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Abstract

We propose a deep learning approach to compute mean field control problems
with individual noises. The problem consists of the Fokker-Planck (FP) equation
and the Hamilton-Jacobi-Bellman (HJB) equation. Using the differential of the
entropy, namely the score function, we first formulate the deterministic forward-
backward characteristics for the mean field control system, which is different from
the classical forward-backward stochastic differential equations (FBSDEs). We
further apply the neural network approximation to fit the proposed determinis-
tic characteristic lines. Numerical examples, including the control problem with
entropy potential energy, the linear quadratic regulator, and the systemic risks,
demonstrate the effectiveness of the proposed method.

Keywords: Mean field control; Forward-backward score dynamics; Deep learning
algorithms.

1 Introduction

Mean Field Control (MFC) has emerged as a powerful framework in the realm of con-
trol theory, offering a versatile approach to model and optimize large-scale systems
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with a multitude of interacting components among agents. This paradigm finds appli-
cations across various domains, such as economics and finance [1], herd behavior [2],
robotics [3], and data science [4]. Its significance lies in its ability to address com-
plex systems with a large number of interacting agents by considering their mean field
behaviors, thereby reducing the computational burden associated with analyzing each
individual agent.

Along with the MFC problem, two important equations characterize the optimal-
ity condition of the system. The first one is the Fokker-Planck (FP) equation, which
describes the evolution of the density of the system. The second one is the Hamilton–
Jacobi-Bellman (HJB) equation, which describes the optimal expected cost w.r.t.
certain initialization. Solving the coupled FP–HJB system below is crucial for solving
the MFC problem

∂tρ(t, x) +∇x · (ρ(t, x)DpH(t, x,∇xϕ(t, x))) =
1

β
∆xρ(t, x),

∂tϕ(t, x) +H(t, x,∇xϕ(t, x)) +
1

β
∆xϕ(t, x) = f(t, x, ρ(t, x)).

Here H(t, x, p) : R×Rd×Rd → R is the Hamiltonian of the system, x ∈ Rd and p ∈ Rd

are the space and adjoint variables respectively. Dp denotes the gradient of H w.r.t.
adjoint variable p. And 1/β > 0 is a diffusion coefficient parameter, which characterizes
the intensity of diffusion. The function f : R×Rd×R → R involves the density ρ, which
represents the interaction behaviors of agents. The density dependency in Hamilton-
Jacobi equations distinguishes the MFC problem from the standard stochastic control.
The details for the system are introduced in Section 2.

One traditional way to solve the MFC problem is through the FBSDE sys-
tem, which utilizes the stochastic characterization of the problem. The viscous state
dynamic, also known as the stochastic characteristic curve, is often studied together
with the backward adjoint equation that describes the cost [5] or shadow price [6].
This gives the classic FBSDE system [7]. The theoretical analysis for this method is
elegant. However, these approaches heavily rely on the sampling of Brownian motions
(BM), which may give large numerical errors from random trajectories.

In recent years, the score function has emerged as a powerful tool in many problems,
such as the generative model and the MFC. The score function is the gradient of
the logarithm of the density function ∇ log ρ(t, x). Based on this score function, the
probability flow [8] is defined to characterize the stochastic state dynamic with a
deterministic ODE, potentially alleviating the issue of sampling the Brownian motion.

In this paper, we propose a new framework to solve the MFC problem based
on the score function. This is to formulate deterministic characteristics lines for the
Fokker-Planck equations and Hamilton-Jacobi equations. In detail, we denote xt as
the probability flow of the state, which satisfies an ODE whose velocity is subtracted
by the score function. We also define yt = ϕ(t, xt) as an analog for the adjoint process.
These two dynamics form a forward-backward score ODE system, which is summarized
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below.
∂txt = DpH(t, xt, zt)−

1

β
∇x log ρ(t, xt),

∂tyt = ft −
1

β
ht −H(t, xt, zt) + z⊤t DpH(t, xt, zt)−

1

β
z⊤t ∇x log ρ(t, xt),

(1)

with given initial condition x0 and terminal condition yT . Here, zt, ht, and ft are short
for ∇xϕ(t, xt), ∆xϕ(t, xt), and f(t, xt, ρ(t, xt)) respectively. A detailed description of
system (1) is given in Section 2. Clearly, when β = ∞, equation (1) is the classical
deterministic characteristic for the HJB without viscosity.

In the algorithm, we parameterize ϕ as a neural network and construct a loss
function to match the adjoint process yt with its neural network parametrization.
Meanwhile, we also formulate a density estimation method to approximate the gradient
of the logarithm of the density function. This density estimation distinguishes our
method from those that require sampling of Brownian motions. The validity of the
proposed method is justified through several numerical examples including mean field
control problems with an entropy potential energy, linear quadratic control, and system
risks.

Many studies have been conducted on MFC problems. Some of the works focus
on the McKean–Vlasov equation for the system [9–12]. Others focus on controlling
the physical and social systems, arising from conservation laws [13, 14] and reaction-
diffusion equations [15]. In recent years, there has been a growing trend to use machine
learning approaches to compute the MFG/MFC problem, such as [16–19]. There is also
research studying convergence properties of these machine learning methods [20, 21].
There are also other algorithms to compute the MFC problem such as the Picard
iterations method [22]. Many of the works mentioned above rely heavily on the theory
of FBSDE [23]. This FBSDE is usually computed through the shooting method, where
one matches the terminal condition with its approximation. However, such methods
rely heavily on the sampling of Brownian motion, which only has an accuracy of
order one-half. In numerical examples, our deterministic score dynamic provides an
alternative for this problem. We leave the theoretical comparison for algorithms using
forward-backward score dynamics and FB SDEs in future works.

The rest of this paper is organized as follows. Section 2 provides a theoretical back-
ground for the MFC problem and introduces our forward-backward ODE score system.
In Section 3, we present a detailed description of our numerical method, including the
construction of the loss function, accompanied by theoretical justification, the esti-
mation for the density function, and the numerical discretization. Finally, Section 4
shows numerical examples that validate the effectiveness of our proposed algorithm,
including the control problem with an entropy potential energy, the linear quadratic
regulator, and the systemic risks.
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2 Formulation of the score-base mean field control
problem

In this section, we briefly review the MFC problem and formulate the deterministic
forward-backward ODE system, with the score functions to represent the viscosity for
the density function.

We consider the mean field control problem described by the cost functional:

inf
v

∫ T

0

∫
Rd

(L(t, x, v(t, x))ρ(t, x) + F (t, x, ρ(t, x))) dx dt+

∫
Rd

V (x)ρ(T, x) dx (2)

where L : R × Rd × Rd → R is the Lagrangian of the system, v : R × Rd → Rd is the
velocity field, F : R × Rd × R → R is the running cost that involves the density, and
V : Rd → R is the terminal energy. Here, the density ρ(t, x) satisfies the Fokker-Planck
equation

∂tρ(t, x) +∇x · (ρ(t, x)v(t, x)) = 1

β
∆xρ(t, x), ρ(0, x) = ρ0(x). (3)

The objective is to minimize the cost functional (2) over all feasible velocity fields of
control.

We give the following assumption for the system.
Assumption 1. The Lagrangian L(t, x, v) is strongly convex in v.

This assumption guarantees the well-posedness of the MFC problem, which is
necessary in our setting. In more general control problems, where the drift is nonlinear
in the control field and the volatility is not constant, well-posedness may be guaranteed
even if the Lagrangian is not convex. The well-posedness is determined by the concavity
(or convexity, depending on the definition,) of the generalized Hamiltonian [6, 24].

Under Assumption 1, the Hamiltonian, defined as the Legendre transform of the
Lagrangian, attains a well-defined expression

H(t, x, p) = sup
v∈Rd

v⊤p− L(t, x, v). (4)

Applying standard results in convex analysis, we know that the maximum in (4) is
realized at

v∗ = DpH(t, x, p), (5)

where Dp refers to the gradient w.r.t. p (cf. [25] chapter 2).
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Next, we analyze the mean field control (MFC) problem by introducing a Lagrange
multiplier, ϕ(t, x), resulting in the following expression

inf
v
sup
ϕ

∫ T

0

∫
Rd

[L(t, x, v(t, x))ρ(t, x) + F (t, x, ρ(t, x))

+ ϕ(t, x)

(
∂tρ(t, x) +∇x · (ρ(t, x)v(t, x))− 1

β
∆xρ(t, x)

)]
dxdt

+

∫
Rd

V (x)ρ(T, x) dx

(6)

Solving the critical point system for the above inf-sup problem yields the following
proposition.
Proposition 1. Under Assumption 1, there exists a function ϕ : [0, T ] × Rd → R,
such that the optimal velocity field satisfies

v(t, x) = DpH(t, x,∇xϕ(t, x)),

and the solution of the MFC is described by the FP–HJB system
∂tρ(t, x) +∇x · (ρ(t, x)DpH(t, x,∇xϕ(t, x))) =

1

β
∆xρ(t, x),

∂tϕ(t, x) +H(t, x,∇xϕ(t, x)) +
1

β
∆xϕ(t, x) = f(t, x, ρ(t, x)),

ρ(0, x) = ρ0(x), ϕ(T, x) = −V (x),

(7)

where f(t, x, ρ(t, x)) =
∂F

∂ρ
(t, x, ρ(t, x)).

Proof. For illustration purposes, we take the functional derivative of the inf-sup prob-
lem (6) for all the variables and derive the critical point system for the problem. Taking
the derivative of (6) w.r.t. ϕ directly results in the Fokker Planck equation (3). To
obtain other equations for the critical point system, we perform integration by part
and reformulate (6) as

inf
v
sup
ϕ

∫ T

0

∫
Rd

[L(t, x, v(t, x))ρ(t, x) + F (t, x, ρ(t, x))− ∂tϕ(t, x)ρ(t, x)

−∇xϕ(t, x)
⊤v(t, x)ρ(t, x)− 1

β
∆xϕ(t, x)ρ(t, x)

]
dxdt

+

∫
Rd

(V (x)ρ(T, x) + ϕ(T, x)ρ(T, x)− ϕ(0, x)ρ(0, x)) dx.

(8)

Taking derivative of (8) w.r.t. ρ, we obtain

L(t, x, v(t, x))− ∂tϕ(t, x)−∇xϕ(t, x)
⊤v(t, x)− 1

β
∆xϕ(t, x) +

∂F

∂ρ
(t, x, ρ(t, x)) = 0,
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which simplifies to

∂tϕ(t, x) +∇xϕ(t, x)
⊤v(t, x)− L(t, x, v(t, x)) +

1

β
∆xϕ(t, x) = f(t, x, ρ(t, x)). (9)

Taking derivative of (8) w.r.t. v, we arrive at

(∇vL(t, x, v(t, x))−∇xϕ(t, x)) ρ(t, x) = 0,

which implies
v(t, x) = DpH(t, x,∇xϕ(t, x)) (10)

according to (5). Finally, taking derivative of (8) w.r.t. ρ(T, ·), we arrive at the terminal
condition ϕ(T, x) = −V (x). If we plug (10) into the Fokker–Planck equation and (9),
we recover the FP–HJB system (7).

Remark 1. The HJB equation in (7) is slightly different from the traditional HJB
equation, which is defined as the optimal expected cost given a starting point. In our
case, there is a sign shift and part of the density information is not involved in the
HJB equation. But ∇xϕ still decides the optimal velocity. For a more comprehensive
model, the Lagrange multiplier ϕ should also depend on the density ρ, and the value
function will be the solution to the master equation [26].

As an illustrative example, consider the case where L(t, x, v) = 1
2 |v|

2
. This choice

leads to H(t, x, p) = 1
2p

2, resulting in the following simplified FP–HJB system
∂tρ(t, x) +∇x · (ρ(t, x)∇xϕ(t, x)) =

1

β
∆xρ(t, x),

∂tϕ(t, x) +
1

2
|∇xϕ(t, x)|2 +

1

β
∆xϕ(t, x) = f(t, x, ρ(t, x)),

ρ(0, x) = ρ0(x), ϕ(T, x) = −V (x).

(11)

When f = 0, the problem reduces to an optimal control one and the HJB equation
becomes the viscous Burgers equation.

Traditional methods such as backward stochastic differential equations (BSDEs)
often involve sampling for Brownian motion, leading to potential errors. In this work,
we innovatively propose an alternative ODE system based on the score function. The
probability flow [8] associated with the Fokker-Planck equation (3) is defined as

∂txt = v(t, xt)−
1

β
∇x log ρ(t, xt), (12)

where the density ρ is involved. The term ∇x log ρ(t, xt) is known as the score function,
commonly used in generative models [27]. This probability flow constitutes an ODE
system, with the only source of randomness being the initial condition x0. If x0 follows
the distribution ρ0, then the density for xt in (12) precisely corresponds to the solution
of the FP equation (3).
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According to Proposition 1, the probability flow under optimal velocity becomes
the following ODE system

∂txt = DpH(t, xt,∇xϕ(t, xt))−
1

β
∇x log ρ(t, xt). (13)

This deterministic system liberates us from the need for Brownian motion
sampling. We next introduce our forward-backward ODE system.
Proposition 2. Let ρ, ϕ be the solution to the FP–HJB system (7). Let xt be the
probability flow defined by (13). Let yt = ϕ(t, xt). Then, xt and yt satisfies the forward-
backward ODE system

∂txt = DpH(t, xt, zt)−
1

β
∇x log ρ(t, xt),

∂tyt = ft −
1

β
ht −H(t, xt, zt) + z⊤t DpH(t, xt, zt)−

1

β
z⊤t ∇x log ρ(t, xt),

(14)

with initial condition x0 ∼ ρ0 and terminal condition yT = −V (xT ). Here, ft is short
for f(t, xt, ρ(t, xt)), zt = ∇xϕ(t, xt), and ht = ∆xϕ(t, xt).

Proof. The dynamic for xt comes from equation (13). For yt = ϕ(t, xt), we have

∂tyt =
d

dt
ϕ(t, xt) = ∂tϕ(t, xt) +∇xϕ(t, xt)

⊤∂txt

= f(t, xt, ρ(t, xt))−
1

β
∆xϕ(t, xt)−H (t, xt,∇xϕ(t, xt))

+∇xϕ(t, xt)
⊤
(
DpH(t, xt,∇xϕ(t, xt))−

1

β
∇x log ρ(t, xt)

)
,

where we used the HJB equation and the probability flow is the second equality. This
recovers the second ODE in (14).

Remark 2. This forward-backward ODE system can be viewed as a deterministic
analog of the FBSDE, which is commonly studied in MFC problems. To present the
FBSDE in our scenario, we first give the stochastic version of our MFC

inf
v
E

[∫ T

0

(L(t,Xt, v(t,Xt)) + F (t,Xt, ρ(t,Xt))/ρ(t,Xt)) dt+ V (XT )

]

subject to
dXt = v(t,Xt) dt+

√
2/β dWt X0 ∼ ρ0. (15)

Here, ρ(t, x) is the density function for Xt, Wt is a standard Wiener process in Rd, and
the expectation is taken over the whole trajectory Xt ∼ ρ(t, ·). The optimal stochastic
state dynamic (15), together with the adjoint dynamic for value, forms the FBSDE for
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our MFC problem{
dXt = DpH(t,Xt, Zt) dt+

√
2/βdWt, X0 ∼ ρ0,

dYt = (L(t,Xt,DpH(t,Xt, Zt)) + f(t,Xt, ρ(t,Xt))) dt+
√

2/βZ⊤
t dWt, YT = −V (XT ).

(16)
Here, Zt is the auxiliary variable for the BSDE. The unique solution to the BSDE
above is Yt = ϕ(t,Xt) and Zt = ∇xϕ(t,Xt). In this case, (Xt, Yt, Zt) are based on the
solutions of stochastic dynamics (16). In comparison, (xt, yt, zt) are solutions from
equation system (14). They interact with each other through the density of xt.

3 Numerical method

In this section, we apply a neural network parametrization to ϕ and construct a loss
function to match the forward-backward ODE system. Then, we introduce the density
estimation function based on the kernel method.

3.1 Construction of loss function

In practice, we can parametrize ϕ as a neural network ϕN and represent zt and ht

through auto-differentiation. Then we construct a loss function that try to match the
dynamic yt from (14) and ϕN (t, xt)

L = E
∫ T

0

|ϕN (t, xt)− yt|2 dt, (17)

where the expectation is taken over x0 ∼ ρ0. xt and yt are computed through the
ODE system (14), with y0 = ϕN (0, x0), zt = ∇xϕN (t, xt), and ht = ∆xϕN (t, xt).
Proposition 3. Let ϕN be a function such that ϕN (T, ·) = −V (·). Let ρ be the solution
to the Fokker-Planck equation

∂tρ(t, x) +∇x · (ρ(t, x)DpH(t, x,∇xϕN (t, x))) =
1

β
∆xρ(t, x),

with initial condition ρ(0, ·) = ρ0(·). If the loss L defined by (17) is 0, then ρ and ϕN
is the solution to the FP–HJB system (7).

Proof. According to the ODE system (14), we obtain

ϕN (t, xt) =ϕN (0, x0) +

∫ t

0

(
∂sϕN (s, xs) +∇xϕN (s, xs)

⊤∂sxs

)
ds

=y0 +

∫ t

0

[
∂sϕN (s, xs) + z⊤s

(
DpH(s, xs, zs)−

1

β
∇x log ρ(s, xs)

)]
ds.
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Also, yt satisfies

yt =y0 +

∫ t

0

∂sys ds

=y0 +

∫ t

0

[
fs −

1

β
∆xϕN (s, xs)−H(s, xs,∇xϕN (s, xs))

+z⊤s

(
DpH(s, xs,∇xϕN (s, xs))−

1

β
∇x log ρ(s, xs)

)]
ds.

Subtracting the above two equations, we obtain

ϕN (t, xt)− yt =

∫ t

0

(
∂sϕN (s, xs) +

1

β
∆xϕN (s, xs) +H(s, xs,∇xϕN (s, xs))− fs

)
ds.

So

L = E
∫ T

0

[∫ t

0

(
∂sϕN (s, xs) +

1

β
∆xϕN (s, xs) +H(s, xs,∇xϕN (s, xs))− fs

)
ds

]2
dt.

Note that the integrand above is exactly the residual of the HJB equation, so L = 0
implies that ϕN is the solution to the HJB equation. Therefore, ρ and ϕN is the
solution to the FP–HJB system (7).

3.2 Density estimation

Computing the density information is usually necessary and unavoidable in the mean-
field control problem. In this work, we consider the classic kernel density estimate
(KDE) with a Gaussian Kernel.

Let

ρref =
1

N

N∑
i=1

δxi

be the reference measure from sampling. We define the kernel density

ρ̂(t, x) = K(·, σK) ∗ ρref (x) =
∫

K(x− y, σK) ρref (y) dy,

where K(z, σK) = (2πσ2
K)−d/2 exp(−|z|2/(2σ2

K)) is the Gaussian kernel with σK > 0.
The bandwidth σK is a hyperparameter.

We remark that we have also tested other kernels such as the Wasserstein proximal
kernel proposed in [28]. Its performance is similar to the Gaussian kernel. Thus, we
just report Gaussian KDE in this work.

3.3 Numerical implementation of the score-based MFC solver

In this section, we present the numerical implementation of the algorithm.
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The function ϕ(t, x) is parametrized by a neural network ϕN (t, x). As for the
terminal condition ϕ(t, x) = −V (x), we give a hard parametrization through

ϕN (t, x) =
T − t

T
N (t, x)− t

T
V (x), (18)

whereN (t, x) is a standard fully connected deep neural network. If an explicit terminal
condition is absent (see the example in Section 4.3 below), we set ϕN (t, x) = N (t, x)
and include an additional loss term to enforce the terminal condition.

We discretize the ODE system (14) using forward Euler scheme with NT +1 nodes
{tj = j∆t}NT

j=0 and step size ∆t = T/NT ,
xtj+1

= xtj +

(
DpH(t, xtj , ztj )−

1

β
∇x log ρ̂(t, xtj )

)
∆t

ytj+1
= ytj +

(
ftj −

1

β
htj −H(t, xtj , ztj ) + z⊤tjDpH(t, xtj , ztj )−

1

β
z⊤tj∇x log ρ̂(t, xtj )

)
∆t

(19)
with ztj = ∇xϕN (t, xtj ) and htj = ∆xϕN (t, xtj ) obtained from the auto-
differentiation, and ρ̂(t, x) obtained from the KDE. Given N sampled trajectories

{x(i)
t }Ni=1, this KDE is given by

ρ̂(t, x) =
1

N

N∑
i=1

K(x− x
(i)
t , σK). (20)

The loss function (17) is then discretized into

1

N

N∑
i=1

NT∑
j=1

[
ϕN (tj , x

(i)
tj )− y

(i)
tj

]2
∆t,

and we minimize this loss using the Adam optimization scheme. The algorithm is
summarized in the pseudocode Algorithm 1. The detailed parameters are deferred to
the appendix.

This algorithm can be generalized to the broader MFG setting, where the depen-
dence of the HJB equation on the density ρ is more intricate, as illustrated in Section
4.3.

We will also compare our algorithm with the traditional BSDE method. In the
BSDE approach, one sample the trajectories of the stochastic processes (16) using
Euler–Maruyama scheme instead of sampling (14) with scheme (19). The other part
has the same implementation as our score method. We also remark that in the BSDE
method, a shooting loss that only try to match the terminal condition could be con-
structed. The performance for such shooting method is similar to matching the whole
trajectory.
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Algorithm 1 Forward-backward score solver for the MFC problem

Input: MFC problem, σK , number of training steps kend, parameters for Adam
optimizer, batch size N , number of time intervals NT

Output: the solution to the HJB equation
initialization: parameter for the network ϕN
for k = 1 to kend do

Sample N points {x(i)
0 }Ni=1 from the initial distribution ρ0

Compute y
(i)
0 = ϕN (0, x

(i)
0 )

Loss L = 0
for j = 0 to NT − 1 do

compute ρ̂(t, x) through the KDE method (20)

compute {z(i)tj }Ni=1 and {h(i)
tj }

N
i=1 through auto-differentiation

compute {x(i)
tj+1

}Ni=1 and {y(i)tj+1
}Ni=1 through the Euler scheme (19)

update loss L = L+
1

N

∑N
i=1

(
ϕN (tj+1, x

(i)
tj+1

)− y
(i)
tj+1

)2
∆t

end for
update the parameters for ϕN through Adam method to minimize the loss L

end for

4 Numerical examples

In this section, we substantiate the efficacy of our algorithm through the presenta-
tion of three numerical examples. The first case under consideration has previously
been examined in [4], which has a potential energy. The second example pertains to a
linear quadratic mean field control problem, while the third example delves into the
realm of systemic risk in finance. Specifically, it addresses the intricate dynamics asso-
ciated with banks’ interactions through borrowing and lending, as elucidated in [5].
The details for the numerical implementation are deferred to the appendix. We also
compare our score method with the traditional BSDE method.

4.1 An MFC example with entropy potential energy

We first consider an example that is also studied in [4]. The objective is

inf
v

∫ T

0

∫
Rd

(
1

2
|v(t, x)|2 + γ log(ρ(t, x))− γ

)
ρ(t, x) dx dt+

∫
Rd

V (x)ρ(T, x) dx

subject to the dynamic (12) with initial distribution ρ0 ∼ N(0, 1
αId). Here γ and α

are two positive constants. The FP-HJB equation pair is
∂tρ(t, x) +∇x ·

(
ρ(t, x)∇xϕ(t, x)

)
= ∆xρ(t, x),

∂tϕ(t, x) + ∆xϕ(t, x) +
1

2
|∇xϕ(t, x)|2 −

1

2
|x|2 − γ log ρ(t, x) = 0,

ρ(0, x) = ρ0(x), ϕ(T, x) = −V (x).

(21)
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With proper terminal cost and choice of γ and α that satisfy α2 + γα = 1 (i.e.

α =
−γ +

√
γ2 + 4

2
), an analytical solution to the problem is obtained, given by

ϕ(t, x) =

(
dα+

γd

2
log(

α

2π
)

)
t− α |x|2

2

and

ρ(t, x) =
( α

2π

)d/2
exp

(
−α |x|2

2

)
.

This solution is utilized to assess the error and validate our algorithm. The outcomes
of our numerical experiments are depicted in Figure 1. The results are presented
separately for 1 and 2 dimensions.

In the first row, representing the 1 dimensional case, the initial figure in the first
column displays the training curve for the neural network. It illustrates the L2 relative
error of ϕ, as well as its gradient and Laplacian, presented in logarithmic scale. Notably,
approximating ϕ solely with L2 norm is insufficient due to the essential information
provided by ∇xϕ for determining the optimal policy (cf. (5) with p = ∇xϕ(t, x)).
Hence, we also report the errors for the derivatives. The shadow in the figure represents
the standard deviation observed during multiple test runs. The final errors for these
tests are 1.59%, 0.52%, 0.51% respectively. As a comparison, the final errors using
the BSDE method are 2.77%, 2.63%, 2.36%, which is higher than our score method.
The second figure in the first row illustrates a comparison between the initial value
ϕ(0, ·) and its neural network approximation. Recall that we enforce a rigorous imple-
mentation of the terminal condition ϕ(T, ·) within the network. The network adeptly
captures the value function. The third and fourth figures present comparison plots for
the terminal density ρ(T, ·) and score function ∇x log(ρ(T, x)) with the corresponding
KDE approximation from the trajectory (13). We also report that the Wasserstein-2
distance between our estimated samples and the true density is 6.41e−2 for our score
method and 8.23e−2 for the BSDE method.

Moving to the second row, which corresponds to the 2 dimensional scenario, the
initial figure in the first column represents the training curve. The final errors are
1.82%, 0.54%, 0.53%. As a comparison, the final errors using the BSDE method are
1.92%, 2.32%, 2.14%, which is higher than our score method. Given the challenge of
directly visualizing high-dimensional input functions, a density plot of ϕ(0, ·) is shown
in the second figure. Specifically, this plot illustrates the density function of ϕ(0, x0)
and its neural network approximation, where x0 is uniformly distributed in the box
[−2/

√
α, 2/

√
α]× [−2/

√
α, 2/

√
α]. Note that 2/

√
α is twice the standard deviation of

the initial distribution. Similar visualization techniques for high-dimensional functions
have been employed in previous studies [29]. The third and fourth figures in this row
compare the contour plots of the density ρ(T, ·) and its KDE approximation. The final
Wasserstein-2 error for the samples is 9.18e−2 for our score method and 5.87e−2 for
the BSDE method.
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Fig. 1 Numerical results for the MFC problem with log density running cost. The first row illustrates
the results in 1 dimension, including the training curve, plot of ϕ(0, ·), density plot, and score plot.
The second row presents the results in 2 dimensions, including the training curve, density plot for
ϕ(0, x0), and a contour plot comparison for the density ρ(T, xT ).

4.2 An LQ example

In the subsequent example, we explore a scenario involving linear dynamics and
quadratic cost, commonly referred to as the linear quadratic (LQ) problem. The
objective is defined by

inf
v

∫ T

0

∫
Rd

(
1

2
|v(t, x)|2 + γ

(
1

2
ρ(t, x)− ρ∗(t, x)

))
ρ(t, x) dxdt+

∫
Rd

V (x)ρ(T, x) dx

subject to the dynamic (12) with initial distribution ρ0 ∼ N(0, 2(T + 1)Id/β). In
this example, the term with coefficient γ is intentionally introduced to increase the
difficulty of the problem. The FP-HJB system governing this problem is

∂tρ(t, x) +∇x · (ρ(t, x)∇xϕ(t, x)) =
1

β
∆xρ(t, x),

∂tϕ(t, x) +
1

2
|∇xϕ(t, x)|2 +

1

β
∆xϕ(t, x) = γ (ρ(t, x)− ρ∗(t, x)) ,

ρ(0, x) = ρ0(x), ϕ(T, x) = −V (x) = −|x|2/2.

Here, ρ∗ is the true solution with the optimal trajectory, given by

ρ∗(t, x) = (4π(T − t+ 1)/β)
− d

2 exp

(
− β |x|2

4(T − t+ 1)

)
.

The solution to the HJB equation is

ϕ(t, x) =
1

β
d log

1

T − t+ 1
− |x|2

2(T − t+ 1)
.
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The numerical outcomes are presented in Figure 2, with the first and second rows
showing the results for 1 and 2 dimensions respectively.

In the 1 dimensional scenario depicted in the first row, the first, second, and fourth
figures mirror the format of Figure 1, illustrating the learning curves, ϕ(0, ·) plot, and
the score ∇x log(ρ(T, ·)) plot. The final errors for ϕ and their derivatives are 2.00%,
2.76%, 2.75%. The errors for the BSDE method are 2.14%, 2.84%, 2.83%. The final
Wasserstein-2 error for the samples is 5.01e−2 for our score method and 4.81e−2
for the BSDE method. In this example, our score method has a similar performance
compared with the BSDE method. The third figure displays the variance change for xt,
demonstrating the capability of our score-based dynamics to capture density changes.
The green curve represents the true variance under the optimal trajectory, showing
a decreasing trend. In contrast, the blue curve represents the variance of xt when
utilizing an untrained neural network, failing to capture the decreasing variance. After
training, the variance for xt aligns with the true variance, as depicted by the orange
curve. Note that we have the exact initial condition, so the error of variance at t = 0
could be significantly reduced if we increase the number of samples. Here, we have an
error of about 0.01 at t = 0 due to a limited number of samples.

For the 2 dimensional case presented in the second row, the four figures adopt a
format similar to those in Figure 1. The final errors for ϕ and its derivatives are 1.55%,
2.64%, 2.65%. The errors for the BSDE method are 1.68%, 2.64%, 2.62%. The final
Wasserstein-2 error for the samples is 6.25e−2 for our score method and 3.55e−2 for
the BSDE method. In order to visualize the dynamic of the particles, we present the
temporal evolution of particles in figure 3. The first line depicts the dynamic state
(12) with the optimal velocity field and true density function. The second line shows
the state dynamic with the velocity field and the density approximated by the neural
network and KDE estimate respectively. The third line displays the stochastic dynamic
(15) with the optimal velocity field. Our approach effectively captures the diminished
variance in density, distinguishing itself from the stochastic dynamic, which exhibits
a comparatively less structured behavior.

4.3 Systemic risk

This example, as explored in [30], operates within one-dimensional space, where xt

represents the logarithm of a bank’s cash reserves. The model captures the interbank
borrowing and lending activities through the drift. The objective is to minimize

J [α] = E

[∫ T

0

(
1

2
α2
t − qαt(xt − xt) +

ε

2
(xt − xt)

2

)
dt+

c

2
(xT − xT )

2

]
(22)

subject to the dynamic

dxt = (a(xt − xt) + αt) dt+ σdWt,

where xt = Ext denotes the mean cash reserves.
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Fig. 2 Numerical results for the LQ MFC problem. The first row presents results in 1 dimension,
including the training curve, plot of ϕ(0, ·), variance plot, and score plot. The second row is results for
2 dimensions, including the training curve, density plot for ϕ(0, x0), and a contour plot comparison
for the density ρ(T, xT ).

Fig. 3 Particle trajectories for the true score dynamic (first row), approximated score dynamic
(second row), and stochastic dynamic (FBSDE) with true velocity (third row). The score dynamic
demonstrates a more structured behavior.

The FP-HJB system governing this scenario is represented by
∂tϕ+

1

2
|∇xϕ|2 + (a+ q)(xt − x) · ∇xϕ− ε− q2

2
(xt − x)2 +

1

2
σ2∆ϕ = 0,

∂tρ+∇x · [ρ ((a+ q)(xt − x) +∇xϕ)] =
1

2
σ2∆ρ,

ρ(0, x) = ρ0(x), ϕ(T, x) = − c

2
(xT − x)2.

15



0 25 50 75 100 125 150 175 200
steps

6

4

2

0

2 log  relative L2 error for 
log  relative L2 error for 
log  relative L2 error for 

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.10

0.08

0.06

0.04

0.02

0.00

true 
NN approximation

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 density estimate
true density

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

1

0

1

2
score estimate
true score

Fig. 4 Numerical results for the systemic risk example in 1 dimension, including the training curve,
plot of ϕ(0, ·), density plot, and score plot.

where xt =
∫
R xρ(t, x)dx. The solution of the HJB equation is expressed by ϕ(t, x) =

−ηt(xt − x)2 − χt, where ηt is the solution to the following Riccati equation

∂tηt = 2(a+ q)ηt + η2t + q2 − ε, ηT = c,

and χt = − 1
2σ

2
∫ T

t
ηsds.

This example is a generalization of the problem described in section 2, because
the density ρ is involved in the Lagrangian (running cost), the terminal cost, and the
velocity field. Unlike the preceding examples, this scenario lacks an explicit expression
for the terminal condition ϕ(T, ·). Consequently, a direct parametrization as in (18) is
not possible. To address this, an additional loss term

T · E
[(

ϕ(T, xT ) +
c

2
(xT − xT )

)2]
is introduced during training to enforce the terminal condition. In the numerical test,
xt is approximated using the empirical mean of the sampled points.

The numerical results are presented in Figure 4, adopting a layout similar to the
first row of Figure 1. The final errors for ϕ and its derivatives are 2.18%, 1.76%, 0.95%.
The errors for BSDE method are 2.82%, 2.48%, 1.06%. The final Wasserstein-2 error
for the samples is 4.10e−2 for our score method and 4.88e−2 for the BSDE method.
So our score method performs better than the BSDE method in this example.

5 Conclusion and future directions

In this paper, we introduce a deep learning method to approximate the MFC problems.
We first introduce forward-backward score dynamics, which formulates determinis-
tic characteristics for the system of Fokker-Planck equations and Hamilton-Jacobi
equations. In the algorithm, we apply the density estimation method to approxi-
mate the score function and use the neural network function to approximate the
adjoint variable. We design a least square type loss function to fit the proposed deter-
ministic characteristics. Numerical examples, including mean field control problems
with entropy potential energies, linear quadratic control problems, and system risks,
demonstrate the effectiveness of the proposed methods.

There are several promising directions for future research. From a theoretical per-
spective, an intriguing direction is to derive higher-order equations for our ODE
system. Such equations could serve as a deterministic analog of the higher-order adjoint
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equation in FBSDE. From the numerical aspect, the accuracy of the density esti-
mate with the Gaussian kernel is below our expectation. Further numerical studies on
density estimation and a more comprehensive comparison against classical forward-
backward SDE methods are important for a thorough understanding of our proposed
methodology. Finally, it is also important to generalize the algorithm to MFC prob-
lems where the diffusion is under control. In this scenario, the HJB equation is fully
nonlinear, resulting in a more complicated system.
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Appendix A Details for the numerical
implementation

For all the examples in Section 4, we employ a fully connected network with 2 layers
and 30 nodes in each layer, with the square of ReLU as the activation function. For
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the first two examples, we implement a hard parametrization of the terminal condition
(cf. (18)). For all the examples, we set Nt = 10, kend = 200. The number of validation
samples is 1000d for all the examples. The default parameters for the PyTorch Adam
optimizer are utilized for model training. Detailed parameters for all examples are
provided in table A1. We use the same network structure and same optimization
scheme for our score method and the BSDE method.

T Learning rate σK batch size others
potential energy 1d 0.5 0.02 0.35 200 γ = 0.1
potential energy 2d 0.5 0.1 0.4 1000 γ = 0.1

LQ 1d 0.5 0.1 0.35 200 β = 5, γ = 0.1
LQ 2d 0.5 0.1 0.4 1000 β = 5, γ = 0.1

Systemic risk 0.1 0.02 0.3 400 σ = 1, q = 0.5, q = ε = 0.1

Table A1 Parameters for the examples.

We elucidate the computation of the Wasserstein-2 distance between the sam-

ples {x(i)
T }Ni=1 and the density ρ(T, ·). Directly computing the Wasserstein distance

between them is non-trivial and computationally expensive. Alternatively, we com-

pute the mean and covariance of the samples {x(i)
T }Ni=1, subsequently determining the

Wasserstein-2 distance between two Gaussian distributions: one with the computed
mean and covariance, and the other representing the true density. In comparison, we
also calculate the systemic error, defined as the Wasserstein-2 distance between the
true density and the estimated Gaussian. The mean and covariance for this estima-
tion are derived from data directly sampled from the true density. The Wasserstein-2
error and the corresponding systemic error are listed in table A2.

score method BSDE method systemic error
potential energy 1d 6.41e−2 8.23e−2 4.20e−2
potential energy 2d 9.18e−2 5.87e−2 4.28e−2

LQ 1d 5.01e−2 4.81e−2 2.59e−2
LQ 2d 6.25e−2 3.55e−2 2.64e−2

Systemic risk 4.10e−2 4.88e−2 3.08e−2

Table A2 Wasserstein-2 error and the systemic errors for all the
examples. Each error is the average of multiple runs.

Here, we remark that we also tested the Wasserstein-2 errors between {x(i)
T }Ni=1 and

data sampled from the true distribution, with the help of the package [31]. However,
we observed that the systemic error, defined as the Wasserstein-2 distance between
two sets of independent samples from the true distribution, was significantly large due
to the limited sample size.
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