Analysis

Read the instructions of the exam carefully.

Complete this sheet and staple to your answers.

STUDENT ID NUMBER		
_		
DATE:		

EXAMINEES: DO NOT WRITE BELOW THIS LINE

1	7
2	8
3	9
4	10
5	11
6	12

Pass/Fail recommendation on this form.

Total score: _____

Form revised 3/08

Analysis Qualifying Exam, March 28, 2024

Rules: Solve no more than ten problems. You must demonstrate adequate knowledge of both real analysis (Problems 1–6) and complex analysis (Problems 7–12). Parts of a problem may not carry equal weight.

Problem 1. For each $n \in \mathbb{N}$, let $a_n : \mathbb{R} \to [0, \infty)$ be a Borel-measurable function. Show that

$$\left\{ (x,y) \in \mathbb{R} \times [0,\infty) : \sum_{n=1}^{\infty} a_n(x)y^n < \infty \right\}$$

is Borel-measurable.

Problem 2. Let $K \subset \mathbb{R}$ be a compact set of positive Lebesgue measure, that is, |K| > 0. For each $n \in \mathbb{N}$, we define sets K_n and Borel measures μ_n as follows:

$$K_n := \left\{ x \in \mathbb{R} : \operatorname{dist}(x, K) \le \frac{1}{n} \right\}$$
 and $\mu_n(A) = \frac{|A \cap K_n|}{|K_n|}.$

Suppose $\mu_n \to \mu$ in the weak-* topology. Show that $|\operatorname{supp}(\mu)| = |K|$.

Problem 3. Fix $f \in L^3(\mathbb{R}^2)$ with respect to Lebesgue measure. Show that

$$f_n(x,y) := \int_0^1 \int_0^{2\pi} f\left(x + \frac{r\cos(\theta)}{n}, y + \frac{r\sin(\theta)}{n}\right) \left[1 - 2r\right] d\theta \, dr$$

converges to zero as $n \to \infty$ in the following two ways:

(a) almost everywhere.

(b) in $L^{3}(\mathbb{R}^{2})$.

Problem 4. Fix $f \in L^1(\mathbb{R})$ that is non-negative and satisfies $\int f(x) dx = 1$. We then define the *n*-fold convolution

$$f_n(x) := \int \cdots \int f(x - y_1 - y_2 - \cdots - y_n) f(y_1) f(y_2) \cdots f(y_n) \, dy_1 \, dy_2 \cdots \, dy_n$$

of f with itself. Show that the sequence $f_n(x)$ does not converge in $L^1(\mathbb{R})$.

Problem 5. Fix $1 \leq p < q < \infty$. Throughout this problem, $L^p(\mathbb{R})$ and $L^q(\mathbb{R})$ are defined using Lebesgue measure and |A| denotes the Lebesgue measure of the set A.

(a) Suppose $f \in L^p(\mathbb{R})$ satisfies $\int_A |f(x)|^q dx < \infty$ for every Borel subset A with |A| = 1. Show that $f \in L^q(\mathbb{R})$.

(b) Show that there exists $f \in L^p(\mathbb{R})$ so that $\int_a^{a+1} |f(x)|^q dx < \infty$ for every $a \in \mathbb{R}$ but $f \notin L^q(\mathbb{R})$.

Problem 6. Let \mathcal{H} be a Hilbert space and $U : \mathcal{H} \to \mathcal{H}$ a unitary operator, that is, U is bounded, linear, and invertible with the inverse equal to its adjoint U^* .

(a) Prove that $\operatorname{Ker}(U-I)^{\perp} = \overline{\operatorname{Ran}(U-I)}$, where $\operatorname{Ran}(U-I)$ denotes the range of U-I and I is the identity operator on \mathcal{H} .

(b) Let P denote the (orthogonal) projection of \mathcal{H} onto $\operatorname{Ker}(U - I)$. Prove that for any vector $v \in \mathcal{H}$,

$$\frac{1}{n}\sum_{k=0}^{n-1}U^kv\longrightarrow Pv \quad \text{in the \mathcal{H}-norm, as $n\to\infty$}.$$

Problem 7. Rigorously evaluate

$$\int_{-\infty}^{\infty} \frac{\log|x+i|}{x^2+4} \, dx.$$

Problem 8. For each $n \in \mathbb{N}$, suppose $f_n : \mathbb{D} \to (-1, 1)$ is harmonic. (Here \mathbb{D} denotes the unit disk in the complex plane.)

(a) Show that there is a subsequence of the functions f_n that converges uniformly on compact subsets of \mathbb{D} .

(b) Suppose f(z) is such a subsequential limit and that f(0) = 1. Show that f(z) = 1 for all $z \in \mathbb{D}$.

Problem 9. Find all entire functions f(z) with the property that if one writes f(z) = u(x, y) + iv(x, y), where z = x + iy and u, v are the real and imaginary parts of f, then for all $x, y \in \mathbb{R}$ we have

$$u(x,y) + v(x,y) \le x + y.$$

Problem 10. Let $h: (-\infty, 0] \to \mathbb{R}$ be continuous and define

$$\Gamma = \{x + ih(x) : -\infty < x \le 0\}$$

Suppose $f : \mathbb{C} \to \mathbb{C}$ is continuous and that f is holomorphic in $\mathbb{C} \setminus \Gamma$. Show that if f(z) = 0 for all $z \in \Gamma$, then f(z) = 0 for all $z \in \mathbb{C}$.

Problem 11. Let $f : \mathbb{C} \to \mathbb{C}$ be the unique holomorphic function with

$$f(0) = 0$$
 and $f'(z) = e^{z^2}$.

Show that this function admits a convergent representation

$$f(z) = z \exp(cz^2) \prod_{n} \left[\left(1 - \frac{z^2}{z_n^2} \right) \exp\left(\frac{z^2}{z_n^2} \right) \right]$$

for some $c \in \mathbb{R}$ and some (finite or infinite) collection of complex numbers z_n .

Problem 12. Consider the following polynomial of $z, w \in \mathbb{C}$:

$$P(w, z) := w^3 (w - 2)^3 + z.$$

(a) Find an explicit $\delta > 0$ so that $w \mapsto P(w, z)$ has precisely three zeros (counted by multiplicity) in the unit disk whenever $|z| < \delta$.

(b) Let us write $w_1(z), w_2(z), w_3(z)$ for these three zeros. Show that

$$z \mapsto w_1(z) + w_2(z) + w_3(z)$$

defines a holomorphic function on $|z| < \delta$. Warning: Each individual $w_i(z)$ will not be holomorphic!