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Abstract Optimal control problems are crucial in various domains, includ-
ing path planning, robotics, and humanoid control, demonstrating their broad
applicability. The connection between optimal control and Hamilton-Jacobi
(HJ) partial differential equations (PDEs) underscores the need for solving
HJ PDEs to address these control problems effectively. While numerous nu-
merical methods exist for tackling HJ PDEs across different dimensions, this
paper introduces an innovative optimization-based approach that reformulates
optimal control problems and HJ PDEs into a saddle point problem using a
Lagrange multiplier. Our method, based on the preconditioned primal-dual hy-
brid gradient (PDHG) method, offers a solution to HJ PDEs with first-order
accuracy and numerical unconditional stability, enabling larger time steps and
avoiding the limitations of explicit time discretization methods. Our approach
has ability to handle a wide variety of Hamiltonian functions, including those
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that are non-smooth and dependent on time and space, through a simplified
saddle point formulation that facilitates easy and parallelizable updates. Fur-
thermore, our framework extends to viscous HJ PDEs and stochastic optimal
control problems, showcasing its versatility. Through a series of numerical ex-
amples, we demonstrate the method’s effectiveness in managing diverse Hamil-
tonians and achieving efficient parallel computation, highlighting its potential
for wide-ranging applications in optimal control and beyond.

Keywords saddle point problems · optimal control problems · Hamilton-
Jacobi PDEs · primal-dual hybrid gradient algorithms · time-implicit scheme

Mathematics Subject Classification (2020) 49L12 · 93E20 · 49M25

1 Introduction

Optimal control problems are pivotal in numerous practical applications, such
as trajectory planning [21,89,49,30,86,72], robot manipulator control [74,58,
62,39,16], and humanoid robot control [36,38,66,42,37,31], highlighting their
significance across various fields. The relationship between optimal control and
Hamilton-Jacobi (HJ) partial differential equations (PDEs) is well-established
(see [6,94]), underscoring the importance of solving HJ PDEs for addressing
optimal control challenges. Various numerical strategies have been developed
to tackle HJ PDEs and optimal control problems, ranging from high-order
grid-based methods in lower-dimensional settings to innovative approaches de-
signed to overcome the curse of dimensionality in higher dimensions. For lower-
dimensional problems, advanced grid-based methods like essentially nonoscil-
latory (ENO) schemes [84], weighted ENO schemes [57], and the discontinuous
Galerkin method [51] are frequently utilized. To tackle the complexity of higher
dimensions, several sophisticated strategies have been introduced. These ap-
proaches encompass a diverse range of methodologies, including max-plus al-
gebra methods [78,1,2,34,40,44,79,80,81], dynamic programming and rein-
forcement learning [3,8], tensor decomposition techniques [33,50,91], sparse
grids [9,43,61], model order reduction [4,67], polynomial approximation [59,
60], optimization methods [22,29,64,63,26,28,93,19,20,75,17,18], and neural
network-based solutions [25,5,32,56,47,53,54,69,83,87,88,90,27,23,95,96].

This paper introduces a novel optimization-based framework with time-
implicit discretization to solve optimal control problems and HJ PDEs by re-
formulating them into a saddle point problem using a Lagrange multiplier. We
propose an algorithm based on the preconditioned primal-dual hybrid gradient
(PDHG) method [15] for finding the saddle point, effectively solving the HJ
PDEs. Unlike other grid-based methods, our approach achieves first-order ac-
curacy and numerical unconditional stability through implicit time discretiza-
tion, allowing for larger time steps and avoiding the Courant–Friedrichs–Lewy
(CFL) condition limitation of explicit time discretization methods.

Our method distinguishes itself within optimization-based approaches by
its capability to handle a broad set of Hamiltonians, notably including those
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that exhibit non-smooth behavior and dependencies on both time and space
variables. The saddle point formulation simplifies iteration updates, eliminat-
ing the need for complex nonlinear inversion. The most intricate update step
can be executed efficiently and in parallel through the proximal point operator.
For scenarios frequently encountered that involve quadratic or 1-homogeneous
Hamiltonians, possibly dependent on (x, t), the proximal point operator can
be straightforwardly implemented using explicit expressions. We provide a
convergence analysis of the PDHG algorithm under certain conditions and
establish connections with traditional numerical schemes for HJ PDEs. Fur-
thermore, our approach is applicable to viscous HJ PDEs and corresponding
stochastic optimal control problems, demonstrating its versatility and broad
applicability.

The technique of converting PDE problems into saddle point problems and
solving them with the PDHG method has been effectively applied to reaction-
diffusion equations [76,41,14], conservation laws [77], and HJ PDEs [82]. While
the reaction-diffusion and conservation law studies employ PDHG alongside
integration by parts for solving initial value problems, this method is not read-
ily applicable to HJ PDEs without modifications. The approach for HJ PDEs
in [82] employs the Fenchel-Legendre transform within its saddle point for-
mulation, leading to an objective function that is linear with respect to the
HJ PDE solution φ, thereby avoiding nonlinear updates on φ. This method
also facilitates the use of larger time steps thanks to implicit temporal Eu-
ler discretization. However, extracting optimal controls directly from HJ PDE
solutions necessitates additional steps. Expanding upon this groundwork, our
research specifically focuses on optimal control problems by proposing a ded-
icated saddle point formulation and algorithm. Unlike the previous work, our
saddle point formulation is derived from the intrinsic link between optimal
control problems and HJ PDEs, not the Fenchel-Legendre transform. This ad-
justment retains the advantages of the earlier method while making it more
appropriate for optimal control issues. Our method’s simplicity in the sad-
dle point formulation allows for updates that are either explicitly defined or
amenable to parallel computation, thus broadening its utility.

In addition, our proposed saddle point formulation establishes a connec-
tion with the primal-dual formulation of potential mean-field games (MFGs),
a concept introduced in [70,52] for modeling the equilibrium behavior of large
populations of agents engaged in strategic interactions. This framework has
been applied across a variety of fields [68,46,45,13,12,65,35,73]. An MFG sys-
tem is characterized by coupled PDEs, comprising a forward-evolving Fokker-
Planck equation and a backward-evolving HJ equation. In our research, we
utilize this interconnection to approach the solution of HJ PDEs. By drawing
on this link, we can apply methods initially devised for MFGs to the task of
solving HJ PDEs that have specific initial conditions. For example, the PDHG
method, which has been used to solve potential MFGs through a saddle point
formulation [85,11,10], is adapted in this work to solve optimal control prob-
lems and HJ PDEs.
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To evaluate the effectiveness of our proposed methodology, we present a
series of numerical examples in both one-dimensional and two-dimensional
settings1. These examples demonstrate the method’s capability in handling
diverse Hamiltonians that depend on the spatial variable. A notable feature
of our method is that, during each iteration, the updates at individual points
are decoupled, facilitating the application of parallel computing techniques
to expedite the computation process. Additionally, we showcase an example
where the Lagrangian is defined by an indicator function, imposing control con-
straints without introducing running costs. This scenario yields a Hamiltonian
H(x, t, p) that is 1-homogeneous with respect to p for any given spatial vari-
able x and temporal variable t. The numerical outcomes reveal the emergence
of discontinuous feedback control functions and bang-bang control strategies.
Such phenomena are also observed in the stochastic optimal control problem
variants, where, despite the smoothness of the solution to the viscous HJ PDE,
the control function remains non-smooth, with evident discontinuities in the
sampled open-loop control trajectories.

This paper is structured as follows: Section 2 lays out the saddle point prob-
lem and introduces our algorithm tailored for optimal control problems and
their related HJ PDEs. We delve into the formulation and algorithm within
function spaces in Section 2.1 and proceed to discuss spatial and temporal
discretization strategies for one-dimensional cases in Section 2.2.1 and two-
dimensional cases in Section 2.2.2. Several numerical experiments are shown
in Section 2.3. Section 3 proposes similar saddle point formulation and algo-
rithm for stochastic optimal control problems and the corresponding viscous
HJ PDEs, with further numerical experiments presented in Section 3.2. The
paper wraps up with a summary and potential directions for future work in
Section 4. The appendices provide in-depth technical insights: Appendix A
examines our algorithm’s convergence analysis for specific scenarios, and Ap-
pendix B connects our methodology to traditional numerical solvers for HJ
PDEs. Discretization details for the saddle point formulation and algorithm
applied to viscous HJ PDEs and stochastic control problems are outlined in
Appendix C.

2 Optimal control problems

The optimal control problems are in the following form

min
α(·)

{∫ T

t
L(γ(s), s, α(s))ds+ g(γ(T )) : γ(t) = x, γ̇(s) = f(γ(s), s, α(s))∀s ∈ (t, T )

}
, (1)

where α : [t, T ] → Rm is called control, γ : [t, T ] → Ω is called state (Ω ⊆ Rn

is the state space), f : Ω × [0, T ] × Rm → Rn is the source term of ODE
constraint, L : Ω × [0, T ] × Rm → R is called Lagrangian, and g : Ω → R is
a terminal cost. Assume these functions are all continuous and satisfy certain
conditions such that the optimal control problem has a unique minimizer.

1 Codes are available at https://github.com/TingweiMeng/PDHG-optimal-control.

https://github.com/TingweiMeng/PDHG-optimal-control
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Denote the optimal value in (1) by ϕ(x, t). Then the function ϕ solves the
following Hamilton-Jacobi (HJ) PDE

∂ϕ(x, t)

∂t
+ inf

α∈Rm
{⟨f(x, t, α),∇xϕ(x, t)⟩+ L(x, t, α)} = 0, x ∈ Ω, t ∈ [0, T ],

ϕ(x, T ) = g(x), x ∈ Ω,

where the terminal condition is given by the terminal cost g in (1), and Ω
is the state space in the optimal control problem. Throughout this paper,
we predominantly consider Ω to be a rectangular domain subject to periodic
boundary conditions. Nonetheless, our methodology is adaptable to alternative
boundary conditions, as illustrated in Section 2.3.3. Utilizing a time reversal
strategy and setting φ(x, t) = ϕ(x, T − t), we derive the initial value HJ PDE
as follows: 

∂φ(x, t)

∂t
+H(x, t,∇xφ(x, t)) = 0, x ∈ Ω, t ∈ [0, T ],

φ(x, 0) = g(x), x ∈ Ω,
(2)

where the Hamiltonian H is defined by

H(x, t, p) = sup
α∈Rm

{−⟨f(x, T − t, α), p⟩ − L(x, T − t, α)}. (3)

This Hamiltonian H is convex with respect to p for any x ∈ Ω and t ∈ [0, T ].
From the HJ PDE (2), we obtain the function α : Ω × [0, T ] → Rm by

α(x, t) = argmax
α∈Rm

{−⟨f(x, T − t, α),∇xφ(x, t)⟩ − L(x, T − t, α)}. (4)

Following the application of time reversal, this function yields the feedback
control function represented by α(x, T − t). The optimal trajectory γ∗ and
optimal open-loop control α∗ in the optimal control problem (1) are then
computed by 

γ̇∗(s) = f(γ∗(s), s, α(γ∗(s), T − s)), s ∈ (t, T ),

γ∗(t) = x,

α∗(s) = α(γ∗(s), T − s), s ∈ [t, T ].

(5)

For additional insights into the mathematical relationship between optimal
control problems and HJ PDEs, we refer readers to [6].

2.1 Saddle point formulation

We introduce a saddle point formulation to solve the optimal control prob-
lem (1) and its associated initial value HJ PDE (2). Following this, we propose
a numerical algorithm derived from the PDHG method [15,92,24] to effectively
solve the saddle point problem. To simplify the notation, we will use fx,t and
Lx,t to denote the functions f(x, T − t, ·) and L(x, T − t, ·), respectively.
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We treat the HJ PDE given in (2) as a constraint within an optimiza-
tion problem, where the objective function is defined as −c

∫
Ω
φ(x, T )dx. This

specific objective function is adopted based on insights from numerical exper-
iments detailed in [82]. By employing the Lagrange multiplier ρ, we derive:

min
φ satisfying (2)

−c

∫
Ω

φ(x, T )dx

= min
φ

φ(x,0)=g(x)

max
ρ

∫ T

0

∫
Ω

ρ(x, t)

(
∂φ(x, t)

∂t
+ sup

α∈Rm

{−⟨fx,t(α),∇xφ(x, t)⟩ − Lx,t(α)}
)
dxdt− c

∫
Ω

φ(x, T )dx

≥ min
φ

φ(x,0)=g(x)

max
ρ≥0,α

∫ T

0

∫
Ω

ρ(x, t)

(
∂φ(x, t)

∂t
− ⟨fx,t(α(x, t)),∇xφ(x, t)⟩ − Lx,t(α(x, t))

)
dxdt− c

∫
Ω

φ(x, T )dx

= min
φ

φ(x,0)=g(x)

max
ρ≥0,α

∫ T

0

∫
Ω

−∂ρ(x, t)

∂t
φ(x, t) +∇x · (fx,t(α(x, t))ρ(x, t))φ(x, t)− ρ(x, t)Lx,t (α(x, t)) dxdt

− c

∫
Ω

φ(x, T )dx+

∫
Ω

(ρ(x, T )φ(x, T )− ρ(x, 0)g(x))dx,

where the boundary term over ∂Ω vanishes during integration by parts, owing
to the periodic boundary condition imposed on Ω. While this approach can be
adapted to different boundary conditions, it necessitates a thorough evaluation
of the boundary terms specific to each case. In this study, we introduce algo-
rithms designed to solve HJ PDEs and their related optimal control problems
through solving the subsequent saddle point problem

min
φ

φ(x,0)=g(x)

max
ρ≥0,α

∫ T

0

∫
Ω

ρ(x, t)

(
∂φ(x, t)

∂t
− ⟨fx,t(α(x, t)),∇xφ(x, t)⟩ − Lx,t(α(x, t))

)
dxdt− c

∫
Ω

φ(x, T )dx.

(6)
Assuming that the stationary point (φ, ρ, α) satisfies ρ > 0, the first-order

optimality condition is
∂tφ(x, t)− ⟨fx,t(α(x, t)),∇xφ(x, t)⟩ − Lx,t(α(x, t)) = 0,

α(x, t) = argmin
α∈Rm

{⟨fx,t(α),∇xφ(x, t)⟩+ Lx,t(α)},

∂tρ(x, t)−∇x · (fx,t(α(x, t))ρ(x, t)) = 0,

φ(x, 0) = g(x), ρ(x, T ) = c.

(7)

Upon applying the Hamiltonian H, as defined in (3), the resulting simplifica-
tion leads to:

∂tφ(x, t) +H(x, t,∇xφ(x, t)) = 0,

∂tρ(x, t) +∇x · (∇pH(x, t,∇xφ(x, t))ρ(x, t)) = 0,

φ(x, 0) = g(x), ρ(x, T ) = c,

(8)

yielding a system containing the HJ PDE (2) with a continuity equation. Fur-
thermore, the stationary point α determines the function specified in (4), which
facilitates the calculation of the optimal control. Thus, addressing the saddle
point problem (6) enables the derivation of the HJ PDE solution φ along with
the feedback optimal control function via α. While theoretically, a discrepancy
exists between the saddle point problem’s stationary point (φ, ρ, α) and the
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HJ PDE solution if ρ takes zero values within certain regions of Ω × [0, T ],
such instances were not encountered during our numerical experiments.

To solve the saddle point problem (6), we propose an iterative method,
with the update at the ℓ-th iteration described as follows:



ρℓ+1(x, t) =
(
ρℓ(x, t) + τρ

(
∂tφ̃

ℓ(x, t)− ⟨fx,t(αℓ(x, t)),∇xφ̃
ℓ(x, t)⟩ − Lx,t(α

ℓ(x, t))
))

+
,

αℓ+1(x, t) = argmin
α∈Rm

{
⟨fx,t(α),∇xφ̃

ℓ(x, t)⟩+ Lx,t(α) +
ρℓ+1(x, t)

2τα
∥α− αℓ(x, t)∥2

}
,

φℓ+1(x, t) = φℓ(x, t) + τφ(I −∆)−1
(
∂tρ

ℓ+1(x, t)−∇x · (fx,t(αℓ+1(x, t))ρℓ+1(x, t))
)
,

φ̃ℓ+1 = 2φℓ+1 − φℓ.

(9)
It is pertinent to highlight that both the saddle point problem and our algo-
rithm exclusively engage with affine functions of ∇xφ, from both an analytical
and numerical standpoint. This approach strategically circumvents the non-
linear aspects inherent in HJ PDEs. The methodology we propose utilizes a
preconditioned PDHG approach (for an extensive discussion on PDHG, the
reader is referred to [15,92,24]). Further elaboration on this method is pro-
vided in the subsequent remark and detailed in Appendix A.

Remark 1 (Convergence of the Proposed Algorithm) In Appendix A, we delve
into the specifics of the convergence of the PDHG algorithm when applied
to (6) after a change of variable (see (28)). Specifically, our discussion is lim-
ited to scenarios where fx,t is an affine function and Lx,t is non-negative,
proper, convex, lower semi-continuous, and 1-coercive with Lx,t(0) = 0. While
this argument can extend to broader cases, we refrain from addressing the
most general scenarios as our current assumptions encompass several signif-
icant instances, including quadratic Lagrangians or indicator functions of a
set that includes 0. Such instances are relevant to quadratic Hamiltonians and
1-homogeneous Hamiltonians. For illustrative examples, refer to Section 2.3.

In Remark A1, we clarify the connection between the update methods
detailed in (28) and the updates we propose in (9). Our approach revises (28)
by opting for a sequential update strategy for ρ and α, as opposed to their
concurrent modification. This strategy leverages the convergence principles
outlined in Appendix A, which pertain to the joint updates in (28). Based on
that, the sequential update scheme in (9) facilitates a more computationally
streamlined and versatile algorithm. To address the errors introduced by the
staggered updates for ρ and α, our implementation includes multiple iterative
updates for ρ and α followed by a single update for φ.

Remark 2 (Details on Implementation) For the variable α, we employ the

penalty term ρk+1(x,t)
2τα

∥α − αk(x, t)∥2, while for φ, the penalty is based on

the H1-norm, leading to the inclusion of the preconditioning operator (I −
∆)−1 in φ’s update equation. These penalty terms are specifically selected
to enhance the speed of the algorithm. The use of preconditioning methods
is a well-established practice in the field, with references such as [55,77,82]
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providing further context. For an in-depth discussion on the practical aspects
of computing (I −∆)−1, we direct the reader to [82].

In cases where the grid is extensively partitioned, leading to a high-dimensional
optimization challenge, a reduction in dimensionality can be crucial for feasi-
ble numerical resolution. To this end, we implemented a strategy that divides
the time interval, applying our algorithm within each segment sequentially.
Additional information on this approach can be found in [77, Algorithm 3]
and [82].

Remark 3 (Relation to MFGs) Upon establishing the stationary point (φ, ρ, α)
where ρ > 0, we derive the coupled PDE system as delineated in (8). Imple-
menting time reversal transforms the equations for φ(x, T − t) and ρ̃(x, t) =
ρ(x, T − t), aligning them with the first-order optimality conditions of MFGs,
which are expressed as follows:

min
α̃

{∫ T

0

∫
Ω

L(x, s, α̃(x, s))ρ̃(x, s)dxds+

∫
Ω

g(x)ρ̃(x, T )dx :

∂tρ̃(x, s) +∇x · (f(x, s, α̃(x, s))ρ̃(x, s)) = 0 ∀x ∈ Ω, s ∈ [0, T ],

ρ̃(x, 0) = c ∀x ∈ Ω
}
.

This linkage emerges as inherently logical, given that an optimal control prob-
lem is fundamentally intertwined with an MFG scenario characterized by an
initial density condition resembling a Dirac mass. Through this association,
numerical methods devised for MFGs can also be utilized in addressing HJ
PDEs and associated optimal control problems.

Remark 4 (Comparison with the Approach in [82]) While both the current
work and [82] leverage saddle point formulations to tackle HJ PDEs, distinc-
tions arise particularly in the context of HJ PDEs derived from optimal control
problems. The following analysis addresses scenarios where fx,t is a bijection
for any (x, t) within Ω × [0, T ]. Through implementing a change of variable
v = −f(x, T − t, α), we obtain

H(x, t, p) = sup
α∈Rm

{−⟨f(x, T − t, α), p⟩ − L(x, T − t, α)}

= sup
v∈Rn

{⟨v, p⟩ − L(x, T − t, f−1(x, T − t,−v))},

with the inversion f−1 applied solely concerning α. Consequently, H(x, t, ·)’s
Fenchel-Legendre transform emerges as the convex lower semi-continuous hull
of v 7→ L(x, T − t, f−1(x, T − t,−v)).

Assuming the function v 7→ L(x, T − t, f−1(x, T − t,−v)) is convex and
lower semi-continuous, the saddle point formulation presented in [82] is:

min
φ

φ(x,0)=g(x)

max
ρ≥0,v

∫ T

0

∫
Ω

ρ(x, t)

(
∂φ(x, t)

∂t
+ ⟨v(x, t),∇xφ(x, t)⟩ − L(x, T − t, f−1(x, T − t,−v(x, t))

)
dxdt

−c

∫
Ω

φ(x, T )dx.

(10)
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Although both approaches employ saddle point methodologies, the specific
formulations outlined in (6) and (10) lead to distinct algorithms. The strategy
developed in this work is expressly designed for addressing optimal control
problems, effectively providing solutions to HJ PDEs as well as the feedback
optimal control functions crucial for determining optimal controls.

A key component of the above computation is the change of variable −v =
f(x, T − t, α), a method also used in [71]. Unlike [71], which concentrates on
analyzing a single trajectory in the context of optimal control, our proposed
approach provides solutions to HJ PDEs and feedback controls over the entire
domain. These solutions facilitate the computation of optimal controls for
various initial conditions.

2.2 Discretization

This section is dedicated to discretizing the saddle point problem presented
in (6) and outlining the associated algorithms for one-dimensional scenarios
in Section 2.2.1 and for two-dimensional situations in Section 2.2.2. For each
scenario, we start with upwind spatial discretization, an essential step for
correctly approximating the viscous solutions of the HJ PDEs. Following this,
implicit Euler temporal discretization is applied, enabling us to circumvent
the restrictive CFL condition often encountered with explicit schemes.

2.2.1 One-dimensional problems

Spatial discretization. The first step in discretizing the saddle point prob-
lem involves partitioning the spatial domain Ω. We define {xi}nx

i=1 as the evenly
spaced grid points within Ω, with ∆x representing the distance between ad-
jacent points. For a domain Ω = [a, b] (where −∞ < a < b < ∞) subject
to periodic boundary conditions, we calculate the grid size as ∆x = b−a

nx
and

assign grid points such that xi = a+ (i− 1)∆x. Our objective is to determine
the values of the functions at these grid points, specifically φi(t) = φ(xi, t) and
ρi(t) = ρ(xi, t). In addressing the HJ PDE, the treatment of first-order spatial
derivatives necessitates consideration of both positive and negative velocities,
corresponding to scenarios where the function f assumes positive and negative
values, respectively. To manage these cases, we introduce two variables, α1 and
α2, and aim to calculate their values at the grid points, denoted as α1,i(t) and

α2,i(t). Additionally, the numerical Lagrangian L̂ : Ω× [0, T ]×Rm ×Rm → R
is utilized as an approximation of L, and its determination will vary across
different scenarios. The selection of L̂ for particular cases will be discussed
subsequently.

For simplicity, we represent the functions f(xi, T−t, ·) and L̂(xi, T−t, ·) as
fi,t and L̂i,t respectively. Upon applying first-order spatial discretization, the
saddle point problem expressed in (6) (after division by ∆x) is reformulated
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as:

min
φ

φi(0)=g(xi)

max
ρ≥0,α

∫ T

0

nx∑
i=1

ρi(t)

(
φ̇i(t) − fi,t(α1,i(t))+(D

+
x φ)i(t) − fi,t(α2,i(t))−(D

−
x φ)i(t)

−L̂i,t (α1,i(t), α2,i(t))

)
dt − c

nx∑
i=1

φi(T ).

(11)
The variables of this saddle point problem contain all semi-discretized func-
tions, including φi(t), ρi(t), α1,i(t), and α2,i(t), across the time interval t ∈
[0, T ] and for grid indices i = 1, . . . , nx. Here, f+ = max{f, 0} and f− =
min{f, 0} denote the positive and negative components of f , respectively.
Meanwhile, (D+

x φ)i = φi+1−φi

∆x and (D−
x φ)i = φi−φi−1

∆x represent the right
and left finite differences, respectively. In this paper, for the sake of simplicity,
we interchangeably use the notations (Dη)i and D(ηi) for any finite difference
operator D, function η, and index i, regardless of whether they pertain to
one-dimensional or two-dimensional scenarios.

Examining a stationary point (φ, ρ, α) within this saddle point problem,
and under the assumption that ρi(t) > 0 for any t ∈ [0, T ] and i = 1, . . . , nx,
we arrive at the first-order optimality conditions as follows:

φ̇i(t)− fi,t(α1,i(t))+(D
+
x φ)i(t)− fi,t(α2,i(t))−(D

−
x φ)i(t)− L̂i,t(α1,i(t), α2,i(t)) = 0,

(α1,i(t), α2,i(t)) = argmin
α1,α2∈Rm

{fi,t(α1)+(D
+
x φ)i(t) + fi,t(α2)−(D

−
x φ)i(t) + L̂i,t(α1, α2)},

ρ̇i(t)−D−
x (fi,t(α1,i(t))+ρi(t))−D+

x (fi,t(α2,i(t))−ρi(t)) = 0.

(12)
By integrating the first two equations, we obtain

φ̇i(t) + supα1,α2∈Rm{−fi,t(α1)+(D
+
x φ)i(t)− fi,t(α2)−(D

−
x φ)i(t)− L̂i,t(α1, α2)} = 0,

which provides a semi-discrete formulation for the HJ PDE (2). The corre-
sponding numerical Hamiltonian Ĥ is given by

Ĥ(x, t,D+
x φ,D

−
x φ) = supα1,α2∈Rm{−fx,t(α1)+D

+
x φ− fx,t(α2)−D

−
x φ− L̂x,t(α1, α2)}.

(13)
This yields a semi-discrete approach to solving HJ PDEs and providing feed-
back optimal controls.

To obtain a valid numerical Hamiltonian, the following conditions must be
met:

1. Monotonicity: Specifically, Ĥ should be non-increasing with respect to
D+

x φ, and is non-decreasing with respect to D−
x φ. This condition is en-

sured by the formulation given in (13).
2. Consistency: This requires Ĥ(x, t, p, p) = H(x, t, p) for any x ∈ Ω, t ∈

[0, T ], and p ∈ R. The numerical Lagrangian L̂ must be chosen to en-
sure that the corresponding numerical Hamiltonian is consistent. In sce-
narios where f linearly depends on α and L is a non-negative, convex,
1-coercive function of α with Lx,t(0) = 0 for every x and t, we can choose

L̂x,t(α1, α2) = Lx,t(α1)+Lx,t(α2). For more technical details, refer to Ap-
pendix B.1.
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With this spatial discretization, the update for the ℓ-th iteration is de-
scribed as follows:

ρℓ+1
i (t) =

(
ρℓi(t) + τρ

(
˙̃φℓ
i(t)− fi,t(α

ℓ
1,i(t))+(D

+
x φ̃

ℓ)i(t)− fi,t(α
ℓ
2,i(t))−(D

−
x φ̃

ℓ)i(t)− L̂i,t(α
ℓ
1,i(t), α

ℓ
2,i(t))

))
+
.

(αℓ+1
1,i (t), αℓ+1

2,i (t)) = argmin
α1,α2∈Rm

{
fi,t(α1)+(D

+
x φ̃

ℓ)i(t) + fi,t(α2)−(D
−
x φ̃

ℓ)i(t) + L̂i,t(α1, α2)

+
ρℓ+1
i (t)

2τα

(
∥α1 − αℓ

1,i(t)∥2 + ∥α2 − αℓ
2,i(t)∥2

)}
.

φℓ+1
i (t) = φℓ

i(t) + τφ(I − ∂tt −Dxx)
−1
(
ρ̇ℓ+1
i (t)−D−

x (fi,t(α
ℓ+1
1,i (t))+ρ

ℓ+1
i (t))−D+

x (fi,t(α
ℓ+1
2,i (t))−ρ

ℓ+1
i (t))

)
.

φ̃ℓ+1 = 2φℓ+1 − φℓ,

(14)
where Dxx denotes the central difference operator for the second-order deriva-

tive, defined as (Dxxφ)i(t) =
φi+1(t)+φi−1(t)−2φi(t)

∆x2 .
Temporal discretization. The next step involves discretizing the time

domain [0, T ]. We define the uniform temporal grid points as tk with a grid
size ∆t, setting ∆t = T

nt−1 and assigning ti = (i − 1)∆t for i = 1, . . . , nt.
For temporal discretization, particularly for ∂tφ, we adopt an implicit Euler
scheme, which circumvents the restrictive CFL condition encountered in ex-
plicit Euler discretization. Mirroring our approach in spatial discretization, we
simplify notation by using fi,k and L̂i,k for the functions f(xi, T − tk, ·) and

L̂(xi, T − tk, ·), respectively. Our goal is to determine the values of functions
at the grid points, namely φi,k = φ(xi, tk), ρi,k = ρ(xi, tk), α1,i,k = α1(xi, tk),
and α2,i,k = α2(xi, tk). Upon dividing by ∆t, the saddle point problem is
reformulated as:

min
φ

φi,1=g(xi)

max
ρ≥0,α

nt∑
k=2

nx∑
i=1

ρi,k

(
(D

−
t φ)i,k − fi,k(α1,i,k)+(D

+
x φ)i,k − fi,k(α2,i,k)−(D

−
x φ)i,k

−L̂i,k (α1,i,k, α2,i,k)

)
−

c

∆t

nx∑
i=1

φi,nt ,

(15)
targeting optimization over φi,k, ρi,k, α1,i,k, and α2,i,k for grid indices i =
1, . . . , nx and time steps k = 2, . . . , nt. Henceforth, D−

t and D+
t will repre-

sent the implicit and explicit Euler discretizations, respectively, defined as
(D−

t φ)i,k =
φi,k−φi,k−1

∆t and (D+
t φ)i,k =

φi,k+1−φi,k

∆t .
The proposed update for the ℓ-th iteration is then formulated as follows

ρℓ+1
i,k =

(
ρℓi,k + τρ

(
(D−

t φ̃
ℓ)i,k − fi,k(α

ℓ
1,i,k)+(D

+
x φ̃

ℓ)i,k − fi,k(α
ℓ
2,i,k)−(D

−
x φ̃

ℓ)i,k − L̂i,k(α
ℓ
1,i,k, α

ℓ
2,i,k)

))
+
.

(αℓ+1
1,i,k, α

ℓ+1
2,i,k) = argmin

α1,α2∈Rm

{
fi,k(α1)+(D

+
x φ̃

ℓ)i,k + fi,k(α2)−(D
−
x φ̃

ℓ)i,k + L̂i,k(α1, α2)

+
ρℓ+1
i,k

2τα

(
∥α1 − αℓ

1,i,k∥2 + ∥α2 − αℓ
2,i,k∥2

)}
.

φℓ+1
i,k = φℓ

i,k + τφ(I −Dtt −Dxx)
−1
(
(D+

t ρ
ℓ+1)i,k −D−

x (fi,k(α
ℓ+1
1,i,k)+ρ

ℓ+1
i,k )−D+

x (fi,k(α
ℓ+1
2,i,k)−ρ

ℓ+1
i,k )

)
.

φ̃ℓ+1 = 2φℓ+1 − φℓ,

where Dtt represent the central difference operators for second-order deriva-
tive, defined as (Dttφ)i,k =

φi,k+1+φi,k−1−2φi,k

∆t2 . The Fast Fourier Transform
(FFT) is utilized to numerically calculate (I − Dtt − Dxx)

−1. For additional
information regarding the numerical updates, we refer readers to [55,77,82].
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Note that if the numerical Lagrangian is chosen to be Lx,t(α1) +Lx,t(α2),
then the updating step for α can be computed in parallel for α1 and α2.

2.2.2 Two-dimensional problems

The approach to discretizing two-dimensional problems (where n = 2) mirrors
that of one-dimensional cases. Initially, we focus on spatial discretization, es-
tablishing an upwind scheme. Subsequently, for time discretization, we employ
an implicit Euler method, facilitating the use of a larger temporal grid size
∆t.

Spatial discretization. In our analysis, we utilize regular grid structures
within the domain Ω. This study specifically focuses on rectangular domains
Ω with periodic boundary conditions, although our methodology is adaptable
to various boundary conditions. Suppose Ω = [a1, b1]× [a2, b2], with grid sizes
defined as ∆x = b1−a1

nx
and ∆y = b2−a2

ny
. The grid points are denoted by

xi,j = (a1 + (i− 1)∆x, a2 + (j − 1)∆y). As with the one-dimensional scenario,
handling positive and negative velocities in two dimensions necessitates multi-
ple α variables. Given that f outputs values in R2, we require four α variables,
unlike the two needed for one-dimensional cases. The components of f are rep-
resented by f1 and f2 for the first and second components, respectively. For
each component i = 1, 2, we introduce αi1 and αi2 to capture the positive
and negative aspects of fi. Our goal is to calculate the function values at the
grid points; thus, we aim at computing φi,j(t) = φ(xi,j , t), ρi,j(t) = ρ(xi,j , t),
and αIJ,i,j(t) = αIJ(xi,j , t) for I, J = 1, 2. For ease of reference, the functions

f1(xi,j , T − t, ·), f2(xi,j , T − t, ·), and L̂(xi,j , T − t, ·) are abbreviated as f1,i,j,t,

f2,i,j,t, and L̂i,j,t, respectively. Here, L̂ : Ω×[0, T ]×(Rm)4 → R denotes the nu-
merical Lagrangian, which will be defined later, similar to the approach taken
in one-dimensional scenarios. The formulation of the saddle point problem,
divided by ∆x∆y, is as follows:

min
φ

φi,j(0)=g(xi,j)

max
ρ≥0,α

∫ T

0

nx∑
i=1

ny∑
j=1

ρi,j(t)

(
φ̇i,j(t)− f1,i,j,t(α11,i,j(t))+(D

+
x φ)i(t)− f1,i,j,t(α12,i,j(t))−(D

−
x φ)i(t)

−f2,i,j,t(α21,i,j(t))+(D
+
y φ)i(t)− f2,i,j,t(α22,i,j(t))−(D

−
y φ)i(t)

−L̂i,j,t (α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t))

)
dt− c

nx∑
i=1

ny∑
j=1

φi,j(T ),

(16)
where D−

y and D+
y represent the left and right finite difference schemes in the

y-dimension, analogous to D−
x and D+

x in the x-dimension.

Consider a stationary point (φ, ρ, α) in this saddle point problem. If we
further assume ρi,j(t) > 0 for any t ∈ [0, T ], then the first order optimality
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condition is



φ̇i,j(t)− f1,i,j,t(α11,i,j(t))+(D
+
x φ)i,j(t)− f1,i,j,t(α12,i,j(t))−(D

−
x φ)i,j(t)

−f2,i,j,t(α21,i,j(t))+(D
+
y φ)i,j(t)− f2,i,j,t(α22,i,j(t))−(D

−
y φ)i,j(t)

−L̂i,j,t(α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t)) = 0,

(α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t)) = argmin
α11,α12,α21,α22∈Rm

{f1,i,j,t(α11)+(D
+
x φ)i,j(t)

+f1,i,j,t(α12)−(D
−
x φ)i,j(t) + f2,i,j,t(α21)+(D

+
y φ)i,j(t)

+f2,i,j,t(α22)−(D
−
y φ)i,j(t) + L̂i,j,t(α11, α12, α21, α22)},

ρ̇i,j(t)−D−
x (f1,i,j,t(α11,i,j(t))+ρi,j(t))−D+

x (f1,i,j,t(α12,i,j(t))−ρi,j(t))

−D−
y (f2,i,j,t(α21,i,j(t))+ρi,j(t))−D+

y (f2,i,j,t(α22,i,j(t))−ρi,j(t)) = 0.

(17)
Integrating the first two equations of this optimality condition yields:

φ̇i,j(t) + sup
α11,α12,α21,α22∈Rm

{−f1,i,j,t(α11)+(D
+
x φ)i,j(t)− f1,i,j,t(α12)−(D

−
x φ)i,j(t)− f2,i,j,t(α21)+(D

+
y φ)i,j(t)

−f2,i,j,t(α22)−(D
−
y φ)i,j(t)− L̂i,j,t(α11, α12, α21, α22)} = 0.

This integration results in a semi-discrete formulation for the HJ PDE (2),
with the numerical Hamiltonian being

Ĥ(x, t,D+
x φ,D

−
x φ,D

+
y φ,D

−
y φ) = sup

α11,α12,α21,α22∈Rm

{−f1,x,t(α11)+D
+
x φ− f1,x,t(α12)−D

−
x φ

−f2,x,t(α21)+D
+
y φ− f2,x,t(α22)−D

−
y φ− L̂x,t(α11, α12, α21, α22)}.

(18)
Here, f1,x,t and f2,x,t refer to the first and second components of the function
fx,t, respectively. For the numerical Hamiltonian to be considered valid, it
must meet the criteria outlined below:

1. Monotonicity: Specifically, Ĥ should be non-increasing with respect to
D+

x φ and D+
y φ, and should be non-decreasing with respect to D−

x φ and
D−

y φ. This property is ensured by the formulation specified in (18).

2. Consistency: It is required that Ĥ(x, t, p1, p1, p2, p2) = H(x, t, p) for ev-
ery x ∈ Ω, t ∈ [0, T ], and p = (p1, p2) ∈ R2. This consistency must be
considered when selecting L̂. When f exhibits a linear relationship with
α, L is non-negative and convex with 1-coerciveness over α and satis-
fies Lx,t(0) = 0, and the Hamiltonian H is separable into Hx,t(p1, p2) =
H1(x, t, p1) +H2(x, t, p2) for some functions H1 and H2 applicable across
all x ∈ Ω, t ∈ [0, T ], and for any p1, p2 ∈ R, then the selection for
L̂(x, t, α11, α12, α21, α22) = L(x, t, α11)+L(x, t, α12)+L(x, t, α21)+L(x, t, α22)
is appropriate. For more technical details, refer to Appendix B.2.
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Following this discretization approach, the update for the ℓ-th iteration is
as follows:



ρℓ+1
i,j (t) =

(
ρℓi,j(t) + τρ

(
˙̃φℓ
i,j(t)− f1,i,j,t(α

ℓ
11,i,j(t))+(D

+
x φ̃

ℓ)i,j(t)

−f1,i,j,t(α
ℓ
12,i,j(t))−(D

−
x φ̃

ℓ)i,j(t)− f2,i,j,t(α
ℓ
21,i,j(t))+(D

+
y φ̃

ℓ)i,j(t)

−f2,i,j,t(α
ℓ
22,i,j(t))−(D

−
y φ̃

ℓ)i,j(t)− L̂i,j,t(α
ℓ
1,i(t), α

ℓ
2,i(t))

))
+
.

(αℓ+1
11,i,j(t), α

ℓ+1
12,i,j(t), α

ℓ+1
21,i,j(t), α

ℓ+1
22,i,j(t)) = argmin

α11,α12,α21,α22∈Rm

{
f1,i,j,t(α11)+(D

+
x φ̃

ℓ)i,j(t)

+f1,i,j,t(α12)−(D
−
x φ̃

ℓ)i,j(t) + f2,i,j,t(α21)+(D
+
y φ̃

ℓ)i,j(t) + f2,i,j,t(α22)−(D
−
y φ̃

ℓ)i,j(t)

+L̂i,j,t(α11, α12, α21, α22) +
ρℓ+1
i,j (t)

2τα

(
∥α11 − αℓ

11,i,j(t)∥2 + ∥α12 − αℓ
12,i,j(t)∥2

+∥α21 − αℓ
21,i,j(t)∥2 + ∥α22 − αℓ

22,i,j(t)∥2
)}

.

φℓ+1
i,j (t) = φℓ

i,j(t) + τφ(I − ∂tt −Dxx −Dyy)
−1
(
ρ̇ℓ+1
i,j (t)−D−

x

(
f1,i,j,t(α

k+1
11,i,j(t))+ρ

ℓ+1
i,j (t)

)
−D+

x

(
f1,i,j,t(α

k+1
12,i,j(t))−ρ

ℓ+1
i,j (t)

)
−D−

y

(
f2,i,j,t(α

k+1
21,i,j(t))+ρ

ℓ+1
i,j (t)

)
−D+

y

(
f2,i,j,t(α

k+1
22,i,j(t))−ρ

ℓ+1
i,j (t)

) )
.

φ̃ℓ+1 = 2φℓ+1 − φℓ,

where Dyy denotes the central difference operators for the second-order deriva-
tive in the y-dimension, analogous to the Dxx and Dtt operators for the x-
dimension and t-dimension, respectively.

Temporal discretization. We proceed to discretize the time domain,
employing an implicit Euler method for φ̇ to facilitate the use of larger time
steps. The time step size is defined as ∆t = T

nt−1 , with grid points marked by
tk = (k− 1)∆t for k = 1, . . . , nt. The functions fI(xi,j , T − tk, ·) (for I = 1, 2)

and L̂(xi,j , T − tk, ·) are represented as fI,i,j,k and L̂i,j,k, respectively. Our
objective is to compute the values of these functions at the grid points, specif-
ically φi,j,k, ρi,j,k, and αIJ,i,j,k for I, J = 1, 2. Following this, the formulation
of the saddle point challenge, normalized by ∆t, is presented as:

min
φ

φi,j,1=g(xi,j)

max
ρ≥0,α

nt∑
k=2

nx∑
i=1

ny∑
j=1

ρi,j,k

(
(D−

t φ)i,j,k − f1,i,j,k(α11,i,j,k)+(D
+
x φ)i,j,k − f1,i,j,k(α12,i,j,k)−(D

−
x φ)i,j,k

−f2,i,j,k(α21,i,j,k)+(D
+
y φ)i,j,k − f2,i,j,k(α22,i,j,k)−(D

−
y φ)i,j,k

−L̂i,j,k (α11,i,j,k, α12,i,j,k, α21,i,j,k, α22,i,j,k)

)
− c

∆t

nx∑
i=1

ny∑
j=1

φi,j,nt
.
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The update process for the ℓ-th iteration in the proposed algorithm is then
established as



ρℓ+1
i,j,k =

(
ρℓi,j,k + τρ

(
(D−

t φ̃
ℓ)i,j,k − f1,i,j,k(α

ℓ
11,i,j,k)+(D

+
x φ̃

ℓ)i,j,k − f1,i,j,k(α
ℓ
12,i,j,k)−(D

−
x φ̃

ℓ)i,j,k

−f2,i,j,k(α
ℓ
21,i,j,k)+(D

+
y φ̃

ℓ)i,j,k − f2,i,j,k(α
ℓ
22,i,j,k)−(D

−
y φ̃

ℓ)i,j,k

−L̂i,j,k(α
ℓ
11,i,j,k, α

ℓ
12,i,j,k, α

ℓ
21,i,j,k, α

ℓ
22,i,j,k)

))
+
.

(αℓ+1
11,i,j,k, α

ℓ+1
12,i,j,k, α

ℓ+1
21,i,j,k, α

ℓ+1
22,i,j,k) = argmin

α11,α12,α21,α22∈Rm

{f1,i,j,k(α11)+(D
+
x φ̃

ℓ)i,j,k

+f1,i,j,k(α12)−(D
−
x φ̃

ℓ)i,j,k + f2,i,j,k(α21)+(D
+
y φ̃

ℓ)i,j,k

+f2,i,j,k(α22)−(D
−
y φ̃

ℓ)i,j,k + L̂i,j,k(α11, α12, α21, α22)

+
ρℓ+1
i,j,k

2τα

(
∥α11 − αℓ

11,i,j,k∥2 + ∥α12 − αℓ
12,i,j,k∥2 + ∥α21 − αℓ

21,i,j,k∥2 + ∥α22 − αℓ
22,i,j,k∥2

)
}.

φℓ+1
i,j,k = φℓ

i,j,k + τφ(I −Dtt −Dxx −Dyy)
−1
(
(D+

t ρ
ℓ+1)i,j,k −D−

x

(
f1,i,j,k(α

k+1
11,i,j,k)+ρ

ℓ+1
i,j,k

)
−D+

x

(
f1,i,j,k(α

k+1
12,i,j,k)−ρ

ℓ+1
i,j,k

)
−D−

y

(
f2,i,j,k(α

k+1
21,i,j,k)+ρ

ℓ+1
i,j,k

)
−D+

y

(
f2,i,j,k(α

k+1
22,i,j,k)−ρ

ℓ+1
i,j,k

))
.

φ̃ℓ+1 = 2φℓ+1 − φℓ.

It is important to note that selecting the numerical Lagrangian L̂ as Lx,t(α11)+
Lx,t(α12) + Lx,t(α21) + Lx,t(α22) enables parallel computation of the update
steps for each of the variables α11, α12, α21, and α22.

2.3 Numerical examples

This section focuses on the optimal control problem as described in (1), char-
acterized by the dynamics

f(x, t, α) = A(x, t)α+ b(x, t),

where A(x, t) represents an n ×m matrix, and b(x, t) is a vector in Rn. It is
further assumed that the Lagrangian L exhibits convexity with respect to α.
The corresponding Hamiltonian H in (2) is detailed as follows

H(x, t, p) = sup
α∈Rn

{−⟨A(x, T − t)α+ b(x, T − t), p⟩ − L(x, T − t, α)}

= −⟨b(x, T − t), p⟩+ sup
α∈Rn

{⟨α,−A(x, T − t)T p⟩ − L(x, T − t, α)}

= −⟨b(x, T − t), p⟩+ L∗(x, T − t,−A(x, T − t)T p),

with L∗(x, T − t, ·) denoting the Fenchel-Legendre transform of L(x, T − t, ·)
for any x ∈ Ω and t ∈ [0, T ].
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In the cases where n = 1, the updates of α in (14) are computed by

αℓ+1
1,i (t) = argmin

fi,t(α)≥0

{
(A(x, T − t)α+ b(x, T − t))(D+

x φ̃
ℓ)i(t) + Li,t(α) +

ρℓ+1
i (t)

2τα
∥α− αℓ

1,i(t)∥2
}

= argmin
fi,t(α)≥0

Li,t(α) +
ρℓ+1
i (t)

2τα

∥∥∥∥∥α− αℓ
1,i(t) +

τα(D
+
x φ̃

ℓ)i(t)

ρℓ+1
i (t)

A(x, T − t)T

∥∥∥∥∥
2
 ,

αℓ+1
2,i (t) = argmin

fi,t(α)≤0

{
(A(x, T − t)α+ b(x, T − t))(D−

x φ̃
ℓ)i(t) + Li,t(α) +

ρℓ+1
i (t)

2τα
∥α− αℓ

2,i(t)∥2
}

= argmin
fi,t(α)≤0

Li,t(α) +
ρℓ+1
i (t)

2τα

∥∥∥∥∥α− αℓ
2,i(t) +

τα(D
−
x φ̃

ℓ)i(t)

ρℓ+1
i (t)

A(x, T − t)T

∥∥∥∥∥
2
 ,

(19)
which are m-dimensional proximal point problems of the functions Lx,t and
can be computed in parallel for different x, t. The two-dimensional α-updates
are similar as the one-dimensional case.

In each example, we begin by numerically solving for φ, α1, and α2 in the
one-dimensional case, or φ, α11, α12, α21, and α22 in the two-dimensional case.
Following this, applying the forward Euler method to (5), we obtain several
optimal trajectories γ∗ and the optimal open-loop controls α∗, which provide
the solutions to (1) with t = 0 and different initial conditions x. For the purpose
of demonstration, in one-dimensional examples, we illustrate the level sets of
φ and α1 + α2 within the spatial-temporal domain. We also plot the graphs
of the functions γ∗ and α∗. In the case of two-dimensional examples, the level
sets of φ(·, t) and each component of α11(·, t) + α12(·, t) + α21(·, t) + α22(·, t)
are depicted in the spatial domain for several times t ∈ [0, T ]. We display the
paths of γ∗ and α∗ by plotting their values in the spatial domain.

2.3.1 Quadratic Hamiltonian with spatial dependent coefficients

In this section, we explore an optimal control problem characterized by dy-
namics f(x, t, α)I = −(|xI − 1|2 + 0.1)αI for I = 1, . . . , n, with a Lagrangian
L(x, t, α) = 1

2 |α|
2. Accordingly, the Hamiltonian defined in (2) is expressed

as H(x, t, p) = 1
2

∑n
I=1(|xI − 1|2 + 0.1)2p2I . The terminal cost function is

g(x) =
∑n

I=1 sinπxI , over the spatial domain [0, 2]n under periodic bound-
ary conditions. The control dimension m is equal to the state dimension n.

We adopt the numerical Lagrangian L̂ as L̂x,t(α1, α2) = Lx,t(α1)+Lx,t(α2)

in one-dimensional cases and L̂x,t(α11, α12, α21, α22) = Lx,t(α11)+Lx,t(α12)+
Lx,t(α21)+Lx,t(α22) for two-dimensional scenarios. As discussed in Section B,
these choices for the numerical Lagrangians yield consistent Hamiltonians in
this example. For the one-dimensional scenario, the α updates as outlined
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(a) φ in the xt-space (b) α in the xt-space

(c) Optimal trajectories s 7→ γ∗(s) (d) Optimal controls s 7→ α∗(s)

Fig. 1: Visualization of the solution for the one-dimensional scenario discussed
in Section 2.3.1, using nt = 41 and nx = 160 grid points. Figures (a) and
(b) showcase the level sets of the solution φ to the HJ PDE (2), along with
the corresponding function α from (4), which represents the time reversal
of the feedback control function. Figures (c) and (d) depict several optimal
paths s 7→ γ∗(s) and their associated open-loop optimal controls s 7→ α∗(s).
These paths and control trajectories are the solutions to the optimal control
problem (1), each beginning from a unique initial condition x.

in (19) are calculated by:

αℓ+1
1,i (t) = argmin

α≤0

1

2
α2 +

ρℓ+1
i (t)

2τα

(
α− αℓ

1,i(t)−
τα

ρℓ+1
i (t)

(|xi − 1|2 + 0.1)(D+
x φ̃

ℓ)i(t)

)2
 ,

= min

{
0,

ρℓ+1
i (t)αℓ

1,i(t) + τα(|xi − 1|2 + 0.1)(D+
x φ̃

ℓ)i(t)

ρℓ+1
i (t) + τα

}
,

αℓ+1
2,i (t) = argmin

α≥0

1

2
α2 +

ρℓ+1
i (t)

2τα

(
α− αℓ

2,i(t)−
τα

ρℓ+1
i (t)

(|xi − 1|2 + 0.1)(D−
x φ̃

ℓ)i(t)

)2


= max

{
0,

ρℓ+1
i (t)αℓ

2,i(t) + τα(|xi − 1|2 + 0.1)(D−
x φ̃

ℓ)i(t)

ρℓ+1
i (t) + τα

}
.

(20)
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(a) (x, y) 7→ φ(x, y, t) at different t

(b) The first component of (x, y) 7→
α(x, y, t) at different t

(c) The second component of (x, y) 7→
α(x, y, t) at different t

(d) Optimal trajectories γ∗ (e) Optimal controls α∗

Fig. 2: Depiction of the two-dimensional solution as discussed in Section 2.3.1,
utilizing nt = 41 and nx = ny = 160 grid points. Figure (a) illustrates the level
sets of the solution φ(·, t) to the HJ PDE (2) at different times t. Figures (b)
and (c) show the first and second components, respectively, of the associated
function α(·, t) from (4) at various times t, which depict the time reversal of
the feedback control function. Figures (d) and (e) present several optimal tra-
jectories s 7→ γ∗(s) along with their corresponding open-loop optimal controls
s 7→ α∗(s). These trajectories and control strategies solve the optimal control
problem specified in (1), starting from distinct initial conditions x. Notably,
both γ∗ and α∗ take values in R2. For visualization, they are plotted within
the spatial domain, excluding the time dimension for clarity.
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Two-dimensional scenarios follow a similar computation process. In our nu-
merical experiment, we selected nt = 41 and nx = ny = 160 as the number of
grid points. Utilizing the implicit Euler method for time discretization allows
us to circumvent the CFL condition, enabling the adoption of a larger time
step ∆t.

The solution of the one-dimensional problem (n = m = 1) is illustrated in
Figure 1, showcasing the level sets of our numerical solutions φ and α1+α2 in
(a) and (b), respectively. Optimal trajectories and controls for evenly spaced
initial conditions within Ω are depicted in (c) and (d). The solution for the
two-dimensional problem (n = m = 2) follows a similar methodology and is
depicted in Figure 2.

2.3.2 One-homogeneous Hamiltonian with spatial dependent coefficients

We maintain the same spatial domain Ω and utilize the functions f and g
as delineated in Section 2.3.1. The Lagrangian is set to L(x, t, α) = χB∞(α),
where χ signifies the indicator function, and B∞ represents the unit ball in the
ℓ∞ space, defined as B∞ = {α ∈ Rm : ∥αI∥∞ ≤ 1}. Recall that the indicator
function χC(x) associated with a set C is set to 0 when x falls within C and
is assigned +∞ for values of x outside C. This choice of Lagrangian imposes
a constraint on the control values. The Hamiltonian described in (2) becomes
H(x, t, p) =

∑n
I=1(|xI −1|2+0.1)|pI |, which is 1-homogeneous with respect to

p. We select the numerical Lagrangian L̂ as L̂x,t(α1, α2) = Lx,t(α1)+Lx,t(α2)

for the one-dimensional scenarios and L̂x,t(α11, α12, α21, α22) = Lx,t(α11) +
Lx,t(α12) + Lx,t(α21) + Lx,t(α22) for two-dimensional cases. As discussed in
Section B, these selections ensure consistency in the resulting Hamiltonians.

For one-dimensional scenarios, the α updates detailed in (19) are computed
as follows:

αℓ+1
1,i (t) = argmin

α∈[−1,0]

ρℓ+1
i (t)

2τα

(
α− αℓ

1,i(t)−
τα

ρℓ+1
i (t)

(|xi − 1|2 + 0.1)(D+
x φ̃

ℓ)i(t)

)2
 ,

= max

{
−1,min

{
0, αℓ

1,i(t) +
τα

ρℓ+1
i (t)

(|xi − 1|2 + 0.1)(D+
x φ̃

ℓ)i(t)

}}
,

αℓ+1
2,i (t) = argmin

α∈[0,1]

ρℓ+1
i (t)

2τα

(
α− αℓ

2,i(t)−
τα

ρℓ+1
i (t)

(|xi − 1|2 + 0.1)(D−
x φ̃

ℓ)i(t)

)2


= min

{
1,max

{
0, αℓ

2,i(t) +
τα

ρℓ+1
i (t)

(|xi − 1|2 + 0.1)(D−
x φ̃

ℓ)i(t)

}}
.

The methodology for two-dimensional scenarios follows a similar approach. As
with the previous example, we opted for nt = 41 and nx = ny = 160 for the
grid points. The implicit Euler method for time discretization demonstrates
its benefit by allowing for a larger time step, ∆t.

The solution for the one-dimensional case (n = m = 1) is depicted in
Figure 3. Initially, we employ the proposed method to calculate φ, α1 + α2
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(a) φ in the xt-space (b) α in the xt-space

(c) Optimal trajectories s 7→ γ∗(s) (d) Optimal controls s 7→ α∗(s)

Fig. 3: Visualization of the solution for the one-dimensional scenario discussed
in Section 2.3.2, using nt = 41 and nx = 160 grid points. Figures (a) and
(b) showcase the level sets of the solution φ to the HJ PDE (2), along with
the corresponding function α from (4), which represents the time reversal
of the feedback control function. Figures (c) and (d) depict several optimal
paths s 7→ γ∗(s) and their associated open-loop optimal controls s 7→ α∗(s).
These paths and control trajectories are the solutions to the optimal control
problem (1), each beginning from a unique initial condition x.

at the grid points, as illustrated in Figures 3 (a) and (b). Subsequently, we
determine the optimal trajectories γ∗ and optimal open-loop controls α∗ in (1)
for t = 0 with varying initial conditions x uniformly distributed in Ω. These are
showcased in Figures 3 (c) and (d). The process for solving the two-dimensional
problem (n = m = 2) mirrors the one-dimensional case and is exhibited in
Figure 4.

In contrast to the numerical results presented in Section 2.3.1, the control
function α in this scenario lacks smoothness, predominantly adopting values
of −1, 0, or 1. This phenomenon is evidenced by the discontinuities observed
in Figures 3 (b) and 4 (b)-(c), as well as in the depicted paths of the optimal
controls in Figures 3 (d) and 4 (e). The emergence of this distinct bang-bang
control pattern is attributable to the control function’s formulation as provided
in (4). Specifically, in the context of this example, the control function is
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(a) (x, y) 7→ φ(x, y, t) at different t

(b) The first component of (x, y) 7→
α(x, y, t) at different t

(c) The second component of (x, y) 7→
α(x, y, t) at different t

(d) Optimal trajectories γ∗ (e) Optimal controls α∗

Fig. 4: Depiction of the two-dimensional solution as discussed in Section 2.3.2,
utilizing nt = 41 and nx = ny = 160 grid points. Figure (a) illustrates the level
sets of the solution φ(·, t) to the HJ PDE (2) at different times t. Figures (b)
and (c) show the first and second components, respectively, of the associated
function α(·, t) from (4) at various times t, which depict the time reversal of
the feedback control function. Figures (d) and (e) present several optimal tra-
jectories s 7→ γ∗(s) along with their corresponding open-loop optimal controls
s 7→ α∗(s). These trajectories and control strategies solve the optimal control
problem specified in (1), starting from distinct initial conditions x. Notably,
both γ∗ and α∗ take values in R2. For visualization, they are plotted within
the spatial domain, excluding the time dimension for clarity.
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defined as

α(x, t) ∈ argmin
α∈B∞

n∑
I=1

−(|xI − 1|2 + 0.1)∂xI
φ(x, t)αI .

Consequently, when the condition (|xI − 1|2 + 0.1)∂xI
φ(x, t) > 1 is satisfied,

it results in αI(x, t) = 1. Conversely, if (|xI − 1|2 + 0.1)∂xI
φ(x, t) < −1, then

αI(x, t) equals −1. This mechanism underpins the prevalence of these specific
control values in the visual representations.

In this example, the optimal control problem is described as:

min
α(·)

{g(γ(T )) : γ(t) = x, γ̇(s) = f(γ(s), s, α(s)), α(s) ∈ B∞,∀s ∈ (t, T )} .

This setup lacks a running cost and instead imposes a constraint on control.
This means that if a feasible control leads to a trajectory that starts at γ(t) = x
and ends at a point γ(T ) that minimizes g over Ω, such a control is optimal.
Consequently, it’s possible to have multiple optimal controls. In our numerical
results, we predominantly encounter controls exhibiting a bang-bang behavior,
initially adopting values of 1 or −1 and subsequently transitioning to zero. The
corresponding trajectories initially move at maximum speed in the desired
direction and then halt upon reaching a minimizer of g. It is an interesting
question to characterize the controls selected by the saddle point problem
in (6) and through our numerical algorithms.

2.3.3 Newton mechanics

This example delves into an optimal control problem underpinned by Newto-
nian mechanics. With the settings m = 1, n = 2, and the dynamic equation
f(x1, x2, t, α) = [α, x1]

T , we derive the ODE constraints as γ̇1(s) = α(s) and
γ̇2(s) = γ1(s). From a physical standpoint, γ2 is interpreted as the position, γ1
as the velocity, and the control variable α as the acceleration. The Lagrangian
L is defined as the quadratic function L(x, t, α) = 1

2 |α|
2. The Hamiltonian

in (2), is formulated as

H(x, t, p) = sup
α∈R

{−⟨f(x, α), p⟩ − L(x, t, α)} =
1

2
|p1|2 − x1p2.

The terminal cost function g is expressed as

g(x1, x2) = exp

(
−x2

1

2

)
sin(πx2).

The domain for the position variable x2 is set to [−1, 1] with periodic boundary
conditions, whereas the domain for the velocity variable x1 is [−2, 2] with
Neumann boundary conditions.
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(a) (x, y) 7→ φ(x, y, t) at different t (b) (x, y) 7→ α(x, y, t) at different t

(c) Optimal positions γ∗
2 (d) Optimal velocities γ∗

1

(e) Optimal controls α∗

Fig. 5: Visualization of the solution for example discussed in Section 2.3.3,
using nt = 41, nx = 160, and ny = 80 grid points. Figures (a) and (b)
showcase the level sets of the solution φ to the HJ PDE (2), along with the
corresponding function α from (4), which represents the time reversal of the
feedback control function. Figures (c), (d), (e) depict the first and second
components of several optimal paths s 7→ γ∗(s) and their associated open-
loop optimal controls s 7→ α∗(s). These paths and control trajectories are the
solutions to the optimal control problem (1), each beginning from a unique
initial condition x.
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Given that the function f2 does not depend on the control variable, we can
disregard the variables α21 and α22 and select L̂x,t(α11, α12) = Lx,t(α11) +
Lx,t(α12). Thus, the saddle point problem is formulated as

min
φ

φi,j(0)=g(xi,j)

max
ρ≥0,α11,α12

∫ T

0

nx∑
i=1

ny∑
j=1

ρi,j(t)

(
φ̇i,j(t)− (α11,i,j(t))+(D

+
x φ)i,j(t)− (α12,i,j(t))−(D

−
x φ)i,j(t)

−((x1)i,j)+(D
+
y φ)i,j(t)− ((x1)i,j)−(D

−
y φ)i,j(t)−

1

2
α11,i,j(t)

2 − 1

2
α12,i,j(t)

2

)
dt− c

nx∑
i=1

ny∑
j=1

φi,j(T ).

Updates for φ and ρ proceed as outlined in (14), with α updates following the
approach described in (19). Specifically, we have

αℓ+1
11,i,j(t) = max

{
0,

ρℓ+1
i,j (t)αℓ

11,i,j(t)− τα(D
+
x φ̃

ℓ)i,j(t)

ρℓ+1
i,j (t) + τα

}
,

αℓ+1
12,i,j(t) = min

{
0,

ρℓ+1
i,j (t)αℓ

12,i,j(t)− τα(D
−
x φ̃

ℓ)i,j(t)

ρℓ+1
i,j (t) + τα

}
.

In the numerical experiment, we chose nt = 41, nx = 160, and ny = 80 as the
grid specifications, circumventing the CFL condition through the application
of the implicit Euler method for temporal discretization.

Figure 5 (a) and (b) display the level sets for the solution φ of the HJ
PDE (2), along with the associated function α described in (4), captured at
various times. For the initial conditions x = (x1, x2) specified in the optimal
control problem (1), we define the position variable x2 as points spanning the
range [−1, 1], and set the velocity x1 to either −0.5 or 0.5. The calculated
optimal controls and trajectories are subsequently illustrated in Figure 5 (c),
(d), and (e). Since the functions γ∗

1 , γ
∗
2 , and α∗ take values in R, these three

functions are plotted across the spatial-temporal dimensions.

3 Stochastic optimal control problems

The methods discussed in Section 2 are also applicable to stochastic optimal
control problems. In this section, we consider the following stochastic optimal
control problems:

min
α

{
E

[∫ T

t

L(Xs, s, αs)ds+ g(XT )

]
: Xt = x, dXs = f(Xs, s, αs)ds+

√
2ϵdWs

}
,

(21)
where Ws represents Brownian motion in Rn, the control αs is an adapted
process, and f , L, and g function as the drift, Lagrangian, and terminal cost,
respectively, akin to their definitions in Section 2. The minimal value of prob-
lem (21) is represented by ϕ(x, t), which satisfies a specific viscous HJ PDE as
follows:

∂ϕ(x, t)

∂t
+ inf

α∈Rm
{⟨f(x, t, α),∇xϕ(x, t)⟩+ L(x, t, α)}+ ϵ∆xϕ(x, t) = 0, x ∈ Ω, t ∈ [0, T ],

ϕ(x, T ) = g(x), x ∈ Ω.
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Applying a time reversal technique, we arrive at a viscous HJ PDE with an
initial condition as:

∂φ(x, t)

∂t
+ sup

α∈Rm

{−⟨f(x, t, α),∇xφ(x, t)⟩ − L(x, t, α)} = ϵ∆xφ(x, t), x ∈ Ω, t ∈ [0, T ],

φ(x, 0) = g(x), x ∈ Ω.

(22)
We introduce the function α : Ω × [0, T ] → Rm defined as:

α(x, t) = argmax
α∈Rm

{−⟨f(x, t, α),∇xφ(x, t)⟩ − L(x, t, α)}. (23)

Upon reversing time, the function α(x, T − t) serves as the feedback control
function. Consequently, the optimal trajectories and controls are determined
through the following computations:

dγ∗
s = f(γ∗

s , s, α(γ
∗
s , T − s))ds+

√
2ϵdWs, s ∈ (t, T ),

γ∗
t = x,

α∗
s = α(γ∗

s , T − s), s ∈ [t, T ].

(24)

For an in-depth exploration of the linkage between stochastic optimal control
problems and viscous HJ PDEs, refer to [94].

3.1 Saddle point formulation

To solve the viscous HJ PDE, we employ methodologies akin to those used for
the first-order HJ PDE as outlined in Section 2. This approach involves fram-
ing the PDE as a constraint within an optimization problem, which has the
objective function −c

∫
Ω
φ(x, T )dx, and subsequently introducing a Lagrange

multiplier ρ. Following computations akin to those for the first-order case yield
the subsequent saddle point formula:

min
φ

φ(x,0)=g(x)

max
ρ≥0,α

∫ T

0

∫
Ω

ρ(x, t)

(
∂φ(x, t)

∂t
− ⟨fx,t(α(x, t)),∇xφ(x, t)⟩ − Lx,t(α(x, t))

−ϵ∆xφ(x, t)

)
dxdt− c

∫
Ω

φ(x, T )dx.

(25)
For a stationary point (φ, ρ, α), where ρ(x, t) > 0 across all x ∈ Ω and t ∈
[0, T ], the first-order optimality conditions are given as follows:

∂tφ(x, t) +H(x, t,∇xφ(x, t)) = ϵ∆xφ(x, t),

∂tρ(x, t) +∇x · (∇pH(x, t,∇xφ(x, t))ρ(x, t)) + ϵ∆xρ(x, t) = 0,

φ(x, 0) = g(x), ρ(x, T ) = c.

Echoing the insights from Remark 3, this saddle point problem similarly
establishes a connection to an MFG problem. Specifically, with a time reversal,
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the formulations for φ(x, T − t) and ρ̃(x, t) = ρ(x, T − t) align with the first-
order optimality conditions of the following MFG problem:

min
α̃

{∫ T

0

∫
Ω

L(x, s, α̃(x, s))ρ̃(x, s)dxds+

∫
Ω

g(x)ρ̃(x, T )dx :

∂tρ̃(x, s) +∇x · (f(x, s, α̃(x, s))ρ̃(x, s)) = ϵ∆xρ̃(x, s) ∀x ∈ Ω, s ∈ [0, T ],

ρ̃(x, 0) = c ∀x ∈ Ω
}
.

Given that the constraint represents a Fokker-Planck equation associated with
drifted Brownian motion, the resulting density is inherently positive through-
out, thereby naturally fulfilling the ρ > 0 assumption.

The process of discretizing the saddle point problem as described in (25)
follows a similar approach to that outlined in Section 2.2, with an additional
step to incorporate the diffusion term using a second-order centered difference
scheme. The specifics of this approach are elaborated in Appendix C.

The primary distinction between the formulations in (25) and (6) lies in
the inclusion of the diffusion term. This addition introduces challenges for the
convergence analysis detailed in Appendix A, notably due to the coupling term

−
∫ T

0

∫
Ω
ϵρ∆xφdxdt, which lacks continuity for ρ ∈ L2 and φ ∈ H1. This chal-

lenge is mitigated with the implementation of discretization. Through spatial
discretization, a bilinear continuous operator emerges. However, its norm de-
pends on the spatial grid dimensions ∆x in one dimension or ∆x∆y in two
dimensions, leading to reduced step sizes as the granularity of spatial dis-
cretization increases. For illustration, let’s consider the one-dimensional sce-
nario, noting that the two-dimensional case follows a similar pattern. After
discretization, the space for φ is represented as X = Rnt×nx , equipped with
an inner product ⟨·, ·⟩X defined by

⟨ϕ, φ⟩X =

nx∑
i=1

nt∑
k=1

(
ϕi,kφi,k + (D+

x ϕ)i,k(D
+
x φ)i,k

)
+

nx∑
i=1

nt∑
k=2

(D−
t ϕ)i,k(D

−
t φ)i,k.

The spaces for ρ and α align with Euclidean spaces. Consequently, the dis-

cretization of the term −
∫ T

0

∫
Ω
ϵρ∆xφdxdt, divided by ∆x∆t, is presented as

−
∑nt

k=2

∑nx

i=1 ϵρi,k(Dxxφ)i,k, showcasing bilinearity and continuity for φ ∈ X
and ρ ∈ R(nt−1)×nx . However, the norm of this bilinear operator is inversely
proportional to ∆x, suggesting that the step sizes τφ, τρ, and τα in the algo-
rithm depend on∆x and may lead to slower convergence compared to scenarios
where ϵ = 0. Exploring solutions to this slower convergence requires further re-
search. Our experiments with H2-preconditioning for φ or H1-preconditioning
for ρ did not result in faster convergence.

3.2 Numerical examples

This section presents numerical examples under settings akin to those in Sec-
tion 2.3, with a diffusion coefficient ϵ = 0.1. Given that the functions f and
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L remain the same with those previously described, the updates for α remain
unchanged. For each example, we initially deploy our proposed methodology to
calculate the functions φ and α. Subsequently, we employ the Euler–Maruyama
method on (24) to generate samples of the optimal processes γ∗

s and controls
α∗
s .

3.2.1 Quadratic Hamiltonian with spatial dependent coefficients

(a) φ in the xt-space (b) α in the xt-space

(c) Samples of optimal trajectories γ∗
s (d) Samples of optimal controls α∗

s

Fig. 6: Visualization of the solution for the one-dimensional scenario discussed
in Section 3.2.1, using nt = 41 and nx = 160 grid points. Figures (a) and
(b) showcase the level sets of the solution φ to the viscous HJ PDE (22),
along with the corresponding function α from (23), which represents the time
reversal of the feedback control function. Figures (c) and (d) depict several
samples of optimal paths γ∗

s and their associated open-loop optimal controls
α∗
s . These paths and control trajectories are the solutions to the stochastic

optimal control problem (21), each beginning from a unique initial condition
x.

We employ the same spatial domain Ω and functions f, g, L as in Sec-
tion 2.3.1. The solution of the one-dimensional case is depicted in Figure 6,
while the solution for the two-dimensional problem is illustrated in Figure 7.



28 Tingwei Meng et al.

(a) (x, y) 7→ φ(x, y, t) at different t

(b) The first component of (x, y) 7→
α(x, y, t) at different t

(c) The second component of (x, y) 7→
α(x, y, t) at different t

(d) Samples of optimal trajectories γ∗
s (e) Samples of optimal controls α∗

s

Fig. 7: Depiction of the two-dimensional solution as discussed in Section 3.2.1,
utilizing nt = 41 and nx = ny = 160 grid points. Figure (a) illustrates the
level sets of the solution φ(·, t) to the viscous HJ PDE (22) at different times
t. Figures (b) and (c) show the first and second components, respectively,
of the associated function α(·, t) from (23) at various times t, which depict
the time reversal of the feedback control function. Figures (d) and (e) present
several samples of optimal trajectories γ∗

s along with their corresponding open-
loop optimal controls α∗

s . These trajectories and control strategies solve the
stochastic optimal control problem specified in (21), starting from distinct ini-
tial conditions x. Notably, both γ∗

s and α∗
s take values in R2. For visualization,

they are plotted within the spatial domain, excluding the time dimension for
clarity.
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Upon examining the level set diagrams of φ and α, it becomes evident that the
numerical solutions exhibit greater smoothness compared to those presented in
Section 2.3.1. Despite the stochastic nature of the optimal trajectories, which
allows us to only display certain samples, there is a discernible pattern where
the trajectories seem to cluster around the minimum value of g at t = T .

3.2.2 One-homogeneous Hamiltonian with spatial dependent coefficients

(a) φ in the xt-space (b) α in the xt-space

(c) Samples of optimal trajectories γ∗
s (d) Samples of optimal controls α∗

s

Fig. 8: Visualization of the solution for the one-dimensional scenario discussed
in Section 3.2.2, using nt = 41 and nx = 160 grid points. Figures (a) and
(b) showcase the level sets of the solution φ to the viscous HJ PDE (22),
along with the corresponding function α from (23), which represents the time
reversal of the feedback control function. Figures (c) and (d) depict several
samples of optimal paths γ∗

s and their associated open-loop optimal controls
α∗
s . These paths and control trajectories are the solutions to the stochastic

optimal control problem (21), each beginning from a unique initial condition
x.

This example follows a similar setup to that described in Section 2.3.2,
with a diffusion parameter of ϵ = 0.1. The outcomes for the one-dimensional
scenario are depicted in Figure 8, and those for the two-dimensional scenario
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(a) (x, y) 7→ φ(x, y, t) at different t

(b) The first component of (x, y) 7→
α(x, y, t) at different t

(c) The second component of (x, y) 7→
α(x, y, t) at different t

(d) Samples of optimal trajectories γ∗
s (e) Samples of optimal controls α∗

s

Fig. 9: Depiction of the two-dimensional solution as discussed in Section 3.2.2,
utilizing nt = 41 and nx = ny = 160 grid points. Figure (a) illustrates the
level sets of the solution φ(·, t) to the viscous HJ PDE (22) at different times
t. Figures (b) and (c) show the first and second components, respectively,
of the associated function α(·, t) from (23) at various times t, which depict
the time reversal of the feedback control function. Figures (d) and (e) present
several samples of optimal trajectories γ∗

s along with their corresponding open-
loop optimal controls α∗

s . These trajectories and control strategies solve the
stochastic optimal control problem specified in (21), starting from distinct ini-
tial conditions x. Notably, both γ∗

s and α∗
s take values in R2. For visualization,

they are plotted within the spatial domain, excluding the time dimension for
clarity.
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are presented in Figure 9. The solution φ exhibits greater smoothness com-
pared to scenarios lacking a diffusion term. Nonetheless, the function α still
demonstrates discontinuities. This occurrence is attributable to α employing
the same expression (23) as found in the deterministic optimal control problem
in Section 2, thus the rationale from Section 2.3.2 remains applicable. It should
be noted that, due to the element of randomness, the trajectories for optimal
control display a higher frequency of jumps in comparison to the deterministic
configuration.

3.2.3 Newton mechanics

This section employs the same functions f , L, and g detailed in Section 2.3.3.
We present the numerical solution for a diffusion coefficient of ϵ = 0.1 in
Figure 10.

4 Summary

In this study, we present a framework for solving optimal control problems
and HJ PDEs through a novel saddle point formulation, which is solved using
an algorithm derived from the preconditioned PDHG method. This approach
extends to solve stochastic optimal control problems and associated viscous
HJ PDEs. Through a series of numerical examples, we illustrate the efficacy
of our algorithm, especially in handling Hamiltonians which depend on spatial
and temporal variables. A key advantage of our method is the use of implicit
time discretization, which allows for larger time steps than explicit methods,
thereby enhancing computational speed. The core strength of our method lies
in its straightforward saddle point formulation, linearly related to the solution
φ of the HJ PDEs, a feature facilitated by leveraging the inherent relationship
between optimal control problems and HJ PDEs. This simplicity enables the
method to support explicit updates or to benefit from parallel computation,
making it versatile and efficient.

Although our method is of first order, it shows potential as an initial step
towards methods of higher accuracy, especially in applications that require
small errors. Future work could explore integrating this method with higher-
order schemes or employing it within machine learning frameworks, where its
formulation could inspire novel loss function designs for solving optimal control
problems and related HJ PDEs.
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(a) (x, y) 7→ φ(x, y, t) at different t (b) (x, y) 7→ α(x, y, t) at different t

(c) Optimal position samples (γ∗
2 )s (d) Optimal velocity samples (γ∗

1 )s

(e) Optimal control samples α∗
s

Fig. 10: Visualization of the solution for example discussed in Section 3.2.3,
using nt = 41, nx = 160, and ny = 80 grid points. Figures (a) and (b) showcase
the level sets of the solution φ to the viscous HJ PDE (22), along with the
corresponding function α from (23), which represents the time reversal of the
feedback control function. Figures (c), (d), (e) depict the first and second
components of several samples of optimal paths γ∗

s and their associated open-
loop optimal controls α∗

s . These paths and control trajectories are the solutions
to the stochastic optimal control problem (21), each beginning from a unique
initial condition x.
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52. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games:
closed-loop mckean-vlasov systems and the nash certainty equivalence principle
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Let Ω ⊂ Rn be a bounded rectangular domain with periodic boundary condition. We
consider the case when fx,t is an affine function for any x ∈ Ω and t ∈ [0, T ], i.e., f(x, t, α) =
A(x, t)α+ b(x, t) for continuous functions A : Ω× [0, T ] → Rn×m (where Rn×m denotes the
set of matrices with n rows and m columns) and b : Ω × [0, T ] → Rn. Assume Lx,t : Rm →
[0,+∞] is proper, convex, lower semi-continuous, 1-coercive, and satisfies Lx,t(0) = 0 for any
x ∈ Ω and t ∈ [0, T ]. To simplify the notation, we use Ax,t and bx,t to denote A(x, T−t) and
b(x, T − t). Then, we have fx,t(α) = Ax,tα+ bx,t. In this case, the saddle point problem (6)
becomes

min
φ

φ(x,0)=g(x)

max
ρ≥0,α

∫ T

0

∫
Ω
ρ(x, t)

(∂φ(x, t)
∂t

− ⟨Ax,tα(x, t) + bx,t,∇xφ(x, t)⟩

−Lx,t(α(x, t))
)
dxdt− c

∫
Ω
φ(x, T )dx.

(26)

With a change of variable m(x, t) = ρ(x, t)α(x, t), the problem becomes

min
φ

φ(x,0)=g(x)

max
ρ≥0,m

∫ T

0

∫
Ω
ρ(x, t)

∂φ(x, t)

∂t
−m(x, t)TAT

x,t∇xφ(x, t)− ρ(x, t)bTx,t∇xφ(x, t)

−ρ(x, t)Lx,t

(
m(x, t)

ρ(x, t)

)
dxdt− c

∫
Ω
φ(x, T )dx,

(27)
where ρLx,t(

m
ρ
) is defined to be χ{0}(m) if ρ is zero in orde to get a lower semi-continuous

function (by [48, Prop.X.1.2.1] and the assumption that Lx,t is 1-coercive which implies
dom L∗

x,t = Rm). Recall that χC denotes the indicator function of a set C which takes

value 0 at points in C and +∞ otherwise. Let X = H1(Ω× [0, T ]) and Y = L2(Ω× [0, T ])×
L2(Ω × [0, T ];Rm). Now, we prove the convergence of the PDHG algorithm applied to (27)
for φ ∈ X and (ρ,m) ∈ Y .

Define the operators K : X × Y → R, G : X → R ∪ {+∞}, and F̂ : Y → R ∪ {+∞} as
follows

K(φ, ρ,m) =

∫ T

0

∫
Ω
ρ(x, t)

∂φ(x, t)

∂t
−m(x, t)TAT

x,t∇xφ(x, t)− ρ(x, t)bTx,t∇xφ(x, t)dxdt,

G(φ) = −c

∫
Ω
φ(x, T )dx+ χ{φ : φ(·,0)=g}(φ),

F̂ (ρ,m) =

∫ T

0

∫
Ω
ρ(x, t)Lx,t

(
m(x, t)

ρ(x, t)

)
+ χ[0,+∞)(ρ(x, t))dxdt.

It is straightforward to check that K is bilinear with respect to φ and (ρ,m), and G, F̂
are convex and proper functions (recall that a function is proper means it is not constantly
+∞).

Now, we prove that G is lower semi-continuous on X. Let φj be a sequence converging
to φ in X. By trace theorem, φj(·, T ) converges to φ(·, T ) in L2(Ω). Since Ω is bounded, we
have limj→∞

∫
Ω φj(x, T )dx =

∫
Ω φ(x, T )dx. Similarly, by trace theorem, φj(·, 0) converges

to φ(·, 0) in L2(Ω), and hence there exists a subsequence of φj , denoted by φji , such that
φji (·, 0) converges to φ(·, 0) almost everywhere. As a result, lim infj→∞ χ{φ : φ(·,0)=g}(φj) ≥
χ{φ : φ(·,0)=g}(φ) holds. Then, we conclude that G is lower semi-continuous.

We also prove that F̂ is lower semi-continuous on Y . Let (ρj ,mj) be a convergent

sequence in Y with limit (ρ,m). We need to prove lim infj→∞ F̂ (ρj ,mj) ≥ F̂ (ρ,m). Without
loss of generality, we can assume ρj is non-negative almost everywhere for all j. Since

L is non-negative, ρj(x, t)Lx,t(
mj(x,t)

ρj(x,t)
) is non-negative almost everywhere for all j. Since

(ρj ,mj) converges to (ρ,m) in L2, there exists a subsequence (ρji ,mji ) converging to (ρ,m)
pointwisely almost everywhere. According to the lower semi-continuity of Lx,t (and using
the 1-coercivity of Lx,t in the case of ρ(x, t) = 0), we obtain

lim inf
i→∞

ρji (x, t)Lx,t

(
mji (x, t)

ρji (x, t)

)
≥ ρ(x, t)Lx,t

(
m(x, t)

ρ(x, t)

)
a.e. x ∈ Ω, t ∈ [0, T ].
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Then, we get lim infj→∞ F̂ (ρj ,mj) ≥ F̂ (ρ,m) by Fatou’s lemma. Define F as the Fenchel-

Legendre transform of F̂ , i.e., F = F̂ ∗. Since F̂ is proper, convex, and lower semi-continuous
on Y , by [7, Thm 13.37], we have F̂ = F ∗.

Now, we prove the continuity of K as follows

|K(φ, ρ,m)| ≤ max

{
1, sup

x,t
∥bx,t∥∞

}
∥ρ∥L2∥φ∥H1 + sup

x,t,i,j
|Ax,t,i,j |∥m∥L2∥φ∥H1

≤

max

{
1, sup

x,t
∥bx,t∥∞

}2

+ sup
x,t,i,j

|Ax,t,i,j |2
 ∥(ρ,m)∥L2∥φ∥H1 .

Therefore,K is continuous with operator norm ∥K∥ ≤ max{1, supx,t ∥bx,t∥∞}2+supx,t,i,j |Ax,t,i,j |2.
Then, the saddle point problem (27) is written as the standard form for PDHG algo-

rithm:
min
φ∈X

max
(ρ,m)∈Y

K(φ, ρ,m) +G(φ)− F ∗(ρ,m),

where K is bilinear and continuous with respect to φ and (ρ,m), G and F are both proper,
convex and lower semi-continuous. The ℓ-th iteration of the PDHG updates is given by

(ρℓ+1,mℓ+1) = argmax
(ρ,m)∈Y

{
K(φ̃ℓ, ρ,m)− F ∗(ρ,m)−

1

2τρ,m

(
∥ρ− ρℓ∥2

L2 + ∥m−mℓ∥2
L2

)}
,

φℓ+1 = argmin
φ∈X

{
K(φ, ρℓ+1,mℓ+1) +G(φ) +

1

2τφ
∥φ− φℓ∥2

H1

}
,

φ̃ℓ+1 = 2φℓ+1 − φℓ.

(28)
Then, the convergence of these updates follows from [24] if the stepsizes τφ and τρ,m are
small enough. To be specific, assume the problem (27) has a saddle point, the stepsizes satisfy
τφτρ,m < 1

∥K∥2 , where ∥K∥ is estimated above, and let φj , ρℓ,mℓ be the functions given

by the algorithm (28). Then, the sequence {φ̄ℓ, ρ̄ℓ, m̄ℓ}ℓ has a subsequence which converges
weakly to a saddle point of (27), where φ̄ℓ, ρ̄ℓ, m̄ℓ are the average functions defined by

(φ̄ℓ, ρ̄ℓ, m̄ℓ) = 1
ℓ

∑ℓ
j=1(φ

j , ρj ,mj).

Remark A1 (Connection of the PDHG updates above with our proposed updates)
First, we work on the details about the update for φ as follows. After simplifying the updates
for φ, we get

φℓ+1 = argmin
φ∈X

φ(·,0)=g

{∫ T

0

∫
Ω
ρ
∂φ

∂t
−m(x, t)TAT

x,t∇xφ− ρ(x, t)bTx,t∇xφdxdt− c

∫
Ω
φ(x, T )dx+

1

2τφ
∥φ− φℓ∥2

H1

}

= argmin
φ∈X

φ(·,0)=g

{∫ T

0

∫
Ω

(
−∂tρ

ℓ+1 +∇x · (Ax,tm
ℓ+1 + ρℓ+1bx,t)

)
φdxdt+

∫
Ω
(ρℓ+1(x, T )− c)φ(x, T )dx+

1

2τφ
∥φ− φℓ∥2

H1

}
.

If ρℓ+1 satisfies the terminal condition ρℓ+1(x, T ) = c for all x ∈ Ω, the first order opti-
mality condition gives

0 = τφ
(
−∂tρ

ℓ+1 +∇x · (Ax,tm
ℓ+1 + ρℓ+1bx,t)

)
+ (I −∆)(φℓ+1 − φℓ),

which implies

φℓ+1 = φℓ + τφ(I −∆)−1
(
∂tρ

ℓ+1 −∇x · (Ax,tm
ℓ+1(x, t) + ρℓ+1(x, t)bx,t)

)
.

With a change of variable α = m
ρ
, this update on φ is the same as the third line in (9).

Then, we focus on the update for (ρ,m) (the first line in (28)), which, after the change
of variable, becomes

max
ρ,α

{
L(φ̃ℓ, ρ, α)−

1

2τρ,m
∥ρ− ρℓ∥2

L2 −
1

2τρ,m
∥ρα− ρℓαℓ∥2

L2

}
,
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where L is the objective function in (26). To numeically solve this problem, we apply the
alternative updates on ρ and α. Fixing α = αℓ, the update for ρ gives the first line in (9)
with τρ = τρ,m. Then, fixing ρ = ρℓ+1 and approximating ρℓαℓ by ρℓ+1αℓ, the update for
α is

αℓ+1 = argmax
α

{
L(φ̃ℓ, ρℓ+1, α)−

1

2τρ,m
∥ρℓ+1α− ρℓ+1αℓ∥2

L2

}
= argmax

α

∫ T

0

∫
Ω
−ρℓ+1(x, t)⟨Ax,tα(x, t),∇xφ

ℓ(x, t)⟩ − ρℓ+1(x, t)Lx,t(α(x, t))

−
ρℓ+1(x, t)2

2τρ,m
(α(x, t)− αℓ(x, t))2dxdt.

This optimization problem can be solved in parallel for any (x, t) by updating α(x, t) as
follows

αℓ+1(x, t) = argmax
α∈Rm

{
−ρℓ+1(x, t)⟨Ax,tα,∇xφ

ℓ(x, t)⟩ − ρℓ+1(x, t)Lx,t(α)−
ρℓ+1(x, t)2

2τρ,m
(α− αℓ(x, t))2

}
= argmin

α∈Rm

{
⟨Ax,tα,∇xφ

ℓ(x, t)⟩+ Lx,t(α) +
ρℓ+1(x, t)

2τρ,m
(α− αℓ(x, t))2

}
,

which gives the second line in (9) with τα = τρ,m. This also provides an intuition for
choosing the specific penalty for α.

Remark A2 (PDHG convergence for discretized problems) Note that it is not easy
to apply the analysis above to the discretized saddle point problem in Section 2.2. The main
difficulty is, after spatial discretization, the function K is no longer bilinear and smooth,
which requires PDHG analysis for non-linear and non-smooth coupling term. Moreover,
how to analyze the convergence of the proposed algorithm for more general f and L (for
instance, when f is not affine with respect to α) requires more study.

B Consistency of the numerical Hamiltonian

In Appendix A, we explore how the numerical algorithm converges to a saddle point, ne-
cessitating a subsequent examination of how this saddle point relates to the solution of the
HJ PDE. The linkage between the saddle point and the HJ PDE solution becomes apparent
through the first-order optimality conditions outlined in (7), when the stationary point ρ is
positive. Furthermore, by referencing the optimality conditions specified for discretized sce-
narios in (12) and (17), we derive a discretized formulation for solving HJ PDEs, alongside
the associated numerical Hamiltonians in (13) and (18). This section aims to validate the
consistency of the numerical Hamiltonians, particularly in scenarios where the function f
exhibits linearity in relation to α, and under a set of additional assumptions.

B.1 One-dimensional cases

In this section, we consider the one-dimensional cases (n = 1). Assume f is linear with
respect to α, i.e., f(x, t, α) = a(x, t)Tα where a is a continuous function from Ω × [0, T ] to
Rm. Assume Lx,t : Rm → R is non-negative, convex, and 1-coercive with Lx,t(0) = 0 for

any x ∈ Ω and t ∈ [0, T ]. In this case, we define the numerical Lagrangian by L̂x,t(α1, α2) =
Lx,t(α1) + Lx,t(α2). We are going to show the consistency of the corresponding numerical

Hamiltonian. The corresponding numerical Hamiltonian Ĥ is

Ĥ(x, t, p+, p−) = sup
α1,α2∈Rm

{−(a(x, t)Tα1)+p+ − (a(x, t)Tα2)−p− − Lx,t(α1)− Lx,t(α2)}

= sup
α1∈Rm

{−(a(x, t)Tα1)+p+ − Lx,t(α1)}+ sup
α2∈Rm

{−(a(x, t)Tα2)−p− − Lx,t(α2)}.
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To show the consistency of the numerical Hamiltonian, we need to show that Ĥ(x, t, p, p) =
H(x, t, p) for any x ∈ Ω, t ∈ [0, T ] and p ∈ R where H is the Hamiltonian defined in (3).

Let x ∈ Ω, t ∈ [0, T ] and p ∈ R be arbitrary numbers. To simplify notations, we ignore
the x, t dependency in a and L, and denote a(x, t) by a and Lx,t by L. Define h+ by
h+ = supα∈Rm{−(aTα)+p− L(α)} and h− by h− = supα∈Rm{−(aTα)+p− L(α)}. Then,
we need to show h+ + h− = H(x, t, p). Since 0 = L(0) = minα∈Rm L(α), we have

h+ = sup
α:aTα≥0

{−paTα− L(α)}, h− = sup
α:aTα≤0

{−paTα− L(α)}. (29)

Since L is convex and 1-coercive, then the optimizer in (3) exists. Denote the set of optimizers
by A, which is a closed convex set. Define A+ and A− by A+ = {α ∈ A : aTα ≥ 0} and
A− = {α ∈ A : aTα ≤ 0}.

If A+ is non-empty, then we have h+ = H(x, t, p). If A+ is empty, we show that h+

equals zero. Denote the objective function in the minimization problem in (3) by F , i.e.,
F (α) = −paTα − L(α). Note that F is also the objective functions in the optimization
problems in (29). Since L is convex and 1-coercive, the minimizer in the first optimization
problem in (29) exists. If there is a minimizer ᾱ satisfying aT ᾱ > 0, then there is a neigh-
borhood of ᾱ, denoted by N , such that ᾱ is the minimizer of the function F in N . In other
words, ᾱ is a local minimizer of F , and hence it is also a global minimizer by convexity.
Therefore, we have ᾱ ∈ A+, which contradicts to the assumption that A+ is empty. As a
result, we have h+ = supα:aTα=0{−paTα−L(α)} = 0 in the case when A+ is empty. Then,
we obtain

h+ =

{
H(x, t, p) A+ ̸= ∅,
0 A+ = ∅.

With a similar argument, we can get

h− =

{
H(x, t, p) A− ̸= ∅,
0 A− = ∅.

If either A+ or A− is empty, then h+ + h− = H(x, t, p) follows directly from these
two formulas. If both A+ and A− are non-empty, by convexity of A, there exists ᾱ ∈ A
satisfying aT ᾱ = 0, which implies H(x, t, p) = supα:aTα=0{−paTα− L(α)} = 0, and hence

h+ + h− = 2H(x, t, p) = H(x, t, p). Therefore, we conclude that Ĥ is consistent.

Remark B1 The above argument can be applied to more general cases. Let f be in the
form of f(x, t, α) = a(x, t)Tα+ b(x, t), where a is a continuous function from Ω × [0, T ] to
Rm and b is a continuous function from Ω × [0, T ] to R. Let L be a continuous function
such that Lx,t is convex and 1-coercive for any x ∈ Ω and t ∈ [0, T ]. Further assume
that argminα∈Rm Lx,t(α) ∩ {α ∈ Rm : f(x, t, α) = 0} is non-empty for any x ∈ Ω and

t ∈ [0, T ]. Then, define the numerical Lagrangian L̂ by L̂x,t(α1, α2) = Lx,t(α1)+Lx,t(α2)−
minα∈Rm Lx,t(α). With a similar argument as above, we can prove that the corresponding
numerical Hamiltonian defined by (13) is consistent.

Remark B2 We can further remove the requirement in Remark B1 that the minimal value
of Lx,t can be achieved on a root of fx,t. In other words, we only need to assume the
continuity of f and L, and assume that f is affine on α, and Lx,t is convex and 1-coercive for
any x ∈ Ω and t ∈ [0, T ]. Note that the 1-coercivity assumption of Lx,t is for the existence
of the optimizer in (3). It can be replaced by any other assumption which guarantees the
existence of the minimizers. The assumption that f is affine on α guarantees the convexity
of the optimization problem in (3) so that we can use convex analysis techniques in the
proof. Under this general setup, we need to modify the saddle point problem (11) to

min
φ

φi(0)=g(xi)

max
ρ≥0,α

fi,t(α1,i(t))≥0∀i,t
fi,t(α2,i(t))≤0∀i,t

∫ T

0

nx∑
i=1

ρi(t)

(
φ̇i(t)− fi,t(α1,i(t))(D

+
x φ)i(t)− fi,t(α2,i(t))(D

−
x φ)i(t)

−L̂i,t (α1,i(t), α2,i(t))

)
dt− c

nx∑
i=1

φi(T ).
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Then, we define the numerical Lagrangian by

L̂x,t(α1, α2) = Lx,t(α1) + Lx,t(α2)− min
α∈Rm

f(x,t,α)=0

Lx,t(α).

The consistency of the corresponding numerical Hamiltonian defined by

Ĥ(x, t, p+, p−) = sup
α1,α2∈Rm

fx,t(α1)≥0
fx,t(α2)≤0

{−fx,t(α1)p
+ − fx,t(α2)p

− − L̂x,t(α1, α2)}

can be proved similarly as above using the formulas

sup
α∈Rm

fx,t(α)≥0

{−fx,t(α)p− Lx,t(α)} =


H(x, t, p) A+,x,t ̸= ∅,
− min

α∈Rm

f(x,t,α)=0

Lx,t(α) A+,x,t = ∅,

sup
α∈Rm

fx,t(α)≤0

{−fx,t(α)p− Lx,t(α)} =


H(x, t, p) A−,x,t ̸= ∅,
− min

α∈Rm

f(x,t,α)=0

Lx,t(α) A−,x,t = ∅,

where A+,x,t (A−,x,t resp.) are the set containing the minimizers ᾱ in (3) which satisfy
fx,t(ᾱ) ≥ 0 (fx,t(ᾱ) ≤ 0 resp.). Then, the implicit time discretization and PDHG updates
can also be applied to this modified saddle point problem.

B.2 Two-dimensional cases

In this section, we consider the case when the spatial domain is two-dimensional (n = 2).

We assume that f is a continuous function in the form f(x, t, α) =

(
aT1 (x, t)α
aT2 (x, t)α

)
, where a1

and a2 are continuous functions from Ω× [0, T ] to Rm. Let L be a continuous non-negative
function. Assume Lx,t : Rm → R is convex and 1-coercive with Lx,t(0) = 0 for any x ∈ Ω
and t ∈ [0, T ]. Let H be the Hamiltonian defined by (3). Assume that H is in the form
of Hx,t(px, py) = H1(x, t, px) + H2(x, t, py) for any x ∈ Ω, t ∈ [0, T ], px, py ∈ R for some

functions H1 and H2. In this case, we choose L̂(x, t, α11, α12, α21, α22) = L(x, t, α11) +
L(x, t, α12) + L(x, t, α21) + L(x, t, α22). Now, we want to show that such defined numerical
Lagrangian gives a consistent numerical Hamiltonian.

Let x ∈ Ω, t ∈ [0, T ], and px, py ∈ R be arbitrary vectors and numbers. For simplicity of
the notations, we ignore the (x, t) dependence in the functions a1, a2, and L. Define hx,+,
hx,−, hy,+, and hy,− by

hx,+ = sup
α:aT

1 α≥0

{−pxa
T
1 α− L(α)}, hx,− = sup

α:aT
1 α≤0

{−pxa
T
1 α− L(α)},

hy,+ = sup
α:aT

2 α≥0

{−pya
T
2 α− L(α)}, hy,− = sup

α:aT
2 α≤0

{−pya
T
2 α− L(α)}.

Since Lx,t is a non-negative function with Lx,t(0) = 0, the numerical Hamiltonian defined

in (18) satisfies Ĥ(x, t, px, px, py , py) = hx,++hx,−+hy,++hy,−. Then, it suffices to prove
that hx,+ + hx,− + hy,+ + hy,− = H(x, t, px, py). Denote the set of optimizers in (3) by
A(p), which, according to the assumptions on f and L, is non-empty, closed, and convex for
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any p ∈ R2. With a similar argument as in the one-dimensional case, we have

hx,+ =

{
H(x, t, px, 0) A(px, 0) ∩ {α ∈ Rm : aT1 α ≥ 0} ̸= ∅,

0 A(px, 0) ∩ {α ∈ Rm : aT1 α ≥ 0} = ∅,

hx,− =

{
H(x, t, px, 0) A(px, 0) ∩ {α ∈ Rm : aT1 α ≤ 0} ̸= ∅,

0 A(px, 0) ∩ {α ∈ Rm : aT1 α ≤ 0} = ∅,

hy,+ =

{
H(x, t, 0, py) A(0, py) ∩ {α ∈ Rm : aT2 α ≥ 0} ̸= ∅,

0 A(0, py) ∩ {α ∈ Rm : aT2 α ≥ 0} = ∅,

hy,− =

{
H(x, t, 0, py) A(0, py) ∩ {α ∈ Rm : aT2 α ≤ 0} ̸= ∅,

0 A(0, py) ∩ {α ∈ Rm : aT2 α ≤ 0} = ∅.

If either A(px, 0) ∩ {α ∈ Rm : aT1 α ≥ 0} or A(px, 0) ∩ {α ∈ Rm : aT1 α ≤ 0} is empty,
then we have hx,+ + hx,− = H(x, t, px, 0). Otherwise, similarly as in the one-dimensional
case, there exists ᾱ ∈ A(px, 0) satisfying aT1 ᾱ = 0, which implies H(x, t, px, 0) = 0, and
hence hx,+ + hx,− = 2H(x, t, px, 0) = H(x, t, px, 0) holds. Similarly, we have hy,+ + hy,− =
H(x, t, 0, py). Therefore, we get

hx,+ + hx,− + hy,+ + hy,− = H(x, t, px, 0) +H(x, t, 0, py)

= H1(x, t, px) +H2(x, t, 0) +H1(x, t, 0) +H2(x, t, py)

= H(x, t, px, py) +H(x, t, 0, 0)

= H(x, t, px, py)− min
α∈Rm

Lx,t(α) = H(x, t, px, py),

which ends the proof.

Remark B3 Similarly as in the one-dimensional case, the assumptions can be further
relaxed. Assume that f and L are both continuous, fx,t is an affine function, and Lx,t is
convex and 1-coercive for any x ∈ Ω and t ∈ [0, T ]. Note that the 1-coercivity assumption of
Lx,t is for the existence of the optimizer in (3), and the assumption that fx,t is affine makes
the optimization problem in (3) a convex problem. Under this general setup, we modify the
saddle point problem (16) to

min
φ

φi,j(0)=g(xi,j)

max
ρ≥0,α

f1,i,j,t(α11,i,j(t))≥0∀i,j,t
f1,i,j,t(α12,i,j(t))≤0∀i,j,t
f2,i,j,t(α21,i,j(t))≥0∀i,j,t
f2,i,j,t(α22,i,j(t))≤0∀i,j,t

∫ T

0

nx∑
i=1

ny∑
j=1

ρi,j(t)

(
φ̇i,j(t)− f1,i,j,t(α11,i,j(t))(D

+
x φ)i(t)− f1,i,j,t(α12,i,j(t))(D

−
x φ)i(t)

−f2,i,j,t(α21,i,j(t))(D
+
y φ)i(t)− f2,i,j,t(α22,i,j(t))(D

−
y φ)i(t)

−L̂i,j,t (α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t))

)
dt− c

nx∑
i=1

ny∑
j=1

φi,j(T ).

We define the numerical Lagrangian by

L̂x,t(α11, α12, α21, α22) = Lx,t(α11) + Lx,t(α12) + Lx,t(α21) + Lx,t(α22)− min
α∈Rm

Lx,t(α)

− min
α∈Rm

f1(x,t,α)=0

Lx,t(α)− min
α∈Rm

f2(x,t,α)=0

Lx,t(α).

The numerical Hamiltonian is then given by

Ĥ(x, t, p+x , p−x , p+y , p−y ) = sup
α11,α12,α21,α22∈Rm

f1,x,t(α11)≥0

f1,x,t(α12)≤0

f2,x,t(α21)≥0

f2,x,t(α22)≤0

{−f1,x,t(α11)p
+
x − f1,x,t(α12)p

−
x − f2,x,t(α21)p

+
y

−f2,x,t(α22)p
−
y − L̂x,t(α11, α12, α21, α22)}.



44 Tingwei Meng et al.

The consistency of this numerical Hamiltonian follows from a similar argument. Then, the
implicit time discretization and PDHG updates can be similarly applied to this modified
saddle point problem.

Remark B4 Note that the assumption in the two-dimensional cases is more restricted
than the one-dimensional cases. To be more specific, we assume that there exists H1 and
H2 such that H is in the form of Hx,t(px, py) = H1(x, t, px) +H2(x, t, py) for any x ∈ Ω,

t ∈ [0, T ], px, py ∈ R. If we consider the numerical Lagrangian L̂ which can be written as

L̂x,t(α11, α12, α21, α22) = L11,x,t(α11)+L12,x,t(α12)+L21,x,t(α21)+L22,x,t(α22) for some
functions L11, L12, L21, and L22, then the corresponding numerical Hamiltonian is

Ĥ(x, t, p+x , p−x , p+y , p−y ) = sup
α11,α12,α21,α22∈Rm

f1,x,t(α11)≥0

f1,x,t(α12)≤0

f2,x,t(α21)≥0

f2,x,t(α22)≤0

{−f1,x,t(α11)p
+
x − f1,x,t(α12)p

−
x − f2,x,t(α21)p

+
y − f2,x,t(α22)p

−
y

− (L11,x,t(α11) + L12,x,t(α12) + L21,x,t(α21) + L22,x,t(α22))}

= sup
α∈Rm

f1,x,t(α)≥0

{−f1,x,t(α)p
+
x − L11,x,t(α)}+ sup

α∈Rm

f1,x,t(α)≤0

{−f1,x,t(α)p
−
x − L12,x,t(α)}

+ sup
α∈Rm

f2,x,t(α)≥0

{−f2,x,t(α)p
+
y − L21,x,t(α)}+ sup

α∈Rm

f2,x,t(α)≤0

{−f2,x,t(α)p
−
y − L22,x,t(α)}.

Then, if Ĥ is consistent, H must be in the form of Hx,t(px, py) = H1(x, t, px)+H2(x, t, py)
with

H1(x, t, px) = sup
α∈Rm

f1,x,t(α)≥0

{−f1,x,t(α)px − L11,x,t(α)}+ sup
α∈Rm

f1,x,t(α)≤0

{−f1,x,t(α)px − L12,x,t(α)},

H2(x, t, py) = sup
α∈Rm

f2,x,t(α)≥0

{−f2,x,t(α)py − L21,x,t(α)}+ sup
α∈Rm

f2,x,t(α)≤0

{−f2,x,t(α)py − L22,x,t(α)}.

For more general H, we need to design the numerical Lagrangian L̂ in other forms.
We also considered L̂x,t(α11, α12, α21, α22) = Lx,t(α11 + α12 + α21 + α22), but it has too
many degrees of freedom on α. To illustrate this intuition, we consider the case when we
have m = n = 2 and f(x, t, α) = α. Denote αIJ = (αIJ,1, αIJ,2) ∈ R2 for any I, J = 1, 2.
Then, the numerical Hamiltonian is

Ĥ(x, t, px, px, py , py) = sup
α11,α12,α21,α22∈R2

α11,1≥0
α12,1≤0
α21,2≥0
α22,2≤0

{−α11,1px − α12,1px − α21,2py − α22,2py − Lx,t(α11 + α12 + α21 + α22)}.

For any α11,1, α21,2 ≥ 0 and α12,1, α22,2 ≤ 0, we can always choose α11,2, α12,2, α21,1,
α22,1 such that Lx,t(α11 +α12 +α21 +α22) achieves the minimal value of Lx,t. Therefore,

the numerical Hamiltonian Ĥ is infinity if px is non-zero or py is non-zero, which is not
consistent. How to choose a numerical Lagrangian for more general cases is a possible
interesting future direction.

C Discretization for the viscous HJ PDEs

In this section, we provide details of the spatial and temporal discretization of the saddle
point problem (25) for solving stochastic optimal control problems and the corresponding
viscous HJ PDEs. We apply similar notation as in Section 2.2. Note that the difference
between this part with Section 2.2 is merely on the diffusion term.
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C.1 One-dimensional problems

After upwind spatial discretization, the one-dimensional saddle point problem (divided by
∆x) becomes

min
φ

φi(0)=g(xi)

max
ρ≥0,α

∫ T

0

nx∑
i=1

ρi(t)

(
φ̇i(t)− fi,t(α1,i(t))+(D+

x φ)i(t)− fi,t(α2,i(t))−(D−
x φ)i(t)

−L̂i,t (α1,i(t), α2,i(t))− ϵ(Dxxφ)i(t)

)
dt− c

nx∑
i=1

φi(T ).

Consider a stationary point (φ, ρ, α) in this saddle point problem. If we further assume
ρi(t) > 0 for any t ∈ [0, T ], then the first order optimality condition is


φ̇i(t)− fi,t(α1,i(t))+(D+

x φ)i(t)− fi,t(α2,i(t))−(D−
x φ)i(t)− L̂i,t(α1,i(t), α2,i(t))− ϵ(Dxxφ)i(t) = 0,

(α1,i(t), α2,i(t)) = argmin
α1,α2∈Rm

{fi,t(α1)+(D+
x φ)i(t) + fi,t(α2)−(D−

x φ)i(t) + L̂i,t(α1, α2)},

ρ̇i(t)−D−
x (fi,t(α1,i(t))+ρi(t))−D+

x (fi,t(α2,i(t))−ρi(t)) + ϵ(Dxxρ)i(t) = 0.

Combining the first two lines in this optimality condition, we get

φ̇i(t) + supα1,α2∈Rm{−fi,t(α1)+(D+
x φ)i(t)− fi,t(α2)−(D−

x φ)i(t)− L̂i,t(α1, α2)} − ϵ(Dxxφ)i(t) = 0,

which gives a semi-discrete scheme for the HJ PDE (22) where the numerical Hamiltonian
is defined by (13).

With this discretization, the ℓ-th update becomes



ρ
ℓ+1
i (t) =

(
ρ
ℓ
i(t) + τρ

(
˙̃φ
ℓ
i(t) − fi,t(α

ℓ
1,i(t))+(D

+
x φ̃

ℓ
)i(t) − fi,t(α

ℓ
2,i(t))−(D

−
x φ̃

ℓ
)i(t)

−L̂i,t(α
ℓ
1,i(t), α

ℓ
2,i(t)) − ϵ(Dxxφ̃

ℓ
)i(t)

))
+
.

(α
ℓ+1
1,i (t), α

ℓ+1
2,i (t)) = argmin

α1,α2∈Rm

{
fi,t(α1)+(D

+
x φ̃

ℓ
)i(t) + fi,t(α2)−(D

−
x φ̃

ℓ
)i(t) + L̂i,t(α1, α2)

+
ρℓ+1
i (t)

2τα

(
∥α1 − α

ℓ
1,i(t)∥

2
+ ∥α2 − α

ℓ
2,i(t)∥

2
)}

.

φ
ℓ+1
i (t) = φ

ℓ
i(t) + τφ(I − ∂tt − Dxx)

−1
(
ρ̇
ℓ+1
i (t) − D

−
x (fi,t(α

ℓ+1
1,i (t))+ρ

ℓ+1
i (t))

−D
+
x (fi,t(α

ℓ+1
2,i (t))−ρ

ℓ+1
i (t)) + ϵ(Dxxρ

ℓ+1
)i(t)

)
.

φ̃
ℓ+1

= 2φ
ℓ+1 − φ

ℓ
.

For the time discretization, we apply implicit Euler scheme for φ, and then the saddle
point problem (divided by ∆t) becomes

min
φ

φi,1=g(xi)

max
ρ≥0,α

nt∑
k=2

nx∑
i=1

ρi,k

(
(D

−
t φ)i,k − fi,k(α1,i,k)+(D

+
x φ)i,k − fi,k(α2,i,k)−(D

−
x φ)i,k

−L̂i,k (α1,i,k, α2,i,k) − ϵ(Dxxφ)i,k

)
−

c

∆t

nx∑
i=1

φi,nt .



46 Tingwei Meng et al.

The corresponding algorithm in the ℓ-th iteration becomes

ρ
ℓ+1
i,k =

(
ρ
ℓ
i,k + τρ

(
(D

−
t φ̃

ℓ
)i,k − fi,k(α

ℓ
1,i,k)+(D

+
x φ̃

ℓ
)i,k − fi,k(α

ℓ
2,i,k)−(D

−
x φ̃

ℓ
)i,k

−L̂i,k(α
ℓ
1,i,k, α

ℓ
2,i,k) − ϵ(Dxxφ̃

ℓ
)i,k
))

+
.

(α
ℓ+1
1,i,k, α

ℓ+1
2,i,k) = argmin

α1,α2∈Rm

{
fi,k(α1)+(D

+
x φ̃

ℓ
)i,k + fi,k(α2)−(D

−
x φ̃

ℓ
)i,k + L̂i,k(α1, α2)

+
ρℓ+1
i,k

2τα

(
∥α1 − α

ℓ
1,i,k∥

2
+ ∥α2 − α

ℓ
2,i,k∥

2
)}

.

φ
ℓ+1
i,k = φ

ℓ
i,k + τφ(I − Dtt − Dxx)

−1
(
(D

+
t ρ

ℓ+1
)i,k − D

−
x (fi,k(α

ℓ+1
1,i,k)+ρ

ℓ+1
i,k )

−D
+
x (fi,k(α

ℓ+1
2,i,k)−ρ

ℓ+1
i,k ) + ϵ(Dxxρ

ℓ+1
)i,k

)
.

φ̃
ℓ+1

= 2φ
ℓ+1 − φ

ℓ
.

It’s worth mentioning that selecting the numerical Lagrangian as Lx,t(α1)+Lx,t(α2) allows
for the update process of α to be executed in parallel across the variables α1 and α2.

C.2 Two-dimensional problems

For two dimensional cases, with upwind spatial discretization, the saddle point problem
(divided by ∆x∆y) becomes

min
φ

φi,j(0)=g(xi,j)

max
ρ≥0,α

∫ T

0

nx∑
i=1

ny∑
j=1

ρi,j(t)

(
φ̇i,j(t)− f1,i,j,t(α11,i,j(t))+(D+

x φ)i(t)− f1,i,j,t(α12,i,j(t))−(D−
x φ)i(t)

−f2,i,j,t(α21,i,j(t))+(D+
y φ)i(t)− f2,i,j,t(α22,i,j(t))−(D−

y φ)i(t)− ϵ(Dxxφ+Dyyφ)i,j(t)

−L̂i,j,t (α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t))

)
dt− c

nx∑
i=1

ny∑
j=1

φi,j(T ).

Consider a stationary point (φ, ρ, α) in this saddle point problem. If we further assume
ρi,j(t) > 0 for any t ∈ [0, T ], then the first order optimality condition is



φ̇i,j(t)− f1,i,j,t(α11,i,j(t))+(D+
x φ)i,j(t)− f1,i,j,t(α12,i,j(t))−(D−

x φ)i,j(t)

−f2,i,j,t(α21,i,j(t))+(D+
y φ)i,j(t)− f2,i,j,t(α22,i,j(t))−(D−

y φ)i,j(t)

−L̂i,j,t(α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t))− ϵ(Dxxφ+Dyyφ)i,j(t) = 0,

(α11,i,j(t), α12,i,j(t), α21,i,j(t), α22,i,j(t)) = argmin
α11,α12,α21,α22∈Rm

{f1,i,j,t(α11)+(D+
x φ)i,j(t)

+f1,i,j,t(α12)−(D−
x φ)i,j(t) + f2,i,j,t(α21)+(D+

y φ)i,j(t)

+f2,i,j,t(α22)−(D−
y φ)i,j(t) + L̂i,j,t(α11, α12, α21, α22)},

ρ̇i,j(t)−D−
x (f1,i,j,t(α11,i,j(t))+ρi,j(t))−D+

x (f1,i,j,t(α12,i,j(t))−ρi,j(t))

−D−
y (f2,i,j,t(α21,i,j(t))+ρi,j(t))−D+

y (f2,i,j,t(α22,i,j(t))−ρi,j(t)) + ϵ(Dxxρ+Dyyρ)i,j(t) = 0.

Combining the first two lines in this optimality condition, we get

φ̇i,j(t) + sup
α11,α12,α21,α22∈Rm

{−f1,i,j,t(α11)+(D+
x φ)i,j(t)− f1,i,j,t(α12)−(D−

x φ)i,j(t)− f2,i,j,t(α21)+(D+
y φ)i,j(t)

−f2,i,j,t(α22)−(D−
y φ)i,j(t)− L̂i,j,t(α11, α12, α21, α22)} − ϵ(Dxxφ+Dyyφ)i,j(t) = 0,

which gives a semi-discrete scheme for the HJ PDE (22) whose numerical Hamiltonian is
defined in (18).
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With this discretization, the ℓ-th update becomes

ρℓ+1
i,j (t) =

(
ρℓi,j(t) + τρ

(
˙̃φℓ
i,j(t)− f1,i,j,t(α

ℓ
11,i,j(t))+(D+

x φ̃ℓ)i,j(t)

−f1,i,j,t(α
ℓ
12,i,j(t))−(D−

x φ̃ℓ)i,j(t)− f2,i,j,t(α
ℓ
21,i,j(t))+(D+

y φ̃ℓ)i,j(t)

−f2,i,j,t(α
ℓ
22,i,j(t))−(D−

y φ̃ℓ)i,j(t)− L̂i,j,t(α
ℓ
1,i(t), α

ℓ
2,i(t))− ϵ(Dxxφ̃

ℓ +Dyyφ̃
ℓ)i,j(t)

))
+
.

(αℓ+1
11,i,j(t), α

ℓ+1
12,i,j(t), α

ℓ+1
21,i,j(t), α

ℓ+1
22,i,j(t)) = argmin

α11,α12,α21,α22∈Rm
{f1,i,j,t(α11)+(D+

x φ̃ℓ)i,j(t)

+f1,i,j,t(α12)−(D−
x φ̃ℓ)i,j(t) + f2,i,j,t(α21)+(D+

y φ̃ℓ)i,j(t)

+f2,i,j,t(α22)−(D−
y φ̃ℓ)i,j(t) + L̂i,j,t(α11, α12, α21, α22)

+
ρℓ+1
i,j (t)

2τα

(
∥α11 − αℓ

11,i,j(t)∥2 + ∥α12 − αℓ
12,i,j(t)∥2 + ∥α21 − αℓ

21,i,j(t)∥2 + ∥α22 − αℓ
22,i,j(t)∥2

)
}.

φℓ+1
i,j (t) = φℓ

i,j(t) + τφ(I − ∂tt −Dxx −Dyy)
−1
(
ρ̇ℓ+1
i,j (t)−D−

x

(
f1,i,j,t(α

k+1
11,i,j(t))+ρℓ+1

i,j (t)
)

−D+
x

(
f1,i,j,t(α

k+1
12,i,j(t))−ρℓ+1

i,j (t)
)
−D−

y

(
f2,i,j,t(α

k+1
21,i,j(t))+ρℓ+1

i,j (t)
)

−D+
y

(
f2,i,j,t(α

k+1
22,i,j(t))−ρℓ+1

i,j (t)
)
+ ϵ(Dxxρ

ℓ+1 +Dyyρ
ℓ+1)i,j(t)

)
.

φ̃ℓ+1 = 2φℓ+1 − φℓ.

Then, we apply implicit Euler scheme for the time derivative of φ, and then the saddle
point problem (divided by ∆t) becomes

min
φ

φi,j,1=g(xi,j)

max
ρ≥0,α

nt∑
k=2

nx∑
i=1

ny∑
j=1

ρi,j,k

(
(D−

t φ)i,j,k − f1,i,j,k(α11,i,j,k)+(D+
x φ)i,j,k − f1,i,j,k(α12,i,j,k)−(D−

x φ)i,j,k

−f2,i,j,k(α21,i,j,k)+(D+
y φ)i,j,k − f2,i,j,k(α22,i,j,k)−(D−

y φ)i,j,k − ϵ(Dxxφ+Dyyφ)i,j,k

−L̂i,j,k

(
α11,i,j,k, α12,i,j,k, α21,i,j,k, α22,i,j,k

))
−

c

∆t

nx∑
i=1

ny∑
j=1

φi,j,nt .

The corresponding algorithm in the ℓ-th iteration becomes

ρℓ+1
i,j,k =

(
ρℓi,j,k + τρ

(
(D−

t φ̃ℓ)i,j,k − f1,i,j,k(α
ℓ
11,i,j,k)+(D+

x φ̃ℓ)i,j,k − f1,i,j,k(α
ℓ
12,i,j,k)−(D−

x φ̃ℓ)i,j,k

−f2,i,j,k(α
ℓ
21,i,j,k)+(D+

y φ̃ℓ)i,j,k − f2,i,j,k(α
ℓ
22,i,j,k)−(D−

y φ̃ℓ)i,j,k

−L̂i,j,k(α
ℓ
11,i,j,k, α

ℓ
12,i,j,k, α

ℓ
21,i,j,k, α

ℓ
22,i,j,k)− ϵ(Dxxφ̃

ℓ +Dyyφ̃
ℓ)i,j,k

))
+
.

(αℓ+1
11,i,j,k, α

ℓ+1
12,i,j,k, α

ℓ+1
21,i,j,k, α

ℓ+1
22,i,j,k) = argmin

α11,α12,α21,α22∈Rm
{f1,i,j,k(α11)+(D+

x φ̃ℓ)i,j,k

+f1,i,j,k(α12)−(D−
x φ̃ℓ)i,j,k + f2,i,j,k(α21)+(D+

y φ̃ℓ)i,j,k

+f2,i,j,k(α22)−(D−
y φ̃ℓ)i,j,k + L̂i,j,k(α11, α12, α21, α22)

+
ρℓ+1
i,j,k

2τα

(
∥α11 − αℓ

11,i,j,k∥
2 + ∥α12 − αℓ

12,i,j,k∥
2 + ∥α21 − αℓ

21,i,j,k∥
2 + ∥α22 − αℓ

22,i,j,k∥
2
)
}.

φℓ+1
i,j,k = φℓ

i,j,k + τφ(I −Dtt −Dxx −Dyy)
−1
(
(D+

t ρℓ+1)i,j,k −D−
x

(
f1,i,j,k(α

k+1
11,i,j,k)+ρℓ+1

i,j,k

)
−D+

x

(
f1,i,j,k(α

k+1
12,i,j,k)−ρℓ+1

i,j,k

)
−D−

y

(
f2,i,j,k(α

k+1
21,i,j,k)+ρℓ+1

i,j,k

)
−D+

y

(
f2,i,j,k(α

k+1
22,i,j,k)−ρℓ+1

i,j,k

)
+ ϵ(Dxxρ

ℓ+1 +Dyyρ
ℓ+1)i,j,k

)
.

φ̃ℓ+1 = 2φℓ+1 − φℓ.

Just as with the one-dimensional scenario, by selecting the numerical Lagrangian as Lx,t(α11)+
Lx,t(α12) + Lx,t(α21) + Lx,t(α22), the update process for α can be carried out in parallel
across the variables α11, α12, α21, and α22.
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