the
terminal condition � (t; x ) = � V (x), we give a hard parametrization through

� N (t; x ) =
T � t

T
N (t; x ) �

t
T

V (x); (18)

whereN (t; x ) is a standard fully connected deep neural network. If an explicit terminal
condition is absent (see the example in Section 4.3 below), we set� N (t; x ) = N (t; x )
and include an additional loss term to enforce the terminal condition.

We discretize the ODE system (14) using forward Euler scheme withNT +1 nodes
f t j = j � tgN T

j =0 and step size � t = T=NT ,

8
>><

>>:

x t j +1 = x t j +
�

DpH (t; x t j ; zt j ) �
1
�

r x log b� (t; x t j )
�

� t

yt j +1 = yt j +
�

f t j �
1
�

ht j � H (t; x t j ; zt j ) + z>
t j

DpH (t; x t j ; zt j ) �
1
�

z>
t j

r x log b� (t; x t j )
�

� t

(19)
with zt j = r x � N (t; x t j ) and ht j = � x � N (t; x t j ) obtained from the auto-
di�erentiation, and b� (t; x ) obtained from the KDE. Given N sampled trajectories
f x ( i )

t gN
i =1 , this KDE is given by

b� (t; x ) =
1
N

NX

i =1

K (x � x ( i )
t ; � K ): (20)

The loss function (17) is then discretized into

1
N

NX

i =1

N TX

j =1

h
� N (t j ; x ( i )

t j
) � y( i )

t j

i 2
� t;

and we minimize this loss using the Adam optimization scheme. The algorithm is
summarized in the pseudocode Algorithm 1. The detailed parameters are deferred to
the appendix.

This algorithm can be generalized to the broader MFG setting, where the depen-
dence of the HJB equation on the density� is more intricate, as illustrated in Section
4.3.

We will also compare our algorithm with the traditional BSDE method. In the
BSDE approach, one sample the trajectories of the stochastic processes (16) using
Euler{Maruyama scheme instead of sampling (14) with scheme (19). The other part
has the same implementation as our score method. We also remark that in the BSDE
method, a shooting loss that only try to match the terminal condition could be con-
structed. The performance for such shooting method is similar to matching the whole
trajectory.
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Algorithm 1 Forward-backward score solver for the MFC problem
Input: MFC problem, � K , number of training steps kend , parameters for Adam

optimizer, batch size N , number of time intervals NT

Output: the solution to the HJB equation
initialization: parameter for the network � N

for k = 1 to kend do
SampleN points f x ( i )

0 gN
i =1 from the initial distribution � 0

Compute y( i )
0 = � N (0; x ( i )

0 )
LossL = 0
for j = 0 to NT � 1 do

compute b� (t; x ) through the KDE method (20)
compute f z( i )

t j
gN

i =1 and f h( i )
t j

gN
i =1 through auto-di�erentiation

compute f x ( i )
t j +1

gN
i =1 and f y( i )

t j +1
gN

i =1 through the Euler scheme (19)

update lossL = L +
1
N

P N
i =1

�
� N (t j +1 ; x ( i )

t j +1
) � y( i )

t j +1

� 2
� t

end for
update the parameters for� N through Adam method to minimize the loss L

end for

4 Numerical examples

In this section, we substantiate the e�cacy of our algorithm through the presenta-
tion of three numerical examples. The �rst case under consideration has previously
been examined in [4], which has a potential energy. The second example pertains to a
linear quadratic mean �eld control problem, while the third example delves into the
realm of systemic risk in �nance. Speci�cally, it addresses the intricate dynamics asso-
ciated with banks' interactions through borrowing and lending, as elucidated in [5].
The details for the numerical implementation are deferred to the appendix. We also
compare our score method with the traditional BSDE method.

4.1 An MFC example with entropy potential energy

We �rst consider an example that is also studied in [4]. The objective is

inf
v

Z T

0

Z

Rd

�
1
2

jv(t; x )j2 + 
 log(� (t; x )) � 

�

� (t; x ) dx dt +
Z

Rd
V(x)� (T; x) dx

subject to the dynamic (12) with initial distribution � 0 � N (0; 1
� I d). Here 
 and �

are two positive constants. The FP-HJB equation pair is

8
>><

>>:

@t � (t; x ) + r x �
�
� (t; x )r x � (t; x )

�
= � x � (t; x );

@t � (t; x ) + � x � (t; x ) +
1
2

jr x � (t; x )j2 �
1
2

jxj2 � 
 log � (t; x ) = 0 ;

� (0; x) = � 0(x); � (T; x) = � V (x):

(21)
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With proper terminal cost and choice of 
 and � that satisfy � 2 + 
� = 1 (i.e.

� =
� 
 +

p

 2 + 4

2
), an analytical solution to the problem is obtained, given by

� (t; x ) =
�

d� +

d
2

log(
�
2�

)
�

t �
� jxj2

2

and

� (t; x ) =
� �

2�

� d=2
exp

 

�
� jxj2

2

!

:

This solution is utilized to assess the error and validate our algorithm. The outcomes
of our numerical experiments are depicted in Figure 1. The results are presented
separately for 1 and 2 dimensions.

In the �rst row, representing the 1 dimensional case, the initial �gure in the �rst
column displays the training curve for the neural network. It illustrates the L 2 relative
error of � , as well as its gradient and Laplacian, presented in logarithmic scale. Notably,
approximating � solely with L 2 norm is insu�cient due to the essential information
provided by r x � for determining the optimal policy (cf. (5) with p = r x � (t; x )).
Hence, we also report the errors for the derivatives. The shadow in the �gure represents
the standard deviation observed during multiple test runs. The �nal errors for these
tests are 1:59%, 0:52%, 0:51% respectively. As a comparison, the �nal errors using
the BSDE method are 2:77%, 2:63%, 2:36%, which is higher than our score method.
The second �gure in the �rst row illustrates a comparison between the initial value
� (0; �) and its neural network approximation. Recall that we enforce a rigorous imple-
mentation of the terminal condition � (T; �) within the network. The network adeptly
captures the value function. The third and fourth �gures present comparison plots for
the terminal density � (T; �) and score functionr x log(� (T; x)) with the corresponding
KDE approximation from the trajectory (13). We also report that the Wasserstein-2
distance between our estimated samples and the true density is 6:41e� 2 for our score
method and 8:23e� 2 for the BSDE method.

Moving to the second row, which corresponds to the 2 dimensional scenario, the
initial �gure in the �rst column represents the training curve. The �nal errors are
1:82%, 0:54%, 0:53%. As a comparison, the �nal errors using the BSDE method are
1:92%, 2:32%, 2:14%, which is higher than our score method. Given the challenge of
directly visualizing high-dimensional input functions, a density plot of � (0; �) is shown
in the second �gure. Speci�cally, this plot illustrates the density function of � (0; x0)
and its neural network approximation, where x0 is uniformly distributed in the box
[� 2=

p
�; 2=

p
� ] � [� 2=

p
�; 2=

p
� ]. Note that 2=

p
� is twice the standard deviation of

the initial distribution. Similar visualization techniques for high-dimensional functions
have been employed in previous studies [29]. The third and fourth �gures in this row
compare the contour plots of the density� (T; �) and its KDE approximation. The �nal
Wasserstein-2 error for the samples is 9:18e� 2 for our score method and 5:87e� 2 for
the BSDE method.
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Fig. 1 Numerical results for the MFC problem with log density running cost. The �rst row illustrates
the results in 1 dimension, including the training curve, plot of � (0; �), density plot, and score plot.
The second row presents the results in 2 dimensions, including the training curve, density plot for
� (0; x0 ), and a contour plot comparison for the density � (T; x T ).

4.2 An LQ example

In the subsequent example, we explore a scenario involving linear dynamics and
quadratic cost, commonly referred to as the linear quadratic (LQ) problem. The
objective is de�ned by

inf
v

Z T

0

Z

Rd

�
1
2

jv(t; x )j2 + 

�

1
2

� (t; x ) � � � (t; x )
��

� (t; x ) dx dt +
Z

Rd
V(x)� (T; x) dx

subject to the dynamic (12) with initial distribution � 0 � N (0; 2(T + 1) I d=� ). In
this example, the term with coe�cient 
 is intentionally introduced to increase the
di�culty of the problem. The FP-HJB system governing this problem is

8
>>>><

>>>>:

@t � (t; x ) + r x � (� (t; x )r x � (t; x )) =
1
�

� x � (t; x );

@t � (t; x ) +
1
2

jr x � (t; x )j2 +
1
�

� x � (t; x ) = 
 (� (t; x ) � � � (t; x )) ;

� (0; x) = � 0(x); � (T; x) = � V (x) = �j xj2=2:

Here, � � is the true solution with the optimal trajectory, given by

� � (t; x ) = (4 � (T � t + 1) =� ) � d
2 exp

 

�
� jxj2

4(T � t + 1)

!

:

The solution to the HJB equation is

� (t; x ) =
1
�

d log
1

T � t + 1
�

jxj2

2(T � t + 1)
:

13



The numerical outcomes are presented in Figure 2, with the �rst and second rows
showing the results for 1 and 2 dimensions respectively.

In the 1 dimensional scenario depicted in the �rst row, the �rst, second, and fourth
�gures mirror the format of Figure 1, illustrating the learning curves, � (0; �) plot, and
the scorer x log(� (T; �)) plot. The �nal errors for � and their derivatives are 2:00%,
2:76%, 2:75%. The errors for the BSDE method are 2:14%, 2:84%, 2:83%. The �nal
Wasserstein-2 error for the samples is 5:01e� 2 for our score method and 4:81e� 2
for the BSDE method. In this example, our score method has a similar performance
compared with the BSDE method. The third �gure displays the variance change forx t ,
demonstrating the capability of our score-based dynamics to capture density changes.
The green curve represents the true variance under the optimal trajectory, showing
a decreasing trend. In contrast, the blue curve represents the variance ofx t when
utilizing an untrained neural network, failing to capture the decreasing variance. After
training, the variance for x t aligns with the true variance, as depicted by the orange
curve. Note that we have the exact initial condition, so the error of variance at t = 0
could be signi�cantly reduced if we increase the number of samples. Here, we have an
error of about 0:01 at t = 0 due to a limited number of samples.

For the 2 dimensional case presented in the second row, the four �gures adopt a
format similar to those in Figure 1. The �nal errors for � and its derivatives are 1:55%,
2:64%, 2:65%. The errors for the BSDE method are 1:68%, 2:64%, 2:62%. The �nal
Wasserstein-2 error for the samples is 6:25e� 2 for our score method and 3:55e� 2 for
the BSDE method. In order to visualize the dynamic of the particles, we present the
temporal evolution of particles in �gure 3. The �rst line depicts the dynamic state
(12) with the optimal velocity �eld and true density function. The second line shows
the state dynamic with the velocity �eld and the density approximated by the neural
network and KDE estimate respectively. The third line displays the stochastic dynamic
(15) with the optimal velocity �eld. Our approach e�ectively captures the diminished
variance in density, distinguishing itself from the stochastic dynamic, which exhibits
a comparatively less structured behavior.

4.3 Systemic risk

This example, as explored in [30], operates within one-dimensional space, wherex t

represents the logarithm of a bank's cash reserves. The model captures the interbank
borrowing and lending activities through the drift. The objective is to minimize

J [� ] = E

" Z T

0

�
1
2

� 2
t � q� t (x t � x t ) +

"
2

(x t � x t )2
�

dt +
c
2

(xT � xT )2

#

(22)

subject to the dynamic

dx t = ( a(x t � x t ) + � t ) dt + � dWt ;

where x t = Ex t denotes the mean cash reserves.
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