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1. ABSTRACT

Transformation plasticity, essential during solid-solid phase transitions, signifi-
cantly impacts industrial processes like welding and quenching. Accurately simu-
lating these procedures necessitates understanding thermal, metallurgical, and me-
chanical effects. Leblond et al.’s model (1986) offers a foundation, but refinement
for mixed isotropic/kinematic hardening is crucial. We enhance this model by in-
troducing characteristic length scales and nonlocal variables, illuminating plastic
deformation mechanisms in both phases. Our work includes numerical implementa-
tion within a finite element analysis framework and practical applications to phase
transformation scenarios involving A.508cl. and A533 steels. Results affirm model
robustness and efficiency in predicting phase transformation phenomena, benefiting
industrial applications.
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2. INTRODUCTION

Ttransformation plasticity was coined to describe the intriguing plastic behavior
exhibited by metals and alloys during solid-solid phase transitions. These transfor-
mations typically manifest during the cooling phase of thermo-mechanical processes
such as welding ( Inoue et al. [6] ) and quenching ( Inoue and Wang [8] ). In these
thermo-mechanical processes, which are prevalent in various industries, three key
physical phenomena interact: thermal, metallurgical, and mechanical. To enable
accurate numerical simulations of welding and quenching processes, it’s essential to
incorporate these thermal, metallurgical, and mechanical effects into computational
codes. This ensures the development of robust numerical tools for predicting the
behavior of industrial components undergoing these thermo-mechanical procedures.
During these processes, thermal and mechanical actions cause phase transforma-
tions, leading to transformation deformations.

Over the years, numerous studies, including those conducted by Fukumoto et
al. (2001), Miyao et al. (1986), and Taleb et al. (2004), among others, have ex-
tensively highlighted the substantial impact of transformation plasticity on residual
stresses and distortions resulting from such treatments. This significant influence
serves as a pivotal motivation driving the continuous development of robust trans-
formation plasticity models. These models are essential for their integration into
finite element programs, enabling engineers and researchers to make precise pre-
dictions of residual stresses and distortions induced by complex thermo-mechanical
processes, thereby enhancing the efficacy and reliability of industrial applications.

The plastic behaviors of steels during phase transformation can be divided into
two groups:

• Classical plasticity, i.e response of the material ( mixture of two phases ) to
variations of applied stress or temperature

• Transformation plasticity, the response of the material to variations of the
phase proportions.

It is commonly accepted that transformation plasticity is attributed to two primary
mechanisms, one being diffusive ( Greenwood and Johnson [4] ) and the other being
displacive (Magee and Paxton [11] ).

• In Greenwood and Johnson (1965)’ [4]s seminal work, transformation plas-
ticity is elucidated as arising from standard dislocation-induced plasticity oc-
curring at the microscopic level within the weaker mother-phase. This phase,
prevailing at elevated temperatures and typically characterized by a signifi-
cantly lower yield stress, undergoes microscopic plastic deformation due to
the difference in specific volume between the coexisting phases during trans-
formation, which constitutes the volumetric portion of the transformation
strain. Consequently, internal stresses of considerable magnitude are gen-
erated, effectively inducing plasticity within the weaker phase. Notably, this
effect persists even in the absence of external stress. However, the presence of
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external stress capitalizes on the inherent ”transformation-induced weakness”
of the material, thereby facilitating plastic deformation.

• Contrary to conventional understanding, Magee (1966) [11] offers an alter-
native interpretation of transformation plasticity. According to Magee, this
phenomenon does not arise from conventional plasticity mechanisms. Instead,
it stems from the deviatoric component of the transformation strain within the
transforming regions. While Magee acknowledges that the term ”transforma-
tion plasticity” may seem somewhat inappropriate for this interpretation, as
the transformation strain responsible for the effect is fundamentally pseudo-
elastic and reversible, it remains a classical term in the field. In Magee’s
perspective, when external stress is absent, the deviatoric part of the transfor-
mation strain within the material fluctuates randomly in direction, effectively
averaging out to zero. However, when subjected to non-zero external stress,
this deviatoric component aligns, resulting in a discernible macroscopic strain.
This nuanced understanding challenges traditional notions, shedding light on
the underlying mechanics of transformation plasticity.

The principle of Greenwood and Johnson [4] transformation plasticity mecha-
nism lies in the plastic accommodation of the austenite phase (the softer phase)
during the phase transformation. During cooling, the austenitic γ phase gives rise
to a ferritic, bainitic, or martensitic α phase, which has a greater specific volume
than its parent phase. When both phases coexist, the volume difference between
them generates a field of heterogeneous deformation, resulting in internal stresses
and macroscopic plastic flow, even if the macroscopic applied stress is below the
yield strength of both phases or even zero.

The first micro-mechanical model of this mechanism, established by Leblond et
al. [9, 10], considers a representative spherical volume element of an expanding α
phase core, surrounded by a concentric spherical shell of γ phase. When consider-
ing low macroscopic stresses, this approach leads to an expression for the rate of
transformation plastic deformation that is linearly dependent on the deviatoric part
of stresses.

The popularity of this model can likely be attributed to its simplicity and practi-
cality. One of its key strengths lies in the formulation of the transformation plastic
strain rate, which solely relies on standard mechanical parameters of the two phases:
the yield stress of the weaker phase and the volumetric transformation strain. Re-
markably, it does not require any additional ad hoc parameters that need to be
determined experimentally. This feature is particularly advantageous for applica-
tions in numerical simulations of thermo-mechanical treatments. In many cases,
experimental data related to transformation plasticity for the specific material under
consideration are unavailable. Therefore, the model’s reliance on readily accessible
mechanical parameters renders it highly versatile and applicable across a wide range
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of scenarios without the need for extensive experimental calibration.

To delve deeper into this subject, it is imperative to recognize that the behavior
of metals during phase transformations is a critical aspect of materials engineering.
Phase transformations can dramatically influence a material’s properties, such as
strength, ductility, and thermal conductivity, making them central to the design and
performance of various engineering structures and components. The work hardening
isotropic-kinematic model is particularly significant in this context because it offers
a versatile and robust tool for characterizing and predicting the mechanical response
of materials as they undergo phase transformations. It encompasses both isotropic
hardening, which accounts for the evolution of the yield stress with deformation,
and kinematic hardening, which considers the evolution of the material’s anisotropy.

Phase transformation in steels is a complex phenomenon influenced by various
factors operating at different length scales. Traditional models often neglect the
intricate interactions between microstructural features, leading to inaccuracies in
predicting material behavior. Incorporating multi-length scale (nonlocal) models
into phase transformation simulations offers a promising avenue to address these
shortcomings. Other motivations to incorporates multi-length scales in the simula-
tions of phase transformation in steels can be listed as follows:

• Importance of Multi-Length Scale Modeling. Steel microstructures exhibit a
hierarchical organization spanning from the atomic to the macroscopic level.
Phase transformations involve intricate interactions between defects, grain
boundaries, dislocations, and other microstructural features. Traditional mod-
els typically focus on a single length scale, overlooking the collective influence
of these features. Nonlocal models offer a holistic approach by capturing the
spatial interactions across multiple length scales, thereby providing a more
accurate representation of material behavior during phase transformations.

• Improved Predictive Capabilities. Incorporating nonlocal models enables a
more comprehensive description of phase transformation kinetics and mi-
crostructural evolution. By accounting for the influence of neighboring mi-
crostructural elements, these models accurately capture phenomena such as
strain localization, heterogeneous nucleation, and interface migration. Con-
sequently, they offer improved predictive capabilities for various aspects of
phase transformations, including phase fractions, grain size distribution, and
mechanical properties.

• Enhanced Understanding of Microstructure-Property Relationships. Microstruc-
tural features significantly influence the mechanical properties of steels. Non-
local models facilitate a deeper understanding of the intricate relationships
between microstructure and mechanical behavior during phase transforma-
tions. By accurately predicting the evolution of microstructural features, such
as grain size, morphology, and orientation, these models enable researchers
to elucidate the underlying mechanisms governing mechanical properties, in-
cluding strength, toughness, and ductility.
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• Optimization of Processing Conditions. Phase transformation kinetics and
microstructural evolution play a crucial role in determining the final proper-
ties of steel components. Nonlocal models provide insights into the influence
of processing parameters, such as temperature, cooling rate, and deforma-
tion, on phase transformation behavior. By incorporating these models into
process simulations, engineers can optimize processing conditions to achieve
desired microstructures and properties, thereby enhancing the performance
and reliability of steel products.

Moreover, the integration of Leblond et al.’s model [9, 10] within the finite el-
ement analysis (FEA) framework is a pivotal development. When applied to phase
transformations in metals, FEA combined with the mixed work hardening isotropic-
kinematic model enables to gain insights into the deformation and stress distribution
within materials as they undergo phase changes. This can facilitate the optimiza-
tion of material selection and the design of components with enhanced performance
and durability. This opportunity will be taken to simplify and rationalize the nu-
merical implementation of this behavior for the other types of hardening (namely,
ideal perfect plasticity, isotropic hardening, kinematic hardening). First, in fact,
this numerical implementation presents some unnecessary complications, such as
the use sometimes of a semi-implicit algorithm whereas a totally explicit, much
simpler, algorithm does not lead to a significant degradation of the precision. Sec-
ond, various additional effects have been introduced into the modeling (for example,
restoration or the memory of work hardening during transformations, effect of large
transformations, etc.), their numerical implementation not always being carried out
in the same mind than the initial numerical implementation (usually for the sake of
simplicity). A general “grooming” therefore seems desirable.

Recently, some new needs appeared concerning the possibility of a mixed work
hardening isotropic-kinematic in the modeling of the plastic behavior of metals dur-
ing phase transformation developed by Leblond et al. [9, 10]. The objective of this
work is to provide a comprehensive description, without emphasizing the theoretical
aspects, of this modeling of transformation plasticity approach and its numerical im-
plementation within the framework of finite element analysis. We will enhance the
model proposed by Leblond et al. [9, 10] to incorporate the intricate mechanisms of
mixed isotropic/kinematic hardening. This augmentation involves the introduction
of two characteristic length scales along with the corresponding nonlocal variables,
which are linked to the effective plastic deformation occurring within both phases.

The remainder of the paper unfolds in the subsequent sections as follows:

1. In Section 1, a comprehensive overview of the constitutive equations proposed
by Leblond et al. [9, 10] and its non-local extension is presented, outlining
their constitutive model for phase transformation.

2. Moving forward to Section 2, a detailed account of the numerical implemen-
tation of this model into a finite element code is provided.

3. Finally, Section 3 showcases the practical application of the model by pre-
senting numerical predictions for a phase transformation scenario involving
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A.508cl. and A533 steels. The obtained results not only affirm the robust-
ness of the implemented numerical framework but also underscore the model’s
efficiency in accurately predicting phase transformation phenomena in steels.

.

3. THERMO-PLASTICITY BEHAVIOR FOR AMIXED ISOTROPIC-KINEMATIC
HARDENING.

Let us begin for the sake of completeness by recalling the model of plastic be-
havior with mixed work hardening used in the standard finite element codes, in the
absence of phase transformation. We consider the general case of a variable tem-
perature and large deformations.

Let σ0(T ) be the initial limit of elasticity, before work hardening, function only
of the temperatureT . Let σ(εeq, T ) be the stress observed in an initial tensile test
at the temperature T , function of this temperature and of the cumulated plastic
deformation εeq. Let

σ(εeq, T ) ≡ σ(εeq, T )− σ0(T ) (1)

the part of this stress coming from work hardening. Finally, let p be the proportion
of work hardening which is of an isotropic nature.

The limit of elasticity is therefore

σY (εeq, T ) ≡ σ0(T ) + pσ(εeq, T ) (2)

The yield criterion is then written as

σeq ≡
[
3

2
(s− a) : (s− a)

] 1
2

≤ σY (εeq, T ) (3)

where s denotes the deviatoric stress. The evolution equation of the center a of the
domain of elasticity is:

v
a ≡ ȧ+

(
ȧ
)
GT

=
2

3
(1− p)

∂σ

∂εeq
(εeq, T )d

p +
1

σ

∂σ

∂T
(εeq, T )aṪ (4)

In this equation,
v
a denotes the objective derivative of a chosen (for example, those

of Jaumann or Molinari) and
(
ȧ
)
GT

the part, in the expression of this objective
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derivative, due to large deformations. In addition, dp denotes the plastic strain rate
(Eulerian). Finally, for the record, the plastic constitutive law is the same as usual.

dp =
3

2

˙εeq
σeq

(s− a), ε̇eq =

(
2

3
dp : dp

) 1
2

(5)

4. PLASTIC BEHAVIOR DURING PHASE TRANSFORMATION IN THE
CASE OF MIXED ISOTROPIC-KINEMATIC HARDENING.

We will omit the intricacies of the homogenization approach leading to the
macroscopic equations of plastic behavior during phase transformations in this sec-
tion. For a comprehensive understanding of this derivation, interested readers may
refer to the works of Leblond et al. [9, 10]. Additionally, detailed summaries are
provided in the Appendices at the end of this manuscript, covering the cases of
isotropic and kinematic hardening separately. For the mixed isotropic/kinematic
hardening case, we will briefly outline the main constitutive equations of the model,
without delving into the technical details of their derivation.

4.1. Generalities

Leblond’s model is derived from a micromechanical analysis of stress and strain
fields in austenitic spherical nuclei during continuous cooling. It focuses on the
growth of a spherical product phase core at the center of these nuclei. The model
describes the evolution of radii (Rγ and Rα ) representing the parent and product
phases, respectively, see Figure 1. Rα starts from zero, progressively increasing
during transformation until it equals Rγ . The model accounts for positive vol-
ume changes during transformation, leading to a shift in point locations. Leblond
emphasizes that the macroscopic plastic strain rate during phase transformation
under external loading is solely influenced by the shape variation of each phase.
This conclusion is underpinned by the author’s assumption that the impact of local
anisotropy resulting from slight differences in elastic parameters between phases is
negligible compared to the stresses and deformations caused by volume variations.

The parent-phase (γ) is denoted with an index of 1, and the daughter-phase
α with an index of 2; z denotes the proportion of daughter-phase (ż). We denote

σ
(
iε

eff
i , T ) the part coming from the work hardening in the stress observed in a sim-

ple tensile test, carried out on a sample of pure phase i. This quantity is a function
of the effective plastic strain eff of the phase i, which may differ from the equivalent
strain due to the phenomena of memory and restoration of work hardening during
the transformations. We denote σY

i (εeffi , T ) the limit of elasticity of phase i, given
by a formula analogous to Eq.2 ( with σ0

i and σi instead of σi and σ0 ). We denote
a
i
the center of the elasticity domain of phase i.

Finally, the overall limit stress is given by the formula.

σY (εeff1 , εeff2 , z, T ) = [1− f(z)]σY
1 (εeff1 , T ) + f(z)σY

2 (εeff2 , T ) (6)
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Figure 1: Geometry considered by Leblond to illustrate phase transformation of austenitic nuclei

4.2. GENERAL RELATIONS: CASE WHERE THE STRESS IS LESS THAN THE
YIELD LIMIT.

This case is defined by the condition

σeq < σY , σeq ≡
[
3

2
(s− a) : (s− a)

] 1
2

, a ≡ (1− z)a
1
+ za

2
(7)

The other part of the plastic strain rate corresponding to the plasticity of transfor-
mation is written as

dpt = −3
εth2 (T )− εth1 (T )

σY
1 (εeff1 , T )

h
(σeq

σY

)
(lnz)(s− a

1
)ż (8)

where εthi (T ) is the thermal deformation of the phase i. The part of the rate of
plastic deformation corresponding to the plastic plasticity is decomposed into 2
terms, one, dpc

σ
coming from the variations of σ and the other, dpc

T
, coming from

the variations of T is given by

dpc
σ

=
3

2

1− z

σY
1 (εeff1 , T )

g(z)

E
(s− a

1
)(σ̇eq

1 )s (9)

(σ̇eq
1 )s ≡

3

2σeq
1

(s− a
1
) :

v
s, σeq

1 ≡
[
3

2
(s− a

1
) : (s− a

1
)

] 1
2

(10)

dpc
T

= 3
α1 − α2

σY
1 (εeff1 , T )

z(lnz)(s− a
1
)Ṫ (11)

where αi denotes the coefficient of the thermal dilatation of the phase i.
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The evolution equations of the effective plastic deformation of the phases are
as follow

ε̇eff1 = −2
εth1 (T )− εth2 (T )

1− z
h
(σeq

σY

)
(lnz)ż +

g(z)

E
(σ̇eq

1 )s +

2
α1 − α2

1− z
z(lnz)Ṫ

(12)

ε̇eff2 =
ż

z
εeff2 + θ

ż

z
ε̇eff1 (13)

where θ denotes the memory coefficient of the work hardening during the trans-
formation (θ = 0 means that the hardening of the mother-phase is completely
forgotten by the daughter-phase during the transformation, θ = 1, that this work
hardening is, on the contrary, entirely transferred to the daughter-phase. ) Finally,
the evolution equations of the centers of the elasticity domain of the phases are as
follows:

v
a
1
≡ ȧ

1
+ (ȧ

1
)GT =

2

3

1− p

1− z

∂σ1

∂εeff1
(εeff1 , T )(dpt + dpc

σ
+ dpc

T
)+

1

σ1

∂σ1

∂T
(εeff1 , T )a

1
Ṫ

(14)

v
a
2
≡ ȧ

2
+ (ȧ

2
)GT = − ż

z
a
2
+ θ

ż

z
a
1
+

1

σ2

∂σ2

∂T
(εeff2 , T )a

2
Ṫ (15)

4.3. GENERAL RELATIONS: CASE WHERE THE STRESS EQUALS THE YIELD
LIMIT.

This case is defined by the condition

σeq = σY (16)

where σeq is always defined by by the relations Eq.(7). The flow rule is then

dp =
3

2

ε̇eq
σeq

(s− a) (with ε̇eq =

(
2

3
d
p
: d

p

) 1
2

) (17)

The evolution equations of the work hardening are written as follows:

ε̇eff1 = ε̇eq (18)

ε̇eff2 = ε̇eq − ż

z
εeff2 + θ

ż

z
ε̇eff1 (19)

v
a
1
=

2

3
(1− p)

∂σ1

∂εeff1
(εeff1 , T )dp +

1

σ1

∂σ1

∂T
(εeff1 , T )a

1
Ṫ (20)

v
a
2
=

2

3
(1− p)

∂σ2

∂εeff2
(εeff2 , T )dp +

1

σ2

∂σ2

∂T
(εeff2 , T )a

2
Ṫ − ż

z
a
2
+ θ

ż

z
a
1 (21)
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5. ADDING NON-LOCAL EFFECTS

The inclusion of non-local effects within the phase transformation component
of a phase transformation plasticity model involves considering the nature of phase
transformations and the potential influence of distant points on the transformation
process. Below are several reasons to justify this inclusion:

• Microstructural Influence: Phase transformations often involve changes in the
material’s microstructure, such as the formation or dissolution of precipitates,
grain boundary migration, or the nucleation and growth of new phases. These
microstructural changes can have far-reaching effects beyond the immediate
vicinity of the transformation front, impacting the behavior of neighboring
regions.

• Thermal Effects: Phase transformations are often accompanied by significant
thermal effects, such as the release or absorption of latent heat. These thermal
effects can lead to temperature gradients within the material, which in turn
can influence the kinetics of phase transformations in distant regions.

• Mechanical Interaction: Mechanical stresses generated during phase trans-
formations can propagate through the material, affecting the deformation
behavior of neighboring regions. This mechanical interaction can result in
non-local effects on both the phase transformation kinetics and the plastic
deformation behavior.

• Diffusion and Transport: Diffusion of species or vacancies plays a crucial role
in many phase transformation processes. The transport of diffusing species
or vacancies can lead to non-local effects, influencing the kinetics of phase
transformations over larger length scales.

• Experimental Observations: Experimental studies often reveal non-local ef-
fects during phase transformations, such as the formation of diffusion bands,
compositional gradients, or microstructural heterogeneities across the mate-
rial. These observations suggest that the influence of distant points on phase
transformations cannot be ignored.

• Pathological post-bifurcation mesh-dependency with local phase transforma-
tion models; this refers to a specific type of mesh-dependency issue that arises
after a bifurcation or critical point in a numerical simulation. In such cases,
the behavior of the solution becomes highly sensitive to the mesh resolution,
often leading to non-physical or unstable results. This phenomenon is particu-
larly challenging because it can significantly affect the accuracy and reliability
of the simulation results, making it difficult to obtain meaningful predictions.
Below is a more detailed explanation of pathological post-bifurcation mesh-
dependency and how it can occur. In many physical systems, bifurcation
points mark significant changes in the behavior of the solution. These points
often correspond to critical thresholds or instabilities where the system un-
dergoes a qualitative change in its dynamics. Before the bifurcation point,
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the solution may converge smoothly and accurately with increasing mesh res-
olution. However, after the bifurcation point, the behavior of the solution
becomes highly sensitive to the mesh resolution. Small changes in the mesh
can lead to significant variations in the solution, and the solution may exhibit
non-physical oscillations, instability, or divergence.
To account for non-local effects in the model we decide to include these ef-
fects on the evolution equations of the effective plastic deformation of the
mother and daughther phases.

By incorporating non-local effects into the phase transformation component of the
model, we can better capture these complex interactions and improve the model’s
ability to predict the behavior of materials undergoing phase transformation plastic-
ity under realistic conditions. This leads to more accurate simulations and a deeper
understanding of the underlying physics governing phase transformations in mate-
rials.

In certain applications, especially those involving high stress and/or strain gra-
dients, the effective plastic deformation evolution equation can undergo a process
of delocalization. In this context, we define local rates of effective plastic growth
increase due to the accumulation of plastic deformation. The local rates are deter-
mined by formula Eq.( 12, 13 ). The true non-local growth rate are then computed
using the convolution formulaes presented below:

ε̇eff1 (x) =
1

C(x)

∫
Ω

ε̇eff1,loc(y)χ1(x− y)dΩy ,

ε̇eff2 (x) =
1

C(x)

∫
Ω

ε̇eff2,loc(y)χ2(x− y)dΩy ,

C(x) =
∫
Ω
χ(x− y)dΩy .

(22)

Ω denotes here the studied domain and χ1, χ2 are weighting functions, which we
take to be Gaussian for practical purpose:

χ1(z) = exp

(
−|z|2

l21

)
, χ2(z) = exp

(
−|z|2

l21

)
(23)

where l1 and l2 serve as characteristic lengths, representing micro-structural effects
and they play a role similar to the minimum mesh size. It is worth noting that
this delocalization study has been extensively explored in the context of damage
modelling in studies by Leblond et al. [18] , Enakoutsa and colleagues ( [15], [14] ,
and [16] ) and in many other works including the pionnering work of Pijaudier-Cabot
and Bazant [17] , but in the context of modelling of concrete materials.
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6. NUMERICAL IMPLEMENTATION

The selection of an algorithm for each equation introduces the challenge of
deciding between explicit, implicit, or semi-implicit methods. The choices presented
here, although not entirely aligning with previous decisions, stem from thoughtful
considerations:

a. An explicit algorithm is favored when it allows for a streamlined digitization pro-
cess without a substantial sacrifice in accuracy. The emphasis is on simplifying
the numerical implementation, making it computationally efficient while main-
taining an acceptable level of precision. This choice is particularly relevant in
scenarios where computational efficiency is paramount, and the simplification of
the numerical scheme does not compromise the overall solution accuracy;

b. An implicit algorithm is favored concerning the direction of the plastic flow, as
dictated by the stress deviator. This preference aligns with standard practices
in finite element codes, ensuring consistency with widely adopted programming
conventions. Implicit methods are known for their stability and unconditional
convergence, making them suitable for capturing the plastic flow behavior with
numerical robustness;

c. A semi-implicit algorithm is favored when there is a substantial improvement
in accuracy, or even if there isn’t, as long as it doesn’t significantly complicate
the numerical implementation. This choice reflects a balance between accuracy
enhancement and computational efficiency, considering scenarios where a fully
implicit approach may be overly complex while maintaining the advantages of
implicit methods in specific aspects. The decision to opt for a semi-implicit ap-
proach acknowledges the nuanced trade-off between accuracy and computational
cost, allowing for a pragmatic solution that suits the specific requirements of the
problem at hand.

The algorithmic choices made in this context are driven by a nuanced understand-
ing of the trade-offs between computational efficiency, solution accuracy, and the
compatibility of the chosen approach with standard programming practices in finite
element codes.

6.1. Case where the yield limit is not reached

The partition of the deviator of the increment of the total strain (thermal part
substracted) between the times t and t+∆t is written as

∆e = ∆ee +∆εp = ∆ee + (∆εp)′ + (∆εp)′′ (24)

where the term

(
(∆εp)′

)
corresponds to

(
d
pt

+ dpc
T

)
∆t and

(
(∆εp)′′

)
to(

dpc
σ

)
∆t. The expressions of these terms are the following, where F denotes
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the function of the von Mises

(
F (X) =

(
3
2X : X

)1/2)
:

(∆εp)′ =
A

2

[
1 +

F (s− a
1
)

F (s+∆s− a
1
−∆a

1
)

]
(s+∆s− a

1
−∆a

1
) (25)

(∆εp)′′ =
B

2

[
1 +

F (s− a
1
)

F (s+∆s− a
1
−∆a

1
)

]
(∆σeq

1 )s(s+∆s− a
1
−∆a

1
)

(26)

In the expression Eq.(25), A is given by

A =− 3
εth2 (T )− εth1 (T ) + εth2 (T +∆T )− εth1 (T +∆T )

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )
h
(σeq

σY

)
×

{(z +∆z)[ln(z +∆z)− 1]− z(lnz − 1)}+

3
εth1 (T +∆T )− εth1 (T ) + εth2 (T +∆T )− εth2 (T )

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )
×

[zlnz + (z +∆Z)ln(z +∆z)]

(27)

The term h(σeq /̄σ
Y ) in this expression is discretized explicitly. Moreover, the term

comes from an exact integration of ln(z) between z and z+∆z in Eq.(8), the other
terms being considered constant. Numerical experiments have shown the impor-
tance of such exact integration to conveniently reproduce stress dilatometry tests.

The quantity B in Eq.(26) is given by

B = 3
(1− z)g(z) + (1− z −∆z)g(z +∆z)[

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )
]
[E(T ) + E(T +∆T )]

(28)

In addition, (∆σeq
1 )s, is given by

(∆σeq
1 )s =

3

2F (s+∆s− a
1
−∆a

1
)
(s+∆s− a

1
−∆a

1
) : (∆s)OBJ (29)

where (∆s)OBJ

(
≡ š

)
is the objective part of the deviatoric stress rate

(∆s)OBJ ≡ ∆s+ (∆s)GT (30)

The hypo-elasticity law is given by

(∆s)OBJ (= ∆s+ (∆s)GT ) = 2µ∆ee + (∆s)T (31)
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where µ denotes the shear coefficient at the time t+∆t (this notation is used here
rather than the more logical notation µ+∆µ to simplify the writing ) and (∆s)T
the part of ∆s coming from the variation of the temperature (via its influence on

µ.) The evolution equation of εeff1 is discretized as the following equation:

∆εeff1 =
2

3

σY
1 (εeff1 , T ) + σY

1 (εeff1 , T +∆T )

(1− z) + (1− z +∆z)
[A+B(∆σeq

1 )s] (32)

The equation of εeff1 is written in the form d
dt

(
0zεeff1

)
= θεeff1 ż before being

discrtized by

∆(zεeff2 ) ≡ (z +∆z)(εeff2 +∆εeff2 )− zεeff2 = θεeff1 ∆z (33)

Similarly, the evolution equations of a
1
and a

2
are discretized as follows:

(∆a
1
)OBJ ≡ ∆a

1
+ (∆a

1
)GT =

2

3

1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T )[

(∆εp)′ + εp)′′
]
+ (∆a

1
)T

=⇒ ∆a
1
=

2

3

1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T )

[
(∆εp)′ + (∆εp)′′

]
− (∆a

1
)GT + (∆a

1
)T

(34)

Note in Eq.(34) the use of the hardening slope ∂σ1

∂εeff1
(εeff1 , T +∆T ) instead of the

secant as previously. The interest of this replacement is to lead to an explicit reso-
lution not requiring iterations on the parameter of work hardening εeff1 +∆εeff1 ; it
is licit insofar as there are no criteria to be satisfied exactly at the time t +∆t (it
will not be the same if the yield limit is reached.) Moreover, note that the terms
(∆a

i
)GT and (∆a

i
)T are discretized in an explicit way and therefore known from

the beginning.

Now let us move on to solving these equations; the principal unkowns used are

∆(za
2
) ≡ (z +∆z)(a

2
+∆a

2
)− za

2
= θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T
(35)

Combining Eq.(24) and Eq.(31) we get

X = F (s+∆s− a
1
−∆a

1
), Y = (∆σeq

1 )s (36)

∆s = 2µ∆ee − (∆s)GT + (∆s)T =⇒
s+∆s ≡ (s+∆s)el − 2µ

[
(∆εp)′ + (∆εp)′′

] (37)

(s+∆s)el ≡ s+ 2µ∆e− (∆s)GT + (∆s)T (38)
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where (s + ∆s)el , known quantity, is the deviatoric stress at t + ∆t elastically
calculted, that is by considering the deviatoric part of the increment of the total
strain ∆e (with the termal part not being accounted for) as purely elastic. Adding
−a

1
−∆a

1
to the two sides of Eq.(37) and taking into account Eq.(34), we get

s+∆s− a
1
−∆a

1
= (s+∆s)el − a

1
−∆a

1
− 2µ

[
(∆εp)′ + (∆εp)′′

]
= (s+∆s)el − a

1
+ (∆a

1
)GT − (∆a

1
)T

−

[
2µ+

2

3

1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T )

]
×[

(∆εp)′ + (∆εp)′′
]

which, by setting

s∗ ≡ (s+∆s)el − a
1
+ (∆a

1
)GT − (∆a

1
)T (39)

is equivalent to

H ≡ 1− p

1− z −∆z/2

∂σ1

∂εeff1
(εeff1 , T +∆T ) (40)

(these quantities are known):

s+∆s− a
1
−∆a

1
= s∗ − 2

(
µ+

H

3

)[
(∆εp)′ + (∆εp)′′

]
According to Eq.(25) and Eq.(26) and the notations Eq.(36) we get

(∆εp)′ + (∆εp)′′ =
1

2
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
)

(41)

which by reporting in the previous equation reads

s+∆s− a
1
−∆a

1
= s∗ −

(
µ+

H

3

)
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
)

⇒

[
1 +

(
µ+

H

3

)
(A+BY )

(
1 +

F (s− a
1
)

X

)]
(s+∆s− a

1
−∆a

1
) = s∗

(42)

This equation implies that the (unknown) tensor s + ∆s − a
1
−∆a

1
is positively

parallel to the (unknown) tensor s∗. Thus,

s+∆s− a
1
−∆a

1
=

X

F (s∗)
s∗ (43)
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which brings the calculation of the unknown s+∆s− a
1
−∆a

1
to the same of the

norm of X. Moreover, by taking the Von Mises function of Eq.(43), we obtain:

X +

(
µ+

H

3

)
(A+BY )

(
X + F (s− a

1
)
)
= F (s∗)

⇒ A+BY =
F (s∗)−X(

µ+ H
3

) (
X + F (s− a

1
)
)

⇔ Y =
1

B

 F (s∗)−X(
µ+ H

3

) (
X + F (s− a

1
)
) −A


(44)

The unknown quantity Y can now be expressed as a function of the unknown X, it
remains to calculate the latter. For this, let us re-express s+∆s− a

1
−∆a

1
using

the equations Eq. 28 and Eq.(30) and Eq. ( 32 ) as well as the definition Eq. (40)
as:

s+∆s− a
1
−∆a

1
= s− (∆s)GT + (∆s)OBJ − a

1
− 2

3
H
[
(∆εp)′ + (∆εp)′′

]
+ (∆a

1
)GT − (∆a

1
)T

which, by accounting for Eq.41 and Eq. 44, reads

s+∆s− a
1
−∆a

1
= s− (∆s)GT − a

1
+ (∆a

1
)GT − (∆a

1
)T

− H

3
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
) + (∆s)OBJ

= s− (∆s)GT − a
1
+ (∆a

1
)GT − (∆a

1
)T

+
H
(
X − F (s∗)

)
(H + 3µ)

(
X + F (s− a

1
)
) (1 + F (s− a

1
)

X

)
(s+∆s− a

1
−∆a

1
) + (∆s)OBJ

Contracting this equation with 3
2s

∗ gives, taking into account the definition Eq.(
29) of (∆σeq

1 )s ≡ Y and the property Eq.( 43)

XF (s∗) = P +
H
(
X − F (s∗)

)
(H + 3µ)

(
X + F (s− a

1
)
) (X + F (s− a

1
)
)
F (s∗) + F (s∗)Y

where we assumed that

P ≡ 3

2

(
s− (∆s)GT − a

1
+ (∆a

1
)GT − (∆a

1
)T

)
: s∗

(P is a known quantity). Multiplying by (H + 3µ)
(
X + F (s− a

1
)
)
and account-

ing for Eq.(44 )

(H + 3µ)
(
X + F (s− a

1
)
)
XF (s∗) = P (H + 3µ)

(
X + F (s− a

1
)
)

+H
(
X − F (s∗)

) (
X + F (s− a

1
)
)
F (s∗)

+
F (s∗)

B

[
3
(
F (s∗)−X

)
−A (H + 3µ)

(
X + F (s− a

1
)
)]
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which gives after multiplication by B and re-arrangment:

Equation 43 is missing (45)

LX2 +MX +N = 0 (46)

L ≡ 3µBF (s∗) (47)

M ≡ 3µBF (s− a
1
)F (s∗) +BHF 2(s∗) +A(H + 3µ)F (s∗)−B(H + 3µ)P

(48)

The roots of this equation are 1
2L

(
−M ±

√
M2 − 4LN

)
. The choice of the sign

in front of the radical is not obvious a priori because as much as it is clear that
L > 0, M and N can a priori take any sign. However, in practice, the coefficient B
is small. We then see from Eq.(48) that M > 0, the − sign in front of the radical
then leads to a negative root, which is impossible since the equation is greater than

X ≡ F
(
s+∆s− a

1
−∆a

1
()
)
> 0, therefore the + sign that must be retained.

N ≡ −3F 2(s∗) +BHF (s− a
1
)F 2(s∗) +A(H + 3µ)F (s− a

1
)F (s∗)−

B(H + 3µ)PF (s− a
1
)

(49)

X =
1

2L

(
−M +

√
M2 − 4LN

)
(50)

However, even with this choice of signs in front of the radical, the sign of the solution
is not clear because it depends on that of N , which is not itself clear (even with B
small.) It is therefore not impossible that Eq. (50) provides a negative root. In this
case, it is better to adopt another algorithm which may be less precise but certainly
leads to a positive root. It suffices for this purpose to replace the expressions Eq.
(25) and Eq. (26), semi-implicit with respect to the norm ofs− a

1
, by the implicit

expressions:

(∆εp)′ = A(s+∆s− a
1
−∆a

1
) (23’)

(∆εp)′′ = B(∆σeq
1 )s(s+∆s− a

1
−∆a

1
) (24’)

L′X2 +M ′X +N ′ = 0 (44’)

We can see that to find these epressions from Eq. (25) and Eq. (26), we shall

replace F (s− a
1
) by F

(
s+∆s− a

1
−∆a

1

)
≡ X. We obtain therefore the same
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equation Eq. (46) on X as previously, but by performing this substitution in the
expressions Eq. (47), Eq. (48) and Eq. (49) of L, M , N , this equation becomes

L′ = 6µBF (s∗) (45’)

M ′ = 2BHF 2(s∗) + 2A(H + 3µ)F (s∗)− 2B(H + 3µ)P (46’)

N = −3F 2(s∗) (47’)

The coefficients L′ and N ′ are here clearly positive and negative, respectively;
therefore the product of the roots N ′/L′ is negative, so that there are two roots
reals, one positive and the other one negative, as desired; the positive root is

X =
1

2L′

(
−M ′ +

√
M ′2 − 4L′N ′

)
(48’)

Once X is calculated by Eq. (50), we can deduce Y by equation Eq. (44) (
eventually by replacing F (s − a

1
) by X ), s + ∆s − a

1
− ∆a

1
by Eq. (43),

(∆εp)′ + (∆εp)′′ by Eq. (41) (by replacing again eventually X by F (s − a
1
) ),

s+∆s by Eq. (37). It remains to update the parameter of strain hardening. The

variations of εeff2 and a
2
are given by Eq. (32) and Eq. (34). The variations of εeff2

and and a
2
are obtained from Eq. (33) and Eq. (35) which can be re-written as

εeff2 ∆z + (z +∆z)εeff2 = θεeff1 ∆z ⇒ ∆εeff2 =
∆z

z +∆z
(−εeff2 + θεeff1 ) (51)

a
2
∆z + (z +∆z)∆a

2
= θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T ⇒

∆a
2
=

1

z +∆z

[
(−a

2
+ θa

1
)∆z − z(∆a

2
)GT + z(∆a

2
)T

] (52)

(Let us note that due the discretization explicit of ∆a
2
)GT and (∆a

2
)T , the vari-

ations of εeff2 and a
2
can, in fact, be calculated at the beginning, before the calcu-

lation of X and Y .)

σeq +∆σeq ≡ F (s+∆s− a−∆a) < σY +∆σY (53)

It is finally necessary to verify the stress-limit condition not reached. defining the
case considered. The calculation of σY +∆σY is immediate knowing εeff1 +∆εeff1 ,

εeff2 +∆εeff2 , z +∆z, T +∆T . Finding the value of σeq +∆σeq necessitates to
evaluate (s+∆s− a−∆a. We obtain:

s+∆s− a−∆a = s+∆s− (1− z −∆z)(a
1
+∆a

1
)− (z +∆z)(a

2
+∆a

2
)

All tensors being known here, we deduce (s + ∆s − a − ∆a. However, we can
calculate this expression before evaluating ∆a

1
using X, Y and the tensors known
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a priori s⋆,
(
∆a

1

)
GT

,
(
∆a

1

)
T
and ∆a

2
. Indeed, from Eq.(34) and Eq.(41),

a
1
+∆a

1
= a

1
+

H

3
(A+BY )

(
1 +

F (s− a
1
)

X

)
(s+∆s− a

1
−∆a

1
)

−(∆a
1
)GT + (∆a

1
)T

where we deduce, using the previous expression of (s+∆s− a−∆a and Eq.(43):

s+∆s− a−∆a = s+∆s− a
1
−∆a

1
+ (z +∆z)(a

1
+∆a

1
− a

2
−∆a

2
)

=

[
1 + (z +∆z)

H

3
(A+BY )

(
1 +

F (s− a
1
)

X

)]
(s+∆s− a

1
−∆a

1
)

+ (z +∆z)(a
1
− (∆a

1
)GT + (∆a

1
)T − a

2
−∆a

2
)

=

[
X + (z +∆z)

H

3
(A+BY )

(
X + F (s− a

1
)
)] s∗

F (s∗)

+ (z +∆z)(a
1
− (∆a

1
)GT + (∆a

1
)T − a

2
−∆a

2
)

(54)

( of course, it is still possible to substitute X with F (s− a) in this expression ).
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6.2. Case where the limit stress is reached

The discretized equations can be written as:

∆e = ∆ee +∆εP (55)

σeq +∆σeq ≡ F (s+∆s− a−∆a) = σY (εeff1 +∆εeff1 , εeff2 +∆εeff2 , z +∆z, T +∆T )

(56)

∆σP =
3

2

∆εeq
F (s+∆s− a−∆a)

(s+∆s− a−∆a) (57)

∆s
OBJ

= ∆s+ (∆s)GT = 2µ∆ee + (∆s)T

⇒ ∆s = 2µ∆ee − (∆s)GT + (∆s)T
(58)

∆εeff1 = ∆εeq (59)

∆(zεeff2 ) =

(
z +

∆z

2

)
∆εeq + θεeff1 ∆z ⇒

∆εeff2 =
1

z +∆z

[(
z +

∆z

2

)
∆εeq + (−εeff2 + θεeff1 )∆z

] (60)

(∆a
1
)OBJ = ∆a

1
+ (∆a

1
)GT =

2

3
(1− p)

∆σ1

∆εeff1
∆εp + (∆a

1
)T ⇒

∆a
1
=

2

3
(1− p)

∆σ1

∆εeff1
∆εp − (∆a

1
)GT + (∆a

1
)T

(61)

∆(za
2
) =

2

3
(1− p)(z +

∆z

2
)
∆σ2

∆εeff2
∆εp + θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T

(62)

The quantities ∆σ1/∆εeff1 and ∆σ2/∆εeff2 intervening in the evolutions equations
of the parameters of the kinematic hardening are here the secant of strain hardening
defined by

∆σi

∆εeffi
=

1

∆εeffi

[
σi(ε

eff
i +∆εeffi , T +∆T )− σi(ε

eff
i , T +∆T )

]
(63)

This choice rather than that of the slopes of work hardening, as previously, is jus-
tified by compatibility with the resolution which follows, which will naturally make
use again of the secants, this time for the isotropic part of the work hardening, via
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the exact respect of the criterion at the time t +∆t . Note also that Eq.(62) will
be used in the given form, and not in the form of an expression of ∆a

2
which will

be less convenient here.

Now let us solve these equations by adopting ∆εeq as a key unknown. Proceed-
ing as before from Eq.(55) and Eq.(58), we obtain

s+∆s = s+ 2µ∆e− (∆s)GT + (∆s)T − 2µ∆εp

which, by assuming as previously

(s+∆s)el = s+ 2µ∆e− (∆s)GT + (∆s)T (64)

and using Eq.(57), is equivalent to

s+∆s = (s+∆s)el − 3µ
∆εeq

F (s+∆s− a−∆a)
(s+∆s− a−∆a)

By adding −a−∆a to the two sides of the equations, and by writing a+∆a in the
form

a+∆a = (1− z −∆z)(a
1
+∆a

1
) + za

2
+∆(za

2
)

and using Eq.(61) and Eq.(62), we get

s+∆s− a−∆a = (s+∆s)el − 3µ
∆εeq

F (s+∆s− a−∆a)
(s+∆s− a−∆a)

− (1− z −∆z)(a
1
+∆a

1
)− za

2
−∆(za

2
)

= (s+∆s)el − (1− z −∆z)
[
a
1
− (∆a

1
)GT + (∆a

1
)T

]
− za

2

− 3µ
∆εeq

F (s+∆s− a−∆a)
(s+∆s− a−∆a)

− (1− z −∆z)
2

3
(1− p)

∆σ1

∆εeff1
· 3
2

∆εeq
F (s+∆s− a−∆a)

(s+∆s− a−∆a)

− 2

3
(1− p)(z +

∆z

2
)
∆σ2

∆εeff2
· 3
2

∆εeq
F (s+∆s− a−∆a)

(s+∆s− a−∆a)

− θa
1
∆z + z(∆a

2
)GT − z(∆a

2
)T

By using

s∗ ≡ (s+∆s)el − (1− z −∆z)
[
a
1
− (∆a

1
)GT + (∆a

1
)T

]
− za

2
− θa

1
∆z + z(∆a

2
)GT − z(∆a

2
)T

(65)

(note that this definition is not the same as that of Eq.( 39 ), in the case where the
stress limit is not reached), and

H̃ ≡ (1− z −∆z)(1− p)
∆σ1

∆εeff1
+ (z +

∆z

2
)(1− p)

∆σ2

∆εeff2
(66)
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this can be written as1 +
(
H̃ + 3µ

)
∆εeq

F (s+∆s− a−∆a)

 (s+∆s− a−∆a) = s∗ (67)

Before going any further, let us give a simple and more meaningful expression of
s∗. Let us denote a

1
+ (∆a

1
)GT ,T and a

2
+ (∆a

2
)GT ,z ,T the values of a

1
and

a
2
obtained by taking into account, in the variation ∆a

1
and ∆a

2
, only the terms

due to large transformations and variations of z and T (that is omitting the term
proportional to ∆εp). We have, by Eq.(61) and Eq.(62):

a
1
+ (∆a

1
)GT ,T = a

1
− (∆a

1
)GT + (∆a

1
)T ,

(z +∆z)⌊a
2
+ (∆a

2
)GT ,z ,T ⌋ − za

2
= θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T

⇒ (z +∆z)⌊a
2
+ (∆a

2
)GT ,z ,T ⌋ = za

2
+ θa

1
∆z − z(∆a

2
)GT + z(∆a

2
)T

From these two expressions and Eq.(65) we can deduce that

s∗ = (s+∆s)el − (1− z −∆z)⌊a
1
+ (∆a

1
)GT ,z ,T ⌋−

(z +∆z)⌊a
2
+ (∆a

2
)GT ,z ,T ⌋

(68)

This expression allows an easy calculation of s∗, having previously carried out the
pre-corrections of a

1
and a

2
due to large transformations and variations of z and T .

Eq.(67) implies that the (unknown) tensor s+∆s− a−∆a is positively collinear
with the (known) tensor, s∗; thereby

s+∆s− a−∆a =
F (s+∆s− a−∆a)

F (s∗)
s∗ (69)

In addition, we obtain by taking the Von Mises function of the two sides of Eq.(67):

F (s+∆s− a−∆a) + (H̃ + 3µ)∆εeq = F (s∗) (70)

The equation Eq.(56) gives, by expliciting the yield limit thanks Eq.(6):

F (s+∆s− a−∆a) = [1− f(z +∆z)]σY
1 (εeff1 +∆εeff1 , T +∆T )

+ f(z +∆z)σY
2 (εeff2 +∆εeff2 , T +∆T )

= [1− f(z +∆z)]

[
σY
1 (εeff1 , T +∆T ) + p

∆σ1

∆εeff1
∆εeff1

]

+ f(z +∆z)

[
σY
2 (εeff1 , T +∆T ) + p

∆σ2

∆εeff2
∆εeff2

]
= σY (εeff1 , εeff2 , z +∆z, T +∆T )

+ [1− f(z +∆z)] p
∆σ1

∆εeff1
∆εeff1 + f(z +∆z)p

∆σ2

∆εeff2
∆εeff2
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which gives, by reporting in Eq.(70):

σY (εeff1 , εeff2 , z +∆z, T +∆T ) + [1− f(z +∆z)] p
∆σ1

∆εeff1
∆εeff1

+ f(z +∆z)p
∆σ2

∆εeff2
∆εeff2 + (H̃ + 3µ)∆εeq = F (s∗)

This equation can be written as, according to Eq.(59) and Eq.(60):

(H + 3µ)∆εeq = ∆ (71)

H ≡ H̃ + [1− f(z +∆z)] p
∆σ1

∆εeff1
+ f(z +∆z)

z +∆z/2

z +∆z
p
∆σ2

∆εeff2

= (1− z −∆z)(1− p)
∆σ1

∆εeff1
+

(
z +

∆z

2

)
(1− p)

∆σ2

∆εeff2

+ [1− f(z +∆z)] p
∆σ1

∆εeff1
+ f(z +∆z)

z +∆z/2

z +∆z
p
∆σ2

∆εeff2

(72)

∆ ≡ F (s∗)− σY
1 (εeff1 +∆εeff1 , T +∆T ) + f(z +∆z)p

∆σ2

∆εeff2

∆z

z +∆z
×

(εeff2 − θεeff1 )

(73)

Eq.(71) relates to the only unknown ∆εeq, the strain hardening secants depends on

the εeff1 which are expressed as a function of ∆εeq, thanks to the equations Eq.( 59
) and Eq.( 60 ). It can be solved, for example, by the method of the fixed point.
The quantity F (s + ∆s − a −∆a) is then deduced from Eq.( 56 ), and then the
tensor s+∆s−a−∆a is deduced from Eq.( 69 ). Finalyy, we calculate ∆εp thanks
to Eq.( 57 ), then a

1
and a

2
thanks to Eq.( 61 ) and Eq.( 62 ).
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6.3. Particular case: isotropic strain hardening with the yield limit not reached

If the yield limit is not reached, the expression of Eq.(29 ) proposed for (∆σeq
1 )s

is applicable whatever the type of the work hardening. However, for a pure isotropic
work hardening p ≡ 1 is equivalent to the expression Eq.(10 ) of (σ̇eq

1 )s can also be
written equivalently ( with ( a

1
≡ 0) ) as:

(σ̇eq
1 )s ≡

3

2σeq
s :

v
s = ˙σeq , σeq ≡

(
3

2
s : s

) 1
2

We can then assume that a simple expression for (∆σeq
1 )s, than Eq.(29 )

(∆σeq
1 )s ≡ Y ≡ ∆σeq = F (s+∆s)− F (s) ≡ X − F (s) (27”)

This simplification is adopted in several finite element codes. It is necessary to take
again the elements of the numerisation exposed in the Section 4.1 in the case of
the purely isotropic work hardening where the yield stress is not reached.

The equation Eq.(42 ) being obtained without using the expression Eq.(29 ) of
(∆σeq

1 )s ≡ Y ≡ ∆σeq is valid here also; it can be written as, with a
1
≡ 0, ∆a

1
≡ 0,

p ≡ 1 (thus, H = 0 from Eq.(40 ) ):[
1 + µ(A+BY )

(
1 +

F (s)

X

)]
(s+∆s) = s∗

s∗ is always given by Eq.(39 ), with a
1
≡ 0, (∆a

1
)T ≡ 0

X + µ(A+BY )(X + F (s)) = X + µ[A+B(X − F (s))](X + F (s)) = F (s∗)

The equation Eq.(43 ) then applied always, with a
1
≡ 0, ∆a

1
≡ 0. In addition,

taking into account the function of Von Mises of the two sides of Eq.(42” ) and
taking into account Eq.(29” ), we obtain:

L′′X2 +M ′′X +N ′′ = 0 (44”)

which gives by re-ordering the terms

L′′ + µB (45”)

M ′′ = 1 + µA (46”)

N ′′ = µAF (s)− µBF 2(s)− F (s∗) (47”)

As in the usual case, this formulation does not necessarily ensure that there exists a
positive real solution X. If this is not the case, we can adopt a completely implicit
algorithm (replacement of Eq.(25) and Eq.(26) by Eq.(25’) and Eq.(26’). This leads
to replacing F (s) by F (s+∆s ≡ X in Eq.(42’), which becomes:

[1 + 2µ(A+BY )](s+∆s) = s∗ (40”’)
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By taking the von Mises function of the two sides of the previous equations and
taking into account Eq.(29”), we then obtain

X + 2µX[A+B(X − F (s))] = F (s∗)

which is equivalent to

L′′′X2 +M ′′′X +N ′′′ = 0 (44”’)

L′′′ + 2µB (45”’)

M ′′′ = 1 + 2µ(A−BF (s)) (46”’)

N ′′′ = −F (s∗) (47”’)

Since L′′′ > 0 and N ′′′ > 0, the existence of this unique positive solution is there-
fore guaranteed.

6.4. Numerical treatment of the delocalization

The procedure employs an array A(I, J), where the first index ranges from 1 to
6 and the second index spans the total number of Gauss points affected by the de-
localization, signifying each specific Gauss point. The significance of the quantities
A(I, J) is profound:

• A(1, J),A(2, J),A(3, J): Precise coordinates of Gaussian point J;

• A(4, J) :Immediate local effective plastic strain increment (between times
t and t+∆t) at Gaussian point J;

• A(5, J): Authentic increment (post convolution) of effective plastic strain at
Gaussian point J;

• A(6, J): Weight of Gauss point (for integration).

The computational process is resolute: at every iteration and for each Gauss
point, a meticulously crafted program meticulously calculates the coordinates and
weight of the Gauss point, meticulously storing them in A(1 − 3, J) and A(6, J).
Furthermore, it invokes a meticulously engineered sub-program that assesses the
local effective plastic strain increment; this valuable information is meticulously
recorded in A(4, J). Upon achieving convergence on the nodal imbalances, an-
other meticulously designed program is executed, which, through a double loop on
the Gauss points, meticulously executes the convolution operation. The resulting
effective plastic strain increment at point J , meticulously preserved in A(5, J), is
conveyed to a meticulously crafted program responsible for the ultimate task of
calculating and meticulously preserving the effective plastic strain at time t and
t+∆t.
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7. Numerical Results / Comparisons with Experiments / Discussion

The constitutive model presented in the first section is essentially based on von
Mises model. The Von Mises model, a widely used constitutive model in solid
mechanics, has been extensively studied and validated in the literature. Previous
research has shown that the Von Mises model typically exhibits known behavior
with respect to mesh size variations. Specifically:

• The behavior of the Von Mises model with respect to mesh size variations
is well understood. Studies have demonstrated that the model’s predictions
converge to a stable solution as the mesh size is refined. Sensitivity analyses
have shown that the model’s output is relatively insensitive to changes in
mesh size within a certain range.

• The Von Mises model has undergone thorough validation against experimen-
tal data or benchmark simulations. It has been shown to provide accurate
predictions within an acceptable range of mesh sizes. Validation efforts have
included comparisons with experimental measurements, analytical solutions,
and other well-established models or industry standards.

Given the known behavior and extensive validation of the von Mises model, con-
ducting additional mesh size dependency checks may be redundant. Instead, we
shall focus on ensuring that the simulation results accurately mirror the experimen-
tal data.

The algorithm described above is implemented in SYSTUS to evaluate the model
described above. The numerical modeling pertains to a martensitic transformation
of A508 steel. The transformation deformation is solely induced by thermal de-
formation (the expansion of the daughter phase) without including any deviatoric
component (neglecting shape change). The results of this modeling provide a bet-
ter understanding of the behavior of A508 steel during its martensitic transforma-
tion. This data is crucial for optimizing heat treatment processes and designing
A508 steel components for specific applications, such as nuclear construction. The
thermo-mechanical properties assumed for the two phases are as follows:

The transformation of an element occurs through a change in its thermo-elastic
properties from phase γ to phase α. During this transformation, a uni-axial stress
with a constant amplitude of approximately 1/3 of the yield strength of the weaker
phase is applied to the material. This study demonstrates that the first type of
transformation (diffusive progression of the elements to be transformed) provides
a better agreement with the theoretical predictions of the author’s analytical model.

We will numerically investigate transformation plasticity, focusing on Greenwood
and Johnson’s mechanism. In this study, a finite element mesh will undergo external
loading, with sequential element transformations other by changing their thermal
strain and yield stress from those of the γ phase to those of the α phase. The
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transformation strain will consist only of the difference of thermal strain between
the phases and will not include any deviatoric part (change of shape). The trans-
formation studied is the martensitic transformation of the A.508 cl. 3 steel. The
temperature dependence of the thermo-mechanical characteristics is disregarded.
These characteristics are provided in the document Appendix A appended to this
paper.

The chosen Representative Elementary Volume (REV) for modeling transforma-
tion plasticity is a regular 5× 5× 5 mesh cube. The phases exhibit perfectly plastic
behavior (without hardening). Two types of transformations are studied:

1. Elements are transformed in a specific order, from the center of the REV to
its boundaries.

2. Elements are transformed in a random order within the REV.

The transformation of an element occurs through a change in its thermo-elastic
properties from phase γ to phase α. During this transformation, a uni-axial stress
with a constant amplitude of about 1/3 of the yield strength of the weakest phase
is applied to the REV.

This study demonstrates that the first type of transformation (diffusive pro-
gression of the elements to be transformed) provides a better agreement with the
theoretical predictions of the author’s analytical model.

Figure 2: Transformation plastic strain in a 5 × 5 × 5 cube for a stress equals to 50 MPa : 1)
Theory; 2) Ordered transformation, Σxx = 50 MPa; 3) Random transformation
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Figure 3: Normalized transformation plastic strain in a 10 × 10 × 10 cube for lower stresses : 1)
Theory; 2) Ordered transformation, Σ11 = 50 MPa; 3) Ordered transformation, Σ11 = 100 MPa;
4) Same as in 2) except that difference of thermal strain between the two phases is divided by 2;
5) random transformation, Σ11 = 100 MPa

Figure 2 illustrates the plastic strain resulting from transformation in a 5 × 5
× 5 cube under an applied stress of 50 MPa, capturing both ordered and random
transformations. This visual depiction serves as a comprehensive snapshot of the
material’s response to the specified stress conditions, offering a comparative analysis
between the two transformation scenarios.

Examining the intricate dynamics of the random transformation process reveals
a captivating interplay between theoretical expectations and empirical observations.
The conspicuous deviation in the associated curve from the theoretical baseline
serves as an intriguing cue, inviting us to delve into the nuanced mechanics at play.
A critical determinant of this notable discrepancy lies in the profound influence ex-
erted by elements positioned on the surface of the cube.

As the transformation unfolds, the surface elements exhibit a distinctive response
characterized by a more facile outward expansion in contrast to their inward progres-
sion. This asymmetry in the transformation dynamics stems from the augmented
volume experienced by the surface elements during the process. Consequently, the
plastic strains induced in the austenitic phase manifest with diminished prominence
when compared to their counterparts within the cube’s interior. This nuanced
phenomenon intricately underpins the underestimation of the Greenwood-Johnson
effect, attributing this discrepancy to the ostensibly inconsequential yet influential
presence of surface elements.

Extending our scrutiny to an ordered transformation originating from the center,
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a compelling narrative emerges. In the initial stages, wherein only interior elements
partake in the transformation, the resultant curve exhibits a slope twice as steep as
its random transformation counterpart. This phase aligns seamlessly with theoret-
ical expectations, portraying a harmonious relationship between computation and
theory. However, the plot takes a fascinating turn when surface elements become
integral to the transformation process.

Upon the involvement of surface elements, a sudden and pronounced decrease in
slope unfolds, ushering in a phase marked by a notable misalignment between com-
putational outcomes and theoretical predictions. This inflection point underscores
the critical role played by surface elements in shaping the transformation dynamics,
offering a deeper understanding of the complex interplay between internal and sur-
face influences on the observed mechanical behavior. In essence, the juxtaposition
of random and ordered transformations unravels a rich tapestry of insights, shedding
light on the multifaceted nature of material transformations and the consequential
impact of seemingly peripheral factors.

Figure 3, serving as the counterpart to Figure 2, replicates the experimental
setup, albeit with a diminished mesh size, featuring a cube measuring 10 × 10 ×
10 units. A notable adjustment in the applied stresses has been introduced, ele-
vating them from 50 MPa to a more substantial 100 MPa. Furthermore, both
random and ordered modes of ”normalized” transformation were deliberately incor-
porated into the experimental conditions.

In contrast to its predecessor, Figure 3 encapsulates the same experimental
essence but with a finer spatial resolution achieved through a reduced mesh size.
The alteration in stress parameters, escalating from 50 MPa to 100 MPa, in-
troduces a heightened mechanical loading scenario, accentuating the influence of
external forces on the transformation phenomena. This augmentation in stress levels
serves to amplify the mechanical responses within the 10 × 10 × 10 cube, providing
a nuanced perspective on the material’s behavior under varying stress conditions.

The intentional inclusion of both random and ordered transformations in this it-
eration broadens the scope of the investigation, allowing for a comprehensive analysis
of the material’s response to distinct transformation mechanisms. This deliberate
diversification in transformation types enriches the experimental landscape, facili-
tating a more thorough exploration of the material’s mechanical behavior and its
sensitivity to different transformation pathways. The juxtaposition of these transfor-
mation modes within the refined experimental setup introduces a layer of complexity,
offering a more nuanced understanding of the material’s response to varying stress
regimes.

It is noteworthy that both transformation orders now yield results that are mutu-
ally consistent and align with theoretical expectations. This observation indicates a
significant reduction in the influence of surface elements, underscoring the enhanced
congruence between the outcomes and theoretical predictions.

32



We can envisage to investigate the case of very large applied stresses, surpassing
the critical yield strength (Σy) threshold of 145 MPa. This represents a significant
departure from conventional stress levels, introducing a novel challenge in under-
standing material behavior under extreme conditions.

At such elevated stress levels, it becomes evident that traditional experimental
methods and existing theoretical frameworks may no longer suffice to comprehen-
sively capture the intricate nuances of material response. The absence of empirical
data and established theories for stress magnitudes beyond Σy = 145MPa under-
scores the need for alternative approaches to model transformation plasticity.

In this context, numerical simulations emerge as indispensable tools for bridg-
ing the knowledge gap. They play a pivotal role in not only compensating for the
lack of experimental data but also in establishing a robust and realistic model for
transformation plasticity under these unprecedented stress regimes. The reliance
on numerical simulations becomes paramount as they offer a flexible and efficient
means to explore and comprehend complex material behaviors that elude conven-
tional experimental techniques.

In essence, our exploration of very large applied stresses necessitates a paradigm
shift in our approach. The synergy between experimental insights, theoretical frame-
works, and numerical simulations is key to advancing our understanding of trans-
formation plasticity under these challenging conditions.

Also, comparisons of the model predictions with experiments conducted on A533
steel transformation plasticity by Desalos [3] serve as a another crucial benchmark
for validating our numerical implementation. The insights gained from these com-
parisons add a significant layer of confidence to the reliability of our simulations.
The physical constants employed in our numerical model for this case, characterizing
the γ- and α- phases of A533 steel, closely mirror those derived from the metic-
ulous experimental investigations of Desalos [3] and Coret et al. [1, 2]. Notably,
our material properties feature identical values for Young’s modulus (E = 182, 000
MPa) and Poisson’s ratio (ν = 0.3) across both phases, for the rest of the material
constants used for the simulations with the A533 steel can be found in Desalos [3]
and Coret et al. [1, 2].

Furthermore, our choice of yield stress parameters is well-founded, with Σm =
145MPa assigned to the mother-phase and ΣD = 950MPa to the daughter-
phase. This meticulous adherence to established values enhances the credibility of
our numerical model. Additionally, we account for the relative change of specific
volume from the mother- to the daughter-phase. These constants, consistently
applied and well-documented, collectively contribute to the robustness of our nu-
merical model, thereby fortifying the reliability and validity of our research findings.

In the examined cases for comparative analysis, the Representative Volume
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Element (RVE) experiences a uni-axial stress denoted as Σ, consistently applied
throughout. This volume undergoes external loading via homogeneous boundary
stress (HBStress) or homogeneous boundary strain (HBStrain) conditions to en-
sure robustness. The primary goal is to strengthen the theoretical analysis, with
a specific emphasis on HBStress conditions, while rigorously examining the influ-
ence of boundary conditions. The consequential plastic strain transformation along
the loading direction is identified as Ep

t (z), capturing the intricate evolution of the
material under this specific stress condition. (Any other components are omitted,
either being zero or directly correlated to Ep

t (z) owing to considerations of incom-
pressibility.)

Figure 4: Comparison of evolutions of the transformation plastic strain: Theories and experiments

In Figure 4, the progression of the transformation plastic strain is depicted, il-
lustrating the dynamic evolution as the transformation unfolds. This evolution is
characterized by the ratio Ep

t (z)/E
p
t (1), a metric that ascends from 0 to 1. The

dependence on the volume fraction z of the daughter-phase is evident in the plot.
The graph not only captures this transformational journey but also highlights the
significant variations in the ratio across different values of z.

The depicted data is a comparative analysis involving the predictions of three
distinct formulas. Firstly, the original formula (19) proposed by Leblond et al.. [10]
is represented. Secondly, an allegedly improved variant (20) of the original formula
is included in the comparison. Lastly, Desalos [3] introduces a phenomenological
formula, Ep

t (z)/E
p
t (1) ≈ z(2 − z), which he found to be universally applicable to

all his experimental results for the A533 steel, regardless of the stress applied. The
juxtaposition of these formulas provides a comprehensive view of their predictive
capabilities and sheds light on their performance across the spectrum of volume
fractions and stress values.

All theoretical curves, with the exception of the one corresponding to the pur-

34



portedly enhanced variant of Leblond et al.. [10]’s original formula, Eq.11, offer
sensible depictions of Desalos [3]’s experimental findings. Nevertheless, across all
scenarios, the projected escalation in transformation plastic strain proves somewhat
accelerated during the initial half of the transformation process.

In Figure 5, a comparative analysis is presented, juxtaposing the outcomes de-
rived from micro-mechanical simulations conducted under both HBStress and HB-
Strain conditions. Notably, these simulations were executed under a low stress
condition, precisely Σ = 20MPa. It is imperative to highlight that, for contextual
reference, the curve representing Desalos [3]’s heuristic formula, previously discussed
and applicable across the entire spectrum of stresses he considered, is once again
included. This additional visual cue serves as a point of reference, facilitating a
comprehensive understanding of the observed results and their alignment with es-
tablished heuristic models.

A substantial disparity exists in the numerical outcomes derived under HBStress
and HBStrain conditions, underscoring the profound impact of boundary conditions.
This stark contrast serves to highlight the inherent limitations associated with an
approach centered on a simplistic and diminutive Representative Volume Element
(RVE), exemplified by a spherical volume of the mother phase housing a solitary
growing core of the daughter phase. This discrepancy not only underscores the sen-
sitivity of the results to the chosen boundary conditions but also provides tangible
evidence of the inadequacies inherent in employing such a rudimentary RVE model.

Next, we embark on an exploration of the ”amplitude” of transformation plas-
ticity, denoted by the value of the transformation plastic strain after the completion
of the transformation process, Ep

t (1). In the illustrative Figure 6, this parame-
ter unfolds its dependencies in response to the applied overall stress. Specifically,
this juxtaposes diverse perspectives, offering a comprehensive comparison among
Leblond et al. [10]’s original formula Eq.11, and Desalos[3]’s experimental findings
for the A533 steel.

Desalos [3]’s empirical findings, encapsulated in the heuristic formula Ep
t (1) =

10−4Σ (with units in MPa), remarkably align with the predicted outcomes, sub-
stantiating the robustness and applicability of our general formula Eq.11 in captur-
ing the amplitude of transformation plasticity. This comparative analysis not only
serves as a validation of existing models but also unveils the intricate relationship
between theoretical predictions and experimental observations in the realm of trans-
formation plasticity, providing a nuanced understanding of material behavior under
varying stress conditions.

In Figure 7, a comprehensive comparison unfolds between the predictions derived
from our overarching formula Eq.11 and the outcomes gleaned from micromechan-
ical simulations conducted under HBStress and HBStrain conditions. Notably, for
reference, Desalos [3]’s experimental results are once again presented, lending an
additional layer of context and validation to the juxtaposition of our theoretical
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predictions with real-world observations.

The numerical outcomes derived under HBStress and HBStrain conditions ex-
hibit a notable disparity, further highlighting the divergence in their respective in-
fluences. However, a noteworthy reversal of this trend is observed when considering
the ratio Ep

t (f)/E
p
t (1). In contrast to the previous scenario, results associated with

HBStrain conditions surpass those under HBStress conditions in this context, with
reference to Desalos [3]’s experimental findings.

It becomes apparent that under HBStress conditions, there is a conspicuous
tendency for an overestimation of the amplitude of transformation plasticity. This
discrepancy underscores the critical role of the chosen stress conditions in influenc-
ing the accuracy of predictions, particularly in comparison to experimental bench-
marks. The inversion of performance between HBStress and HBStrain conditions
underscores the nuanced interplay of factors and the need for a comprehensive un-
derstanding of the material response under varying conditions.

Figure 5: Evolution of Transformation Plastic Strain: A Comparative Analysis between Experiments
and Micro-Mechanical Simulations.
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Figure 6: A Comparative Analysis of Plastic Strains Following Full Transformation: Bridging the
Divide Between Theoretical Projections and Experimental Realities.

Figure 7: Comparative Analysis of Plastic Strains Following Full Transformation: Experiments
Versus Micro-mechanical Simulations

37



8. CONCLUSION

In conclusion, our research underscores the profound significance of transforma-
tion plasticity in shaping the outcomes of crucial industrial processes, particularly
those involving solid-solid phase transitions such as welding and quenching. The
ability to accurately simulate and predict the behavior of materials undergoing such
transformations is imperative for ensuring the integrity and efficiency of these pro-
cesses. Our study highlights the intricate interplay of thermal, metallurgical, and
mechanical effects that govern the evolution of material properties during phase
transitions.

While Leblond et al.’s model (1986) provided a foundational framework for un-
derstanding transformation plasticity, our work demonstrates the critical need for
refinement, particularly in addressing the complexities of mixed isotropic/kinematic
hardening. By augmenting this model with characteristic length scales and nonlocal
variables, we have achieved a more comprehensive understanding of the underlying
plastic deformation mechanisms operating in both phases of the material.

Our methodology involved not only theoretical enhancements but also practi-
cal implementation through numerical simulations within a finite element analysis
framework. By applying our refined model to real-world scenarios involving A.508cl.
and A533 steels, we have validated its efficacy in capturing the intricate nuances
of phase transformation phenomena. The robustness and efficiency demonstrated
by our model in predicting these behaviors underscore its potential to significantly
enhance industrial practices.

In essence, our findings represent a significant step forward in the quest for
high-fidelity predictive models of transformation plasticity. By shedding light on
the underlying mechanisms and refining our ability to simulate and predict material
behavior, our research offers tangible benefits to a wide range of industrial applica-
tions. From improving the performance and reliability of manufacturing processes
to enabling the development of advanced materials with tailored properties, the
implications of our work extend far beyond the confines of academic research. We
believe that our study not only advances the state-of-the-art in materials science
and engineering but also holds promise for driving innovation and efficiency across
diverse industrial sectors.
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Appendix A. The Material Properties for the A508 cl Steel

The material properties for the A508 cl steel include the young modulus, thermal
conductivity, Poisson ratio, yield limit, and hardening rate. These properties play
crucial roles in determining the mechanical and thermal behavior of the steel alloy.
These properties are summarized in the table below for each of the phase the steel
is made of:

phase α phase γ
Young modulus
(MPa)

182 000 182 000

Poison ratio 0.3 0.3
Yield limit (MPa) 950 145
Hardening rate 0 0
Thermal
deformation

0 0.84%

Table A.1: The Material Properties for the A508 cl Steel
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Appendix A. The Material Properties for the A533 steel

The material properties for the A533 steel include the young modulus, Poisson
ratio, and yield limit. These properties play crucial roles in determining the me-
chanical of the steel alloy. These properties are summarized in the table below for
each of the phase the steel is made of:

phase α phase γ
Young modulus
(MPa)

182 000 182 000

Poison ratio 0.3 0.3
Yield limit (MPa) 950 145

Table A.2: The Material Properties for the A533 steel
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Appendix A. Constitutive equations of the Leblond et al.’s model

Transformation plasticity arises from two distinct mechanisms: the Greenwood
and Johnson mechanism, where microscopic plastic strain results from volume in-
compatibilities between phases and is aligned by applied stress, and the Magee and
Paxton mechanism (pertaining to martensitic transformation), where applied stress
affects the orientation of emerging martensite plates. Experimental evidence sup-
ports this phenomenon by subjecting specimens to constant stress during formation.
In typical scenarios involving small, uniaxial stress (such as in the x-direction), the
resulting strain takes the form:

Appendix A.1. Classical model

The total strain tensor εt is first defined, decomposing into three components:

the elastic strain tensor εe, the thermal strain tensor εth, and the plastic strain
tensor εp.

εt = εe + εth + εp (A.1)

The thermal deformation εth encompasses the spherical component of the transfor-
mation deformation. The plastic deformation εp includes the deviatoric part of the
transformation deformation.

Σ = ⟨σ⟩V

Et = ⟨εt⟩V
(A.2)

From this, at the macroscopic scale, emerges equation Eq. ( A.3 ), which involves
a decomposition of the total macroscopic deformation tensor Et into the contribu-

tions of elastic deformation Ee, thermo-metallurgical deformation Ethm, and plastic
deformation Ep

Et = Ee +Ethm +Ep (A.3)

The following hypothesis is now introduced:

Hypothesis 1: The macroscopic flexibility tensor M is assumed to be analogous
to the microscopic flexibility tensor m, enabling the formulation of the following
expressions:



Ee = ⟨εe⟩V = M : m

Ethm = ⟨εth⟩V = (1− z)εth
M

+ zεth
D

Ep = ⟨εp⟩V

(A.4)
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The thermo-metallurgical deformation (εthm) is determined experimentally through
free dilatometry testing. However, the plasticity deformation ( εp) is not straight-
forward to ascertain; it involves the classical plasticity (εcp) and the transformation
deformation (εtp). It’s worth noting that plastic deformation considers the volu-
metric variation of each phase and, consequently, the position of the boundary (F )
between the two phases. When differentiating εp with respect to time, the following
formula arises:

Ė
p
=

d

dt

[
1

Vol(V )

∫
V

εp dv

]
= (1−z)⟨εth

M
⟩VM

+z⟨ε̇p
D
⟩VD

+ż⟨∆εp
M→D

⟩F (Un) (A.5)

where

⟨ε̇p
i
⟩Vi Mean of ε̇p

i
over the volume Vi (i = M,D)

F tip of the transformation

Un normal to the front of advance of F

(A.6)

and ⟨∆εp
M→D

⟩F (Un) is the average of the discontinuity surface of ∆εp
M→D

under
the transformation tip weighted by the velocity normal vector Un:

⟨∆εp
M→D

⟩F (Un) =

∫
F

∆εp
M→D

UndS∫
F

UndS

(A.7)

The discontinuity of εp across the two phases arises from the fact that the deviatoric
part of the transformation strain is introduced into plastic deformation, causing a
deformation jump when passing through these two zones. By convention, ż > 0
as the boundary F moves from the daughter phase α ≡ D to the parent phase
γ ≡ M . The thermoplastic behavior leads to stating the classical plastic strain rate
Ėcp as related to the temperature evolution Ṫ and the stress rate Σ̇.

Ė
cp

= Ė
cp

Σ
+ Ė

cp

T
(A.8)

And for the plastic deformation rate of transformation Ė
tp
, it only occurs during

the transformation, meaning that it depends on ż. Now, the plastic deformation
rate Ė

p
defined in equation A.7 can be expressed entirely as a decomposition of ε̇p

in terms proportional to Σ̇, Ṫ , and ż.

In a typical problem of ordinary mechanics at the local scale, it arises:

ε̇p = ( ) σ̇ + ( ) Ṫ (A.9)

without the term proportional to z but since

σ̇p = ( ) Σ̇+ ( ) Ṫ + ( ) ż (A.10)
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the expression for ε̇p follows:

ε̇p =

(
δε̇p

δΣ

)
Σ̇+

(
δε̇p

δT

)
Ṫ +

(
δε̇p

δz

)
ż (A.11)

Using the equation below, taken from the volumes VM and VD, equation A.5 be-
comes:

Ė
p
=

{
(1− z)⟨

δεp
M

δΣ
⟩VM

+ z⟨
δεp

D

δΣ
⟩VD

}
Σ̇︸ ︷︷ ︸

Ė
cp

Σ

+

{
(1− z)⟨

δεp
M

δT
⟩VM

+ z⟨
δε̇p

δT
⟩VD

}
Ṫ︸ ︷︷ ︸

Ė
cp

T

+

Ė
tp︷ ︸︸ ︷(1− z)⟨

δεp
M

δz
⟩VM

+ z⟨
δεp

D

δz
⟩VD︸ ︷︷ ︸

Greenwood and Johnson mechanism

+ ⟨∆εp
M→D

⟩F (Un)︸ ︷︷ ︸
Magee and Paxton mechanism

 ż

In this way, in the previous equation, the terms averaged over the volume of
the phases are due to the Greenwood and Johnson mechanism [5] (plastic volumet-
ric accommodation), while the term integrated over the advancement front of the
transformation is linked to the Magee and Paxton mechanism [11] (effect of the
orientation of the transformation deformation).

In order to arrive at the explicit expression ( Ė
tp

= 2
3KSϕ′(z)ż) of Leblond [7],

he first assumes that the transformations are diffusive and that only the Greenwood
and Johnson mechanism [5] matters; this would have implied that:

Ė
tp

=

{
(1− z)⟨

δεp
M

δz
⟩VM

+ z⟨
δεp

D

δz
⟩VD︸ ︷︷ ︸
}
ż (A.12)

and the following hypotheses are made:

• Hypothesis 1: The macroscopic flexibility tensor M is assumed to be anal-
ogous to the microscopic flexibility tensor m

• Hypothesis 2: For low applied efforts, the γ phase is entirely plastic, but
the α phase remains elastic. In other words, the plastic deformation rate of
the parent phase (austenite) is much lower than that of the daughter phase
(ferrite, martensite) and this implies that

Ė
tp

= (1− z)⟨
δεp

M

δz
⟩VM

ż (A.13)
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• Hypothesis 3: And obeying the von Mises criterion and the associated
Prandtl-Reuss flow law:

Ė
tp

=
3(1− z)

2σM
Y

⟨
δεeqM
δz

s
M
⟩VM

ż (A.14)

with 

σM
Y elastic limit of the parent phase.

s
M

microscopic deviatoric tensor

εeqM equivalent strain

(A.15)

• Hypothesis 4: The correlation between
δεeqM
δz

and s
M

can be neglected. As

a result:

Ė
tp

=
3(1− z)

2σM
Y

⟨
δεeqM
δz

⟩VM
S
M
ż (A.16)

where S
M

= ⟨s
M
⟩VM

is the average of the stress deviatoric part in the phase
M .

• Hypothesis 5: For small applied stresses, the average deviatoric stresses in
the phase M are approximately equal to the average deviator of the overall
stresses, S

M
= S = ⟨s

M
⟩V ; with this we have:

Ė
tp

=
3(1− z)

2σM
Y

⟨
δεeqM
δz

⟩VM
Sż (A.17)
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Appendix A.2. Spherical growth model of LEBLOND for the GREENWOOD-
JOHNSON mechanism

For the effective calculation of the magnitude ⟨
δεeqM
δz

⟩VM
(and no longer ⟨

δεp
M

δz
⟩VM

which averages to zero), Leblond proposes, in the case of low applied stresses (this
calculation is actually done for Σ = 0), that the ferritic structure (phase α ≡ D)
is a spherical inclusion that grows inside an austenitic sphere (phase γ ≡ M): At
time t, the mother phase occupies the entire ΩM zone in blue and purple, and the
daughter phase occupies the entire ΩD zone in red. Consider at this time t a ring
of thickness δrz, and at time t+ δt, this entire zone transforms into the daughter
phase.

The main objective is to evaluate the quantity ⟨
δεp

M

δz
⟩VM

from expression Eq.

A.17, which represents the average increase in equivalent plastic deformation of the
parent phase induced by a slight increase in the proportion of the daughter phase.
After a simplified micromechanical calculation, these authors finally determine the
formula for the transformation strain rate as follows:

Ė
tp

= −3
∆εth1→2

σM
Y

S (ln(z)) ż (A.18)

And by identifying with equation (II.11), it follows that:
K =

∆εth1→2

σM
Y

ϕ(z) = z (1− ln(z))

(A.19)

Finally, Leblond et al. [9] complement this theoretical approach with finite element
numerical calculations on a diffusional transformation in A508 steel, in order to:

• Check the validity of the hypotheses adopted during the definition of the
theoretical model

• look for a flow rule expression whose validity domain is broader than that
allowed by the theoretical expression Eq. (A.18 ).

Thus, the model by Leblond et al. [9] was developed in various forms to pre-
dict different types of behavior (perfect plasticity, isotropic hardening, or kinematic
hardening) and applied loading levels. These laws are listed in three Sections below:

Appendix A.2.1. Leblond et al. model without strain hardening

• at lower stresses:

Ė
tp

=


0 if z ≤ 0.003

−3
∆εth1→2

σM
Y

h

(
Σeq

ΣY

)
S (ln(z)) ż if z > 0.003

(A.20)
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where

h

(
Σeq

ΣY

)
=


1 if

Σeq

ΣY
≤ 1

2

1 + 3.5

(
Σeq

ΣY
− 1

2

)
if

Σeq

ΣY
> 1

2

(A.21)

• at higher stresses

Ė
p
= Λ̇S (A.22)

Appendix A.2.2. Leblond et al. model with isotropic strain hardening

• at lower stresses:

Ė
tp

=


0 if z ≤ 0.003

−3
∆εth1→2

σM
Y (Eeff

M )
h

(
Σeq

ΣY

)
S (ln(z)) ż if z > 0.003

(A.23)

where

h

(
Σeq

ΣY

)
=


1 if

Σeq

ΣY
≤ 1

2

1 + 3.5
(

Σeq

ΣY
− 1

2

)
if

Σeq

ΣY
> 1

2

(A.24)

Eeff
M =


−2

∆εth1→2

1− z
h

(
Σeq

ΣY

)
(ln(z)) ż +

g(z)

E
Σ̇eq if z > 0.003

−2
∆εth1→2

1− z
h

(
Σeq

σM
Y

)
(ln(z)) ż +

g(z)

E
Σ̇eq +

2(αM − αD)

1− z
z ln(z)Ṫ if z ≤ 0.003

• at higher stresses

Ė
p
=

3

2

Ėeq

Σ̇eq

S (A.25)

Appendix A.2.3. Leblond et al. model with kinematic strain hardening

• at lower stresses:

Ė
tp

=


0 if z ≤ 0.003

−3
∆εth1→2

σM
Y

h

(
Σeq

ΣY

)(
S−A

M

)
(ln(z)) ż if z > 0.003

(A.26)
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where

h

(
Σeq

ΣY

)
=


1 if

Σeq

ΣY
≤ 1

2

1 + 3.5

(
Σeq

ΣY
− 1

2

)
if
Σeq

ΣY
>

1

2

(A.27)

• at higher stresses

Ė
tp

=
3

2

Ėeq

Σ̇eq

(
S−A

)
(A.28)
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Appendix A. Naming convention for the parameters utilized in Leblond et
al.’s model

• Σeq: Equivalent stress.

• ΣY : The homogenized macroscopic yield strength.

• σM
Y : The yield strength of the parent phase.

• ∆εth1→2: The thermal deformation difference between the two phases.

• S: Deviatoric part of the stress tensor Σ.

• z: Ratio of the daughter phase.

• Eeff
M : Cumulative plastic deformation in the parent phase.

• Eeff
D : Cumulative plastic deformation in the daughter phase.

• g(z): Function related to the created phase

• E: Young’s modulus.

• A: Homogenized kinematic hardening variable.

• A
M
: Kinematic hardening variable linked to the parent phase.

• αM : Thermal expansion coefficient of the mother phase.

• αD: Thermal expansion coefficient of the daughter phase.

• T : The temperature.

• Ė
p
: Rate of plastic deformation.

• Ėeq: Equivalent plastic strain rate.

• h
(

Σeq

ΣY

)
: Function representing the non-linearity of plastic deformation trans-

formation.
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