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Abstract. We propose a monotone splitting algorithm for solving a class of second-order non-
potential mean-field games. Following [1], we introduce a finite-difference scheme and observe that
the scheme represents first-order optimality conditions for a primal-dual pair of monotone inclusions.
Based on this observation, we prove that the finite-difference system obtains a solution that can be
provably recovered by an extension of the celebrated primal-dual hybrid gradient (PDHG) algorithm.
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1. Introduction. The main goal of the paper is to introduce a new algorithm
for computing the solutions of the following system of PDE

-0 —vAY + H(t,x,Vo,p) = f(t,z,p),
(1.1) Owp —vAp—V - (pV H(t,x,V¢,p)) =0,
p(O,CC) = Po(l’)v ¢(T’ I) = g(l‘,p(T, ))

Here, we assume periodic boundary conditions; that is, (t,2) € [0,T] x T%, where
T = R?/Z is the d-dimensional flat torus. Furthermore, v > 0 is the noise (viscosity)
parameter, H is the Hamiltonian, f is the mean-field coupling function, and g is the
terminal cost function.

System (1.1) characterizes an equilibrium configuration for a continuum of agents
that play a non-cooperative differential game. Such games are called mean-field games
(MFG) and were independently introduced in [17, 18, 19] and [15, 14]. In this context,
p(t,z) and ¢(t,x) are, respectively, the distribution and optimal cost of the agents at
time ¢ and location .

We introduce a numerical method for (1.1) in the spirit of Benamou-Brenier
technique for solving optimal transportation and MFG systems [5, 6, 7, 9, 8]. In
these works, the authors observe that when H is separable; that is, H(z,p,q) =
Hy(z,q) — f(z, p), and suitable convexity, monotonicity, and structural assumptions
are met, (1.1) can be seen as a first-order optimality condition for a convex-concave
saddle-point problem. Such MFG are called variational or potential. Hence, one can
use various convex optimization algorithms for computing the solutions of (1.1) such
as the alternating direction method of multipliers (ADMM) [5, 6, 7] and primal-dual
hybrid gradient (PDHG) [9, 8].
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Here, we go beyond the potential and separable settings and provide a version
of PDHG algorithm to solve (1.1). Our essential observation is that under the so-
called Lasry-Lions monotonicity condition (1.1) can be seen as a primal-dual pair
of monotone inclusions where the monotone maps are not subdifferential maps in
general. We then solve (1.1) by a PDHG variant for monotone inclusions [22]. The
possibility of solving non-potential MFG using monotone inclusion variants of PDHG
was hinted on in [21] for nonlocal MFG systems.

For related work on non-separable MFG systems we refer to [20, 10] for policy
iteration and Newton’s methods, and [3, 13, 12] for monotone flows. In [20, 10], the
analyses strongly rely on the ellipticity and do not handle first-order systems (v = 0)
and non-smooth mean-field interactions (e = 0 in (2.7)). In contrast, we expect our
methods to extend to these singular cases mutatis mutandis due to the variational
nature of our techniques. Numerical experiments in subsection 4.2 and subsection 4.3
support our claim.

Works [3, 13, 12] address finite-state and stationary problems. Additionally, the
algorithms in these works are forward only and do not come with convergence guar-
antees for the time-discretizations of the monotone flows.

2. Numerical analysis.

2.1. A finite-difference scheme. We follow [1, 8] for introducing a semi-
implicit scheme for (1.1). For simplicity, we assume that d = 2. Let h,At > 0
be such that N}, = % € Nand Nr = Alt € N. We then introduce uniform space-time
grids

zij = (ih,jh), tx =kAt, 0<i,j<Ny—1, 0<k< Np.

To enforce periodicity, we assume that z;; = x;;; whenever i = ¢’ (mod N,) and
j =7 (mod Np,). Next, for a grid-function f[; = f(zi;,tx) we denote by

k _ fk k. _ fk
(lek)ij :wv (Dka)ij _ W’

(D, ¥ = ((lek)i;w (lek)(i—l)j» (D2f*),5, (Dka)i(j—l)) )

k k k k k
S  fn; iy + Fie) — 45
4h? ’

(A f*)i

(D k _fi]?rl - i];
tfij) =T Ar
We then introduce a discretization of the Hamiltonian Hpy (¢, x,q1, g2, g3, g4, p) that
satisfies the following conditions
e Monotonicity: Hp is nonincreasing in ¢i, g3 and nondecreasing in gz, q4.
e Consistency: Hy(t,2,q1,q1,q2,q2,p) = H(t,z,q,p) for all t € [0,T], z € T?,
p>0,and g = (q1,92) € R?,
o Differentiability: V,H}, is continuous.
o Converity: (q1,92,q3,q4) = Hn(t,,q1, 92,3, qs, p) is convex.
e Lasry-Lions monotonicity: A structural condition that yields existence and
uniqueness of solutions of (1.1) is the so called Lasry-Lions monotonicity;
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that is,

.

(2 ]-) <_8€H]§t, aj,q’p) %ﬁﬂf,q,p) > -
. t,x,q, >0,

w png(t?x7Q7p)

for all t € [0,T], (z,q) € T? x R?, p > 0. We require the same condition on
the discretized Hamiltonian; that is,

PV H(t,2,q1,92,05,44,p)
(2.2) —0,Hn(t, 7,491,492, 93,44, p) . R >0
’ Vo H (,2,91,92,93,94,
PV qH( a?q21 42,93,94,P) Png(t7$,(J17QQ,L]3,Q4,p)

for all t € [OvTL (I7Q17QQ7Q37Q4) € T? x R47 P > 0.
With these ingredients at hand, the discretization of (1.1) introduced in [1] reads as
follows:

—(Dihij)F — V(ARGM)ij + Hi(t, i, [Dnd¥lij, p5571) = [t i, o5t
(2.3) (Dypig)t — v(AnpFth) iy — Bij(tw, oF, pF+1, pP 1) = 0,
P?j = (po)ij, dﬁT = g(wij,pf?), 0<4,j<Np—1,0<k<Nr—1,

where
1
(Po)ij = 73 po(z)dz.
le—aijlloo<h/2
and
Bij(t, ¢, p,n)
1
E (pljathh t y Ligs [th)]l]’nlj) P(i— 1)]aq1Hh(t T(i— 1)]7[Dh¢}(z 1) M- 1)]))
1
+E (p(l+1)jGCI2Hh t y L(i+1)55 [Dh¢](1+1 YVis 1 (i+1)g) pzjanHh(t Lij, Dh¢ ijnzj )
1
"FE( angh t s Lijy [Dh¢]137nlj) p’L(] 1 aqu—Ih(t xz(g 1) [Dh(b]l(] 1) 771(] 1)))
1
+h (p7. (7+1) aq4Hh(t Ti(j+1)> [Dh(b]l(jJrl) 77:(;+1)) pzj6q4Hh(t Lij, Dh(b ijs Tij )

2.2. A discrete energy. Our goal is to formulate the discrete system (2.3)
as a primal-dual pair of monotone inclusions. Following [8], we denote by M =
RWNTHDXNuxNo Yy = (RY)NTXNoxNu - 1f = RNTXNoXNn and introduce operators
A: M—U, B:W — U as follows:

(Ap)f; =(Dipiz)* — v(Ap* ),
(Bw)fj Z(Dlwk’l)(zel)j + (Dyw™?);; + (Dzwk"g)i(jq) + (Daw* )5,
for 0<4,j < Np—1and 0 <k < Ny — 1. Direct calculations [1, 8] show that

(B*Gb)fj =— [Dp¢*lijy 0<k< Np—1,

i} 1
(A ¢)’LOJ = E sz7
(A*) = — (Digij) " = v(Ap* )iy, 1<k < Np—1,
Nr—1
(A*¢) :¢ij _V(Ahd)NT_l)”
v TTA i
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Furthermore, we denote by L;, the Legendre dual of Hj, defined as
4
(24) Lh(t,ﬂf,’(}l,’t}g,’vg,lhl,n) = sup (Z%‘Uz'Hh(taxa(Ih(IQ»QBa%ﬂ?)) )
q1,92,93,94 i=1
and denote by E}, the perspective function [11] of Ly; that is,
pLn (t,ln %,n) ;. p>0,
(2.5) En(t, 2, p,w,n) = { (vec Ly (t,2,-,n))(w), p=0,

oo, otherwise,
where the recession function rec Ly (t,x,,n) is defined as

Li(t
(rec Ly (t,2,-,n))(w) = lim n(t, @, vo + sw,n)

$—00 S

Above, vy € R?* is an arbitrary point such that Ly (¢, x,v9,1) < oco.
Next, we define J : M x W x M — RU {oo} as follows:

(2.6)
J(pawvn) = Z Eh(tkaxijapf;_lvwganf;_l) + Z F(tk,ﬂ?”,pfj—l)
0<4,j<Np—1 0<4,j<Np—1
0<k<Nr-—1 0<k<Nr-—1
1 N
* At Z G(wij, pi") + 1po=py»
0<¢,j<Np—1

where 0,F (t,z, p) = f(t,,p), and 0,G(z, p) = g(x, p). Additionally, 1 is the convex
characteristic function defined as

0, yeF,
1E(y)={oo ¢ E

Remark 2.1. A remarkable property of perspective functions is that Ey (¢, z, -, -, n)
is a convex lower semicontinuous function [11].

2.3. A congestion model. For concreteness, we consider the MFG model with
congestion discussed in [2]. More specifically, assume that

lq”
2.7 H(t,z,q,n) = —"——,
@7) () = 50
for some € > 0, and

4(8—1
(2.8) 1< p <2, 0<a§<55).

These conditions together with the monotonicity of p — f(¢,z, p) and p — g(z, p), and
suitable technical assumptions yield the existence and uniqueness of weak solutions
for (1.1) as analyzed in [2].

Following [1, 8], we discretize H in (2.7) as follows

((q0)> + (a3)* + (g5)* + (a1)*)P"?
B(n+ e~

(29) Hh(t7x7Q17q2aQ37q4777) =

and denote by K =Ry xR_ xRy xR_.
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LEMMA 2.2. Assume that Hy, is given by (2.9). Then for every (t,x) € R x T¢
and n > 0 we have that

(2.10)
’ 2+2+2+2t}’/2
Lh(t T, V1, U, V3, Vs 77) — (77+6)a(ﬂ 1)%7 (U17U27'03,’U4) € K?
o0, otherwise,
where 3/ = % Furthermore, we have that

(1 + €)' =D BJZ’;?_“ p>0, we K,
(2.11) En(t, 2, p,w,n) =50, (p,w)=(0,0),

oo, otherwise,

where w = (w1, wg,wg,w4).

Proof. We start by computing Lj. Suppose that (v1,ve,vs,v4) ¢ K; for instance,
let v1 < 0. Then we have that

Lh(ta$7U1,U2>U37U4777) 2 sup (_QIvl - Hh(t7x7ql707070777)) = sup (_CIlvl) = 0.
q1>0 q1>0

Now assume that (vq,ve,vs,v4) € K. The first order optimality conditions in the
concave program (2.4) yield

Ui:—8quh(t7$aQ17QQ»QS7CI4777)= 1 §Z§4
Furthermore, we have that
((q1)* + (g5)* + (g3)* + (¢))D)PP71

0q, H t,l‘, ’ ’ s 44> = Py i:1,37
qi h( 4d1,492,43,44 77) (77+6)a q;
—\2 +12 —\2 +12\8/2—1
8q1Hh(t7$7Q1aQ2aQ3>Q4777):((ql) +(q2) +(q3 )a+(q4) ) qj7 22214
(n+e)
Hence, the first order optimality conditions yield
—\2 +12 —\2 +1218/2—1
o )4 (@ )7+ (@) + (@) ) g
(n+e)
—\2 +12 —\2 +1218/2—1
o= WP+ @) (g + @ ey
(n+e)

and

((q1 )%+ (g2)* + (g5)* + (a4)*)" !
(77 + 6)20‘

((g0) + (a3)* + (g5)* + (af)*)P?
(n+e€)“ :

2 2 2 2
V] + vy +v3 vy =

—q1V1 — q2V2 — q3V3 — q4V4 =

Therefore, we obtain

La(t,vn, v, 00) = (1 1) (@) + (@ + () + (@)

ﬁ (77_|_€)o¢
= (1 _ 1> (n+©FT (v} + 03 + 0} + 03) 7D
B (77+6)a

v} +v3 + 03 +v3)F/?

_(y+ )o@ 3
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Next, we need to compute the recession function of Ly, (¢, x,,n). Since
Lh(t7 x, 03 07 07 07 77) = 07

we have that vg = (0,0,0,0) € dom Ly, (¢, x,-,n), and so we can compute the recession
function via

Ly(t
(vec Ln(t, 2, - ) (w) = lim 222501

5—00 S

Since Ly, (t,xz,w,n) = oo for w ¢ K we have that
(rec Lp(t,z,-,n))(w) =00, Yw ¢ K.

Furthermore, for w € K we have that

o Lp(t,x,sw,m) (B —1) 7 Jw|”
(rec Ly (t,z,,m))(w) —slgrolo — = 811)120(77 +¢) —
)0, w=0,
oo, w#0.
Summarizing, we find that
0, w=0
ec Ly(t,x, -, =< ’
(vee Ln(t, 2,7, ) () {oo’ o
and (2.11) follows readily. d

In [2], the authors point out that conditions (2.8) yield that H satisfies the Lasry-
Lions monotonicity condition (2.1). Here, we show that Hj, preserves that property.

LEMMA 2.3. Let Hy, be as in (2.9), and (2.8) hold. Then Hy, satisfies the Lasry-
Lions monotonicity condition (2.2).

Proof. Denoting by

((g1)* + (3)* + (g3)* + (a1)*)°"
B ’

(212) ¢(Q1,Q%QS7Q4) =
we have that

Hy(t,z,q,p) = (p+€) “Y(q),

where we denote by ¢ = (g1, ¢2,43,¢4). Then we have that

pHp = —alp+) " "P(q), VoHn= (p+€) “Vi(q),
PV O Hy = —ap(p+€) 7 'Vi(q), pViHy = p(p+€)*V?(q).

Hence, we have to prove that

< alp+ €)= 1(g) —éap(ere)“lVWJ(q)) >0
—Lap(p+ €)= *"1V(q) p(p+€)*V29(q)
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for all p > 0 and ¢ € R*. Note that the inequality is trivial when p = 0 because
¥(q) > 0 for all ¢ € R*. Hence, we can assume that p > 0. Factoring out a positive
number ap(p + €)~*"1 we arrive at an equivalent inequality

< ¥(a) _VT;)(q) )
P >0
S e S ()

Since 1 is convex, we have that V2¢(q) > 0. Additionally, from (2.8) we have that

pte, Pr
a T AB-1)

and so it is sufficient to prove that

( ¥(a) qu) )
p >0
Vi(q) 2
N 2q 4(/3 1)v ¥(q)
Next, since the previous inequality must hold for all ¢ € R*, we obtain an equivalent
statement if we replace g by pq; that is,

( ¥(pq) VT 9(pg)

n 2 >0, Vp>0,qe R
Vi =Y, )
2(pq) 4(gf1) V2¢(pq)>

Denoting by 1¥,(q) = w(g q)7 we find that the previous expression is nothing but

( Qpp(q) T’ﬁp(q) > 4
>0, Vp>0, qgeR~
Vi ) )

E(Q)) 4(Bﬁ—1)v2wl)(q)

Furthermore, due to the homogeneity of ¢, we have that ¥,(q) = p°~19(q), and so

¥o(q) SALAC) s-1( ¥(g) AL
= p
_ng(fI) 4(ﬁﬁ—1)v2wﬂ(Q) _Vfg(fI) 4(,@ v2,¢( )

The latter means that we need to prove that

I ) ’
v >0, VqeR®
< ¢2(Q) 4(6 3 v2,¢)( )

For every (£, x) € R x R* we have to prove that

T ¥(q) _¥ w(Q)
L
48 —1)
When t(q) = 0 we have that Vi(q) = 0, and the inequality follows from V2 (q) > 0.
Hence, assuming that ¥(q) > 0 and optimizing with respect to £, we obtain an
equivalent inequality

=E*(q) — EVY(q) - x + X V(g)x >0

|2
- o Va0
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or

 (FE9@VP00) - Vo) Vi) ) x 2 0

Denoting by
i=(-q1,4,~q3,40), for q=(q1,92,03 )
we have that
Vi(a) =131°7%q, Vu(e) = (8-2)d" 7@ q+ 3" > M(q),
where

M(q) = diag(Hvs(—q1), Hvs(g2), Hvs(—g3), Hvs(qa)),

and Hvs is the Heaviside step function. Hence we obtain that

S0V - Tile) © Vil
P 0 M) - P e d
I

and therefore we need to prove that
((a1)* + (a3)* + (g5)% + (a1)?)
X (3 Hvs(—q1) + x3 Hvs(g2) + x5 Hvs(—g3) + x4 Hvs(q4))
>(—qy X1+ 03 X2 — G5 X3+ 44 x4)*
The latter simply follows from the Cauchy-Schwarz inequality
4 4 4 2
>t 3> (3o
i=1 i=1 i=1
applied to
GIZ_Q;a a2:q;7 CLS:_QQ» G4ZQIa
by =x1 Hvs(—q1), b2 = x2 Hvs(q2), b3 = x3 Hvs(—g3), by = xa Hvs(qs),
and taking into account that
¢ Hvs(—q) =q¢~, ¢ Hvs(q) =¢", Hvs(q)> =Hvs(q), VgeR.

This completes the proof. 0

2.4. Properties of the discrete energy. Here, we discuss key properties of
the function J defined in (2.6).
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LEMMA 2.4. Assume thatn >0, and F(t,z,-), G(z,-) are conver and continuous
for p > 0. Furthermore, for (\,y,z) € {0,1} x M x W denote by

([ Ie? |w]?
(2.13) Iny,=(pyw,m) = A T—p-y—i-T—uwz + J(p,w,n).
Then the following statements are true.
1. The convex program
(2.14) inf Iny.z(p, w;m)

(1=X)(Ap+Bw)=0

admits a minimizer for all (A, y,z) € {0,1} x M x W.
2. When v >0 and A =0 all minimizers of (2.14) satisfy

(2.15) Pt >0, V0O<i,j<N,—1, 0<k<Np—1

Remark 2.5. The convex program (2.14) is analogous to the problem (P a:) in [8]
with the difference of having extra parameters A, y, z,7. Hence, the proof techniques
used in [8, Theorem 3.1] and auxiliary lemmas extend to setting of Lemma 2.4.

Remark 2.6. The convex program (2.14) is a shorthand for considering two pro-
grams

Ap;g{ﬂ:OJ(p,w,n)

and

2 2
inf{";'p-y+u;|w-z+(7(p7w,n)}

pyw

simultaneously. Both are important for our further analysis.

Proof of Lemma 2.4. 1. We argue by the direct method of calculus of vari-
ations. Fix a triple (\,y, 2) € {0,1} x M x W. According to [8, Lemma 3.1]
there exists (p,w) € M x W such that

(2.16) 5T >0, wf eint(K), VO<ij<N,—1, 0<k<Np—1,
and
(2.17) Ap+ B =0, p%=(po)ij, V1<i,j<Ny—1

Hence, Jy 4 -(p, w,n) < 00, and so

inf Troa(pyw,n) < Jx (5, 0,m) < 00.
(1*A)(22+Bw):0 N,z (0w, ) < Ty z (P, 0, 1) < 00

(a) When A = 0, for every (p,w) such that p > 0, p° = pg, and Ap+ Bw =0
one has that [8, Section 3]
& 1
Z Pij:ﬁa V0 <k < Nr,
0<i,j <Np—1

and so

1
(2.18) ngfjgﬁ, V0 <i,j<N,—1, 0<k< Np.
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Thus, taking into account the continuity of F, G and the fact that Ej >
0, we find that

inf J z\My Wy = inf J s Wy .
(1—)\)(1&13—&-311)):0 A, (p v 77) Ap—ﬁ%w:O (p v ?7) -
(b) When X = 1, the convexity of F(¢,z,) and G(t,x, ) yields

F(tka x’t]vpf_]+1) ZF(tkaxij’ 1) + (pfj+1 - 1)d§]+1

(2.19)
Glzij, piy") 2G(wij, 1) + (" — V)i

for some dfjﬂ € 0,F (tg,xi;,1) and r;; € 9,G(x;5,1). Thus, applying
Ej, > 0 in combination with the Cauchy-Schwarz inequality, we obtain

2 2 ~19 9
14 - w 0 P
Jl,y,Z(vaaU) Z % _py—F%—wz_cz _%_%_C’
where
G =yt —dS, 0 <k < Np -2
Gyt =y — iy =i,
— k+1 B
(220) €= . Z (dlj - F(tkv Zij, ]-))
OSZJSN}L_l
0<k<Nr-—1
1 N,
AL Y (T =Gl ).
0<4,j<Np—1
Hence

. f J Z ’ 4 = i f'] I’ ’ - .
(17)\)(224»31”):0 Ay, (p w "7) })I,lw l(p w 77) > o0

From (a), (b) above, we find that the infimum in (2.14) is always finite. Let
(pn,wy) be a minimizing sequence for (2.14). Then we have that

Iny,z(pnywn,m) <O, V> 1,

for some C' > 0. Our goal is to show that the sequence {(p,, w,)} is bounded
and extract a convergent subsequence. Again, let us discuss two cases.
(a) When A = 0, taking into account (2.18) for p, and the continuity of
F, G, we have that
(2.21) En(tr, Tig (pn)fj_la (wn)fjv nfj-’—l) < CN’?
forallm >1,0<4,j < Np—1,0< k< Np—1, and some C > 0. Hence
if (pn)ffl > 0 then

& /B/ 1 ﬁlfl - %
(2.22) [(wn)i;] < D\ 12 cl .

It (pn)fjJrl = 0 then we necessarily have that (w,)¥; = 0. Thus, in any

17
case (2.22) holds for all ¢, j, k.
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(b) Let A =1, and ¢, ¢,d,r be as in (2.19) and (2.20). Then we have that

|pn|2 ~ |wn|2
CZJI,y,z(pnawnvn) 2 T_pn'y"i_?_wn'z_c
2 2
le;;' 4 |w2| _|g|2_|2|2_c,
and so
2 2
%+% <|gP+ |z +c+C, Vn>1.

Thus, for both cases A = 0 and A = 1 the minimizing sequence {(p”,w™)}

is precompact, and there exists a (subsequential) limit (p*, w*) € M x W.

Since p, > 0, (p,)° = po and (1 — \)(Ap, + Bw,,) = 0, we have that
520, (570 =po, (1—N)(Ap" + Bur) = 0.

Furthermore, taking into account the lower semicontinuity of Ey(t,z,-,, 1)
(see Remark 2.1) and the continuity of F, G we obtain that

Iay,z(p" 5w, m) < lim inf Iny,z(Prs Wi, M),

and so (p*,w*) is a minimizer for (2.14).
2. See the proof of the analogous statement in [8, Lemma 3.2]. d

Denote by

1
(223) Po=<neM : >0 n°=p, > nszﬁ,vngNT,

0<ij<Ny—1
and
(2.24) Pi={neM :n>01"=po, n*><c},
where
Cal 12 4 122 I )
oo =4{ g+ P et =yt > Fltg i, 1)
0<i <Ny —1
0<k<Np—1

+$ > G(mij,1)>,

0<4,j<Np—1
ﬁo =po, ﬁfj_l :17 VOSkSNT_la
and §,c,d,r are as in (2.19) and (2.20).
Furthermore, for n > 0 and (\,y,2) € {0,1} x M x W denote by

(2.25) Say:(n) = {p* © Jwt e Wst. (pF,w") € argmin J)\yyyz(mw,n)}.
(1=A)(Ap+Bw)=0
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LEMMA 2.7. Assume that F(t,z,-) and G(x,-) are convexr and continuous for
p >0, and (A y,2) € {0,1} x M x W. Then the set valued map Sy .. : Px =2 Pa
admits a fized point; that is, there exists p* € Py such that p* € Sx 4, .(p*).
Proof. Our strategy is to apply Kakutani’s fixed point theorem [16]. Hence, fix a
triple (A, y,2) € {0,1} x M x W.
1. Lemma 2.4 yields that Sy, .(n) # 0 for all n > 0.
(a) When X\ = 0, we have that for all p* € Sy, .(n) there exists w* € W
such that

(p*,w*) € argmin J(p,w,n).
Ap+Bw=0

Hence, p* € Py, and so Sp y..(n) C Py for all n € Po.
(b) When A = 1, we have that for all p* € Sy, .(n) there exists w* € W
such that

(p*,w") € argmin J1y . (p, w,n),
pyw
and so

iy, (p" w*,n) < Jiy.2(p,0,n).

Hence, applying lower bounds on J; 4 . as in Lemma 2.4 we obtain

* |2 w* 2 _
% + % <117 + |2 + e+ J1y.2(p,0,m).
Noting that
J1<ﬁ707n)

L e Y Fleagp4a Y Gl
2 - P AL "

0<4,j<Np—1 0<%,j<Np—1

0<k<Np—1

we conclude that p* € Py, and so Sy 4,.(n) C Py for all n € P;.

Summarizing (a), (b) above, we conclude that Sy, .(n) C Py for all n € Pj.
Additionally, the convexity and continuity of F(¢,z,-) and G(z,-) yield that
JIry,2 (-, n) is convex and lower semicontinuous, and so

argmin J/\,y,z(p7 w, 77)
(1-X)(Ap+Bw)=0
is a closed convex set. Thus, Sy, -(n) is also closed and convex.
2. Assume that {(n,, pn)} C Px x Py is such that p, € S y,.(n,) for all n > 1,
and

i (1, pn) = (1), P)-

Since P, is compact, we have that /) € Py. Furthermore, let w,, € W be such
that

(pn,wp) € argmin Iny,=(psw, ).
(1-A)(Ap+ Buw)=0
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Fix a (p,w) € M x W such that (2.16) and (2.17) hold. Then we have that

JA,y,Z(Pnawnann) S J)\,y,z(ﬁvwann)a vn 2 1

Furthermore, we have that

nlggo Iny,z (D, W, 1n) = JA,y,Z(ﬁvUN)a 7)) < oo.

Hence, there exists C' > 0 such that

ll® | 12
[\ 9 + 9 + J(pnawnann) < J/\,y,z(,()n,’wn,’l]n) < C’ Yn > 1,

and so

i | 121

Since {p,} is a bounded sequence and F(t,x,-), G(z,-) are continuous, we
obtain that

(2.26) 0 < Enlte, iy, (pn)5 (wa)y, ()i < €,

ij ij? ij
for0<i,j < Np,—1,0< k< Np—1, and some C > 0. Next, denote by
2 2 2 2\8"/2
%7 (’U17027U37v4) S K7

Z(/Ula U27U37’U4) - {

oo, otherwise.

The corresponding recession function is then

(w}twl fudtwi)®’/?
. B'pf 1 ’
E(p7w1’w2’w3’w4) =30, (pvwl;w27w3aw4) = (0a0507070)a

oo, otherwise.

(w1, wa, w3, wy) € K,

Note that for n > 0 we have that

(2 27) Lh(t7 x,v1,V2,03,V4, 77) :(T} + e)a(ﬁlil)g(vlv V2, V3, U4)7
. Eh(ta x7w17w27w37w47n) :(77 + E)a(ﬁl_l)g(pvwla w27w37w4)~

Taking into account 7,, > 0 and (2.26) we obtain
C

7, k+1 k
(2.28) 0<U(p) (wa)s) < — 55

ij
In particular, we find that (2.22) holds. Thus {(pn,w,)} is precompact, and,
possibly through a subsequence, we have that

lim (pp, wy) = (p, ).

n—0o0

Hence, we have that

p° = lim (pn)° =po, p= lim p, >0,
n— oo n— o0
(1= \)(Ap + Bid) = lim (1 — A)(Apn + Buw,) = 0.

n—oo
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Additionally, using the lower semicontinuity of ¢, we find that

. k k
ILHAIOI(l)f En(te, zij, (pn)ij—i_lv (wn)fjv (nn)i;_l)

P k+1 a(p’—1 ) k+1 k
> Tim inf((n,)55" + € * = liminf 0((pn)5, (wn))

> (5T + P TVUPET ) = Bute,wig, o5 0, 5,
forall 0 <4,7 < Np—1,and 0 <[ < Np — 1. But then we have that

hnHi)loI})f J)\,y,z(pna Wny, 7771)

2 2
zliminf)\<|pg| —pn Y+ [n] —wn~z>

n—00 2
+ Z hnrgioréf Eh(tka Lij, (pn)fj—lv (wn)fja (nn)fj—i_l)
0<¢,j<Np—1
0<k<Np—1
+ Y lminf Pt o (o))
0<i,j<Np—1
0<k<Np-—1
1 ..
;D lminfGlai, (o))
0<i,j<Np—1
A2 ~12
+ Z B (e, wij, i iy, i)
0<i,j<Np—1
0<k<Np—1
1
~k+1 ~N-
+ Z F<tk>xijapij+ )+ At Z G5, p3;")
0<i,j<Np—1 0<4,j<Np—1
0<K<Np—1

:J)\,y,z(ﬁa Qf), ﬁ)

Now fix (p,w) € M x W be such that p° = pg, and (1 — \)(4p + Bw) = 0.
Our goal is to prove that

J)x,y,z (/37 w, 77) < Jx\,y,z(p7 w, 77)’

so that p € Sxy,- (7).
If Jxy.2(p,w,7f) = oo, the inequality is trivially true. Hence, assume that
Iry,2(p,w, ) < oo. Note that this implies that Jy, .(p,w,n) < oo for all
n > 0. We have that

J)\,y,z(pnawnvnn) < J/\,y,z(P’waTln), Vn > 1,
but then
Iny,2 (P, W, ) <lminf Jx - (pn, W, n) < lminf Jy 4 (0, w,nn)
n— o0 n—oo
- nh—>120 J)\,y7z(p7 w, nn) = J)\,y,z(pa w, 77)

Hence, S ,,. maps all n € P, to nonempty closed convex subsets of Py and has
a closed graph. Therefore, Kakutani’s theorem [16] implies that Sy, . has a fixed
point. 0
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COROLLARY 2.8. Assume that F(t,z,-) and G(z,-) are convex and continuous
for p >0, and for (p,w) € M x W denote by

a wJ , W, ’ 20’
(229) Klpyw) = § o070

0, otherwise.

Then K is maximally monotone.

Remark 2.9. Note that in (2.29) we first differentiate J with respect to (p, w) and
then plug in n = p. This should not be confused with J(, .,/ (p, w, p).

Proof of Corollary 2.8. By Minty’s theorem [4, Theorem 3.5.8] we have to prove
that IC is monotone, and I + K is surjective. We start with the latter.
1. Surjectivity. Assume that (y,z) € M x W are arbitrary. By Lemma 2.7 we
have that there exists p* € Py such that p* € S1, . (p*). Hence, there exists
w* € W such that

(p*,w*) € argmin Jy , . (p,w, p*).

pyw

Consequently, we have that

(07 0) S a(p_’u))Jl,y,Z (p*7 w*7 77)

n=p*

Furthermore, we have that
J1y,z(p,w,m) = @ —wzﬁ% —w-z+J(p,w,n),
and
(p, w) — g—p-zﬂr#—w-z

is continuously differentiable. Hence, we obtain
Op.wdyz(p,w,n) = (p,w) = (y,2) + Iy (p,w0,n),
and so
(0,0) € (", w") + K(p™,w") = (y,2) == (y,2) € (", w") + K(p", w").

2. Monotonicity. The convexity of F(t,x,-) and G(z, -) and the separable struc-
ture of J at the grid points yield that it is sufficient to prove that

8p’wEh(ta$aPaw»n) 9 pZ O
eh(taxap7w) = n=e
(), otherwise
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is monotone. Applying [11, Proposition 2.3], we obtain

eh(t7337/)7 ’LU)

_Hh(t7xaQ7p)7_Q) : qe _ath(taz7%7p)}a p>07

=31 —q) = p+ Hu(t,z,q,p) <0}, (p,w)=(0,0),
(), otherwise.

(2.30)

Now assume that

(y’i7zi) € eh(taxyp’hwi)a i1=1,2.

We have to show that

(y2 —y1)(p2 — p1) + (22 — 21) - (w2 —wy) > 0.

Since the case (p1,w1) = (p2,ws) is trivial, we assume that (pi,w;) #
(p2,ws). Hence, up to swapping (p1,w;) and (pa,ws), there are two pos-
sibilities:

(a) p1,p2 > 0. In this case, (2.30) yields that there exist g1, g2 such that

wj .
yi = —Hp(t,z,qi,pi), 20 = —is ¢i € —0uLn(t,x, flypi% i=12

K3
But then the Legendre duality yields that
w; = _piquh(t7xuqi7pi)7 1= 1a27
and so we have to prove that

(_H}L(taquQap2) + Hh(t7x7q17p1))(p2 - pl)
+ (p2VoHp(t, x,q2, p2) — p1VeHp(t, 2, q1,p1)) - (@2 — q1) > 0.

This inequality is equivalent to the monotonicity of the map

(231) (pa Q) = (7Hh(t7xaQ7p),pquh(t,xapa q))? P Z 07 qc R4'

Since the map is continuously differentiable, its monotinicity is equiva-
lent to the positive definiteness of the symmetric part of its Jacobian.
Note that the Jacobian is given by

( —0,Hy, —VqTHh>
Vth + pvqath pngh ’

and so its symmetric part is

(1 —0,Hy, ;w;a,,m) .
§pvq3th pngh

Thus, the monotonicity of (2.31) is equivalent to the Lasry-Lions mono-
tonicity condition of Hj, which is proven in Lemma (2.3).
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(b) p1 =0, p2 > 0. In this case, (2.30) yields
wy =0, y1 < —Hp(t,2,q1,0), 21 = —q1,
and
Yo = —Hp(t,,q2,p2), 22 = —q2, g2 € =0, Ln(t,, %apz)
Hence, we have that
w; = —p;VHp(t, x,q:,pi), 1=1,2,
and we need to show that

(—Hp(t,x,q2,p2) — y1)(p2 — p1)
+ (2VgHn(t,z,q2, p2) — p1VHi(t, z,q1,p1)) - (@2 — q1) > 0.

But inequalities y1 < —Hp(t,z,q1,0) and pa — p1 = p2 > 0 yield that

(—Hn(t, 2, g2, p2) — y1)(p2 — p1)

+ (p2VoHi(t, , g2, p2) — p1VeHu(t,x,q1,p1)) - (g2 — 1)
>(—Hp(t,z,q2, p2) + Hy(t,2,q1,p1))(p2 — p1)

+ (p2VgHn(t, 2z, q2,p2) — p1VHn(t, 2, q1,p1)) - (g2 — 1) 2 0,

where the last inequality follows from the monotonicity of (2.31) proven
in (a). O

2.5. First-order optimality conditions.

LEMMA 2.10. Let n > 0, and assume that F(t,z,-) and G(z,-) are convex and
continuous for p > 0. Then the following statements are true.
1. (p,w) € M xW is a minimizer for (2.14) with A = 0 if and only if

(232) (A*¢7 B*(ZS) € a(p,w)J(pa w, n)a Ap + Bw = 07
for some ¢p € U.

2. If (2.15) holds and F(t,z,-) and G(z,-) are differentiable for p > 0, (2.32) is

equivalent to

(2.33)
—(Diig)F = v(And™)ij + Hi(wig,nl5t [Dadij) = fth, wig, o),
why = =t VaHa(@ig, n;™, [Dad"]),

(Dyipij)* — v(AppFth) s + (Bw)k; =0,
p% = (po)ijs 0" =g(@ijopiy”), 0<i,j<Npy—1, 0<k<Np—1

3. If (2.15) holds and F(t,x,-) and G(z,-) are differentiable for p > 0, (2.3) is
equivalent to

(2.34) (A*¢, B*¢) € K(p,w), Ap+ Bw =0,

where K is defined in (2.29).
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Proof. 1. Since (2.14) is a convex program with affine constraints, KKT

conditions are necessary and sufficient for optimality. To obtain the KKT
conditions, we introduce a Lagrange multiplier, ¢, for the constraint Ap +
Bw = 0 and find

Ap-i}%ﬁuzo J(pwm) = (p,w)len/\f/txw 21615 e w,m) = (dp+ Bu, 6))

= inf sup {J(p, w,n) — {p, A*p) — (w, B*¢)},
(p’w)eMde)Eg{ (psw,m) = {p, A"¢) — (w, B*¢)}
which yields (2.32).
. Next, assume that (2.15) holds. In what follows, we use that for every p > 0,
17 >0, and w € K one has that [11, Proposition 2.3]

w
8(p,w)Eh(t7x7p7w7n) = {(_Hh(taxaq7n)7 _q) IS —8th(t,$, pﬂ?)} .

Hence (2.32) is equivalent to

(2.35)
k

w;
—[Dn¢")ij €05 L (t, x5, pa g,
)
—(thﬁij)k — V(Ah(bk)ij = — Hh(tk,$¢j7 [Dh(bk]ij; 771]'6]%1) + f(tkaxij7p§j+1)u
d)NT_l

iint — (AR Y)ij = = Hu(tnp—1, Tij, [Dud™" " ijuny")

9(%57 PZT)
At '

forall 0 <4i,j < Nj—1and 0 < k < Np—1. The second and third equalities
can be combined in a system
(2.36)

—(Digij)* = v(AndM)ij + Hu(tk, xij, [Dad®ig, ™) = ftn, zi 05,
" = g(@ij, "), VO<ij < Ny—1,0<k<Np—1.

+ fltnp—1, i, P ) +

Next, using the convex duality again, we find that the first inclusion in (2.35)
is equivalent to the equality

k

wk k k+1
P’?,Zl = —VoHn(tr, @iz, [Dud" i iy ),
ij

forall0 <i4,j < Np—land 0 < k < Np—1, since Hy(t, z,q,n) is continuously
differentiable in ¢ for n > 0. Combining this previous identity with Ap+Bw =
0 we obtain

(Dipij)F = v(AnpFth)ij + (Bw)j; = 0,
(2.37) wh; = —pi Vg Hy (wig, nit (D)),

P = poij, 0<i,j<N,—1,0<k<Np—1

Finally, combining (2.36) and (2.37) one obtains (2.33).

3. This follows from part 2 and the definition of K. O
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COROLLARY 2.11. Assume that v > 0, and F(t,z,-) and G(z,-) are conver and
continuous for p > 0 and differentiable for p > 0. Then (2.3) admits a solution.

Proof. By Lemma 2.7 we have that there exist (p*, w*) such that

(p*,w*) € argmin J(p,w, p").
Ap+Bw=0

Furthermore, by Lemma 2.4 we have that

(P)5 >0, 0<k<Np—1,0<ij<N, -1

ij
Hence, Lemma 2.10 yields ¢* such that (p*, w*, ¢*) solves (2.3). |

3. A pair of primal-dual monotone inclusions. The formulation (2.34) is
the basis of our computational method. We first recall monotone inclusion version of
PDHG. Following [22], assume that H1, Ho are Hilbert spaces, and M : H; — 271,
N : Hy — 272 are maximally monotone operators, and C : H; — Hs is a nonzero
bounded linear operator. Now consider the following pair or primal-dual monotone
inclusions

find x € Hy s8.t. 0 € Mz + C*(N(Cz)) (P)

3.1
(3:-1) find y € Ho s.t. y € N(Czx), —C*y € Mz, for some xz € H; (D)

When M, N are subdifferentials of proper convex lower semicontinuous functions; that
is, M = 9f1, N = 0fs, (3.1) reduces to a convex-concave saddle point problem

f{fu(@) + fo(Cr)} =infsup {£1(2) + (C y)we = L2(0)}

(3.2) =sup {=fi(=C*y) — fo(y)}.

System (3.1) can be solved by an extension of the celebrated PDHG algorithm:

"t = (I +7M)7t (2™ — 7C*y")
(3.3) Fntl — guntl _gm
yn+1 — (I_,’_aNfl)fl (yn —I—O’C;fnJrl)

where 7,0 > 0 are such that 7o < W
Our goal is to formulate (2.34) in the form of (3.1) and solve it via (3.3).

THEOREM 3.1. Assume that F(t,x,-), G(z,-) are convex and continuous for p >
0, and denote by

M(¢) =0, C(¢) = (A%¢,B*¢), ¢€ll,

34 N(p,w) =K~ (p,w), (p,w) € M xW.

Then the following statements are true.
1. M, N are mazimally monotone, and (2.34) is equivalent to the pair of primal-
dual inclusions

(3.5)
find ¢ s.t. 0 € M(¢) +C*(N(C¢)) (P)
ﬁnd (P,w) s.t. (P,w) € N(C¢)7 - C*(paw) € M(¢)a fOT‘ some ¢ (D)
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2. The problem (3.5) admits admits at least one solution.

3. When v > 0 and F(t,z,-) and G(x,-) are differentiable for p > 0, (3.5) is
equivalent to (2.3).

4. When v > 0 and F(t,z,-) and G(x,-) are differentiable for p > 0, the algo-
rithm

¢7L+1 _ ¢n _ T(Apn + Bwn)
(3.6) "t =2¢"t! —gn
(pn+17wn+1) _ (I+U’C)71 (pn +0A*¢3n+17wn +JB*(,Z~5H+1)

yields a solution for (2.3).

Proof. 1. Trivially, we have that M is monotone, and I+M = I is surjective.
Hence, by Minty’s theorem [4, Theorem 3.5.8] M is maximally monotone.
Furthermore, by Corollary 2.8 we have that K is maximally monotone, and
so N = K~ is also maximally monotone [4, Section 3.5.2].

Furthermore, the equivalence of (2.34) and (3.5) follows directly from the
definitions of N and C' since

(p,w) € N(C(¢)) <= (479, B"9) € K(p, w).

2. By Lemma 2.7 we have that there exists (p*,w*) such that

(p*,w*) € argmin J(p,w,p").
Ap+Bw=0

Hence, by part 1 in Lemma 2.10 we have that there exists ¢* € U such that

(476" B6") € Oy pown)| =Ko w'), g+ Bu’ =0,
which is precisely (2.34). Thus, we conclude by part 1 above.
3. This follows from part 3 in Lemma 2.10 and part 1 above.
4. This follows from [22], and part 3 above. d

3.1. Grid-size independent time-steps. The convergence of (3.6) might be
very slow for fine grids. The reason is that 7,0 > 0 must satisfy is 70 < ﬁ But
C(¢) = (A*¢p, B*¢) is a discretization of differential operator (—0;¢ — vA®, —Vo)
that is unbounded. Thus, ||C|| — oo in the continuous limit; that is, when the grid
gets finer. Consequently, 7,0 > 0 should be very small slowing down the convergence.

To remedy this previous issue, we will choose the norm in &/ in such a way that
IC|| =1, and so 7,0 > 0 should just satisfy 7o < 1. This procedure will be equivalent
to a suitable preconditioning of the ¢ update in (3.6).

Consider the following inner product in U:

(b1, 02)x =(Ch1,Cha) = (C*Cr1, p2) = ((AA* + BB* )1, ¢2), V1,02 €U,

where the inner products without % are the standard ones. Note that (-, -), is bilinear,
and

0=¢l? = ICo|]*> = [[A*||” + || B*¢|?

yields ¢ = 0. Hence, (-, ), is indeed an inner product on U.



MONOTONE INCLUSION METHODS FOR MEAN-FIELD GAMES 21

Now define M, C, N as before in (3.4) but let us calculate the adjoint of C' : U —
M x W with respect to (-, -, )x. We have that

<C*(p, w)a¢> = <(p7 w)ac¢> = <Cf(,0a w)7¢>* = <C*CC**(Pa w)7¢>

for all p, w, ¢, and so
Cr=(cro)ter=ct

where CT is the Moore-Penrose pseudoinverse. Hence, (2.34) has another equivalent
formulation as a primal dual pair of monotone inclusions

find ¢ s.t. M(¢) € CT(N(C9¢)) (P)

@ | f |
find (p,w) s.t. (p,w) € N(C¢), —C'(p,w) € M(¢), for some ¢ (D)

Accordingly, we have the following PDHG algorithm

¢n+1 — ¢n —T(AA* +BB*)—1<AP7L +Bwn)
(38) ¢n+1 — 2¢n+1 _ ¢n
(pn+1’wn+1) _ (I+O’/C)71 <pn +0A*£5n+17wn + O’B*QE”JA)

Note that the only difference between (3.8) and (3.6) is the ¢ update step, which
is preconditioned with C*C' = AA* + BB*. The advantage is that

ICllx = sup [[C¢l| = sup [[Co =1,
1 IColi<1

ol <

and so 7,0 > 0 in (3.7) must satisfy 70 < 1. Therefore, the magnitude of 7,0 and
the convergence rate of the algorithm are independent of the grid.

3.2. Further remarks on the algorithm. Note that C*C = AA* + BB* is
the discretization of the continuous operator

(=0 — VA0, — vA) + V- (=V) = =02 — A+ 12A2 > 0

Hence, the ¢ update in (3.7) invloves a solution of fourth-order space-time PDE that
can be done via FFT.

Furthermore, the (p,w) update in (3.8) decouples to 3-dimensional, or (d + 1)-
dimensional for d # 2, monotone inclusion problems at grid points that can be
solved efficiently by standard algorithms. Often, w can be eliminated leading to
one-dimensional problems with respect to p at the grid points. This happens, for
example, when solving optimal transport or potential MFG problems [5, 6, 7, 9, 8] or
the congestion model [2] considered here.

When the convex duals or F(t, z,-) and G(z, -) are readily available, we can simply
the (p, w) updates by a further splitting. To this end, assume that F (¢, z,-) and G(z, -)
are convex and continuous in p > 0, and

F(t,z,p) =00, G(x,p) =00, Vp<D0,
and consider

(39) F*(t,x,a):sup{ap—F(t,a;p)}, G*(a:,b):sup{bp—G(x,p)},
p20 p20
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which are proper convex lower semicontinuous functions with respect to a, b, respec-
tively. Next, consider

Fa)= > Fiteaga), 0= > %
0<ij<Ny—1 OshI=Nn=t
0<k<Nr-—1

(3.10)

Note that F*, G* are also proper convex lower semicontinuous functions. Furthermore,
denote by

T _ k k+1  k+1

J(pvan) - E Eh (tkvxijawijvpij anij ) + 1p0:p0a
0<i,7<Np—1
0<k< Ny —1

(3.11)

and consider

K(p,w) :3(p,w>J(p,w7n)’n:p

N(p’w) :,Eil(paw)v (P;w) eEMxW,
M(a,b,6) = (0.F(a), G (D), 0), (a,b,6) € U x RN>Nn .

. (pyw) e MW,

Finally, we define C:UXRVXNu x UYf = M x W as
Cla,b,6) = (A6 = (0,4~ V=0, o™ =1 4 4), B'g)

where

k kE\Nj—1 —k I \Np—1
= (ag;); ;- = (aij)i,]}'lzo,l;ék'

Hence, we have that C* M x W = U x RN»*Nu 5 1 is given by

C*(p,w) = (—p~ % —pN7, Ap + Buw).
Then (2.34) can be written as

(3.12) N
find (a,b,$) s.t. 0 € M(a,b,¢) + C*(N(C(a,b,9))) (P)
find (p,w) st. (p,w) € N(C(a,b,)), —C*(p,w) € M(a,b, ), for some (a,b,¢) (D)

Consequently, the PDHG algorithm is

a"tt = (I + 70, F*)7! (a™ + 7(p")7°)
b = (I +70,G%)71 (b + 7(p™)NT)
(3.13) ot = ¢" —~T(Ap" + Buw™")
(anJrl, bn+1, ¢n+1) — 2(an+1, b"+1, ¢n+1) _ (an,bn’ ¢n)
(" W) = (14 oK)~ (o7, w™) + oC (@, b+, gn i)
The advantage of (3.13) over (3.6) is that the (p, w) update simplifies due to a simpler

function K at the expense of often simple proximal updates of dual variables a,b. As
before, except the ¢ update all other updates are decoupled at the grid points.
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Additionally, we can obtain a grid independent convergence rate by introducing
an inner product

<(a17b17¢1)7 (a2>b27¢2)>* - <a17a2> + <b17b2> + <(AA* + BB*)¢17¢2>7

which leads

Cr = (—p% —p™7, (AA* + BB*)"}(Ap + Bw))

*

and a preconditioned version of (3.13):

a™t = (I 470, F*)~* (a" + 7(p™)7°)
b = (I +70,G%)71 (b + 7(p™)NT)
(3.14) "t = ¢ — 7(AA* + BB*)"}(Ap"™ + Buw™)
(@5, ) = 20t ) — (a8, 67)
(W) = (1 + oK)~ (o, w) + oC(antt, bt gni))

4. Numerical Experiments. In this section, we present two numerical exper-
iments to demonstrate the effectiveness of the proposed numerical scheme and its
robustness with respect to singular limits ¥ = 0,¢ = 0. We conduct the following ex-
periments on a 2-dimensional torus T2 = [0, 1] x [0, 1] and a time interval [0, 7] = [0, 1].

4.1. Convergence of the algorithm. In this example, we numerically verify
the grid-independent time steps as discussed in subsection 3.1. We apply the proposed
monotone PDHG approach to the following mean-field game system with congestion
with =1, =21n (2.7), e = 0.1, = 0.1. The initial distribution is given as follows

Po(T) = Pe(0.25,0.25) (T) + Pe(0.75,0.25) () + Pe(0.25,0.75) (T) + Pe(0.75,0.75) (T),
Pe(ar.an) () = Eexp (=100 ((z1 — a1)® + (22 — a2)?)),

where ¢ > 0 is a constant scalar such that [ po(z)dz = 1. For the mean-field game
system, the terminal condition g is given by

g(z) = 0.1 (sin (7 (z1 — 0.5)))* + 0.1 (sin (27 (22 — 0.25)))>.

In Figure 1, we show the numerical results with discretized grid N, = 40, N; = 32.
We observe that the density moves towards points (0.5,0.25) and (0.5,0.75), which
are the minima of the terminal cost function g. We also see the diffusion during the
time evolution that is induced by the viscosity parameter v = 0.1.

To show that the convergence rate is independent of the grid-size, we set error
tolerance e; = 103,69 = 1074, 65 = 107°, and compute the number of iterations the
algorithm needs to guarantee that the discretized continuity equation (2.37) satisfies

Err™ := ||discretized continuity equation at n-th iteration ||p2 < e.

Here, the norm || - ||z has been properly scaled with the spatial and temporal dis-
cretization Ah, At. We perform computations for various grid-sizes and summarize
the results in Figure 2.

We fixed the optimization step-sizes ¢ = 7 = 0.5. Although preconditioning
increases the computational cost per iteration, it is important to emphasize that it
ultimately enhances the computational efficiency. To this end, we consider a scenario
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Fic. 1. This figure shows the density evolution of p(x,t) in the MFG model with congestion
parameters a« = 1,8 = 2,e = 0.1 and viscosity v = 0.1, as detailed in subsection 4.1. Moving from
left to right, at time points t = 0,0.25,0.5,0.75, 1, the density starts in the form of 4 Gaussians and
eventually concentrates at points (0.5,0.25) and (0.5,0.75).

Ny [Ny | e1=1073 £y =101 £5 =107

20 | 16 | 107 (1.34s) | 137 (1.69s) | 196 (2.37 s)
32 | 20 | 117 (4.67s) | 147 (5.83s) | 197 (7.77 s)
40 | 32 | 117 (11.19s) | 157 (14.62 s) | 197 (18.57 s)

Fic. 2. We record the number of iterations our algorithm requires to reach specific error thresh-
olds, €, across various mesh densities, along with the computational time needed (in seconds). Since
the algorithm is not optimized for parallel execution, the computational time increases with the re-
finement of the mesh.

without preconditioning with N, = 20 and N; = 16, and the algorithm needs 59723
iterations (taking 508.73 seconds) to achieve a residual error smaller than g = 1073,
and 110093 iterations (taking 932.74 seconds) to reach a residual error smaller than
€9 = 10~%. This example highlights how suitable choices of norms and inner products
in the PDHG improves the overall efficiency of the proposed algorithm.

4.2. Viscosity Effect. In this section, we conduct experiments to demonstrate
the impact of the viscosity parameter v in the MFG model with congestion. The pa-
rameters «, (3, ¢ are the same as in the previous section, and we compute the solutions
for v = 0,0.02,0.1. The computations demonstrate that v significantly affects the
solution, as depicted in Figure 3. A stronger diffusion results in a more widespread
solution. More importantly, the algorithm is robust with respect to small values of
v. This phenomenon is explained by the variational nature of the algorithm that can
handle singular problems.

4.3. Congestion Effect. In this section, we explore scenarios where v = 0 and
the congestion parameter is small e. The goal of these experiments is to study the
robustness of the algorithm with respect to further singularity introduced by small
values of €. Figure 4 illustrates that with an increasing congestion coefficient €, the
density tends to exhibit reduced movement. Consequently, when ¢ = 5, the density
undergoes only slight deformation. Additionally, as € — 0, the solution consistently
demonstrates behavior akin to the leftmost case with e = 0. As before, the algorithm
demonstrates robust performance in all cases.
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