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Abstract
We study approximations to the Moreau envelope—and infimal convolutions more broadly—based on

Laplace’s method, a classical tool in analysis which ties certain integrals to suprema of their integrands.
We believe the connection between Laplace’s method and infimal convolutions is generally deserving of
more attention in the study of optimization and partial differential equations, since it bears numerous
potentially important applications, from proximal-type algorithms to solving Halmiton-Jacobi equations.

1 Introduction
Infimal convolutions are of core importance in mathematical optimization and partial differential equations
(PDEs). The most well-known special case of an infimal convolution is the Moreau envelope, due to Moreau
(1962, 1965), which (along with its counterpart, the proximal operator) is a key tool in convex and variational
analysis, and in numerical algorithms for optimization. More broadly, beyond the Moreau envelope, infimal
convolutions appear as solutions in a class of Hamilton-Jacobi equations in PDEs.

Laplace’s method, due to Laplace (1774), is a tool for approximating integrals that finds applications in
many areas of mathematics, statistics, physics, and computer science. More specifically, it provides a way to
precisely approximate an integral whose integrand becomes increasingly peaked around its maximum value.
To researchers in statistics and machine learning, Laplace’s method is perhaps most familiar from its use in
Bayesian inference, where it leads to an approximation of the posterior distribution in terms of a Gaussian
distribution centered at the maximum a posteriori (MAP) estimate.

These two ideas are actually closely connected: Laplace’s method provides a natural way to approximate
an infimal convolution. This has been noted and used (albeit somewhat indirectly) by some authors in the
past; see Section 1.4. However, we believe the connection between infimal convolutions and Laplace’s method
is not as widely appreciated as it should be, especially as it relates to sampling, which is a way to view (and
numerically approximate) the integrals that appear in Laplace’s method. Thus, the current paper places the
connection between infimal convolutions and Laplace’s method front and center. It is not really our intent to
claim novelty in developing or formalizing this connection. Instead, our goal is to highlight both its elegance
and utility in the hope that it gains better recognition, and potentially, sees further applications.

Outline. In what follows, we first review preliminary concepts and related work. In Section 2, we describe
the use of Laplace’s method to approximate infimal convolutions, and we give interpretations from various
perspectives. In Section 3, we derive approximation guarantees. In Section 4 we cover sampling techniques,
and in Section 5, we walk through applications in optimization and PDEs, with illustrative examples.

1.1 Infimal convolution
Let f, g : Rd → R be arbitrary real-valued functions. The infimal convolution (or simply the inf convolution)
of f and g is another function, denoted f # g : Rd → R, which is defined by

(f # g)(x) = inf
y

{
f(y) + g(x− y)

}
. (1)
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Figure 1: Illustration of infimal convolution as epigraph addition (2) (here g = ‖ · ‖22/2).

The notion of an infimal convolution originated with Fenchel (1951), while a related idea was independently
developed over a series of papers by Bellman and Karush (1961, 1962a,b, 1963). Influenced by Fenchel, the
papers by Moreau (1963) and Rockafellar (1963) serve as the basis for what is now considered the modern
definition and treatment of inf convolutions, with Moreau’s work providing the name “inf convolution”, as
well. For more on infimal convolutions, we refer to Moreau (1970); Strömberg (1994); Rockafellar and Wets
(2009). The latter book introduces the notation # for the inf convolution operator that we use in this paper,
which is meant to remind the reader of the addition operator, because (as Rockafellar and Wets emphasize)
infimal convolution acts as addition on the space of epigraphs:

epi(f # g) = epi(f) + epi(g), (2)

as long as the infimum defining (f # g)(x) is attained whenever finite. Here epi(f) = {(x, t) : f(x) ≤ t} is the
epigraph of f , similarly for epi(g), and A+B = {a+ b : a ∈ A, b ∈ B} is the usual (Minkowski) sum of sets
A,B. Figure 1 gives an illustration.

A particularly important special case of an inf convolution is the Moreau envelope. This plays a central
role in various aspects of optimization, from theoretical to practical, and is covered in the next subsection.
Inf convolutions also play an important role as solutions to certain Hamilton-Jacobi equations. To elaborate,
let H : Rd → R be a convex Hamiltonian, and consider the first-order PDE

∂tu+H(∇u) = 0, t > 0,

u(x, 0) = f(x), t = 0,
(3)

where ∂tu denotes the derivative of u with respect to t, and ∇u denotes its gradient with respect to x. By
the Hopf-Lax formula, (e.g., Theorem 6 in Chapter 3.3.2 of Evans (2010)), the solution is

u(x, t) = inf
y

{
f(y) + tH∗

(x− y
t

)}
, t > 0, (4)

where H∗ is the conjugate (also called the Legendre-Fenchel transform) of H. In other words, the solution to
the Hamilton-Jacobi PDE (3) at time t > 0 is given by the infimal convolution u(x, t) = (f # tH∗(·/t))(x).

We finish this subsection with a useful general fact about infimal convolutions. Fix any point x, assume
that there is a unique point yx which attains the infimum in (1), and assume g is differentiable on Rd. Then
under some additional regularity conditions (e.g., Theorem 10.13 and Corollary 10.14 of Rockafellar and Wets
(2009)), the inf convolution f # g is differentiable at x and

∇(f # g)(x) = ∇g(x− yx). (5)

We will return to this formula shortly, in the case of the Moreau envelope, discussed next.
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Figure 2: Illustration of the Moreau envelope fλ = f # ‖ · ‖22/(2λ) (for a particular λ).

1.2 Moreau regularization
For g = ‖ · ‖22/(2λ), with λ > 0 a fixed constant, the infimal convolution f # g is called the Moreau envelope
of f at the level λ, named after the pioneering work of Moreau (1962, 1965), and is denoted by

fλ(x) = inf
y

{
f(y) +

1

2λ
‖x− y‖22

}
. (6)

Figure 2 gives an illustration. Intimately connected to this is the proximal operator of λf , denoted by

proxλf (x) = argmin
y

{
f(y) +

1

2λ
‖x− y‖22

}
, (7)

where we use argminy F (y) to denote the set of minimizers of a function F , reducing to argminy F (y) = z if
the set of minimizers is a singleton {z}. Importantly, if f is convex, then the operator proxλf is guaranteed
to be single-valued (rather than set-valued): it maps each input x to a unique point proxλf (x).

The Moreau envelope (6) and its associated proximal operator (7) are ubiquitous throughout convex and
variational analysis, as well as optimization. In terms of theory, proximal operators admit various important
connections to subdifferentials, conjugates, and monotone operators; see, e.g., Rockafellar and Wets (2009);
Bauschke and Combettes (2011). In terms of algorithms, proximal operators serve as a building block for a
number of operator splitting techniques for nonsmooth, constrained, large-scale optimization, which includes
forward-backward splitting, Douglas-Rachford splitting, and the alternating direction method of multipliers
(ADMM); see, e.g., Boyd et al. (2011); Combettes and Pesquet (2011); Parikh and Boyd (2013); Beck (2017);
Ryu and Yin (2022).

An early and influential contribution on the algorithmic front is called the proximal point algorithm, due
to Rockafellar (1976). Given a function f to be minimized, we fix λ > 0, initalize x0 ∈ Rd, and then repeat
the iterations, for k = 1, 2, 3, . . . :

xk = proxλf (xk−1). (8)

Returning to the gradient formula for f # g in (5), for a closed convex function f (and with g = ‖ · ‖22/(2λ),
which together satisfy the conditions needed for this gradient formula), we have

(∇fλ)(x) =
x− proxλf (x)

λ
⇐⇒ proxλf (x) = x− λ(∇fλ)(x). (9)

This is true regardless of the smoothness of f . Applying (9) to (8), we see that Rockafellar’s proximal point
iteration can be rewritten as

xk = xk−1 − λ(∇fλ)(xk−1), (10)

which is the same as gradient descent on the Moreau envelope.
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1.3 Laplace’s method
Let ϕ : Rd → R be twice continuously differentiable and h : Rd → R be continuous. Laplace’s method (also
called Laplace approximation) provides an asymptotic equivalence for an integral that becomes increasingly
peaked around the global minimizer x? of ϕ, assumed to be unique:∫

h(x) exp(−tϕ(x)) dx ∼ (2π/t)d/2

exp(tϕ(x?))

h(x?)√
det(∇2ϕ(x?))

, (11)

where we use a(t) ∼ b(t) as shorthand for a(t)/b(t)→ 1 as t→∞.
In short, applications of Laplace’s method can be found throughout statistics, probability, and machine

learning (not to mention its uses in mathematics and physics). Examples include Bayesian computation and
inference (e.g., Kass et al. (1991)), higher-order asymptotics (e.g., Shun and McCullagh (1995)), mean-field
theory (where Laplace’s method is often called the saddle point approximation, e.g., Mézard and Montanari
(2009), Chapter 2), Gaussian processes (e.g., Rasmussen and Williams (2006), Chapter 3), and Bayesian deep
learning (e.g., Daxberger et al. (2021)).

Now we present a formal statement of the validity of Laplace’s approximation (11). We allow ϕ to have
an arbitrary domain K, and reparametrize by t = 1/δ (taking δ → 0+ in the asymptotic limit), since it will
be more convenient for our purposes later.

Theorem 1. Let ϕ : K → R be continuous over a compact set K ⊆ Rd. Assume that ϕ has a unique global
minimizer x? in the interior of K, and ϕ is twice continuously differentiable on a neighborhood of x?, with
strictly positive definite Hessian ∇2ϕ(x?). Then for any continuous function h : K → R,√

det(∇2ϕ(x?))
exp(ϕ(x?)/δ)

(2πδ)d/2

∫
K
h(x) exp(−ϕ(x)/δ) dx → h(x?), as δ → 0+. (12)

This conclusion extends to the case where K is not compact (e.g., K = Rd) provided there exists ε > 0 such
that the sublevel set Sε = {x ∈ K : ϕ(x) ≤ ϕ(x?) + ε} is bounded and

∫
K |h(x)| exp(−dϕ(x)/(2ε)) dx <∞.

Proofs of the asymptotic convergence of Laplace’s method can be found in any standard reference on the
topic. For completeness, we provide a proof of Theorem 1 in Appendix A.1, based on the simple and elegant
arguments given in Bach (2021).

The form of the approximation given in Theorem 1 (or equivalently in (11)) is well-suited for traditional
applications of Laplace’s method. In such problems, we seek to avoid computing an integral in exp(−tϕ), the
left-hand side in (11), and approximate it using a minimum of ϕ (or maximum of −ϕ), the right-hand side in
(11). For example, in Bayesian inference, this method can be used to approximate the posterior distribution
using a Gaussian centered at the maximum a posteriori (MAP) estimate. Here, the sample size n plays the
role of t in (11), making the approximation more accurate for larger sample sizes.

For our purposes however, a different form of the Laplace approximation will be more convenient. This is
because our motivation is really the opposite of the traditional one: we seek to avoid computing a minimum
of ϕ, and we instead approximate it using an integral involving exp(−tϕ). In our setting, we would not want
the approximation to feature normalizing constants such as exp(tϕ(x?)) and

√
det(∇2ϕ(x?)), since they are

unknown (recall, ϕ(x?) is the minimum that we are trying to approximate in the first place). Fortunately, we
can use the following self-normalized version of Laplace’s method:∫

K h(x) exp(−tϕ(x)) dx∫
K exp(−tϕ(x)) dx

∼ h(x?). (13)

This follows directly from (12), by using the latter to approximate separately the integrals in the numerator
and denominator in (13) (the common factor (2π/t)d/2/(exp(tϕ(x?))

√
det(∇2ϕ(x?))) cancels out). Because

this just relies on two applications of Laplace’s method, Theorem 1 gives the formal conditions under which
(13) is valid. Later in Section 3, we will give a generalization of this result: instead of requiring ϕ to be twice
differentiable on a neighborhood of its minimizer, we only require it to be locally Hölder continous.

1.4 Related work
The literature related to the topic of our paper is vast, and below is our attempt to give a broad overview of
the various related areas, without giving a comprehensive review of any one in particular.
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Viscosity solutions in PDEs. In a certain sense, the use of Laplace’s method in order to approximate
solutions in Hamilton-Jacobi equations dates back to seminal work on viscosity solutions by Crandall and
Lions (1983); Crandall et al. (1984) (see also Evans (1980)). A canonical way to construct viscosity solutions
in Hamilton-Jacobi equations is the called the vanishing viscosity method, where we solve a modified PDE
that has an additional diffusion term with a small viscosity parameter, and then send the viscosity parameter
to zero. Interestingly, as we review in Section 2.2, for the Hamilton-Jacobi equation (3) where H = ‖ · ‖22/2
(also called Burgers’ equation), the use of a Laplacian diffusion term leads to exactly the same approximation
as Laplace’s method applied to the original solution. As far as we understand, some but not all authors in
the PDE literature on viscosity make the connection to Laplace’s approximation explicit. For example, it is
not discussed in the early papers in the 1980s by Crandall, Lions, and Evans, but it can be found in Evans
(2010) in Chapter 4.5.2. We have not yet seen the use of Laplace’s approximation for general Hamilton-Jacobi
equations (3) (for general H, as we propose in this paper), and as we discuss at the end of Section 2.2, we are
unsure as to whether there is a viscosity-like representation for such an approximation in general.

In the total variation-based image denoising literature, the posterior mean formula (17), a special case of
the Laplace approximation (16) for infimal convolutions that we consider in this paper, has been studied by
Louchet (2008); Louchet and Moisan (2013). This was extended by Darbon and Langlois (2021); Darbon et al.
(2021), who derive rigorous approximations guarantees using connections to Hamilton-Jacobi PDEs. Another
line of work that draws connections between viscous Hamilton-Jacobi PDEs, proximal operators, and Moreau
envelopes was initiated by Chaudhari et al. (2018) and further developed by Heaton et al. (2023); Osher et al.
(2023). As we explain in Sections 2.1 and 2.2, in this paper we arrive at the identical approximation for the
proximal operator as that given in Darbon et al. (2021); Heaton et al. (2023); Osher et al. (2023), albeit from
a different perspective: by directly applying Laplace’s method, instead of relying on viscosity. By casting the
approximation through the lens of Laplace’s method, we are able to seamlessly extend it to handle arbitrary
infimal convolutions. We are also able to make less stringent assumptions (on the functions in question) for
the approximation theory that we derive in Section 3.

Sampling and optimization. As we explore in Sections 5.2 and 5.3, Laplace’s approximation (17) of the
proximal operator (and (16) for inf convolutions more generally) leads to various sampling-based methods for
optimization. These methods are zeroth-order : they depend only on function evaluations (and not gradients,
as would be the case in first-order methods). The connections between sampling and optimization are quite
deep (in both directions—using sampling to optimize, and using optimization to sample). Classical examples
include stochastic gradient descent (Robbins and Monro, 1951), simulated annealing (Kirkpatrick et al., 1983),
and Langevin dynamics (Welling and Teh, 2011). More recently, stochastic localization and diffusion models
have taken a center stage in machine learning (e.g., Sohl-Dickstein et al. (2015); Song and Ermon (2019); Ho
et al. (2020); Song et al. (2021); El Alaoui et al. (2022); Montanari (2023)), and remain an extremely active
topic of research.

In the setting of zeroth-order optimization in particular, the connections to sampling are also rich, dating
back to Matyas (1965). Related to the Laplace approximation of the proximal point algorithm (studied in
Section 5.2) is the idea of Gaussian smoothing from Nesterov and Spokoiny (2017), who study a gradient-free
optimization algorithm which approximates a directional derivative with a finite difference scheme based on a
random pertubation of the parameter. The motivation and focus in their work, as with much of the literature
in zeroth-order optimization, is quite different than ours. We return to this discussion in Section 5.2.

2 Smooth approximation
Let f, g : Rd → R be continuous functions. Define for any fixed x ∈ Rd and δ > 0:

yδx =

∫
y exp

(
−f(y)−g(x−y)

δ

)
dy∫

exp
(
−f(y)−g(x−y)

δ

)
dy

. (14)

Notice that each coordinate (yδx)i in (14) is the self-normalized Laplace approximation from (13), applied to
ϕx(y) = f(y) + g(x− y), with h(y) = yi. In other words, we can view yδx as approximating the minimizer of
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the inf convolution criterion at x,

yδx ≈ argmin
y

{
f(y) + g(x− y)

}
.

This approximation becomes exact as δ → 0+ under mild conditions on f, g, as the theory in the next section
will make precise (see Corollary 1). It is important to note that convexity of f, g is not required. Below, we
discuss interpretations of the approximation (14), from different perspectives.

2.1 Exponential tilting
Define a density by

pδg,x(y) =
exp(−g(x− y)/δ)∫
exp(−g(x− y)/δ) dy

. (15)

We can rewrite (14) as

yδx =
EY∼pδg,x [Y exp(−f(Y )/δ)]

EY∼pδg,x [exp(−f(Y )/δ)]
. (16)

This can be interpreted as the expectation in a model in which we first sample Y from the density pδg,x, which
(assuming that g is minimized at the origin) is centered at x and increasingly peaked for smaller δ, and then
exponentially tilt by −f/δ, which upweights the samples that lead to smaller values of f . Note that we can
also interpret (16) from the Bayesian perspective: consider a Bayesian model with likelihood pδg,x ∝ e−g(x−·),
and prior ∝ e−f . In this context, the quantity yδx represents the posterior mean.

In the special case of g = ‖ · ‖22/(2λ), observe that pδg,x in (15) is the N(x, δλI) density, and (16) leads to

yδx =
EY∼N(x,δλI)[Y exp(−f(Y )/δ)]

EY∼N(x,δλI)[exp(−f(Y )/δ)]
, (17)

which recovers the proximal approximation formula in Darbon and Langlois (2021); Osher et al. (2023), who
arrived at this result from a different perspective, as explained next.

2.2 Viscous Burgers’ equation
As discussed previously, the Hopf-Lax formula (4) gives the solution to the Hamilton-Jacobi PDE (3). When
H = ‖ · ‖22/2, problem (3) reduces to what is known as Burgers’ equation, and Laplace’s approximation can
be understood from the perspective of what is called viscosity in the PDE literature. In particular, consider
the viscous Burgers’ equation (Example 2 in Chapter 4.5.2 of Evans (2010)),

∂tu
δ +

1

2
‖∇uδ‖22 =

δ

2
∆uδ, t > 0,

uδ(x, 0) = f(x), t = 0,
(18)

where ∆u is the Laplacian of u with respect to x. By using a change of variables vδ(x, t) = exp(−uδ(x, t)/δ)
(also known as the Cole-Hopf transform), problem (18) becomes the heat equation, with the initial condition
vδ(x, 0) = exp(−f(x)/δ). We can use the fundamental solution of the heat equation, and translate back to
our original parametrization, to yield the solution

uδ(x, t) = −δ log

(
1

(2πδt)d/2

∫
exp

(−f(y)− ‖x− y‖22/(2t)
δ

)
dy

)
. (19)

This approximates the solution u(x, t) in (4), i.e., it approximates the Moreau envelope ft of f (since, recall,
H = ‖ · ‖22/2). A seminal result by Crandall and Lions (1984) is that uδ(x, t)→ u(x, t) as δ → 0+, uniformly
over all x ∈ Rd and all compact intervals of time t ≥ 0. Further results are available in Darbon and Langlois
(2021); Darbon et al. (2021); Heaton et al. (2023); Osher et al. (2023).
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As observed by the aforementioned authors, we can combine (19) with the Moreau gradient formula (9)
to obtain an approximation to the proximal map. First we differentiate (19) with respect to x,

∇uδ(x, t) =

∫
x−y
t exp

(
−f(y)−‖x−y‖22/(2t)

δ

)
dy∫

exp
(
−f(y)−‖x−y‖22/(2t)

δ

)
dy

.

Then based on (9), we approximate proxtf (x) using x− t∇uδ(x, t). Observe that

x− t∇uδ(x, t) =

∫
y exp

(
−f(y)−‖x−y‖22/(2t)

δ

)
dy∫

exp
(
−f(y)−‖x−y‖22/(2t)

δ

)
dy

is precisely the self-normalized Laplace approximation in (14) with g = ‖ · ‖22/(2t). Recall, this also has the
equivalent form (17), expressed in terms of expectations with respect to N(x, δtI).

The fact that Laplace’s approximation to the proximal operator can be alternatively derived via viscosity
in Burgers’ equation is quite interesting (and to emphasize once again, this was the path taken by previous
work to arrive at the same formula for the proximal approximation that we get from Laplace’s method). This
begs the question: for general g, is there such a viscosity-like representation for (14)? That is, can we find a
viscosity-like modification to the Hamilton-Jacobi PDE (3), with H∗ = g, whose solution leads to the formula
(14)? While viscosity is studied for general Hamilton-Jacobi equations (e.g., Chapter 10 of Evans (2010)), as
far as we can tell, the viscous Hamilton-Jacobi equation using a Laplacian diffusion term does not lead to an
solution that coincides with Laplace’s approximation of the inf convolution in general, in the way that it does
when H = ‖ · ‖22/2. Investigating whether we can express (14) in terms of a viscosity-like pertubation of the
Hamilton-Jacobi equation (3) may be an interesting direction for future investigation.

2.3 Smoothed set projection
Returning to the posterior mean formula (17) when g = ‖ · ‖22/2, consider taking f = IK, the characteristic
function of a set K ⊆ Rd,

IK(x) =

{
0 if x ∈ K
∞ otherwise.

In this case, the quantity being approximated is the proximal operator yx = proxIK(x) of IK evaluated at x,
i.e., the projection yx = PK(x) of x onto the set K, concretely

PK(x) = argmin
y∈K

‖x− y‖22.

Introducing the notation P δK(x) = yδx for the approximation in (17), note that this simplifies to

P δK(x) = EY∼N(x,δI)[Y |Y ∈ K], (20)

This formula is highly intuitive: we take an average according to a certain density over K, which for small δ,
ends up being nearly flat at points far away from PK(x), and more peaked close to PK(x). Figure 3 gives an
illustration.

If K is convex then the approximation (20) has the property that P δK(x) ∈ K for any δ > 0; for nonconvex
K, this no longer needs to be true, and we could have P δK(x) lying outside of K. However, convexity is not
required in order to guarantee P δK(x)→ PK(x) as δ → 0+. We only require a mild condition on the boundary
of K in a neighborhood of PK(x) (see Corollary 2).

2.4 Integral convolution
Lastly, we make the simple observation that in the current setting the Laplace approximation brings an inf
convolution to an ordinary (integral) convolution. Generalizing from (14), suppose we are interested in

h(yx) = h
(

argmin
y

{
f(y) + g(x− y)

})
,
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Figure 3: Examples of the Laplace approximation P δK(x) to the projection PK(x) of a point x onto a set K. In each
panel P δK(x) is denoted by a white dot, and is defined by (20) for a particular value of δ. As δ decreases (from left to
right), the conditional density of Y |Y ∈ K becomes increasingly peaked around PK(x). Each outer red circle about x
represents a successive standard deviation

√
δ in the contours of the sampling distribution N(x, δI).

for a given function h : Rd → R (we also assume that the argmin above is unique). Then the corresponding
self-normalized Laplace approximation from (13) is∫

h(y) exp
(
−f(y)−g(x−y)

δ

)
dy∫

exp
(
−f(y)−g(x−y)

δ

)
dy

. (21)

Assuming g is an even function (i.e., g(x) = g(−x)), this can be expressed as(
(he−f/δ) ∗ e−g/δ
e−f/δ ∗ e−g/δ

)
(x), (22)

where (u ∗ v)(x) =
∫
u(y)v(y− x) dy =

∫
u(y)v(x− y) dy, the last equality holding for even v. As convolution

is generally understood as a smoothing operation, this formulation informally lends support to the idea that
Laplace method’s provides a smooth approximation to h(yx).

More formally, we can use properties of convolutions to infer about the smoothness of (21) as a function
of x. If u, v are integrable and v has integrable partial derivatives, then a standard fact (which can be verified
using Fourier transforms) is that

∂(u ∗ v)

∂xi
= u ∗ ∂v

∂xi
, i = 1, . . . , n.

Applying this to (22) (and using the quotient rule and chain rule as needed), we see that the approximation
is differentiable as many times as g is (i.e., it is infinitely differentiable for a choice such as g = ‖ · ‖22/2).

3 Asymptotic theory
We analyze the asymptotic validity (δ → 0+) of the self-normalized version of Laplace’s approximation, in a
way that generalizes what is known classically (13), which requires twice differentiability (recall Theorem 1).
We break our presentation in what follows into two parts, depending on whether the minimizer in question
lies in the interior of its domain.

3.1 Minimizer in the interior
First, we study the Laplace approximation of a function ϕ whose minimizer is in the interior of its domain.
The proof of the next theorem is given in Appendix A.2.

8



ϕ(x) = 9
40

+ (x−1)4

20
+ sin(10πx)

40x
ϕ(x) = |x|0.5 ϕ(x) =

100∑
k=0

0.3k cos(23kπx)

−1 0 1 2
0

0.5

1

1

−1 0 1
0

0.5

1

2

−2 0 2

−1

0

1

3
Figure 4: Examples of the Laplace approximation to the minimizer x? of ϕ. The panels potray different functions ϕ,
each of which satisfies the local Hölder assumption (23), but is nonconvex and nonsmooth in the traditional sense. In
each panel the Laplace approximation is denoted by a red dot, and computed using the left-hand side of (24), with h
being the identity map and δ = 10−6.

Theorem 2. Let ϕ : K → R be a continuous function, and assume that ϕ has a unique global minimizer x?
that lies in the interior of K, admits a bounded sublevel set Sε = {x ∈ K : ϕ(x) ≤ ϕ(x?) + ε} for some ε > 0,
and satisfies

∫
K exp(−ϕ(x)/ε) dx <∞. Assume that on a neighborhood U of x?, we have

ϕ(x)− ϕ(x?) ≤ a‖x− x?‖q2, for all x ∈ K ∩ U, (23)

for constants a, q > 0. Then for any continuous h : K → R with
∫
K |h(x)| exp(−dϕ(x)/(qε)) dx <∞,∫

K h(x) exp(−ϕ(x)/δ) dx∫
K exp(−ϕ(x)/δ)dx

→ h(x?), as δ → 0+. (24)

The condition (23) is essentially a type of local Hölder continuity assumption on ϕ, on a neighborhood U
of its minimizer x?, with an arbitrary exponent q > 0.1 This is considerably weaker than assuming that ϕ is
twice differentiable on a neighborhood of x?, as in Theorem 1. (We note that if ϕ is locally twice continuously
differentiable, then it satisfies (23) with q = 2, which can be verified using a Taylor expansion. Meanwhile, if
ϕ is only locally continuously differentiable, then it satisfies (23) with q = 1, as ‖∇ϕ‖2 has a finite maximum
on any compact subset containing its minimizer.)

In order to be able to weaken the assumption from local twice differentiability to local Hölder continuity,
the self-normalized aspect of the approximation in (24) is key, because in general the explicit normalizing
factors in a statement like (12) would require precise knowledge of the local growth rate of ϕ(x)− ϕ(x?). To
be clear, in (23), we only need to know that this local growth rate is a power of ‖x− x?‖2, without needing
to know the exponent, in order to compute the approximation (24). Figure 4 gives a few illustrations.

Next, we apply Theorem 2 to an infimal convolution.

Corollary 1. Let f, g : Rd → R be continuous functions, and define ϕx(y) = f(y) + g(x− y). Assume that
ϕx has a unique global minimizer yx, has a bounded sublevel set Sε = {y ∈ Rd : ϕx(y) ≤ ϕx(yx) + ε} for some
ε > 0, and satisfies

∫
exp(−ϕx(y)/ε) dy <∞. Assume further that on a neighborhood Ux of yx,

ϕx(y)− ϕx(yx) ≤ a‖y − yx‖q2, for all y ∈ Ux, (25)

for constants a, q > 0. Then for any continuous h : Rd → R with
∫
|h(y)| exp(−dϕx(y)/(qε)) dy <∞,∫

h(y) exp
(
−f(y)−g(x−y)

δ

)
dy∫

exp
(
−f(y)−g(x−y)

δ

)
dy

→ h(yx), as δ → 0+.

An important special case is given by taking h(y) = yi, i = 1, . . . , d, for which the above conclusion translates
as follows: provided

∫
‖y‖∞ exp((−f(y)− g(x− y))/ε) dy <∞, it holds for yδx as defined in (14) that

yδx → yx, as δ → 0+.

1We say “essentially” because, technically, Hölder continuity is stronger, and would require ϕ(x)− ϕ(x?) ≤ a‖x− x?‖q2 for all
pairs x, y ∈ U , whereas the condition (23) only requires this inequality to hold at pairs x, x? ∈ U .

9



Once again we note that the local Hölder condition (25) on ϕx is quite weak. For example, this condition
holds if f, g are each convex on a neighborhood of yx (since convex functions are locally Lipschitz), or even if
f, g are weakly convex on a neighborhood of yx (see Appendix A.3 for a precise statement and verification of
this claim). While (weak) convexity is of central interest in many applications of optimization, we emphasize
that no kind of convexity is required for (25). Local Hölder continuity, with a possibly fractional exponent q,
can be satisfied by fairly exotic and highly nonconvex functions (recall the functions from Figure 4).

Lastly, we note that with a more sophisticated analysis it is likely that the local Hölder condition in (25)
could be weakened further into one on the local modulus of continuity, where we require that the modulus of
continuity have subexponential growth around zero (this is sufficient to imply that the error term analyzed in
step 3 of the proof vanishes; see Appendix A.2). However, we do not pursue such an extension.

3.2 Minimizer on the boundary
We consider the case in which the minimizer of ϕ lies on the boundary of its domain. The proof of the next
theorem is given in Appendix A.4.

Theorem 3. Under the conditions of Theorem 2, assume instead that the unique global minimizer x? of ϕ
lies on the boundary of the closed set K. Furthermore, assume that K is full-dimensional and star-shaped, in
a local sense around x?: precisely, writing B(x, r) = {y ∈ Rd : ‖y − x‖2 ≤ r} for the ball of radius r centered
at x, we assume that there exists r0 > 0 such that K ∩B(x?, r0) has positive Lebesgue measure, and

x ∈ K ∩B(x?, r0) =⇒ αx+ (1− α)x? ∈ K, for all α ∈ [0, 1]. (26)

Then the same conclusion as in (24) holds.

Next, we apply Theorem 3 to a projection.

Corollary 2. Let K ⊆ Rd and x ∈ Rd be such that x has a unique projection yx = PK(x) onto the closed set
K. Assume that there exists r0 > 0 such that K ∩B(yx, r0) has positive Lebesgue measure and condition (26)
holds, with yx in place of x?. Then for any continuous h : Rd → R with

∫
K |h(y)| exp(−d‖x− y‖22/2) dy <∞,∫

K h(y) exp
(
−‖x−y‖22

δ

)
dy∫

K exp
(
−‖x−y‖22

δ

)
dy

→ h(yx), as δ → 0+.

An important special case is given by taking h(y) = yi, i = 1, . . . , d, for which the above conclusion translates
as follows: provided

∫
K ‖y‖∞ exp(−d‖x− y‖22/2) dy <∞, it holds for P δK(x) as defined in (20) that

P δK(x)→ PK(x), as δ → 0+.

The assumptions on the set K used above, in the theorem and corollary, are not strong. They are met if
K is a convex body (see Appendix A.5 for a precise statement and proof of this claim). Yet the end results
will continue to hold well outside of convexity. Fundamentally, the stated assumptions on K are really used
as sufficient conditions to ensure that

Hd−1(K ∩ ∂B(x?, r)) ≥ crd−1, for all r ≤ r0, (27)

where c > 0 is constant, and Hd−1 denotes Hausdorff measure of dimension d− 1. Informally, this condition
says that K should act in the way we would expect of a “regular” full-dimensional set with nonempty interior,
locally around x?. Indeed, if K = Rd, then condition (27) is met because Hd−1(∂B(x?, r)) = crd−1 for any r
and a constant c > 0 depending only on d. Generally, one can interpret (27) as requiring the set K to retain
a constant fraction of the surface measure over the boundary of the ball B(x?, r), for enough small r, which
can still be satisfied by a highly nonconvex set K, as long as K has a somewhat “regular” behavior around its
boundary (recall Figure 3). We note that the condition (27) could likely be weakened further with a more
sophisticated analysis, but we do not pursue this.
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4 Monte Carlo sampling
In this section, we briefly discuss how to use sampling to approximate Laplace’s approximation (17) of the
proximal operator, and more generally (16) for the minimizer of f + g(x− ·). We should note at the outset
that Monte Carlo sampling is a rich field with many powerful tools, and the ideas we describe here are only
very basic. Likely, more advanced tools from the Monte Carlo literature (and even from quasi-Monte Carlo)
could be applied to improve accuracy and efficiency.

For the proximal formula (17), we can approximate this using a sample average over Gaussian draws:

Yi
iid∼ N(x, δλI), i = 1, . . . , N, (28)

yδ,Nx =

∑N
i=1 Yi exp(−f(Yi)/δ)∑N
i=1 exp(−f(Yi)/δ)

, (29)

We note that (29) can also be succinctly written as

yδ,Nx = (Y1, . . . , YN )T softmax(−f(Y1)/δ, . . . ,−f(YN )/δ), (30)

where for a vector v = (v1, . . . , vN ) ∈ RN , we denote softmax(v) = (ev1/
∑N
i=1 e

vi , . . . , evN /
∑N
i=1 e

vi). Prac-
tical implementations of the softmax operator (such as that in SciPy) commonly shift the exponents in order
to avoid overflow, instead computing softmax(v) = (ev1−a/

∑N
i=1 e

vi−a, . . . , evN−a/
∑N
i=1 e

vi−a), for a scalar
value a. Any value will contribute a common factor ea which cancels in the numerator and denominator; but
a careful choice such as a = maxi=1,...,N vi can lead to be better numerical accuracy (e.g., see Blanchard et al.
(2021)). For this reason, it can be advantageous to implement (29) using (30) in practice (to take advantage
of built-in shifting for numerical robustness) and the same comment applies to all of the formulae involving
exponentially-weighted averages in the remainder of this section.

For general g, we can approximate (16) analogously using a sample average over suitable draws:

Yi
iid∼ pδg,x, i = 1, . . . , N, (31)

yδ,Nx =

∑N
i=1 Yi exp(−f(Yi)/δ)∑N
i=1 exp(−f(Yi)/δ)

, (32)

where pδg,x is the density in (15). Sampling from pδg,x will really only be possible in certain special cases. For
example, aside from the case g = ‖ · ‖22, where pδg,x is a Gaussian density, we note that when g = ‖ · ‖1, the
density pδg,x is a product of Laplace densities (one for each coordinate). Outside of such special cases, we can
use importance sampling, where instead of (31), (32), we compute:

Yi
iid∼ q, i = 1, . . . , N, (33)

yδ,Nx =

∑N
i=1 Yiw(Yi) exp(−f(Yi)/δ)∑N
i=1 w(Yi) exp(−f(Yi)/δ)

, (34)

where w(y) = pδg,x(y)/q(y), and q is a user-chosen proposal density (whose support contains that of pδg,x). In
general, a goal in choosing the proposal density q would be to minimize the variance of the weighted sample
average in (34). This is a nontrivial task, but various practical solutions have been developed by Hesterberg
(1988); Veach (1997); Owen and Zhou (2000), among others.

5 Applications and examples
In what follows, we walk through applications of the Laplace approximations proposed and studied above to
problems in PDEs and optimization. To be clear, in each case, we do not intend to produce or compete with
state-of-the-art solutions for the problem at hand. We only aim to demonstrate the broad applicability and
portability of Laplace’s approximation, through relatively simple experiments. We focus on low-dimensional
problems were sampling is fairly easy (naive Monte Carlo or importance sampling works fairly well). Higher-
dimensional problems would call for more advanced sampling techniques.
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Figure 5: Residuals for HJ approximation in dimension d = 2, for H = ‖ · ‖pp/p, with p ∈ {2, 5, 10}. Each panel shows
N = 10 samples via red; N = 103 samples via blue; and N = 105 samples via green. We can see that as the dimension
grows, the errors also grow. When enough samples are used, smaller δ leads to more accurate solutions. Finally, when
not enough samples are used, larger δ helps to control the errors.

5.1 Hamilton-Jacobi equations
We examine the use of Laplace’s method for solving the Hamilton-Jacobi (HJ) equation (3). In particular, we
study how δ and the number of samples N used in the approximation (33), (34) influence the quality of the
(approximate) HJ solution, for different convex Hamiltonians H(x) = ‖x‖pp/p, p ∈ {1.1, 2, 5, 10}, in different
dimensions d ∈ {2, 5, 10}. We also set f(x) = ‖x‖1.

Recall that the exact HJ solution u(x, t) is given in (4). Consider approximating this by first computing
yδx as in (14), and then using uδ(x, t) = f(yδx) + g(yδx − x), with

g(x) = tH∗
(
x

t

)
, and H∗(x) =

1

q
‖x‖qq

for 1/q + 1/p = 1. For any fixed t, we approximate yδx with yδ,Nx in (33), (34), where N denotes the number
of samples. Then, we calculate

uδ,N (x, t) = f(yδ,Nx ) + g(yδ,Nx − x), (35)

at 1000 uniformly sampled values of x ∈ [−10, 10]d and t ∈ [10−1, 1]. The error of the approximation uδ,N is
measured by calculating the magnitude of the HJ residual,

r(x, t) =
∣∣∂tuδ,N (x, t) +H(∇uδ,N (x, t))

∣∣, (36)

and utlimately averaging this over the sampled values of x and t.
To compute the Laplace approximation yδ,Nx in (33), (34) we choose the proposal density q to be uniform

over [−10, 10]d. Practically, limiting the domain in this way has little effect (integrating over larger domains
lead to similar results). Given uδ,N in (35), we then compute the HJ residual (36) using PyTorch’s automatic
differentiation functionality (Paszke et al., 2019) for the associated derivatives.

Figure 5 shows the median along with the 20th and 80th percentiles of HJ residuals for the Hamiltonians
with p ∈ {2, 5, 10} in dimension d = 2, over 50 repetitions. As expected, more samples lead to more accurate
solutions; when enough samples are used, the error vanishes as δ → 0+ (the green curve diminishes at the left
end of each plot). Perhaps more interesting is the effect of δ when not enough samples are used: in this case
we find that larger values of δ will often lead to more accurate solutions (the blue and red curves decrease as
δ increases, for small values of δ). This happens because a larger δ has a greater regularization effect, via the
viscous HJ PDE interpretation discussed in Section 2.2 (and is consistent with what is observed in previous
work, such as Chaudhari et al. (2018); Osher et al. (2023)).

Appendix B displays the full set of results over all norms p and dimensions d considered. The behavior is
broadly similar to what is observed and described above, but unsurprisingly, higher dimensions lead to larger
errors (they would require more samples). Also, p = 1.1 acts as somewhat of an exceptional case, as it tends
to be more difficult overall. This is probably due to instability in the autodifferentiation calculation used for
the residual (36) of uδ,N (x, t) in (35). Recall, here g is based on the conjugate H∗ = ‖ · ‖qq/q of H = ‖ · ‖pp/p,
and as 1/p+ 1/q = 1, we have q →∞ as p→ 1.
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5.2 Proximal point algorithm
We consider the use of Laplace’s approximation of the proximal mapping within the context of running the
proximal point algorithm on a set of benchmark functions (Hansen et al., 2009), which in all cases except one
(the “sphere” function) do not admit analytic proximal maps. We note that the proximal point algorithm (8)
with (28), (29) in place of the exact proximal operator, repeats the following update for k = 1, 2, 3, . . . :

Yi
iid∼ N(xk−1, δλI), i = 1, . . . , N, (37)

xk =

∑N
i=1 Yi exp(−f(Yi)/δ)∑N
i=1 exp(−f(Yi)/δ)

. (38)

This is very intuitive: we explore the space locally by sampling points (37) in a neighborhood of our current
iterate xk−1, and then we take our next iterate xk to be a weighted average (38) of these sample, where we
exponentially tilt in favor of samples with smaller criterion values.

5.2.1 Benchmark functions

In Figure 6, we study the effect of various choices of δ ∈ {10−4, 10−3, 10−2, 10−1, 1}, N ∈ {10, 102, 103, 104}
in running the Laplace-proximal point method (37), (38) over functions in the benchmark suite. Throughout
we fix λ = 1. As a reference, in each setting, we plot the lowest criterion value achieved by running gradient
descent (GD) over 10,000 iterations, as a dashed black line. To be as favorable possible toward GD, for each
setting, we tune over the choice of step size used by GD, as well as a variance level for Gaussian noise to add
to the gradient at each iteration, which includes zero noise (usual GD). We do this because adding noise
may help escape local minima in some of the nonconvex benchmark functions. We report the the best result
over all step sizes and noise levels for GD (the one with the lowest criterion value 10,000 iterations) as the
dashed black line. All functions in the benchmark are in d = 10 dimensions, and obtain a global minimum
criterion value of zero at the origin, x? = 0. We initialize all algorithms at x0 = (4, . . . , 4) ∈ R10, and average
all results over 3 repetitions (of random noise generation used in the algorithms).

In the first setting “sphere”, the dashed black line is not visible, as GD converges to the global minimum
of zero, lying outside of the plotting range. The “sphere” benchmark is the only one in which the criterion is
both convex and well-conditioned. Beyond the “sphere” example, we see that Laplace-proximal point (LPP)
can compete with and even clearly outperform GD. In two settings, “ellipsoidal” and “discus”, LPP starts to
outperform GD at a reasonably small number of samples N and reasonably large noise level δ; while in two
others, “rosenbrock” and“sharp ridge”, it only outperforms GD for larger N and smaller δ. The “weierstrass”
example, meanwhile, is different: in contrast to all of the other benchmarks, LPP does not show consistent
improvement as N increases and δ decreases. This is likely due to the fact that this function has a complex
landscape with many local minima.

5.2.2 Comparison with RGF

We now compare to a well-known zeroth-order method based on Gaussian smoothing, proposed by Nesterov
and Spokoiny (2017). This method is based on gradient descent, but approximates the gradient of the
criterion f at each iterate xk−1 using a finite difference approximation that employs Gaussian perturbations:

Yi
iid∼ N(xk−1, δI), i = 1, . . . , N, (39)

xk = xk−1 −
η

N

N∑
i=1

f(Yi)− f(xk−1)

δ
, (40)

where η > 0 is a step size. Nesterov and Spokoiny (2017) refer to this algorithm as the random gradient-free
oracle or RGF. (These authors only consider N = 1, but we find that averaging over multiple Gaussian draws
tends to improve results).

While both use Gaussian sampling, it is interesting to note that the motivation for RGF is quite different
from that for Laplace-proximal point (LPP) in (37), (38). LPP can be interpreted as follows:
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Figure 6: Laplace-proximal point algorithm applied to various benchmark criterion functions. This algorithm repeats
the iterations (37), (38) for a particular noise level δ and number of samples N . Each row shows a different benchmark
function, each column shows a different number of samples N ∈ {10, 102, 103, 104}; and each panel display results for
noise levels δ ∈ {10−4, 10−3, 10−2, 10−1, 1}. The result from running gradient descent (GD, tuned over both the choice
of step size and added noise level, as explained in the text) is shown as a dashed black line. In the first row, which is a
convex and well-conditioned example, GD obtains the global minimum criterion value of zero, and the dashed line is
not visible. In all others, the Laplace-proximal point method is able to compete with and even outperform GD.
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Figure 7: Comparison of random-gradient free oracle (RGF) in red, as in (39), (40); Laplace-proximal point (LPP) in
blue, as in (37) (38); and gradient descent (GD) in dotted black; on the same set of benchmark critera from Figure 6.
We fix N = 1000 samples for RGF and LPP, fix λ = 1 for LPP, and otherwise allow each algorithm to tune over their
respective tuning parameters (noise level δ for each algorithm, and step size η for RGF and GD).

• we first smooth f using its Moreau envelope fλ (recalling that proximal point (8) is nothing more that
gradient descent on the Moreau envelope (10));

• we then numerically approximate a gradient step with respect to the Moreau envelope (proximal map)
using Laplace’s method and Gaussian sampling.

On the other hand, RGF (as Nesterov and Spokoiny (2017) show) can be interpreted as follows:

• we first smooth f using a Gaussian convolution;

• we then numerically approximate a gradient of this convolved function using Gaussian sampling.

Figure 7 compares RGF and LPP on the same set of benchmark criteria as in Figure 6. We fix N = 1000
for each algorithm, to equalize their sampling cost. Unlike Figure 6, we now tune LPP over the noise level δ,
reporting results for the best noise level (resulting in the smallest criterion value in 10,000 iterations) in each
setting. To be as favorable as possible to RGF, we tune it over both the noise level δ and the step size η, and
report results for the best combination of noise level and step size in each benchmark. The results for GD are
also shown, where we again tune it over both the noise level and step size, as explained previously. Outside of
the convex and well-conditioned “sphere” benchmark, where GD performs best, RGF sometimes improves on
GD (“sharp ridge”, “weierstrass”), and other times RGF and GD perform quite similarly (“ellipsoidal”, “discus”,
“rosenbrock”). LPP is competitive overall, sometimes improving on RGF (“ellipsoidal”, “discus”, “rosenbrock”)
and sometimes not (“sphere”, “weierstrass”).

5.3 Bregman proximal gradient descent
Lastly, we consider the use of Laplace’s method to approximate a Bregman proximal map within the context
of Bregman proximal gradient descent (BPGD). In particular, we examine a variation on BPGD proposed by
Bauschke et al. (2017), which uses an elegant majorization scheme to handle composite criterion functions
where the differentiable part lacks a Lipschitz continuous gradient. We focus on a regularized Poisson linear
inverse problem, as studied in their paper, where we aim to minimize

f(x) = Dφ(b, Ax) + µ‖x‖1, (41)
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over Rd+, where b ∈ Rn+, A ∈ Rn×d++ , µ ≥ 0 is a regularization parameter, φ is the Boltzmann-Shannon entropy
φ(x) =

∑d
i=1 xi log xi, and Dφ denotes its corresponding Bregman divergence,

Dφ(b, Ax) = φ(b)− φ(Ax)−∇φ(Ax)T(b−Ax)

=

n∑
i=1

(
bi log

bi
(Ax)i

+ bi − (Ax)i

)
︸ ︷︷ ︸

d(x)

. (42)

To minimize (41), we consider the BPGD algorithm of Bauschke et al. (2017) and choose as the majorizer the
Burg entropy h(x) = −∑d

i=1 log xi. For the Poisson inverse problem, the Burg entropy is a specially-crafted
majorizer which satisfies two key properties:

• it majorizes the Bregman divergence in (42), in the sense that Lh− d is convex for some L > 0, which
Bauschke et al. (2017) prove is true for any choice L ≥ ‖b‖1;

• it admits a closed-form Bregman proximal update (in the second line below),

xk = argmin
x

{
µ‖x‖1 +∇d(xk−1)Tx+

1

η
Dh(x, xk−1)

}
(43)

=

[
xk−1,i

1 + η(µ+∇id(xk−1)) · xk−1,i

]d
i=1

, (44)

were η ∈ (0, 1/L) is a step size.

The left panel of Figure 8 shows an example of running the exact BPGD update (44), and Laplace’s method
to approximate the general form in (43), which does not use knowledge of the fact that for the Burg entropy
h the Bregman proximal mapping is exact. For the Laplace approximation, we are able to carry out this out
per coordinate, because the Bregman proximal mapping separates into a minimization problem per coordinate,
due to the separability of the Burg entropy itself. For each coordinate, we then use importance sampling as
in (33), (34), with q being the uniform density over [10−6, 50].

In the left panel, we set n = d = 5, and generate A ∈ R5×5
++ by sampling its entries independently from a

uniform distribution on [1, 2]. We generate x̄ ∈ R5 by sampling its entries independently from a uniform on
[5, 6], and randomly set half of these to 0. Then, we generate b ∈ R5

+ by sampling its entries independently
from Poisson distributions with means (Ax̄)i, i = 1, . . . , 5. We fix µ = 10−3 for the regularization parameter,
η = 10−5 for the step size, δ = 2 · 10−3 for the level of noise, and N = 5 · 104 for the number of samples. The
figure shows the convergence curves (criterion values per iteration) for the exact and Laplace-based BPGD
methods. These look identical, as should be expected for such a large number of samples N and small noise
level δ in d = 5 dimensions.

Meanwhile, the right panel of Figure 8 shows a different example setting in which A is ill-conditioned and
BPGD with the Burg entropy (whether exact or Laplace-based) converges slowly as a result. The setup is the
same except that we set A = aaT, where a ∈ R5

++ has entries sampled independently from a uniform on [0, 1].
Now, in addition to the exact BPGD and Laplace-BPGD methods that use the Burg entropy, we consider a
third method: we use the variable-metric majorizer h(x) = −∑d

i=1 log(Ax)i. This does not lead to an exact
proximal update, but nonetheless (43) can be approximated using Laplace’s method and importance sampling,
as in (33), (34), where we take q to be the exponential distribution, arising from the term exp(−µ‖x‖1) that
appears in the integral. As we can see in the right panel of the figure, such a variable-metric Laplace-BPGD
approach converges more rapidly than standard BPGD, because the variable-metric approach has effectively
transformed the parameter space to account for the underlying geometry.

6 Discussion
In this work, we study connections between Laplace’s approximation and infimal convolutions, with an eye
toward solving optimization problems (using proximal-type methods) as well as Hamilton-Jacobi PDEs. Our
theory reflects the broad applicability of Laplace’s method for approximating infimal convolutions, allowing
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Figure 8: Comparison of BPGD approaches in Poisson linear inverse problems where the underlying linear transform
is well-conditioned or ill-conditioned. Here we plot exact BPGD with Burg entrope in red, as in (44); Laplace-BPGD
with Burg entropy in dotted blue, as in (43) where h(x) = −

∑d
i=1 log xi; and Laplace-BPGD with the variable-metric

majorizer in green, as in (43) where h(x) = −
∑d
i=1 log(Ax)i. The Laplace methods use δ = 2 · 10−3 as the noise level

and N = 5 · 104 as the number of samples. We can see that the Laplace-BPGD method with Burg majorizer tracks its
exact counterpart closely. In the ill-conditioned setting, the variable-metric majorizer accelerates convergence.

us to handle nonconvex functions, and settings where a minimizer lies on the boundary of the domain (such
as projections). Our experiments demonstrate the versatility of the Laplace approximation in a few different
problem areas, which span optimization and PDEs. Practically, the challenge of sampling in high-dimensional
spaces remains a significant hurdle, and one that we do not attempt to address at all. Any implementation
based on Laplace’s method which strives for both precision and efficiency should likely invest in more advanced
sampling techniques. Future work may be able to provide samplers tailored to particular environments and
end-goals in optimization and PDEs. An open-source repository with code to reproduce our experiments is
available at https://github.com/mines-opt-ml/laplace-inf-conv.
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A Proofs

A.1 Proof of Theorem 1
For ease of reference, we state the theorem before its proof.

Theorem 1. Let ϕ : K → R be continuous over a compact set K ⊆ Rd. Assume that ϕ has a unique global
minimizer x? in the interior of K, and ϕ is twice continuously differentiable on a neighborhood of x?, with
strictly positive definite Hessian ∇2ϕ(x?). Then for any continuous function h : K → R,√

det(∇2ϕ(x?))
exp(ϕ(x?)/δ)

(2πδ)d/2

∫
K
h(x) exp(−ϕ(x)/δ) dx → h(x?), as δ → 0+. (45)

This conclusion extends to the case where K is not compact (e.g., K = Rd) provided there exists ε > 0 such
that the sublevel set Sε = {x ∈ K : ϕ(x) ≤ ϕ(x?) + ε} is bounded and

∫
K |h(x)| exp(−dϕ(x)/(2ε)) dx <∞.

Proof. Without loss of generality, assume that x? = 0, ϕ(x?) = 0, and the Hessian of ϕ at x? is the identity
matrix, i.e., ∇2ϕ(x?) = I. The first equality x? = 0 can be achieved by shifting the domain, and the second
ϕ(x?) = 0 can be achieved by centering the function, which contributes the factor of exp(ϕ(x?/δ)) to the
left-hand side in (45). The Hessian condition can be obtained via a change of variables, and this contributes
the factor

√
det(∇2ϕ(x?)) to the left-hand side in (45). Now define

Iδ =
1

(2πδ)d/2

∫
K
h(x) exp(−ϕ(x)/δ) dx, for δ > 0.

We seek to show that
lim
δ→0+

Iδ = h(0).

We proceed by separately considering whether the set K is compact or not.

Compact case. Suppose K is compact. Following Bach (2021), define the function g : K → R by

g(x) =


ϕ(x)

‖x‖22
if x 6= 0,

1/2 otherwise.

First note that g is continuous at each x 6= 0 since ϕ and ‖ · ‖2 are both continuous (and the denominator is
nonzero). Moreover, we can show that g is continuous at x = 0 via a second-order Taylor expansion of ϕ:

ϕ(x) = ϕ(x?) +∇ϕ(x?)Tx+
1

2
xT∇2ϕ(x?)x+R(x) =

1

2
‖x‖22 +R(x),

where the remainder term is such that R(x)/‖x‖22 → 0 as x→ 0, and therefore,

lim
x→0

g(x) = lim
x→0

1
2‖x‖22 +R(x)

‖x‖22
=

1

2
+ 0 = g(0).

Hence we have shown g is continuous on all of K.
Using the definition of g, the integral Iδ may be equivalently written as

Iδ =
1

(2πδ)d/2

∫
K
h(x) · exp

(
− ‖x‖22 · g(x)/δ

)
dx

=
1

(2π)d/2

∫
Rd
1K(
√
δy) · h(

√
δy) · exp

(
− ‖y‖22 · g(

√
δy)
)
dy, (46)

where the second line follows from the change of variables x =
√
δy and 1K is the indicator function of K,

1K(x) =

{
1 if x ∈ K
0 otherwise.
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For each y, the absolute value of the integrand in (46) is upper bounded by(
max
x∈K

|h(x)|
)
· exp

(
− ‖y‖22 ·

(
min
x∈K

g(x)
))

. (47)

By compactness of K and continuity of h, the max term is finite. By compactness of K, continuity of g, and
the fact that g is strictly positive on K, the min term is strictly positive. These facts imply∫

Rd

(
max
x∈K

|h(x)|
)
· exp

(
− ‖y‖22 ·

(
min
x∈K

g(x)
))

dy <∞,

so the integrand in (46) is dominated by an integrable function (47). By the dominated convergence theorem,

lim
δ→0+

Iδ =
1

(2π)d/2

∫
Rd

lim
δ→0+

1K(
√
δy) · h(

√
δy) · exp

(
− ‖y‖22 · g(

√
δy)
)
dy

= h(0) · 1

(2π)d/2

∫
Rd

exp(−‖y‖22/2) dy

= h(0),

completing the proof of the compact case.

Noncompact case. Suppose K is not compact. In this case, we decompose the integral Iδ into two parts:

Iδ =
1

(2πδ)d/2

∫
Sε
h(x) exp(−ϕ(x)/δ) dx︸ ︷︷ ︸

I1,δ

+
1

(2πδ)d/2

∫
K\Sε

h(x) exp(−ϕ(x)/δ) dx︸ ︷︷ ︸
I2,δ

.

Since ϕ is continuous, the set Sε is closed. Thus, because it is also bounded (by assumption), the set Sε is
compact and the arguments from the last case show I1,δ → h(0) as δ → 0. To complete the proof, it remains
to show I2,δ → 0 as δ → 0+. Bringing the leading term inside the integral and taking absolute values reveals:

|I2,δ| ≤
∫
Rd
1K\Sε(x) · |h(x)|

(2πδ)d/2
· exp(−ϕ(x)/δ)︸ ︷︷ ︸

fδ(x)

dx.

Furthermore, for x ∈ K \ Sε,

dfδ(x)

dδ
=
|h(x)|

(2πδ)d/2
·
(
ϕ(x)

δ2
− d

2δ

)
· exp(−ϕ(x)/δ)

≥ |h(x)|
(2πδ)d/2

·
(
ε

δ2
− d

2δ

)
· exp(−ϕ(x)/δ).

If δ ≤ 2ε/d, then the lower bound in the last line above is nonnegative; in other words, we have shown that
for δ ≤ 2ε/d, the quantity fδ(x) is nonincreasing as δ decreases, at each x ∈ K \ Sε. As fδ ≥ 0, we conclude
that fδ is dominated by f2ε/d, which is integrable by assumption, and another application of the dominated
convergence theorem therefore yields

lim
δ→0+

|I2,δ| ≤
∫
Rd

lim
δ→0+

fδ(x) dx

≤
∫
K\Sε

lim
δ→0+

|h(x)|
(2πδ)d/2

· exp(−ε/δ) dx

= 0,

where the last line holds since δ−d/2 exp(−ε/δ)→ 0 as δ → 0+. This completes the proof of the noncompact
case, and the theorem.
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A.2 Proof of Theorem 2
For ease of reference, we state the theorem before its proof.

Theorem 2. Let ϕ : K → R be a continuous function, and assume that ϕ has a unique global minimizer x?
that lies in the interior of K, admits a bounded sublevel set Sε = {x ∈ K : ϕ(x) ≤ ϕ(x?) + ε} for some ε > 0,
and satisfies

∫
K exp(−ϕ(x)/ε) dx <∞. Assume that on a neighborhood U of x?, we have

ϕ(x)− ϕ(x?) ≤ a‖x− x?‖q2, for all x ∈ K ∩ U, (48)

for constants a, q > 0. Then for any continuous h : K → R with
∫
K |h(x)| exp(−dϕ(x)/(qε)) dx <∞,∫

K h(x) exp(−ϕ(x)/δ) dx∫
K exp(−ϕ(x)/δ)dx

→ h(x?), as δ → 0+. (49)

Proof. As before, we assume without loss of generality that x? = 0 and ϕ(x?) = 0. We also assume that the
local Hölder bound in (48) holds on all of Sε; this is possible because {St : t ≤ ε} is a family of compact sets
which are decreasing according to the partial ordering given by set inclusion, and S0 = {x?}, thus if needed
we can just redefine ε to be small enough such that Sε ⊆ K ∩ U . Now let

pδ(x) =
exp(−ϕ(x)/δ)∫

K exp(−ϕ(x)/δ) dx
.

For δ ≤ ε, note that the denominator here is finite because the integrand is upper bounded by exp(−ϕ(x)/ε),
which is integrable by assumption. Furthermore, the denominator is positive because the integrand is lower
bounded by exp(−a‖x− x?‖q2) > 0 on Sε. Hence we have shown 0 <

∫
K exp(−ϕ(x)/δ) dx <∞, which means

that pδ is a well-defined probability measure on K. We now seek to prove

lim
δ→0+

∫
K
h(x)pδ(x) dx = h(0),

which holds if
lim
δ→0+

∫
K
|h(x)− h(0)|pδ(x) dx︸ ︷︷ ︸

Jδ

= 0,

We split the integral Jδ into two parts:

Jδ =

∫
K∩B(0,τ)

|h(x)− h(0)|pδ(x) dx︸ ︷︷ ︸
J1,δ,τ

+

∫
K\B(0,τ)

|h(x)− h(0)|pδ(x) dx︸ ︷︷ ︸
J2,δ,τ

,

where B(0, τ) = {x ∈ Rd : ‖x‖2 ≤ τ} is the ball of radius τ > 0 centered at the origin, and the radius τ is yet
to be specified. Let µ > 0 be given. It suffices to verify the existence of τ > 0 and δ0 > 0 such that

J1,δ,τ ≤
µ

2
and J2,δ,τ ≤

µ

2
, for δ ≤ δ0.

This would lead to Jδ = J1,δ,τ + J2,δ,τ ≤ µ for all δ ≤ δ0, implying the desired convergence Jδ → 0 as δ → 0+.
The rest of this proof is structured as follows. We bound J1,δ,τ ≤ µ/2 by choosing τ to be sufficiently small
(step 1). This bound holds for any δ > 0. For this same τ , we upper bound J2,δ,τ by a quantity that depends
on δ (step 2). We then show that the numerator of this upper bound converges to zero (step 3), whereas the
denominator is bounded below by a positive constant as δ → 0+ (step 4). Together, steps 3 and 4 imply the
existence of δ0 such that J2,δ,τ ≤ µ/2 for all δ ≤ δ0, which will complete the proof.

Step 1: bounding the integral J1,δ. As h is continuous, we can choose τ so that |h(x)− h(0)| ≤ µ/2 for
all x ∈ B(0, τ), which makes

J1,δ,τ ≤
µ

2
·
∫
K∩B(0,τ)

pδ(x) dx ≤ µ

2
.
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Step 2: bounding the integral J2,δ. Observe

J2,δ,τ =
δ−d/q ·

∫
K\B(0,τ)

|h(x)− h(0)| exp(−ϕ(x)/δ) dx

δ−d/q ·
∫
K exp(−ϕ(x)/δ) dx

≤
δ−d/q ·

∫
K\B(0,τ)

|h(x)− h(0)| exp(−ϕ(x)/δ) dx

δ−d/q ·
∫
K∩B(0,τ)

exp(−ϕ(x)/δ) dx
. (50)

The motivation for introducing the factor of δ−d/q in the numerator and denominator above is a change of
variables that will be used in step 4.

Step 3: analyzing the numerator in (50). Let ε0 > 0 be such that Sε0 ⊆ K ∩B(0, τ). Such a value of
ε0 always exists because, similar to an argument given earlier, {St : t ≤ ε} is a family of nested compact sets
with S0 = {x?}. We assume without loss of generality that ε0 ≤ ε (otherwise we just make ε0 smaller). Now
rewrite the numerator in (50) as

δ−d/q ·
∫
K\B(0,τ)

|h(x)− h(0)| exp(−ϕ(x)/δ) dx =

∫
Rd
1K\B(0,τ)(x) · |h(x)− h(0)|

δd/q
· exp(−ϕ(x)/δ)︸ ︷︷ ︸

fδ(x)

dx.

Similar to a calculation given at the end of the proof of Theorem 1 in Appendix A.1, for x ∈ K \B(0, τ),

dfδ(x)

dδ
=
|h(x)− h(0)|

δd/q
·
(
ϕ(x)

δ2
− d

qδ

)
· exp(−ϕ(x)/δ)

≥ |h(x)− h(0)|
δd/q

·
(
ε0
δ2
− d

qδ

)
· exp(−ϕ(x)/δ),

where the last line holds since ϕ(x) ≥ ε0 (which is implied by our choice of ε0 such that Sε0 ⊆ B(0, τ)). Thus
for all δ ≤ qε0/d, the quantity fδ(x) is nonincreasing as δ decreases, at each x ∈ K \B(0, τ). As fδ ≥ 0, and
fqε0/d is integrable (following from ε0 ≤ ε, and the fact that fqε/d is integrable by assumption), we can apply
the dominated convergence theorem to yield

lim
δ→0+

∫
Rd
fδ(x) dx =

∫
Rd

lim
δ→0+

fδ(x)dx

≤
∫
K\B(0,τ)

lim
δ→0+

|h(x)− h(0)|
δd/q

· exp(−ε0/δ) dx

= 0,

where the last line holds since δ−d/q exp(−ε0/δ)→ 0 as δ → 0+.

Step 4: analyzing the denominator in (50). Recall that x? = 0, and we that assume the minimizer is
in the interior of K, thus we may assume without loss of generality that B(0, τ) ⊆ K (otherwise in step 1 we
simply take τ to be smaller). We may further assume that the local Hölder condition in (48) holds on B(0, τ)
(again, otherwise in step 1 we just take τ to be smaller). We can then lower bound the denominator in (50)
as follows:

δ−d/q ·
∫
K∩B(0,τ)

exp(−ϕ(x)/δ) dx ≥ δ−d/q ·
∫
B(0,τ)

exp(−a‖x‖q2/δ) dx

=

∫
B(0,τδ−1/q)

exp(−a‖y‖q2) dy

=

∫ τδ−1/q

0

∫
∂B(0,r)

exp(−arq)dHd−1 dr,
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where the second line follows from a change of variables x = δ1/qy, and the last line from a change to polar
coordinates (see, e.g., Appendix C.3 in Evans (2010)), with Hd−1 denoting Hausdorff measure of dimension
d− 1. Now, Hd−1(∂B(0, r)) = crd−1 for a constant c > 0 depending only on d, so∫ τδ−1/q

0

∫
∂B(0,r)

exp(−arq) dHd−1 dr = c ·
∫ τδ−1/q

0

rd−1 exp(−arq) dr,

and therefore in the limit the denominator is lower bounded by

lim
δ→0+

c ·
∫ τδ−1/q

0

rd−1 exp(−arq) dr = c ·
∫ ∞
0

rd−1 exp(−arq)dr,

with the quantity in the last line being a positive constant. This completes the proof of the theorem.

A.3 Local Hölder condition for weakly convex functions
Recall, a function ϕ is said to be ρ-weakly convex on a set U provided that the map x 7→ ϕ(x) + (ρ/2)‖x‖22 is
convex on U . We now verify that if f and g are ρf -weakly convex and ρg-weakly convex, respectively, on a
neighborhood U of yx, then the local Hölder condition (25) in Corollary 1 holds for ϕx with exponent q = 1.
Note first that convexity of f(y) + (ρf/2)‖y‖22 implies convexity of

f(y)− f(yx) +
ρf
2
‖y‖22 − 2yTyx +

ρf
2
‖yx‖22 = f(y)− f(yx) +

ρf
2
‖y − yx‖22︸ ︷︷ ︸

Fx(y)

,

because we have only added a linear function and a constant. Similarly, convexity of g(y)+ (ρg/2)‖y‖22 implies
convexity of

g(x− y)− g(x− yx) +
ρg
2
‖x− y‖22− 2(x− y)T(x− yx) +

ρg
2
‖x− yx‖22 = g(x− y)− g(x− yx) +

ρg
2
‖y − yx‖22︸ ︷︷ ︸

Gx(y)

,

because we have only made an affine variable transformation y 7→ x− y, then added a linear function and a
constant. Now, by definition

ϕx(y)− ϕx(yx) = f(y)− f(yx) + g(x− y)− g(x− yx)

= Fx(y) +Gx(y)− (ρf + ρg)‖y − yx‖22.

As Fx(y) +Gx(y) is convex, and convex functions are locally Lipschitz (see, e.g., Theorem 6.7 in Evans and
Gariepy (2015)), we know that it is Lipschitz on U . Furthermore, assuming without a loss of generality that
diam(U) = sup{‖y− z‖2 : y, z ∈ U} ≤ 1 (otherwise we just shrink U around yx such that this holds), we have

(ρf + ρg)‖y − yx‖22 ≤ (ρf + ρg)‖y − yx‖2,

Thus ϕx(y)− ϕx(yx) is the sum of two Lipschitz functions on U , and therefore it is itself Lipschitz on U , i.e.,
locally Hölder with exponent q = 1.

A.4 Proof of Theorem 3
For ease of reference, we state the theorem before its proof.

Theorem 3. Under the conditions of Theorem 2, assume instead that the unique global minimizer x? of ϕ
lies on the boundary of the closed set K. Furthermore, assume that K is full-dimensional and star-shaped, in
a local sense around x?: precisely, writing B(x, r) = {y ∈ Rd : ‖y − x‖2 ≤ r} for the ball of radius r centered
at x, we assume that there exists r0 > 0 such that K ∩B(x?, r0) has positive Lebesgue measure, and

x ∈ K ∩B(x?, r0) =⇒ αx+ (1− α)x? ∈ K, for all α ∈ [0, 1]. (51)

Then the same conclusion as in (49) holds.
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Proof. The proof is the same as that for Theorem 2 in Appendix A.2, except for step 4. Because x? = 0 is
assumed to lie on the boundary of K, it is no longer possible to take τ to be small enough so that B(0, τ) ⊆ K.
However, we can still take τ to be small enough so that the local Hölder bound holds on K ∩B(0, τ), which
results in a lower bound for the denominator in (50) of

δ−d/q ·
∫
K∩B(0,τ)

exp(−ϕ(x)/δ) dx ≥ δ−d/q ·
∫
K∩B(0,τ)

exp(−a‖x‖q2/δ) dx

=

∫
Kδ∩B(0,τδ−1/q)

exp(−a‖y‖q2) dy, (52)

the second line using a change of variables x = δ1/qy, where we abbreviate Kδ = δ−1/qKδ = {δ−1/qx : x ∈ K}.
The rest of this proof proceeds as follows. We first show that we can use polar coordinates to compute (52),
despite the fact that the integral is over the (possibly) nonspherical set Kδ ∩B(0, τδ−1/q) (step 4a). We then
show how to lower bound this integral by a positive constant as δ → 0+, using our assumptions on the set K
(step 4b). This will complete the proof.

Step 4a: rewriting (52) using polar coordinates. Rewrite (52) as∫
Kδ∩B(0,τδ−1/q)

exp(−a‖y‖q2)dy =

∫
B(0,τδ−1/q)

1Kδ(y) · exp(−a‖y‖q2)︸ ︷︷ ︸
ψ(y)

dy.

Let vk = η1/k ∗ 1Kδ be a mollified version of the indicator function 1Kδ , where ηε is the “standard” mollifier
with bandwidth ε > 0 (see, e.g., Appendix C.5 in Evans (2010)). Then defining ψk(y) = vk(y) · exp(−a‖y‖q2),
since mollified functions converge locally in L1 (e.g., Theorem 7 in Appendix C.5 of Evans (2010)),∫

B(0,τδ−1/q)

ψ(y) = lim
k→∞

∫
B(0,τδ−1/q)

ψk(y)

= lim
k→∞

∫ τδ−1/q

0

∫
∂B(0,r)

vk exp(−arq)dHd−1 dr

=

∫ τδ−1/q

0

∫
∂B(0,r)

lim
k→∞

vk exp(−arq)dHd−1 dr

=

∫ τδ−1/q

0

∫
∂B(0,r)

1Kδ · exp(−arq) dHd−1 dr

=

∫ τδ−1/q

0

Hd−1(Kδ ∩ ∂B(0, r)) · exp(−arq) dr. (53)

The second line uses polar coordinates integration, which applies since ψk is smooth (infinitely differentiable)
by construction, the third uses the dominated convergence theorem, which applies because 0 ≤ vk ≤ 1, and
the fourth uses the property that mollified functions converge pointwise almost everywhere (e.g., Theorem 7
in Appendix C.5 of Evans (2010)).

Step 4b: lower bounding (53) as δ → 0+. Observe that the local star-shaped assumption (51) can be
reformulated equivalently (recalling that we have taken x? = 0) as

βK ∩ ∂B(0, r) ⊇ K ∩ ∂B(0, r), for r ≤ r0 and β ≥ 1. (54)

To see this, take x ∈ K such that ‖x‖2 = r ≤ r0, and note that (51) says αx ∈ K for α ≤ 1, or equivalently,
x ∈ βK for β = 1/α ≥ 1. By taking δ ≤ min{(τ/r0)q, 1}, we have τδ−1/q ≥ r0, so we may lower bound the
integral in (53) by∫ τδ−1/q

0

Hd−1(Kδ ∩ ∂B(0, r)) · exp(−arq) dr ≥
∫ r0

0

Hd−1(Kδ ∩ ∂B(0, r)) · exp(−arq)dr.
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Applying (54) to the integrand (with β = δ−1/q ≥ 1) gives∫ r0

0

Hd−1(Kδ ∩ ∂B(0, r)) · exp(−arq) dr ≥
∫ r0

0

Hd−1(K ∩ ∂B(0, r)) · exp(−arq) dr. (55)

Meanwhile, for r ≤ r0,

Hd−1(K ∩ ∂B(0, r)) =

(
r

r0

)d−1
Hd−1

((
r0
r

)
K ∩ ∂B(0, r0)

)

≥
(
r

r0

)d−1
Hd−1(K ∩ ∂B(0, r0)), (56)

the first line using the (d− 1)-homogeneity of Hd−1 (e.g., Theorem 2.2 in Chapter 2.1 of Evans and Gariepy
(2015)), and the second line again using (54).

We remark our assumption Ld(K ∩ ∂B(0, r0)) > 0, where Ld denotes Lebesgue measure of dimension d,
implies Hd−1(K ∩ ∂B(0, r′0)) > 0, for some r′0 ≤ r0. Otherwise, Hd−1(K ∩ ∂B(0, r)) = 0 for all r ≤ r0 would
imply that Ld(K ∩ ∂B(0, r0)) = 0, as we can represent the Lebesgue measure as an integral over Hausdorff
measure of boundary segments, by the same mollification argument used to derive (53) in step 4a. Assume
without a loss of generality that r′0 = r0 (otherwise we simply redefine r0 to make this true), and abbreviate
the lower bound in (56) by crd−1, where c > 0 is a constant depending only on r0 and d. Then applying (56)
to (55) gives ∫ r0

0

Hd−1(K ∩ ∂B(0, r)) · exp(−arq) dr ≥ c ·
∫ r0

0

rd−1 exp(−arq)dr,

the quantity in the last line being another positive constant. This completes the proof of the theorem.

A.5 Local full-dimensional and star-shaped conditions for convex bodies
Recall, a convex body K ⊆ Rd is a closed convex set with nonempty interior. Fix any x? on the boundary of
K. For any x ∈ K, we have αx+ (1− α)x? ∈ K for all α ∈ [0, 1] by convexity, so clearly the local star-shaped
condition (26) is met for any r0 > 0.

Meanwhile, for any r0 > 0, the set K ∩B(x?, r0) has nonempty interior. To see this, take x ∈ int(K) such
that ‖x− x?‖2 ≤ r0/3. (This can be accomplished by taking an arbitrary point in the interior, then shrinking
toward x?, and invoking convexity, until the distance bound is met.) Then by definition, there exists ε > 0
such that B(x, ε) ⊆ int(K). Defining ε′ = min{ε, r0/3}, we have that B(x, ε′) is contained in

int(K) ∩ int(B(x?, r0)) = int(K ∩B(x?, r0)),

so x lies in the interior of K∩B(x?, r0). A nonempty interior implies that K∩B(x?, r0) has positive Lebesgue
measure. This verifies both conditions of Theorem 3 for convex bodies.
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B Further Hamilton-Jacobi Experiments
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(l) Dimension d = 10, Norm p = 10

Figure 9: Residuals for HJ approximation in all dimensions d and norms p (for the Hamiltonian H = ‖ · ‖pp/p) that
we consider. Each panel shows N = 10 samples via red; N = 103 samples via blue; and N = 105 samples via green. In
general, we see similar trends to what is observed in Figure 5, and additionally, we now see that as the dimension
grows, the errors also grow. The case p = 1.1 in dimensions d = 5 and d = 10 seems to be an exception, where we see
poor accuracy even for large N and small δ (with the residuals for N = 10 so large that they do not even appear in
the plotting window). This may be due to the instability of autodiff in this case.
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