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Abstract. We develop a class of barycenter problems based on mean field control problems
in three dimensions with associated reactive-diffusion systems of unnormalized multi-species
densities. This problem is the generalization of the Wasserstein barycenter problem for single
probability density functions. The primary objective is to present a comprehensive frame-
work for efficiently computing the proposed variational problem: generalized Benamou-Brenier
formulas with multiple input density vectors as boundary conditions. Our approach involves
the utilization of high-order finite element discretizations of the spacetime domain to achieve
improved accuracy. The discrete optimization problem is then solved using the primal-dual hy-
brid gradient (PDHG) algorithm, a first-order optimization method for effectively addressing a
wide range of constrained optimization problems. The efficacy and robustness of our proposed
framework are illustrated through several numerical examples in three dimensions, such as the
computation of the barycenter of multi-density systems consisting of Gaussian distributions
and reactive-diffusive multi-density systems involving 3D voxel densities. Additional examples
highlighting computations on 2D embedded surfaces are also provided.

1. Introduction

Interpolating and averaging multiple unnormalized densities is an essential problem in com-
puter vision, data science, Bayesian computation, and scientific computing [12, 37, 39]. The
averaging density is often called the barycenter [2]. One usually needs to solve optimization
problems to obtain the barycenter [3, 7, 12, 15–17, 22, 25, 38, 40]. It is frequently used to min-
imize information divergences, such as Kullback-Leibler divergence [5], among multiple input
densities. The minimizer forms the “center” of those input densities. In recent years, optimal
transport has introduced a class of distances between probability densities, namely Wasserstein
distances [41]. Distinguished from the information divergences, a critical feature of Wasserstein
distance is that it incorporates the ground costs in the sample space. Thus, the interpolation in
terms of Wasserstein distances, namely the Wasserstein barycenter problems, has been widely
studied [37,39] in areas involving density functions.

Meanwhile, mean field control problems (MFC) have been introduced [8,11,25], which gener-
alize optimal transport and Wasserstein distances. The MFC problems model general optimal
control problems of density evolutions, which come with flexible choices of initial/terminal den-
sities, running costs, and interaction costs during the density evolution. In this sense, the
optimal functional value in MFC problems also defines generalized type “distances” between
densities. More recently, [14,21,30,32] have introduced the MFC problems of reaction-diffusion
equations and systems. The MFC formulation models the evolution of multiple species densities
and controls the complex interaction behaviors between species. In addition, the MFC problem
of reaction-diffusion systems can also handle unbalanced densities from the source terms in the
reaction-diffusion systems.

In this paper, we formulate MFC barycenter problems for multi-species unnormalized den-
sities. These MFC barycenter problems generalize Wasserstein barycenters. Here the MFC
problem utilizes optimal control problems of multi-species densities following the formulation of
reaction-diffusion systems, where the running cost is with kinetic and interaction energies among
different species of unnormalized densities, and the constraint is based on the set of reaction-
diffusion systems. The MFC barycenter model is discretized using the high-order space-time
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finite element method [19]. We then solve the discretized variational problem by the primal-
dual hybrid gradient (PDHG) algorithm [13,24]. Numerical examples in three-dimensional and
complex two-dimensional surfaces demonstrate the effectiveness of the proposed computational
method.

In literature, Wasserstein barycenter problems have been widely studied, with applications
in statistical learning and computer visions [36, 37, 39]. Fast algorithms toward barycenter
problems are often based on the Kantorovich formulation of Wasserstein distances with the
entropic regularization, namely the Sinkhorn algorithm [37]. On the other hand, the Wasserstein
distance can also be defined using the dynamical formulation, known as the Benamou-Brenier
formula [6]. The dynamical formulation is a particular optimal control problem in density spaces,
which is a special case of MFC problems. Nowadays, MFC has been widely used in population
dynamics in financial markets [23], propagation of pandemics [28], etc. In this direction, the
MFC associated with reaction-diffusion systems has been proposed in [28], which models both
transport behaviors of populations and the complex interactions with multiple densities [27].
We note that the MFC has not been fully used in the modeling and computation of barycenter
problems, which is the subject of the current study. Our formulation is also motivated by the
reaction-diffusion systems from gradient flow formulations, known as Onsager principles [35].
This formulation allows us to obtain MFC-induced barycenters from complicated reaction terms
among different species and handle the unnormalized densities.

The paper is organized as follows. In Section 2, we briefly review the generalized Wasserstein
distance associated with the reaction-diffusion systems. These motivate us to define the general
MFC-based barycenter problems to interpolate unnormalized multi-species densities. In Section
3, we introduce numerical algorithms to solve the proposed MFC barycenter problems. We use
the space-time high-order finite element method to discretize the MFC problem and apply the
PDHG algorithm to compute the resulting discrete optimization problem. In Section 4, we pro-
vide numerical examples for densities in three-dimensional and surface domains to demonstrate
the quality of proposed MFC barycenters. We conclude in Section 5.

2. Methodology

In this section, we first review the generalized Wasserstein distance associated with reaction-
diffusion equations/systems. We then formulate the corresponding generalized Wasserstein
barycenter problem. Its detailed numerical discretization will be discussed in the next section.

2.1. Reactive-diffusive Wasserstein distances. In line with the preceding work in [19,21],
before we set up a mean-field control problem to compute the multi-density barycenter, we
need to construct a generalized Wasserstein distance metric that incorporates the reaction-
diffusion equations/systems. For a more detailed review of the underlying concepts of metric
distances, gradient flow, generalized optimal transport, and mean-field control problems, please
refer to [20,29,30,32].

We start by constructing the distance for the scalar case. We then generalize to the system
case. Throughout this manuscript, we denote Ω either as a 3D volume domain in R3 with
boundary ∂Ω, or a closed 2D surface domain embedded in R3. We denote ∇Ω and ∇Ω· as the
standard gradient and divergence operators when Ω is a 3D volume domain, or as the surface
gradient and divergence operators when Ω is a surface domain. Definitions of surface gradient
and divergence operators follow from the standard literature on surface PDEs; see, e.g., [18].

2.1.1. Scalar distance. On the spatial domain Ω, consider the following dissipative reaction-
diffusion equation for the non-negative density function ρ : [0, T ]× Ω → R+ [20, 30]:

∂tρ = ∇Ω ·
(
V1(ρ)∇Ω

δ

δρ
E(ρ)

)
− V2(ρ)

δ

δρ
E(ρ), on [0, T ]× Ω, (2.1)

where V1, V2 : R+ → R+ are both positive mobility functions, and E : M → R is an energy
functional with δE

δρ denoting its first variation with respect to the density function ρ in L2 space.

We define the space
M = {ρ ∈ C(Ω) : ρ ≥ 0} , ∀t ≥ 0, (2.2)
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and take the density ρ such that it satisfies ρ(t, ·) ∈ M. The PDE (2.1) is supplied with
homogeneous Neumann boundary conditions so that

V1(ρ)∇Ω
δ

δρ
E(ρ) · ν

∣∣∣∣
∂Ω

= 0, (2.3)

with ν denoting the outward unit normal direction on the boundary ∂Ω. We note that when Ω
has no boundary, such as a periodic volume geometry or a closed surface geometry, the boundary
condition (2.3) is ignored since ∂Ω = ∅ is an empty set. The PDE (2.1) is dissipative in the
energy functional E , which satisfies the following dissipation law.

d

dt
E(ρ) = −

∫
Ω

[∥∥∥∥∇Ω
δ

δρ
E(ρ)

∥∥∥∥2 V1(ρ) + ∣∣∣∣ δδρE(ρ)
∣∣∣∣2 V2(ρ)

]
dx ≤ 0. (2.4)

This energy law corresponds to a gradient flow in the metric space M. We describe the metric
in the following definition which characterizes the distance between densities ρ0, ρ1 ∈ M.

Definition 2.1. (Scalar reactive-diffusive Wasserstein distance) The distance functional

DistV1,V2 : M×M → R+

can be defined by considering the following optimal control problem:

DistV1,V2

(
ρ0, ρ1

)2
:= inf

ρ,v1,v2

∫ T

0

∫
Ω

[
∥v1∥2 V1(ρ) + |v2|2 V2(ρ)

]
dxdt, (2.5a)

where the constraint satisfies the following equation connecting the initial and terminal densities
ρ0, ρ1 ∈ M: {

∂tρ+∇Ω · (V1(ρ)v1) = V2(ρ)v2, on [0, T ]× Ω,
ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x),

, (2.5b)

with the homogeneous boundary condition V1(ρ)v1 · ν|∂Ω = 0. Here, v1 is the drift vector field,
v2 is the reaction rate, V1 is the drift mobility, and V2 denotes the reaction mobility.

Remark 2.1. In the above definition, if V1(ρ) = ρ and V2(ρ) = 0, this is the classical
Wasserstein-2 distance; see [6]. If V1(ρ) = ρ and V2(ρ) = ρ, this is the Wasserstein-Fisher-Rao
distance for unbalanced densities; see, e.g., [14, 31, 32]. If V1(ρ) = ρ, V2(ρ) = 1, it belongs to
the generalized unnormalized Wassrstein distance [26].

The control problem in definition 2.1 can be reformulated by the introduction of a flux
function m(t, x) : [0, T ]×Ω → Rd and a source function s(t, x) : [0, T ]×Ω → R such that they
satisfy

m(t, x) = V1(ρ(t, x))v1(t, x), s(t, x) = V2(ρ(t, x))v2(t, x). (2.6)

By using the above change of variables, the distance formula in (2.5) takes the form:

DistV1,V2

(
ρ0, ρ1

)2
:= inf

ρ,m,s

∫ T

0

∫
Ω

[
∥m∥2

V1(ρ)
+

|s|2

V2(ρ)

]
dxdt, (2.7a)

where the constraint is given as

∂tρ(t, x) +∇Ω ·m(t, x) = s(t, x), in [0, T ]× Ω,

m · ν = 0, on [0, T ]× ∂Ω,

ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x), in Ω.

(2.7b)

This optimization problem with linear constraints will be convex if we assume that the mobility
functions V1 and V2 are positive and concave.
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2.1.2. System distance. Analogous to the scalar case, the distance functional for the system case
comes from a reaction-diffusion system. We consider the following reaction-diffusion system with
N species undergoing R reactions [21,32]:

∂tρi = ∇Ω ·
(
V1,i (ρi)∇Ω

δ

δρi
Ei (ρi)

)
−

R∑
p=1

V2,p(ρ)γi,p

N∑
j=1

γj,p
δ

δρj
Ej (ρj) , ∀1 ≤ i ≤ N, (2.8)

which is endowed with homogeneous Neumann boundary conditions

V1,i (ρi)∇Ω
δ

δρi
Ei (ρi) · ν

∣∣∣∣
∂Ω

= 0, for 1 ≤ i ≤ N.

For species i, ρi denotes the density function which is defined such that ρi(t, ·) ∈ M, Ei : M → R
is its energy functional, and V1,i : R+ → R+ is its mobility function which is assumed to be
positive. In contrast, V2,p : RN

+ → R+ denotes the mobility function for the p-th reaction
for 1 ≤ p ≤ R, which is also considered positive. Moreover, ρ = (ρ1, · · · , ρN ) represents the
collection of all N densities. Finally, the coefficient matrix Γ = (γi,p) ∈ RN×R is chosen such
that the following constraint is met

N∑
i=1

γi,p = 0, ∀1 ≤ p ≤ R.

This is done to ensure the total mass conservation:

d

dt

∫
Ω

N∑
i=1

ρidx = 0.

Under the above-stated assumptions on all the functions involved, the PDE (2.8) can be shown
to satisfy the following energy dissipation law [21,32]:

d

dt

N∑
i=1

Ei (ρi) = −
∫
Ω

 N∑
i=1

∥∥∥∥∇Ω
δEi
δρi

∥∥∥∥2 V1,i (ρi) + R∑
p=1

∣∣∣∣∣∣
N∑
j=1

γj,p
δEj
δρj

∣∣∣∣∣∣
2

V2,p(ρ)

 dx ≤ 0 (2.9)

Similar to the scalar case, this energy law corresponds to a gradient flow in the metric space
MN . This metric characterizes the distance between density vectors ρ0,ρ1 ∈ MN .

Definition 2.2. (System reactive-diffusive Wasserstein distance) The distance functional

DistV1,V2 : MN ×MN → R+

can be defined by constructing the following optimal control problem

DistV1,V2

(
ρ0,ρ1

)2
:= inf

ρ,m,s

∫ T

0

∫
Ω

 N∑
i=1

||mi||2

V1,i (ρi)
+

R∑
p=1

|sp|2

V2,p(ρ)

 dxdt, (2.10a)

where the constraints satisfy the following equations connecting the initial and terminal density
vectors ρ0,ρ1 ∈ MN : {

∂tρi +∇Ω ·mi =
∑R

p=1 γi,psp, ∀1 ≤ i ≤ N,

mi · ν|∂Ω = 0, ρ(0, x) = ρ0, ρ(T, x) = ρ1,
(2.10b)

with the collection of flux terms m = (m1, · · · ,mN ), and the collection of source terms s =
(s1, · · · , sR).
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2.2. The MFC barycenter problem. For simplicity of presentation, we formulate the multi-
density barycenter problem with a cyclical reaction-diffusion system that form a closed graph
containingN vertices, representing density species, andN edges, representing strongly reversible
pairwise reactions. Furthermore, we take the forward and backward reaction rates both equal
to 1, which corresponds to the coefficient matrix Γ = (γ)i,p ∈ RN×N being such that

γi,p =


1, p = i

−1, p = i− 1

0, otherwise

. (2.11)

Remark 2.2. We note that while we focuses on the special case of Γ in (2.11) in the following
MFC barycenter formulation, our proposed numerical scheme can be naturally extended to the
case with N ̸= R with a more general coefficient matrix Γ.

Given a collection of densities ρ0 = (ρ01, · · · , ρ0N ), the Wasserstein barycenter is a density
function ϱ that minimizes the sum of Wasserstein distances to each density function ρ0i in ρ0;
see, e.g., [2]. In other words, we consider the following optimization problem

inf
ϱ∈M

1

N

N∑
i=1

DistV1,V2

(
ρ0i , ϱ

)2
,

with V1(ρ) = ρ and V2(ρ) = 0.
We now generalize the above Wasserstein barycenter problem by allowing reaction effects

among different species and a more general form of mobility functions V1,i and V2,i. We further
include a general potential functionalF : MN → R. This leads to the following MFC barycenter
formulation.

Definition 2.3 (MFC barycenter problem). We consider the following minimization problem:

inf
ρ,m,s,ϱ

∫ T

0

[∫
Ω

(
N∑
i=1

||mi||2

2V1,i (ρi)
+

N∑
i=1

|si|2

2V2,i(ρ)

)
dx−F(ρ)

]
dt (2.12a)

such that {
∂tρi +∇Ω ·mi = si − si−1, ∀1 ≤ i ≤ N,
mi · ν|∂Ω = 0, ρ(0, ·) = ρ0, ρ(T, ·) = ϱ1,

(2.12b)

where 1 = (1, · · · , 1) ∈ RN . The above minimization problem involving mobilities and interac-
tion energy is often named the MFC problem. In this sense, we call the minimization problem
(2.12) MFC barycenter problem, where the minimizer ϱ is the MFC barycenter of the density
vectors ρ0.

In our numerical simulations in Section 4, we make the following choices for the mobility
functions V1,i and V2,i:

V1,i(ρi) = ρi,

V2,i(ρ) = V2,i(ρi, ρi+1) = α
ρi − ρi+1

log ρi − log ρi+1
with α ≥ 0.

(2.13)

Moreover, we take a separable interaction functional F(ρ) =
∑N

i=1

∫
Ω Fi(ρi) dx, where Fi :

R+ → R is the potential density function for component i taking the following form:

Fi(ρi) = −βiρi log(ρi), βi ≥ 0. (2.14)

With these choices, the optimization problem (2.12) can be shown to be convex and admits a
unique minimizer. Note that if we set α = 0 and βi = 0, the above problem reduces to the
computation of the classical Wasserstein-2 barycenter problem [2] without any reaction effects.
The above choices of V1,i, V2,i have statistical physics interpolations, such as generalized Onsager
principles; see details in [32,35]. In this paper, we use these formulations to define and compute
generalized barycenter problems.
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2.3. The unconstrained optimization problem. We now reformulate the MFC problem
(2.12) as a saddle-point problem, for which a high-order finite element discretization will be
introduced in Section 3. To do so, we multiply the PDE constraints with corresponding Lagrange
multipliers ϕi and add to (2.12a) to obtain the following unconstrained problem:

inf
ρ,m,s,ϱ

sup
ϕ

∫ T

0

[∫
Ω

(
N∑
i=1

||mi||2

2V1,i (ρi)
+

N∑
i=1

|si|2

2V2,i(ρi, ρi+1)

)
dx−F(ρ)

]
dt

+
N∑
i=0

∫ T

0

∫
Ω
(∂tρi +∇Ω ·mi + si−1 − si)ϕidxdt,

(2.15)

where ϕ = (ϕ1, · · · , ϕN ) denotes the collection of Lagrange multipliers ϕi. Integrating the
second integral in (2.15) by parts, applying boundary conditions from (2.12b), and using the

short-hand notations (a, b)Ωt =
∫ T
0

∫
Ω a · bdxdt where Ωt = [0, T ]×Ω is the space-time domain,

and ⟨a · b⟩t=s =
∫
Ω a(s, x) · b(s, x)dx, we obtain

inf
ρ,m,s,ϱ

sup
ϕ

N∑
i=1

(
||mi||2

2V1,i (ρi)
+

|si|2

2V2,i(ρi, ρi+1)
, 1

)
Ωt

−
∫ T

0
F(ρ)dt

− (ρ, ∂tϕ)Ωt
−
(
m,∇Ωϕ

)
Ωt

−
(
s, ϕ̂

)
Ωt

+ ⟨ϱ,ϕ · 1⟩t=T −
〈
ρ0,ϕ

〉
t=0

,

(2.16)

where m = (m1, · · · ,mN ), ∇Ωϕ = (∇Ωϕ1, · · · ,∇ΩϕN ), and ϕ̂ = (ϕ1 − ϕ2, · · · , ϕN − ϕ1). We
can further simplify (2.16) by an introduction of a few new variables. Let ui = (ρi,mi, si) and
u = (u1, · · · ,uN ). Furthermore, let us define the operator D such that

Dϕi = (∂tϕi,∇Ωϕi, ϕi − ϕi+1), (2.17)

and let Dϕ = (Dϕ1, · · · ,DϕN ). Using these new variables, we can rewrite (2.16) into the
following unconstrained-saddle point form:

inf
u,ϱ

sup
ϕ

H(u)−
(
u,Dϕ

)
Ωt

+ ⟨ϱ,ϕ · 1⟩t=T −
〈
ρ0,ϕ

〉
t=0︸ ︷︷ ︸

:=L(u,ϱ,ϕ)

, (2.18a)

where

H(u) :=

N∑
i=1

∫ T

0

∫
Ω

[
||mi||2

2V1,i (ρi)
+

|si|2

2V2,i(ρi, ρi+1)

]
dxdt−

∫ T

0
F(ρ)dt. (2.18b)

We use the following function spaces for the saddle point problem (2.18), which ensure that all
terms in the Lagrangian L(u, ϱ,ϕ) stays bounded:

mi ∈ [L2([0, T ]× Ω)]3, (2.19a)

si ∈ L2([0, T ]× Ω), (2.19b)

ρi ∈ {µ ∈ L∞([0, T ]× Ω) : µ ≥ ϵ > 0, a.e.}, (2.19c)

ϱ ∈ {µ ∈ L∞(Ω) : µ ≥ ϵ > 0, a.e.}, (2.19d)

ϕi ∈ H1([0, T ]× Ω), (2.19e)

for all 1 ≤ i ≤ N . Note that here we require the density ρi and ϱ to be almost every positive
and away from zero in (2.19c) and (2.19d) to avoid the technical issue of division by zero in
H(u).

2.4. The MFC barycenter system. We conclude this section by formulating the critical
point system for the optimization problem (2.18a). We name the derived PDE system as the
mean-field control barycenter system.
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Proposition 2.1. (MFC barycenter system) The critical point (ρ,m, s, ϱ,ϕ) for the saddle
point problem (2.18) satisfies the following conditions: for 1 ≤ i ≤ N

mi

V1,i(ρi)
= ∇Ωϕi,

si
V2,i(ρi, ρi+1)

= ϕi − ϕi+1, (2.20a)

and 

∂tρi +∇Ω · (V1,i(ρi)∇Ωϕi)− V2,i(ρi, ρi+1)(ϕi − ϕi+1)

+ V2,i−1(ρi−1, ρi)(ϕi−1 − ϕi) = 0,

∂tϕi +
1

2
||∇Ωϕi||2V ′

1,i(ρi) +
1

2
|ϕi − ϕi+1|2

∂

∂ρi
V2,i(ρi, ρi+1)

+
1

2
|ϕi−1 − ϕi|2

∂

∂ρi
V2,i−1(ρi−1, ρi) +

∂

∂ρi
F(ρ) = 0,

(2.20b)

with the initial and terminal conditions

ρi(0, x) = ρ0i (x), ρi(T, x) = ϱ(x),

N∑
i=1

ϕi(T, x) = 0, on Ω, (2.20c)

and the boundary condition

mi · ν = 0 on [0, T ]× ∂Ω. (2.20d)

Proof. The critical point system is obtained by setting the first-order variation of the Lagrangian
L(u, ϱ,ϕ) to be zero. Hence, we have δL

δmi
= mi

V1,i(ρi)
−∇Ωϕi = 0 and δL

δsi
= si

V2,i(ρi,ρi+1)
− (ϕi −

ϕi+1) = 0, which implies (2.20a). Taking variation on ρi, we obtain

0 =
δL
δρi

=− ||mi||2

2V 2
1,i (ρi)

V ′
1,i (ρi)−

|si|2

2V 2
2,i(ρi, ρi+1)

∂ρiV2,i (ρi, ρi+1)

− |si−1|2

2V 2
2,i−1(ρi−1, ρi)

∂ρiV2,i−1 (ρi−1, ρi)− ∂ρiF(ρ)− ∂tϕi,

which is the backward equation for ϕi in (2.20b). Taking variational on the terminal density ϱ,
we get the boundary condition for ϕ:

δL
δϱ

=

N∑
i=1

ϕi(T, x) = 0.

Finally, taking variation on ϕi and applying integration by parts, we obtain

0 =
δL
δϕi

(δϕi) = (∂tρi +∇Ω ·mi − (si − si−1), δϕi)Ωt

+ ⟨ϱ(x)− ρi(T, x), δϕi(T, x)⟩t=T

− ⟨ρ0i (x)− ρi(0, x), δϕi(0, x)⟩t=0,

−
∫ T

0

∫
∂Ω
mi · νδϕidsdt.

for all δϕi ∈ H1(Ωt). This implies ∂tρi +∇Ω ·mi − (si − si−1) = 0 in Ωt, ρi(0, x) = ρ0i (x) and
ρi(T, x) = ϱ(x) on Ω, and mi · ν = 0 on [0, T ]× ∂Ω. This completes the proof.

□

3. High order discretizations and optimization algorithm

In this section, we present a detailed high-order finite element discretization to the optimiza-
tion problem (2.18). The variational structure of the problem (2.18) makes the finite element
method an ideal candidate. We refer interested reader to [6, 19–21] for related work.
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3.1. Finite-element discretization. The finite-element discretization for the optimization

problem formulated above in (2.18) follows the previous work in [19,21]. Let Ωh = {Sn}NS
n=1 be

a conforming triangulation, containing NS cells, of the spatial domain Ω , and Ih = {Im}NT
m=1

be a uniform discretization of the time domain [0, T ] comprising of NT intervals. The spacetime
mesh is taken to be the tensor-product mesh Ωt,h := Ih ⊗ Ωh. We assume the spatial mesh
Ωh consists of mapped cubic elements when Ω is a volume domain, or mapped quadrilateral
elements when Ω is a surface domain. Given these meshes, we make use of the following finite-
element spaces:

V k
h :=

{
v ∈ H1 (Ωt) : v|Im×Sn

∈ Qk (Im)⊗Qk (Sn) , ∀m,n
}

(3.1a)

W k−1
h :=

{
w ∈ L2 (Ωt) : w|Im×Sn

∈ Qk−1 (Im)⊗Qk−1 (Sn) , ∀m,n
}
, (3.1b)

Mk−1
h :=

{
µ ∈ L2(Ω) : µ|Sn

∈ Qk−1 (Sn) , ∀n
}
, (3.1c)

where k ≥ 1 denotes the polynomial degree, and Qk(Sn) is polynomial space on Sn formed by
taking a tensor-product of polynomials of maximum degree k in each coordinate direction. We
use the discontinuous L2 spaces to approximate the physical variables, since the system (2.18)
does not involve their derivatives. On the other hand, to approximate the N components of
the Lagrange multiplier ϕ, we use the H1-conforming space V k

h as (2.18) requires the spacetime
gradient of ϕ. Notice that, using the spaces defined above, the discrete version of (2.18) takes
the following form: Find the optimal point of the following discrete system

inf
uh,ϱh

sup
ϕh

Hh(uh)−
(
uh,Dϕh

)
Ωt,h

+ ⟨ϱh,ϕh · 1⟩t=T,h −
〈
ρ0h,ϕh

〉
t=0,h

, (3.2)

where we have the variables uh = (u1,h, · · · ,uN,h) with ui,h = (ρi,h,mi,h, si,h) and ϕh =

(ϕ1,h, · · · , ϕN,h). We take mi,h ∈ [W k−1
h ]3, ρi,h, si,h ∈ W k−1

h , ϱh ∈ Mk−1
h with ϱh ≥ 0 a.e., and

ϕi,h ∈ V k
h . Note that the spaces used to approximate the physical variables have a polynomial

degree one less than the space used for the Lagrange multipliers. When k = 1, we obtain a
staggered scheme in which the physical variables are stationed at the center while the Lagrange
multipliers are placed at the vertices of the mesh.

To evaluate the discrete integrals in (3.2), we use the Gauss-Legendre quadrature rule with
k quadrature points per spatial dimension. Since there are NT time elements and NS space
elements, the total number of quadrature points used to evaluate an integral on Ωt,h = I ⊗ Ωh

is (kNT ) × (kdNS), where d = 2 for the surface geometry and d = 3 for the volume geometry.

Let {χi}k
dNS

i=1 be the set of spatial quadrature points with and {τi}NT
i=1 be the set of temporal

quadrature points. Let {λi}k
dNS

i=1 and {θi}NT
i=1 be the sets of corresponding quadrature weights

respectively. Using these, the discrete integrals can be evaluated as:

(a, b)Ωt,h
=

kNT∑
i=1

kdNS∑
j=1

θiλja(τi, χk) · b(τi, χk), (3.3a)

⟨a, b · 1⟩t=T,h =

kdNS∑
j=1

λja(T, χj)b(T, χj) · 1, (3.3b)

⟨a, b · 1⟩t=0,h =

kdNS∑
j=1

λja(0, χj)b(0, χj) · 1. (3.3c)

Note that (3.3a) is used to evaluate the spacetime integral in Hh(uh) as well. In addition to
the Gauss-Legendre quadrature rule, we use tensor-product Gauss-Legendre basis functions for
the discontinuous spaces W k−1

h and Mk−1
h . This means that any function wh ∈ W k−1

h has the
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following form:

wh =

kNT∑
i=1

kdNS∑
j=1

wi,jψi(t)φj(x), wi,j ∈ R, wi,j = wh(τi, χj). (3.4)

For any i, j, the basis function satisfies the nodal property, i.e.,

ψi(τi′) = δii′ and φj(χj′) = δjj′ , (3.5)

where δij is the Kronecker-delta function with indices i and j. Similarly, for any function

vh ∈Mk−1
h , we have

vh =

kdNS∑
j=1

vjφj(x), vj ∈ R, vj = vh(χj). (3.6)

Therefore, thanks to these basis functions, the unknowns in problem (3.2) have the following
forms:

ρi,h =

kNT∑
j=1

kdNS∑
ℓ=1

ρi,jℓψj(t)φℓ(x), ρi,jℓ ∈ R+, ρi,jℓ = ρi,h(τj , χℓ), (3.7a)

ϱh =

kNT∑
j=1

kdNS∑
ℓ=1

ρjℓψj(t)φℓ(x), ρjℓ ∈ R+, ρjℓ = ϱh(τj , χℓ) (3.7b)

mi,h =

kNT∑
j=1

kdNS∑
ℓ=1

mi,jℓψj(t)φℓ(x), mi,jℓ ∈ R3, mi,jℓ =mi,h(τj , χℓ), (3.7c)

si,h =

kNT∑
j=1

kdNS∑
ℓ=1

si,jℓψj(t)φℓ(x), si,jℓ ∈ R, si,jℓ = si,h(τj , χℓ) (3.7d)

We highlight here that the combination of Gauss-Legendre quadrature rules and Gauss-
Legendre basis functions for the L2-conforming spaces W k−1

h and Mk−1
h brings about a notable

simplification of the optimization problem (3.2) as it decouples the degrees of freedom of the
physical variables uh and ϱh for a fixed value of the Lagrange multiplier ϕh. Consequently, it
becomes possible to independently solve the non-linear optimization problems for uh and ϱh at
each quadrature point. It is also clear from the first two equations in (3.7) that the positivity
of densities ρi,h and the terminal density ϱh are guaranteed at all quadrature points since at
these points their respective admissible sets require ρi,jℓ and ρjℓ to be non-negative. On the
other hand, the above-described features of the scheme do not depend on the choice of basis
functions for the continuous space Vh. In our implementation, we use nodal Gauss-Lobatto
basis functions.

3.2. Primal-Dual Hybrid Gradient Algorithm. To tackle the saddle-point problem in
(3.2), we apply the primal-dual hybrid gradient (PDHG) method [13]. Given parameters
σϕ, σu > 0, and initial guess (u0

h, ϱ
0
h,ϕ

0
h), the PDHG method performs proximal gradient ascent

on the variable ϕh and proximal gradient descent on the variable (uh, ϱh) alternatively. The
(k + 1)-th iteration of the algorithm takes the following form:

• Step 1: Proximal gradient ascent for ϕk+1
h :

ϕk+1
h = argmax

ϕh

−
(
uk
h,Dϕh

)
Ωt,h

+
〈
ϱkh,ϕh · 1

〉
t=T,h

−
〈
ρ0h,ϕh

〉
t=0,h

− 1

2σϕ

(
D(ϕh − ϕk

h),D(ϕh − ϕk
h)
)
Ωt,h

− 1

2σϕ

〈
(ϕh − ϕk

h) · 1, (ϕh − ϕk
h) · 1

〉
t=T,h

(3.8a)
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• Step 2: Extrapolation for ϕ̃k+1
h :

ϕ̃k+1
h = 2ϕk+1

h − ϕk
h (3.8b)

• Step 3: Proximal gradient descent for (uk+1
h and ϱk+1

h ):

ϱk+1
h = argmin

ϱh

〈
ϱh, ϕ̃

k+1
h · 1

〉
t=T,h

+
1

2σuh

〈
ϱh − ϱkh, ϱh − ϱkh

〉
t=T,h

(3.8c)

uk+1
h = argmin

uh

Hh(uh)−
(
uh,Dϕ̃k+1

h

)
Ωt,h

+
1

2σuh

(
uh − uk

h,uh − uk
h

)
Ωt,h

(3.8d)

3.2.1. Step 1: Solving for ϕk+1
h .

If we write (3.8a) as a minimization problem:

ϕk+1
h = inf

ϕh

(
uk
h,Dϕh

)
Ωt,h

−
〈
ϱkh,ϕh · 1

〉
t=T,h

+
〈
ρ0h,ϕh

〉
t=0,h

+
1

2σϕ

(
D(ϕh − ϕk

h),D(ϕh − ϕk
h)
)
Ωt,h

+
1

2σϕ

〈
(ϕh − ϕk

h) · 1, (ϕh − ϕk
h) · 1

〉
t=T,h

,

(3.9)

it becomes clear that the above is equivalent to solving the following elliptical problem: find
ϕh ∈ [V k

h ]
N such that for all ψh ∈ [V k

h ]
N(

D(ϕh − ϕk
h),Dψh

)
Ωt,h

+
〈
(ϕh − ϕk

h) · 1,ψh · 1
〉
t=T,h

=− σϕ

(
uk
h,Dψh

)
Ωt,h

+ σϕ

〈
ϱkh,ψh · 1

〉
t=T,h

− σϕ
〈
ρ0h,ψh

〉
t=0,h

.
(3.10)

We will solve (3.10) component-wise for each ϕi,h. To do so, we use a Gauss-Seidel type splitting
to break the cross-terms. Skipping details for brevity, we get the following solve for component
δϕi,h = ϕi,h − ϕki,h: for 1 ≤ i ≤ N , find δϕi,h ∈ V k

h such that for all ψi,h ∈ V k
h

(∂tδϕi,h, ∂tψi,h)Ωt,h
+ (∇Ωδϕi,h,∇Ωψi,h)Ωt,h

+ 2 (δϕi,h, ψi,h)Ωt,h
+ ⟨δϕi,h, ψi,h⟩t=T,h

=− σϕ

(
ρki,h, ∂tψi,h

)
Ωt,h

− σϕ

(
mk

i,h,∇Ωψi,h

)
Ωt,h

− σϕ

(
ski,h − ski−1,h, ψi,h

)
Ωt,h

+ σϕ

〈
ϱkh, ψi,h

〉
t=T,h

− σϕ
〈
ρ0i,h, ψi,h

〉
t=0,h

+
(
δϕk+1

i−1,h + δϕki+1,h, ψi,h

)
Ωt,h

−
〈∑i−1

j=1 δϕ
k+1
j,h +

∑N
j=i+1 δϕ

k
j,h, ψi,h

〉
t=T,h

,

(3.11a)

and
ϕk+1
i,h = ϕki,h + δϕi,h. (3.11b)

3.2.2. Step 2: Extrapolation for ϕ̃k+1
h .

Having solved for ϕk+1
h in the previous step, the extrapolation in this step takes the following

simple form

ϕ̃k+1
h = ϕk+1

h + δϕh = 2ϕk+1
h − ϕk

h. (3.12)

3.2.3. Step 3: Solving for uk+1
h and ϱk+1

h .

Equation (3.8c) is equivalent to the following solve: find ϱh such that for all νh〈
ϱh − ϱkh, νh

〉
t=T,h

= −σu
〈
ϕ̃k+1
h · 1, νh

〉
t=T,h

, (3.13)

which, by use of a Gauss-Legendre quadrature rule in conjunction with a nodal Gauss-Legendre
basis for the space Mk−1

h , reduces to the following pointwise solve at each integration point:

ϱh = ϱkh − σu

N∑
i=1

ϕ̃k+1
i,h . (3.14)
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Finally, to get the solver for uh, we set

ūh = uk
h + σuDϕ̃k+1

h (3.15)

and rewrite (3.8d) as

uk+1
h = argmin

uh

Hh(uh) +
1

2σu

(
uk
h − ūh,u

k
h − ūh

)
Ωt,h

. (3.16)

It is clear that with the choice of the basis functions for uh and the quadrature rule for the
numerical integration in (3.16), the above optimization problem can be solved separately in
parallel on each quadrature point. On each quadrature point, we have 5N unknowns from each
component of uh (3N for the fluxes mh, N for densities ρh, and N for sources sh). We further
simplify this problem by applying optimization on the fluxes mh and sources sh to get, for all
1 ≤ i ≤ N ,

mi,h =
V1,i(ρi,h)

σu + V1,i(ρi,h)
m̄i,h,

si,h =
V2,i(ρi,h, ρi+1,h)

σu + V2,i(ρi,h, ρi+1,h)
s̄i,h.

(3.17)

Replacing these expressions into (3.16), we get the following optimization problem for the N -
components of density on each quadrature point (τj , χℓ) for all 1 ≤ j ≤ kNT , 1 ≤ ℓ ≤ kdNS :

ρk+1
jℓ = argmin

ρjℓ≥0

N∑
i=1

||m̄i,jℓ||2

2[σu + V1,i(ρi,jℓ)]
+

s̄2i,jℓ
2[σu + V2,i(ρi,jℓ, ρi+1,jℓ)]

+
1

2σu
(ρi,jℓ − ρ̄i,jℓ)

2 − Fi(ρi,jℓ).

(3.18)

Finally, we approximately solve the above problem (3.18) sequentially for each component i,
which results in a single variable minimization problem for ρi,jℓ. This minimization problem is
solved using Brent’s minimization algorithm [10]. We borrow its implementation from the C++
Boost libraries [9], the details of which can be found on the documentation page [1]. Once ρi,h
are obtained for all i, we use the equations in (3.17) to recover mi,h and si,h.

3.3. PDHG parameters, initialization and stopping criteria. In the simulation, we take
the PDHG parameters σu = σϕ = 1, and set initial guess as zero except for the initial densities
ρh and ϱh, where ρh is set to be the initial data ρ0, and ϱh is taken as the arithmetic average
of the initial data ρ0. We terminate the PDHG algorithm either after a fixed number of
iterations or when the L1-norm of the difference between two consecutive terminal density
err = ∥ϱkh−ϱ

k+1
h ∥L1(Ω) < tol, where tol is a user defined tolerance. The theoretical convergence

study of this algorithm is out of the scope of the current work and will be investigated separately
in our future work.

4. Numerical Results

In this section, we present several numerical examples that demonstrate the effectiveness
and applicability of our proposed approach (3.2) for computing Wasserstein barycenters of 3D
volume and 2D surface data with reaction-diffusion effects. We take the terminal time T = 1.
The initial densities ρ0 = (ρ1, . . . , ρN ) are specified, which under the action of the scheme
(3.2), all flow to the same unknown terminal density ρT . For all simulations, both PDHG
parameters σϕh

and σu are set to 1. The specific choices of the mobility functions and the
interaction functional of the model are given in (2.13) and (2.14). The linear systems arising
in (3.11a) are solved using the preconditioned conjugate gradient method with a geometric
multigrid preconditioner, while the minimization in (3.18) is performed using Brent’s algorithm
in the range 10−6 ≤ ρi,h ≤ 40. The computations are performed using the high-performance
finite element C++ library MFEM [4]. The code for these numerical examples can be found in
the git repository: https://github.com/avj-jpg/WassersteinBarycenter.

https://github.com/avj-jpg/WassersteinBarycenter
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(a) t = 0 (b) t = 0.5 (c) t = 1.0

Figure 1. The Wasserstein barycenter of 3 Gaussian distributions without any reaction
effects.

Figure 2. Evolution of the L1-error err = ∥ϱkh − ϱk+1
h ∥L1(Ω) against the number of

PDHG iterations k.

4.1. Barycenter of three Gaussian distributions in 3D. Our first example concerns the
computation of the Wasserstein barycenter of three Gaussian initial densities given by

ρ1 = e−50((x−0.8)2+(y−0.5)2+(z−0.5)2) (4.1a)

ρ2 = e−50((x−0.35)2+(y−0.5−0.15
√
3)2+(z−0.5)2). (4.1b)

ρ2 = e−50((x−0.35)2+(y−0.5+0.15
√
3)2+(z−0.5)2). (4.1c)

The spatial domain is a unit cube Ω = [0, 1]3. We take the interaction strengths βi as well as
the reaction strength α to be 0, which results in the classical Wasserstein barycenter problem
with no reaction effects. The Wasserstein barycenter is also a Gaussian density with a center
located at the Euclidean barycenter of the centers of three Gaussian initial densities:

ρT = e−50((x−0.5)2+(y−0.5)2+(z−0.5)2). (4.2)

We perform our computations with a polynomial degree k = 4 on a spacetime grid with 16 ×
16 × 16 uniform cubical elements for the spatial variable and eight uniform line elements for
the time variable. The results are visualized in Figure 1, which shows the contours of the three
initial densities that evolve toward the terminal density over time. As foreseen, the terminal
density is a Gaussian with a center located at (0.5, 0.5, 0.5). We further plot the convergence

of error err = ∥ϱkh − ϱk+1
h ∥L1(Ω) against the number of PDHG iterations k in Figure 2. Clearly,

we observe an asymptotic linear convergence rate.
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t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(a) ρ1

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(b) ρ2

Figure 3. Shape interpolation in a torus-double torus system. Left-right shows the
time evolution of density. Top-down shows plots at different reaction strengths: α = 0,
α = 50, and α = 100.

4.2. 3D shape interpolation. In this subsection, we explore the application of our scheme
(3.2) to perform 3D shape interpolation. Shape interpolation, a fundamental concept in the
realms of computer graphics and computer vision, is a technique used to continuously morph
one 3D object into another, enabling a gradual transition between the two shapes and allowing
for the creation of smooth animations and visual effects. Shape interpolation by computing
Wasserstein barycenters was previously explored in [39] using convolutional Wasserstein dis-
tance.

We conduct a series of shape interpolation experiments by computing generalized Wasserstein
barycenters of several 2-species systems with varying reaction strengths, namely α = 0, α = 50,
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t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0.

(a) ρ1

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(b) ρ2

Figure 4. Shape interpolation in a double torus-bunny system. Left-right shows the
time evolution of density. Top-down shows plots at different reaction strengths: α = 0,
α = 50, and α = 100.

and α = 100. The densities are represented by normalized indicator functions on Ω = [0, 1]3

that are created by voxelizing 3D object files [33, 34]. The voxelization process is carried out
at a resolution of 256 × 256 × 256, and the total mass of the normalized indicator functions is
made equal to 1. The 3D objects we use in the experiments are the torus, the double-torus, and
the bunny. We use polynomials of degree k = 4 on a spacetime mesh with 32× 32× 32 uniform
cubical elements in space and four uniform line segments in time to perform the computations.
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t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(a) ρ1

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(b) ρ2

Figure 5. Shape interpolation in a bunny-torus system. Left-right shows the time
evolution of density. Top-down shows plots at different reaction strengths: α = 0,
α = 50, and α = 100.

Here, we take the interaction strength βi to be 0.001 for each i, which acts as a regularization
term in the optimization solver.

We present the results of our experiments using the panels in Figures 3, 4, 5. Each row in a
figure shows the time evolution of a particular density, with the overall density function plotted
along with a single contour surface (in white) where the density equals to 3. These are plotted
at regular intervals of ∆t = 0.2 from the initial time of 0 until the terminal time of 1. On
the other hand, each column shows the density and the contour at the three different reaction
strengths.
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Our results reveal that the computed maps ρ1(t) and ρ2(t) provide continuous interpolations
between the initial densities as each can be seen morphing into their mutual (generalized)
barycenter. We also observe that as the reaction strength α increases, the barycenter as well
as the intermediate shapes start resembling their Euclidean (L2) equivalents, as features of the
adjoining density start appearing at earlier times. Additionally, in cases where α is non-zero,
the barycenters share similarities but differ from those in the zero reaction case.

We conclude this subsection with discussions of a shape interpolation experiment involving
a 3-density system consisting of all three species we mentioned above. Firstly, we calculate the
barycenter with no reaction by setting α = 0, and then with the reaction by setting α = 50.
The mesh and voxel resolutions, as well as the polynomial degree, remain unchanged in the
discretization. The results are displayed in the panels of Figure 6. Similar to the results in
the 2 species experiments, we observe that the three initial densities gradually transform into
their barycenter, providing continuous intermediate interpolated shapes. In the case where the
reaction strength is non-zero, we can again observe the barycenter and the intermediate shapes
resembling the corresponding Euclidean averages.

4.3. Barycenter on 3D surface geometry. In this subsection, we employ our methodology
to calculate generalized Wasserstein barycenters on two-dimensional surfaces embedded in R3.
In our first illustration, we determine the barycenter of three Gaussian densities situated on
the cylindrical surface C × [−1, 1], where C = (cos θ, sin θ) : θ ∈ [0, 2π]. The expressions for the
densities are as follows:

ρ1 = e−20(x2+(y+1)2+2z2+2xz), (4.3a)

ρ2 = e−20((x−1)2+2y2+z2), (4.3b)

ρ3 = e−20(2x2+(y−1)2+z2−2xz). (4.3c)

We employ k = 4 degree polynomials on a spacetime mesh with 32 × 32 spatial surface
elements and four temporal line elements. We set the reaction strength α and the interaction
strength βi to 0 for this computation. The results are visualized in Figure 7, where the density
contours of all three densities are plotted on the same ambient mesh at regular intervals of 0.2
from the initial to the final time. One can see the three Gaussian densities gradually undergo
rotation and translation and meet at their mutual barycenter density at the terminal time t = 1.

Through our final numerical experiment, we further demonstrate the robustness of our scheme
by computing the barycenter of a 4-density system on a complex surface mesh shaped like a
dinosaur, obtained from the quadwild project https://github.com/nicopietroni/quadwild. The
initial densities are indicator functions located at the head, the tail, and two of the feet. For
this experiment, we use k = 4 polynomials on a spacetime mesh with 5758 spatial surface
elements and four temporal elements. Additionally, we take βi = 0.001 and α = 0.1. The
results are displayed in Figure 8, where contours of all four densities are simultaneously plotted
on the dinosaur mesh from t = 0 to t = 1. The initial indicator functions are smoothened upon
evolution and meet at their barycenter at the terminal time. The barycenter density is localized
around the dinosaur’s abdomen and appears to have a bimodal spread with a stronger peak on
the dinosaur’s right.

https://github.com/nicopietroni/quadwild
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t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(a) ρ1

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(b) ρ2

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

(c) ρ3

Figure 6. Shape interpolation in a bunny-torus-double torus system. Left-right shows
the time evolution of density. Top-down shows plots at different reaction strengths:
α = 0 and α = 50.

5. Conclusion

This paper studies a model of generalized Wasserstein barycenter problems based on MFC
variational formulations. We apply the generalized gradient flow formulation for reaction-
diffusion systems to obtain the generalized Wasserstein-2 distances with both transportation
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(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 7. Density evolution of three Gaussian distributions on a cylindrical surface
mesh.

and reaction mobilities. The averaging optimization of these generalized Wasserstein-2 dis-
tances introduces a new set of Barycenter problems. We apply the high-order finite element
methods to discretize spatial and time domains and then use the PDHG algorithm to compute
the discretized MFC-barycenter problems. Numerical examples in the two-dimensional surface
domain and three-dimensional volume domain demonstrate the effectiveness of the proposed
method.

In future work, we shall investigate the MFC-barycenter of general dynamics, including both
reaction-diffusion equations/systems and conservation laws. It can bring general physics equa-
tions and modeling into the computational average of densities from application problems in
computer vision and data sciences. We also plan to apply the current MFC-barycenter models
to compute realistic barycenters of density vectors on 2D or 3D complicated spatial domains.
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(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 8. Density evolution of 4 indicator functions on a dinosaur surface mesh.
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