Attempt all ten problems. Each problem is worth 10 points. You must fully justify your answers.

- 1. (a) (5 pts) Show that the Lie group $SL_2(\mathbb{R}) = \{A \in M_{2\times 2}(\mathbb{R}) \mid \det(A) = 1\}$ is diffeomorphic to $S^1 \times \mathbb{R}^2$.
 - (b) (5 pts) Show that the Lie group $SL_2(\mathbb{C}) = \{A \in M_{2\times 2}(\mathbb{C}) \mid \det(A) = 1\}$ is diffeomorphic to $S^3 \times \mathbb{R}^3$.

(Hint to both parts: normalize the first row vector.)

2. Let

 $\mathbb{RP}^n = (\mathbb{R}^{n+1} - \{0\})/(x_0, \dots, x_n) \sim t(x_0, \dots, x_n),$

for all $(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} - \{0\}$ and $t \in \mathbb{R} - \{0\}$ be the real *n*-dimensional projective space, and let $X = \{[(x_0, \ldots, x_n)] \in \mathbb{RP}^n \mid x_0 = 0\}$, where $[(x_0, \ldots, x_n)]$ is the equivalence class of (x_0, \ldots, x_n) . Is it possible to find a smooth map $f : \mathbb{RP}^n \to \mathbb{R}$ with $0 \in \mathbb{R}$ as a regular value and preimage $f^{-1}(0) = X$?

- 3. Let $M \subset N$ a compact submanifold of codimension ≥ 3 . Show that if N is connected and simply connected, then so is the complement N M.
- 4. Let M, N be closed oriented *n*-manifolds with N connected. Show that if $f : M \to N$ has nonzero degree, then $f^* : H^*_{dR}(N; \mathbb{R}) \to H^*_{dR}(M; \mathbb{R})$ is injective. (Hint: First show that $f^* : H^n_{dR}(N; \mathbb{R}) \to H^n_{dR}(M; \mathbb{R})$ is injective.)
- 5. Find two vector fields X and Y on \mathbb{R}^3 such that X, Y, [X, Y] are everywhere linearly independent.
- 6. Let X be a topological space and $p \in X$. Let Y be the topological space obtained from $X \times [0, 1]$ by contracting $(X \times \{0, 1\}) \cup (\{p\} \times [0, 1])$ to a point. Describe the relation between the homology groups of X and Y.
- 7. Exhibit a space whose fundamental group is isomorphic to $(\mathbb{Z}/m\mathbb{Z}) * (\mathbb{Z}/n\mathbb{Z})$, where $\mathbb{Z}/k\mathbb{Z}$ denotes the integers modulo k and * denotes the free product. Also exhibit a space whose fundamental group is isomorphic to $(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$.
- 8. (a) (3 pts) Define what it means for a covering space to be regular.
 - (b) (7 pts) Give an example of an irregular covering space of the wedge sum $S^1 \vee S^1$.
- 9. (a) (2 pts) Show that a nonsingular linear $A : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ induces a smooth map $\Phi_A : \mathbb{CP}^n \to \mathbb{CP}^n$.
 - (b) (2 pts) Show that the fixed points of Φ_A correspond to eigenvectors of the original matrix.

- (c) (3 pts) Show that Φ_A is a Lefschetz map if the eigenvalues of A all have multiplicity 1.
- (d) (3 pts) Show that the Lefschetz number of Φ_A is n + 1.
- 10. Consider the following subsets of \mathbb{R}^3 :

$$A = \{ (0, 0, z) \mid z \in \mathbb{R} \},\$$

$$B = \{ (\cos \theta, \sin \theta, 0) \mid \theta \in \mathbb{R} \},\$$

$$C = \{ (\cos \theta, \sin \theta + 5, 0) \mid \theta \in \mathbb{R} \}.$$

Show that $\mathbb{R}^3 - A - B$ and $\mathbb{R}^3 - A - C$ are not homeomorphic.