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Highlights

PDE Generalization of In-Context Operator Networks: A Study
on 1D Scalar Nonlinear Conservation Laws

Liu Yang, Stanley J. Osher

• By designing the data prompts appropriately, we can use a single In-
Context Operator Network (ICON) model to make forward and reverse
predictions for different equations with different strides.

• Through a study on 1D scalar nonlinear conservation laws, a family of
PDEs with temporal evolution, we show that an ICON model trained
on conservation laws with cubic flux functions can generalize well to
some other flux functions of more general forms, without fine-tuning.

• We also show how to broaden the range of problems that an ICON
model can address, by transforming functions and equations to ICON’s
capability scope.
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Abstract

Can we build a single large model for a wide range of PDE-related scien-
tific learning tasks? Can this model generalize to new PDEs without any
fine-tuning? In-context operator learning and the corresponding model In-
Context Operator Networks (ICON) represent an initial exploration of these
questions. The capability of ICON regarding the first question has been
demonstrated previously. In this paper, we present a detailed methodology
for solving PDE problems with ICON, and show how a single ICON model
can make forward and reverse predictions for different equations with differ-
ent strides, provided with appropriately designed data prompts. We show
positive evidence for the second question above, through a study on 1D scalar
nonlinear conservation laws, a family of PDEs with temporal evolution. In
particular, we show that an ICON model trained on conservation laws with
cubic flux functions can generalize well to some other flux functions of more
general forms, without fine-tuning. We also show how to broaden the range
of problems that an ICON model can address, by transforming functions and
equations to ICON’s capability scope. We believe that the progress in this
paper is a significant step towards the goal of training a foundation model
for PDE-related tasks under the in-context operator learning framework.
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1. Introduction

Looking back to the evolution of neural network solvers for partial differ-
ential equations (PDEs), we see a three-act progression.

Act 1 focuses on approximating the solution functions with neural net-
works. Typical (but not exhaustive) examples include [1] which represents
an early exploration to solve PDEs with neural networks, [2] and [3] for
high-dimensional parabolic PDEs and backward stochastic differential equa-
tions, Deep Galerkin Method (DGM) [4], Deep Ritz Method (DRM) [5],
Physics-Informed Neural Networks (PINNs) [6], Weak Adversarial Network
(WAN) [7] to impose PDEs of different forms in the training loss func-
tion, [8, 9] to solve high-dimensional optimal transport and mean-field con-
trol/game problems, and APAC-Net [10] for mean-field game problems with
the primal-dual formulation.

Despite their success, in Act 1 the neural network needs to be trained
again when the solution function changes due to changes in the equation
or the initial/boundary conditions. Such limitation leads to Act 2, where
the neural networks are employed to approximate solution operators, namely
“operator learning”. Here an operator transforms one or multiple input func-
tions, termed as the “condition” in this paper, to an output function, termed
as the “quantity of interest (QoI)” in this paper. A wide range of scientific
machine learning tasks can be formulated as operator learning problems.
Take the task of solving time-independent PDEs for instance, the condition
could be the coefficient function, with QoI being the solution, and different
equations corresponding to different operators. For optimal control problems,
the condition could correspond to the initial state, while the QoI embodies
the control signal, with different control dynamics corresponding to different
operators.

Operator learning can be traced back to [11, 12] where shallow neural net-
works are used to approximate nonlinear operators. More recent examples
include (but are not limited to) [13] for parametric PDE problems, [14] for
problems governed by stochastic PDEs, PDE-Net [15] for PDEs with tempo-
ral evolution, Fourier Neural Operator (FNO) [16, 17] with integral kernel in
Fourier space to learn the solution operator, Deep Operator Network (Deep-
ONet) [18, 19] which maps the parameters or the initial/boundary conditions
to the solutions, [20] and Physics-Informed Neural Operators (PINO) [21]
for parametric PDEs, [22, 23, 24] with graph neural networks. Other related
work includes [25, 26, 27, 28, 29].
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The above methods have successfully demonstrated the capability of neu-
ral networks in approximating solution operators. However, in these meth-
ods, one model is limited to approximating a single operator, and thus needs
to be retrained when the operator changes, which could be due to even a
minor change in the PDE.

While the cost of retraining can be reduced by fine-tuning a pretrained
model in Act 1 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39] and Act 2 [21, 27, 40,
28, 29, 41, 42, 43], we remark that the model must be fine-tuned individually
for each distinct function or operator. When there are substantial changes
to the target function/operator, such fine-tuning may be expensive or even
fail. These drawbacks significantly limit the applicability of the model.

Pretrained Model

Fine-Tune

Pretrained Model
Generalization

Fine-Tune
In Training
Distribution

Operator Learning

In-Context
Operator Learning

Figure 1: Operator Learning v.s. In-Context Operator Learning. For classic operator
learning, one model is limited to approximate a single operator, with the need of fine-
tuning when the operator changes to a “close” new one. For in-context operator learning,
a single model can approximate a wide range of operators. It can serve as a “foundation
model” that could be directly applied without fine-tuning for different PDE-related tasks
in the training distribution, or even beyond due to generalization in the operator space.
It can also be fine-tuned to strengthen its expertise in particular operator domains, if
necessary.

In-context operator learning [44] can be viewed as the initial attempt of
Act 3, where a single model can manage multiple operators. Other examples
in Act 3 include ICON-LM [45] with text and data prompts, PROSE [46]
which can generate both the symbolic expression of the governing system and
the operator network for multiple distinct ODEs, [47] for multiple ODEs with
in-context operator learning, and Multiple Physics Pretraining (MPP) [48]
where a single model learns different physics from different history records.

In-context operator learning approach draws inspiration from in-context
learning for Large Language Models (LLMs) [49, 50], where the model per-
forms a task specified by the prompted “context”, including task descriptions
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and a few related examples. Recently, the in-context learning paradigm has
been applied to other domains, including function regression [51], large vision
models [52], language-vision models [53], robotics/embodied models [54], etc.
We refer the readers to the survey [55] for more details on recent advances
in this topic.

For in-context operator learning, the corresponding model “in-context
operator network (ICON)” acts as an “operator learner” rather than being
tuned to approximate a specific operator. The trained ICON model is able
to infer the operator from the prompted condition-QoI example pairs, and
apply the inferred operator to new question conditions for corresponding QoI.
Such a learning process happens during the forward pass, without the need
for weight adjustments. With different prompted examples, a single ICON
model approximates different operators, and thus can tackle a wide range of
scientific learning tasks.

For instance, in [44], a single ICON model adeptly manages 19 dis-
tinct equations/types of operators, encompassing forward and inverse or-
dinary differential equations (ODEs), PDEs, and mean-field control prob-
lems, with each type containing infinitely many operators and condition/QoI
functions being 1D or 2D. In [45], ICON is further evolved to take multi-
modal prompts, including data examples and texts that describe the task.
The demonstrated efficacy hints at the potential for training a “foundation
model” under the in-context operator learning framework. Such a model
could be applied directly for a wide range of PDE-related tasks or, if neces-
sary, be fine-tuned to strengthen its expertise in particular operator domains.
We show the comparison between operator learning and in-context operator
learning in Figure 1.

Large Language Models have demonstrated impressive generalization ca-
pabilities, even beyond human expectations [56]. In [44], ICON also demon-
strated generalization to operators that are not included in the training dis-
tribution. However, the generalization is limited to equations with out-of-
distribution parameters, and the generalization to new forms of equations is
not observed there. Also, [47] showed the generalization of in-context oper-
ator learning in ODEs.

This paper aims to (1) present a detailed methodology for PDE forward
and reversal predictions under the in-context operator learning framework,
and (2) explore the generalization capabilities of ICON for PDEs.

In particular, we focus on conservation laws, a family of PDEs with tem-
poral evolution. Our investigation encompasses both time forward and re-
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verse operators. The forward operator takes the initial state as the condition
and predicts the system’s future state as the QoI, while the reverse operator
is conceptualized by making time-reverse predictions, i.e., inverting the roles
of the condition and the QoI.

We are motivated to study conservation laws by the following reasons.

1. Conservation laws are foundational in describing a wide array of real-
world systems.

2. The family of conservation laws is rich, making it ideal for testing the
generalization capabilities of ICON.

3. The complexities inherent in conservation laws present interesting chal-
lenges, including the discontinuities in the solution function, as well as
the non-uniqueness of the time-reverse solution.

In this paper, we show that an ICON model trained on conservation laws
with cubic flux functions can generalize well to some other flux functions of
more general forms, without fine-tuning. We believe that this is a significant
step towards the goal of training a foundation model for PDE-related tasks
under the in-context operator learning framework.

2. Method

2.1. In-Context Operator Network (ICON)

In this paper, we employ the ICON-LM model introduced in [45], which
is an improved variant of the ICON model introduced in [44], where “LM”
stands for “language model”. ICON-LM enables multi-modal learning,
taking texts and numerical data as input, but it also supports single-modal
learning, i.e. learning with numerical data without texts. For single-modal
learning, compared with the vanilla ICON model, ICON-LM model exhibits
improved training efficiency, achieving better accuracy with about half of the
parameters and less training time. In this study, we focus on single-modal
learning of ICON-LM model, and for simplicity, we refer to it as “ICON”.

Denote the neural network as Tθ with parameters θ. ICON takes a se-
quence of condition-QoI pairs as input, and predicts each QoI through one
forward pass, i.e.

{prediction of QOIi}Ii=2 = Tθ[{⟨CONDi,QOIi⟩}Ii=1]. (1)
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Here CONDi denotes i-th condition, and QOIi denotes i-th QoI. Note that
{⟨CONDi,QOIi⟩}Ii=1 should be associated with a shared operator, and the
operator could be different across different sequences. Each condition or
QoI function is represented by a set of key-value pairs, each key-value pair
representing a token in the input sequence of the ICON model.

With a transformer-based architecture and a special attention mask, the
prediction of J + 1-th QoI relies only on the previous condition-QoI pairs
(from the first pair to the J-th pair), as well as J + 1-th condition itself. 1

This can be written as:

prediction of QOIJ+1 = Tθ[CONDJ+1; {⟨CONDi,QOIi⟩}Ji=1], J = 1, 2, ...I−1.
(2)

We don’t make predictions for QOI1, since it makes no sense to predict it
just with COND1 without any condition-QoI pairs as examples to indicate
the operator.

This approach, termed “next function prediction”, mirrors the “next to-
ken prediction” approach in language models. The model is trained by com-
paring the predicted QoIs and the ground truth QoIs in the sequence, e.g.,
using the mean squared error as the loss function.

After training, through one forward pass, the ICON model can ingest
examples of condition-QoI pairs, learn the corresponding operator, apply
it to the question condition, and predict the corresponding QoI. We only
need to view the question condition as the last one in the sequence. This
relationship can be formulated as:

prediction of QOIquestion = Tθ[CONDquestion; {⟨CONDi,QOIi⟩}Ji=1], (3)

where J is the number of examples used in the prompt for in-context operator
learning. A single ICON model can handle different J , ranging from one to
the maximum capacity I − 1.

We remark these condition-QoI pairs in training and inference may not
necessarily come from classical numerical solvers. Sometimes they are derived

1Technically, the input sequence consists of condition-QoI-query tuples. These queries
are just the inputs of the query functions, indicating where to evaluate the predicted QoI
functions. They are conceptually auxiliary, less important than conditions and QoIs, and
could be dropped in future variants of ICON. We thus omit them in our notations for
simplicity.
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from experiments or real-world sensors, where exact PDEs or initial/bound-
ary conditions may not be known. Such scenarios present challenges for
traditional numerical methods, making them more suitable for data-driven
approaches.

For more details of the ICON model, readers are directed to [45].

ICON Model

QUERY_

Prediction of QOI_ Prediction of QOI_

...

...

Training

Inference
ICON Model

...

C
ub

ic
 F

lu
x

M
or

e 
G

en
er

al
 F

lu
x

...

ICON Model...

ICON Model...

QUERY

ICON Model... Different
PDEs

Different
Strides

Time
Reversal

COND_ QOI_ COND_ QOI_ COND_ QOI_ QUERY_...

...

Examples Question
Condition

Prediction of
Question QoI

Figure 2: Illuatration of training and inference of ICON for PDEs, using conservation laws
as examples.

2.2. Forward and Reverse Operators

For PDEs with temporal evolution, the forward operator takes the initial
state as the condition and the state at time τ later as the QoI, while the
condition and QoI are swapped in reverse operators. Earlier in [44] ICON
already demonstrated the capability of in-context operator learning for for-
ward operators in control problems. In this paper, we focus on 1D scalar
nonlinear conservation laws that take the following form:

∂tu(t, x) + ∂xf(u(t, x)) = 0, x ∈ [0, 1], (4)

with periodic boundary condition, where u is the solution state, f is the flux.
Here we fix the geometry and boundary conditions, so that the forward and
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reverse operators are defined by the flux f and temporal intervals (or “stride”
for simplicity) τ . In particular, the forward operator Ff,τ is defined as

Ff,τ [u(0, ·)] = u(τ, ·)
s.t. ∂tu(t, x) + ∂xf(u(t, x)) = 0

(5)

The reverse operator is defined as

Rf,τ [u] = {v|Ff,τ [v] = u} (6)

Note that the reverse solution is not unique, thus we use the set to include
all feasible solutions.

Each condition or QoI function u(t, ·) is represented by a set of key-value
pairs. In this paper, the key is the spatial coordinate x, and the value is the
average value of the solution u over the interval [x, x+∆x] with ∆x = 0.01,
for x = 0, 0.01, ..., 0.99, i.e. 100 key-value pairs or tokens for each function.

2.3. Training

To build the training data, we can simulate different PDEs with different
initial conditions and obtain the condition-QoI pairs from the simulation
records. Note that one record can be used to generate multiple condition-
QoI pairs.

In particular, in this paper, the training PDEs are 1D scalar conservation
laws with cubic flux functions, i.e.,

∂tu+ ∂x(au
3 + bu2 + cu) = 0, (7)

with a, b, c uniformly sampled from [−1, 1]. We fix the forward and reverse
stride τ = 0.1 during training, i.e., the training forward and reverse opera-
tors are Fau3+bu2+cu,0.1 and Rau3+bu2+cu,0.1 respectively, with a, b, c uniformly
sampled from [−1, 1]. The training process is illustrated in Figure 2.

Recall that the ICON model takes a sequence of condition-QoI pairs as
input, and predicts each QoI based on the previous condition-QoI pairs as
well as the current condition. It is straightforward to train the model for
forward operators: the training loss is defined as the mean squared error
between the predicted QoI and the ground truth QoI, i.e. the L2 loss:

LForward(θ) =
1

I − 1

I∑
i=2

∥prediction of QOIi −QOIi∥2 (8)
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The reverse operators are more subtle since the solution is not unique. In
this paper, we discuss two options:

1. L2 Loss: The reverse L2 loss is the same as in Equation 8. The only
difference is that the condition and QoI are swapped.

2. Consistency Loss: If we use the model as a surrogate of the exact
forward operator, and apply it to the predicted QoI, e.g. u(0, ·), ideally
we should recover the condition, e.g. u(τ, ·). We employ the surrogate
forward operator since the exact forward simulation is too expensive in
the training loss function. The consistency loss can be built based on
the recovered condition and the ground truth. More formally,

LConsistency(θ) =
1

I − 1

I∑
i=2

∥F̂i[prediction of QOIi]− CONDi∥2

where F̂i[·] = Tθ[·; {⟨QOIj,CONDj⟩}Ij=1,j ̸=i]

(9)

Here we use {⟨QOIj,CONDj⟩}Ij=1,j ̸=i, i.e., all but i-th condition-QoI
pairs with the condition and QoI swapped, as examples to indicate the
forward operator. The parameters θ are frozen in F̂i, i.e., the flow of
gradients is blocked, to reduce the computational cost.

Mathematically, the reverse L2 loss aims to find the expectation of multi-
ple feasible solutions, which strictly speaking may not be a feasible solution.
The consistency loss is more rigorous but also computationally more expen-
sive. Moreover, the effectiveness of the consistency loss heavily depends on
the accuracy of the forward operator surrogate. We compare the two options
in Section 4.2.

In the end, we remark that we didn’t use automatic differentiation in the
loss function to incorporate the PDE information. Instead, ICON learns from
data alone, in particular, generated by the third-order Weighted Essentially
Non-Oscillatory (WENO) scheme [57] in this paper. This strategy not only
reduces the training costs but also significantly enhances the robustness of
the training process, especially when dealing with discontinuities. Indeed, the
battle-tested stability and accuracy of the numerical scheme play a critical
role in handling the discontinuities in the solutions of conservation laws. The
details of data generation are presented in Section 3.
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2.4. Inference

After training, a single ICON model can be applied to various PDEs or
condition functions. During such an inference phase, there are no weight
updates at all, thus the computational cost is extremely small. The model’s
adaptability comes from the way we construct the data prompts, includ-
ing the example condition-QoI pairs and the question condition, similar to
designing prompts for a language model.

We emphasize that the PDE is not explicitly fed into the model via pa-
rameters or other means. Instead, the model learns the PDE implicitly from
the condition-QoI examples. Therefore, the model can naturally be applied
to PDEs with new forms, as long as the condition-QoI examples are con-
structed correspondingly. In this paper, we train the model with cubic flux
functions, and test the model with flux functions of more general forms. Also,
while the time stride τ is fixed in training, it can vary in inference, since this
is equivalent to scaling the PDE properly, as we will discuss in Section 2.6.2.
The inference phase is illustrated in Figure 2.

Based on the source of the condition-QoI examples, there are three cases:

1. Self Reference: In this case, for data we have a sequence

(u(0), u(∆t), u(2∆t), · · · , u(n∆t)) =: (u(i∆t))ni=0, (10)

where u(t) is the solution of the PDE at time t. We call the sequence
a “record”, and each u(t) a “frame”. We will construct condition-QoI
examples from the given record, and predict future frames, i.e. u((n+
1)∆t), u((n+2)∆t), · · · , or previous frames, i.e. u(−∆t), u(−2∆t), · · · .

2. Single Reference Record: In this case, we have a reference record
and make predictions for a new initial/terminal condition.

3. Multiple Reference Records: In this case, we have multiple ref-
erence records governed by the same PDE, and make forward/reverse
predictions for a given initial/terminal condition.

“Self Reference” can be viewed as a special case of “Single Reference
Record”, but we list it separately since it is a very common case in practice.
For all these cases, we can construct a condition-QoI example by randomly
sampling a frame from a record as the condition, and a later/previous frame
as the QoI from the same record with a certain stride.
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After the introduction of ICON, other researchers also looked into train-
ing one model for multi-physics prediction, by specifying physics with history
records [48]. In particular, in the inference stage, the model input is the se-
quence (u(i∆t))ni=0 which implicitly encodes the physics, and the output is
the prediction of u((n+1)∆t). The model is used in an auto-regressive man-
ner to make predictions for u((n+ 2)∆t), u((n+ 3)∆t), · · · . We refer to this
approach as “video prediction” since it draws a parallel between forecasting
PDE and predicting video frames.

While this approach is capable of addressing multiple PDEs, it overlooks
an important property: common PDEs are time-homogeneous Markovian
processes, i.e. the future state only depends on the current state, and such
dependence is invariant in time2. This property is not only a key feature
of most PDEs, but also forms the foundation of both forward and reverse
operator definitions, as well as classic numerical PDE schemes.

By taking advantage of the time-homogeneous Markovian property of
PDEs, and constructing condition-QoI examples in a very flexible way, ICON
is more powerful.

If we construct the condition-QoI examples as

⟨u(0), u(∆t)⟩, ⟨u(∆t), u(2∆t)⟩, · · · , ⟨u((n− 1)∆t), u(n∆t)⟩, (11)

and set u(n∆t) as the question condition, then the ICON model will recover
the video prediction approach and predict u((n + 1)∆t) . Here we use the
notation ⟨u(t1), u(t2)⟩ to denote a condition-QoI example, where u(t1) is the
condition and u(t2) is the QoI.

Beyond one-step prediction, ICON can easily make multi-step or large-
stride predictions by simply changing the order of frames in the input se-
quence. For example, suppose n is a multiple of 2 and we want to make
predictions for u((n+ n/2)∆t), we can construct condition-QoI examples as

⟨u(0), u(n/2∆t)⟩, ⟨u(∆t), u((n/2 + 1)∆t)⟩, · · · , ⟨u(n/2∆t), u(n∆t)⟩, (12)

and set u(n∆t) as the question condition, then the model will predict u((n+
n/2)∆t) with one forward pass.

2Some terms in the PDE can be time-dependent, but usually these terms are the
system states or controls, and the PDE that governs the system states or controls is
time-homogeneous Markovian.
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To make reverse predictions, given the sequence (u(−i∆t))ni=0, we can
construct condition-QoI examples as

⟨u(0), u(−∆t)⟩, ⟨u(−∆t), u(−2∆t)⟩, · · · , ⟨u(−(n− 1)∆t), u(−n∆t)⟩, (13)

and set u(−n∆t) as the question condition, so the ICON model will learn the
reverse operator and predict u(−(n+1)∆t). Similarly for multi-step reverse
predictions.

In the end, we remark that ICON is adaptive to non-Markovian processes
as well: we just need to set the condition as multiple frames instead of one.

2.5. Recursive Predictions

To make predictions for a long time horizon, we can recursively call the
ICON model with the predicted QoIs as the new question conditions. Since
a single ICON model can make predictions with different strides, there are
multiple schemes to recursively make predictions. We present one example
here, which is used throughout the paper.

...

First Question Condition

...

...

maximum stride

maximum stride

Figure 3: Illustration of the scheme for recursive predictions.

Given the record(s) for building condition-QoI examples, as well as ut0 as
the first question condition, we make recursive forward predictions with the
following steps:

1. Prescribe the maximum stride S.

2. Using u(t0) as the question condition, make predictions of u(t0 + s)
with the stride s, for s = ∆t, 2∆t, ..., S.

3. Using u(t−S) as the question condition, make predictions of u(t) with
the maximum stride S, for t = t0 + S +∆t, t0 + S + 2∆t, · · · .
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An illustration of the recursive prediction scheme is shown in Figure 3.
It’s clear that we can make predictions for t0 + n∆t for n ∈ N in this way.
The recursive reverse predictions can be made similarly.

2.6. Transform Operators and Functions to ICON’s Capability Scope

ICON can handle a range of operators and condition functions through
in-context operator learning. When faced with unfamiliar operators and/or
condition functions, it’s sometimes possible to transform them into ones that
ICON can effectively process. Such techniques broaden the range of problems
that ICON can address and strengthen its role as a foundation model. As
an analogy, the concept of “chain of thought” [58] has been introduced to
decompose complex reasoning tasks into smaller, more manageable segments
that can be tackled by a Large Language Model.

Here, we demonstrate two simple examples of such techniques: change of
variables and varying strides.

2.6.1. Change of Variables

When applying the change of variables, both the equation and condition
function are transformed. Consider the conservation law ∂tu + ∂xf(u) = 0,
take a simple affine transformation as example, i.e., u = αv + β with α > 0,
then the equation becomes

∂tv + ∂xf(αv + β)/α = 0, (14)

In other words, the condition function is transformed to v = (u− β)/α, and
the flux function is transformed to f(αv + β)/α.

For condition functions that are beyond the training scale, we can apply
the affine transformation with α > 1, so that it can be scaled down to the
training scale. However, we remark that α cannot be too large. Firstly,
the prediction error will be amplified by α when transforming back to the
original variables. Secondly, the flux f(αv+β)/α could go out of the training
distribution for a large α. The detailed numerical results are presented in
Section 4.5.

The training PDEs are limited to conservation laws with cubic flux func-
tions in this paper, and we thus only considered linear transform. If the
training distribution covers more general cases, more sophisticated transfor-
mations can also be effective.
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2.6.2. Varying Strides

For conservation laws of form 4, we can see that

Fkf,τ = Ff,kτ , Rkf,τ = Rf,kτ , (15)

where k is a positive constant. In other words, if we apply a smaller/larger
stride, it is equivalent to solving a PDE with a smaller/larger flux and the
original stride. This technique can be used to adjust the scale of flux functions
to the desired range.

Note that with a smaller stride, it takes more steps to reach the same
time, i.e., more calls to the ICON model. This could lead to a larger error
accumulation. Therefore we need to make a tradeoff between the general-
ization ability of ICON and the error accumulation. The detailed numerical
results are presented in Section 4.6.

3. Data Preparation

The training data are generated by simulating conservation laws with
cubic flux functions:

∂tu+ ∂x(au
3 + bu2 + cu) = 0, x ∈ [0, 1], (16)

with periodic boundary conditions. The simulation is conducted with the
third-order WENO scheme [57], a battle-tested numerical scheme for conser-
vation laws.

For the training phase, we employ a set of 1000 tuples of (a, b, c), each
randomly sampled from the hypercube [−1, 1]3. The following protocol is
adopted for each tuple of operator parameters (a, b, c):

1. Initial Conditions: Sample N = 100 periodic functions as initial
conditions. These functions are defined on a grid with spacing ∆x =
0.01. In practice, we sample these functions from a periodic Gaussian
random field with zero mean and covariance kernel

k(x, x′) = σ2 exp

(
−1− cos(2π(x− x′))

l2

)
, (17)

where σ = 1, l = 1. The initial functions with value beyond [−3, 3] are
dropped for the sake of the CFL condition during data generation.
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2. Numerical Solution: Employ the third-order WENO scheme and the
fourth-order Runge-Kutta method to solve the conservation law. The
system evolves from t = 0 to t = 0.5 using a time step ∆t = 0.0005,
resulting in 1001 steps in total, taking account of both the initial and
final states. The solution we get is the weak solution which satisfies
the jump condition for the discontinuities, and also satisfies the entropy
condition.

3. Data Collection: Consider each of the first 801 time steps corre-
sponding to the initial 0.4 time units as an individual initial condition.
Each of these has a corresponding function that occurs 0.1 time units
later. Such pairs of functions can be collected as the conditions and
QoIs for the forward and reverse operators.

Given N initial functions, this procedure yields a total of 801N = 80100
conditions-QoIs pairs for each operator. To optimize storage efficiency, we
do not exhaustively utilize all generated condition-QoI pairs. Instead, for
each operator we randomly down-sample and store 100N = 10000 pairs for
training.

We used JAX for efficient data preparation, completing the training data
generation in approximately 1.6 hours using a single NVIDIA RTX 4090
GPU.

4. Experimental Results

The ICON model employs a transformer architecture, in this paper con-
figured as in Table 1. For optimization, the AdamW optimizer is used in
conjunction with a warmup-cosine-decay schedule, following the parameters
set in Table 2.

The input and output layers are linear layers. In this paper, the input
sequence during training consists of six condition-QoI pairs. Consequently,
the inference phase is limited to a maximum of five examples, plus a single
question condition. The condition/QoI functions and the five additional
queries related to QoIs (excluding the first one) comprise 100 tokens each,
as is explained in Section 2.2. This results in a total of 1700 tokens in the
input sequence during training.
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Table 1: Transformer Configuration

Layers 6
Heads in Multi-Head Attention 8

Input/Output Dimension of Each Layer 256
Dimension of Query/Key/Value in Attention Function 256

Hidden Dimension of Feedforward Networks 1024

Table 2: Configuration of Optimizer and Learning Rate Schedule

Initial Learning Rate 0.0
Peak Learning Rate 1e-4
End Learning Rate 0.0
Training Steps 106

Warmup Steps First 10% of Total Steps
Cosine Annealing Steps Remaining Steps

Global Norm Clip 1.0
Adam β1 0.9
Adam β2 0.999

Adam Weight Decay 1e-4

4.1. Metrics

Denote the trained neural network as Tθ as in Equation 1, then given some
examples {⟨ui;Ff,τ [ui]⟩}Ii , we can approximate the forward operator Ff,τ with
Tθ[·; {⟨ui,Ff,τ [ui]⟩}Ii ], and the reverse operatorRf,τ with Tθ[·; {⟨Ff,τ [ui], ui⟩}Ii ].

We denote
F̂f,τ [u] := Tθ[u; {⟨ui,Ff,τ [ui]⟩}Ii ],
R̂f,τ [u] := Tθ[u; {⟨Ff,τ [ui], ui⟩}Ii ].

(18)

The condition-QoI examples {⟨ui,Ff,τ [ui]⟩}Ii and {⟨Ff,τ [ui], ui⟩}Ii are dropped
for simplicity. We will specify them as needed in the following sections.

To quantify the performance of these learned operators, we define two
metrics: the forward error and the reverse error. The forward error is
straightforward, which is the average L1 distance between the predicted QoI
and the ground truth QoI:

Forward Error := ∥F̂f,τ [u]−Ff,τ [u]∥1, (19)

The reverse error is more subtle since the solution is not unique. We thus
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apply the exact forward operator 3 to the predicted QoI, and compare the
result with the condition function:

Reverse Error := ∥Ff,τ [R̂f,τ [u]]− u∥1. (20)

Note that here we use the exact forward operator Ff,τ in Reverse Error, as

oppose to the surrogate model F̂f,τ in LConsistency for training. This is because
we want to focus on evaluating the reverse prediction and avoid the error in
the forward operator approximation.

For recursive forward predictions, the error is also defined as the average
L1 distance between the predictions and the ground truth. For recursive
reverse predictions, we apply the exact forward operator to the predictions
until t0, the time for the first question condition, and calculate the L1 distance
between the reconstructed first question condition and the ground truth.

Here we use the L1 distance as the evaluation metric, a common choice
for analyzing conservation laws with discontinuities. This is different from
the L2 loss function used in training. One can also define the L2 error by
replacing ∥ · ∥1 with ∥ · ∥2 in Equation 19 and 20. We made a comparison
between L1 error and L2 error in Section 4.2.

4.2. In-Distribution Operators

In this section, we evaluate the performance of ICON on in-distribution
operators, specifically focusing on the forward operators Fau3+bu2+cu,0.1 and
reverse operators Rau3+bu2+cu,0.1, with the number of examples ranging from
1 to 5. Here (a, b, c) are on the 11× 11× 11 uniform grid within [−1, 1]3. For
each operator, the condition-QoI pairs are generated in the same way as for
training.

We also compared the L2 loss and consistency loss for training reverse
operators. In particular, we consider three training configurations:

1. L2 loss with batch size 4 for forward operators and consistency loss
with batch size 4 for reverse operators. The training takes about 45.5
hours on dual NVIDIA RTX 4090 GPUs.

3Here we use forward simulation to apply the “exact” forward operator. Strictly speak-
ing, such an operator also has numerical errors and thus is not “exact”. However, the errors
are negligible compared with neural network prediction errors, and we thus ignore them.
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2. L2 loss with expected batch size 8 for forward operators and another
8 for reverse operators. 4 The training takes about 40 hours on dual
NVIDIA RTX 4090 GPUs.

3. L2 loss with expected batch size 4 for forward operators and another
4 for reverse operators. The training takes about 37 hours on a single
NVIDIA RTX 4090 GPU.
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Figure 4: Averaged error v.s. the number of examples used for in-context operator learn-
ing. (a) Forward L1 error. (b) Reverse L1 error. (c) Forward L2 error. (d) Reverse L2

error.

4When using L2 loss for both forward and reverse operators, practically we train the
model with data randomly sampled from forward and reverse operators. The exact split in
each iteration may be different, but the expectation is half-half. When using consistency
loss, in each iteration, we use the same 4 sequences to build the forward L2 loss and the
consistency loss.
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In Figure 4, we show the forward error and reverse error averaged over the
operators on the grid and 100 instances of in-context operator learning for
each operator. For all three configurations, it’s clear that both errors decay as
the number of in-context examples increases. The consistency loss performs
the worst in our experiments, although with the largest computational cost.
This may be due to that the model cannot serve as an accurate forward
operator surrogate before convergence, and thus the consistency loss is not
effective. A more sophisticated training strategy can be developed to improve
the performance of consistency loss, e.g., gradually increasing the weight of
consistency loss as the model converges. Since this is not the focus of this
paper, we leave it as future work.

In Figure 4, the L2 error is approximately twice the L1 error; however,
the qualitative conclusions are consistent. Therefore, we will continue to use
the L1 distance as the evaluation metrics in subsequent sections.
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Figure 5: Illuatration of in-context operator learning for F0.5u3+0.5u2+0.5u,0.1,
R0.5u3+0.5u2+0.5u,0.1, F−0.5u3−0.5u2−0.5u,0.1 and R−0.5u3−0.5u2−0.5u,0.1. For each case, the
prompted five condition-QoI examples are shown with dotted color lines. The forward
predictions shown with dashed red lines overlap with the ground truth QoIs shown with
solid black lines. Since there are no unique ground truth solutions for the reverse opera-
tors, we apply the exact forward operators to the predicted QoIs by forward simulation,
and show the recovered conditions with dashed blue lines, which overlap with the question
conditions shown with solid black lines.

Since the L2 loss with 8+8 batch size works the best, from now on, we will
analyze the results using the model trained with this configuration. As an
illustration, in Figure 5 we show some cases of in-context forward and reverse
operator learning, corresponding to different equations. The overlapping be-
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tween the predicted QoI and the ground truth QoI for forward operators, and
the overlapping between the recovered condition and the question condition
for reverse operators, indicate that the learned operators are accurate.

4.3. Comparison with Classic Operator Learning

In this section, we compare ICON with classic operator learning methods,
including FNO [16] and DeepONet [18].
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Figure 6: Accuracy comparison between ICON and classic operator learning methods,
with errors averaged across 100 independent groups of data for fine-tuning and testing.
(a) Error of DeepONet (b) Error of FNO. The errors for ICON across the four operators are
represented by grey dashed lines, which are closely aligned and virtually indistinguishable.

In this study, we utilize a DeepONet model with approximately 15 million
parameters and an FNO model with about 20 million parameters, compa-
rable to the ICON model with about 16 million parameters. Classic op-
erator learning methods typically train models to approximate a specific
operator. Here, we initially pretrain both the DeepONet and FNO mod-
els using approximately 1.5 GB of data to approximate F0.2u3+0.2u2+0.2u,0.1.
Subsequently, these pretrained models are fine-tuned individually to approx-
imate other operators, including F0.21u3+0.21u2+0.21u,0.1, F0.25u3+0.25u2+0.25u,0.1,
and F0.30u3+0.30u2+0.30u,0.1. The fine-tuning process involves 1000 steps using
the AdamW optimizer, featuring a constant learning rate 1e-5, weight decay
1e-4, and global norm clip 1.0. We use a batch size that matches the total
number of available examples, ranging from 5 to 1000.

As illustrated in Figure 6, the pretrained FNO model exhibits superior
accuracy in approximating F0.2u3+0.2u2+0.2u,0.1 compared to ICON, whereas
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DeepONet shows slightly poorer performance. Without fine-tuning, the mod-
els are unable to predict other operators accurately. For fine-tuning, adding
more examples incrementally enhances accuracy, with operators further from
the initial training target requiring more examples. For example, fine-tuning
FNO with 5 examples suffices for approximating F0.21u3+0.21u2+0.21u,0.1 with an
accuracy comparable to that of ICON, whereas approximately 300 examples
are required for F0.3u3+0.3u2+0.3u,0.1.

Furthermore, we report the runtimes of different methods in Table 3.
These runtimes were measured on a single NVIDIA RTX 4090 GPU, with
batch sizes set to one for WENO simulation and inference of models. A
WENO simulation of 200 steps with a step size of 0.0005 corresponds to a
duration of 0.1, identical to the time stride used for ICON and classic operator
learning methods. ICON’s inference process is faster than WENO simulation.
The inference times for FNO and DeepONet are quicker than for ICON,
however, their fine-tuning processes are substantially slower. For different
setups, it takes different steps for the fine-tuning processes to converge, but
even one fine-tuning step with batch size 5 is slower than the inference of
ICON. As a reference of fine-tuning steps, in Figure 7, we show the error
versus the number of steps during the fine-tuning of FNO to approximate
F0.3u3+0.3u2+0.3u,0.1, where approximately 100 to several hundred steps are
required for convergence.
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Figure 7: Error versus the number of steps during the fine-tuning of FNO to approximate
F0.3u3+0.3u2+0.3u,0.1, with errors averaged across 100 independent groups of data for fine-
tuning and testing. Here the batch size matches the total number of available examples.

We acknowledge that the hyperparameters of the operator learning mod-
els, such as depth and width, were not meticulously optimized. Adjustments
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to these parameters might enhance the performance of DeepONet and FNO.
Also, different implementations might accelerate the training and inference.
However, the need for fine-tuning models for individual operators and the
considerable computational expense of fine-tuning compared to a single for-
ward pass in the ICON inference likely remain unchanged.

Table 3: Approximate Running Time of Different Methods

Method Operation Time (ms)
WENO Simulation (200 steps) 16.4
ICON Inference (5 examples in the prompt) 3.5

DeepONet
Inference 0.8

Fine-tuning per step (batch size = 5) 4.0

FNO
Inference 2.0

Fine-tuning per step (batch size = 5) 7.4

4.4. Generalization to New PDEs

In this section, we show that the ICON can generalize to new PDEs with
more general forms of flux functions.

We apply ICON recursively to make predictions for a long time hori-
zon. In particular, for forward predictions, we consider that we have 11
frames of data u(0), u(0.01), · · · , u(0.1), and use the trained ICON to pre-
dict u(0.11), u(0.12) · · · , u(0.5). We follow the recursive scheme introduced
in Section 2.5, with t0 = 0.1, ∆t = 0.01, and the maximum stride S = 0.05.
For all predictions, we use five condition-QoI pairs as prompted examples,
which are randomly sampled from

⟨u(0), u(s)⟩, ⟨u(0.01), u(0.01 + s)⟩, · · · , ⟨u(0.1− s), u(0.1)⟩, (21)

when making predictions with a stride of s.
Similarly, for reverse predictions, we consider that we have 11 frames

of data u(0.5), u(0.49), · · · , u(0.4), and use the trained ICON to predict
u(0.39), u(0.38) · · · , u(0), with t0 = 0.4.

In Figure 8 and 9 we showcase some forward and reverse prediction results
for ∂tu + ∂x(sin(u) − cos(u)) = 0. We can see the great accuracy, even for
the PDE and initial functions that are never seen during training.

How accurate is the prediction for the new PDE compared with the pre-
dictions for PDEs with cubic flux functions? Did the ICON model simply
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Figure 8: Three examples of forward prediction of ∂tu + ∂x(sin(u) − cos(u)) = 0. The
overlapping between the forward predictions and the ground truth data indicates that the
forward predictions are accurate.
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Figure 9: Three examples of reverse prediction of ∂tu+∂x(sin(u)− cos(u)) = 0. We apply
the exact forward simulation from the predicted initial condition at t = 0 until t = 0.5,
shown with blue dashed lines. The overlapping between the forward simulation results
and ground truth data indicates that the reverse predictions are accurate.
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memorize the cubic flux functions and approximate the new flux with the
closest cubic function?

To answer these questions, we consider the following two comparisons:

Comparison 1: We compare the errors of predictions for different equa-
tions, including f(u) = sin(u) − cos(u) and “similar” cubic flux func-
tions. The definition of “similar” will be introduced later.

Comparison 2: We use different equations, including f(u) = sin(u) −
cos(u) and “similar” cubic flux functions, to generate the prompted
examples. We make predictions with these examples, and compare the
errors between the predictions and the ground truth corresponding to
f = sin(u) − cos(u). To ensure a fair comparison, the initial condi-
tion for generating prompted examples via simulation, as well the first
question condition u(t0) for recursive predictions, are shared across all
equations.

The “similar” cubic flux functions consist of the following:

1. The cubic Taylor polynomial of f(u) = sin(u)−cos(u) at 0, i.e. f(u) =
−1/6u3 + 1/2u2 + u. The constant term is dropped since it does not
affect the solution. Same for the following.

2. The best cubic fit of f(u) = sin(u) − cos(u) within [−1, 1] in the L2

sense, i.e., f(u) = −0.157u3 + 0.465u2 + 0.998u approximately.

3. The best cubic fit of f(u) = sin(u) − cos(u) within [−2, 2] in the L2

sense, i.e., f(u) = −0.132u3 + 0.370u2 + 0.971u approximately.

4. Since the range of u varies for PDE with different initial conditions,
we also consider the best cubic fit of f(u) = sin(u) − cos(u) within
[umin, umax] in the L2 sense, where umin and umax are the minimum and
maximum values of u in the initial condition. Due to the maximum
principle, the range of u will not exceed [umin, umax] for all time. We
denote this as “adaptive cubic fit”.

The first three “similar” cubic functions are illustrated in Figure 10a.
In Figure 11 we show the errors of forward and reverse predictions w.r.t.

time. These errors are averaged over 512 instances, with the initial condi-
tions sampled from the same stochastic process as in training (with different
random seeds).

There are two key observations:
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Figure 10: The tested flux functions (black solid lines) and “similar” cubic functions
(colored dashed lines), including cubic Taylor polynomials (green), cubic fit in [−1, 1]
(blue), and cubic fit in [−2, 2] (red). (a) f = sin(u)− cos(u). (b) f = tanh(u).
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Figure 11: Generalization for ∂tu + ∂x(sin(u) − cos(u)) = 0. (a) the error of forward
prediction for different equations. (b) The error of forward prediction with prompted
examples coming from different equations. (c) the error of reverse prediction for different
equations. (d) The error of reverse prediction with prompted examples coming from
different equations.
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Figure 12: Generalization for ∂tu + ∂x(tanh(u)) = 0. The meaning of subfigures are the
same as in Figure 11.
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1. For Comparison 1, the error for the new equation is higher than those
for “similar” cubic flux functions, but still within a reasonable range.
This is expected since the new equation is out of the training distribu-
tion.

2. For Comparison 2, when the prompted examples are generated from
“similar” cubic flux functions, the errors are higher than that with
“correct” examples. This shows that the ICON model didn’t simply
memorize the cubic flux functions and approximate the new flux with
the closest cubic function (at least not in a trivial way). Instead, it is
able to generalize to more general forms of flux functions.

In Figure 12, we also show the results for f(u) = tanh(u), with “similar”
cubic functions illustrated in Figure 10b. The observations are consistent
with those for f(u) = sin(u)− cos(u).

4.5. Change of Variables
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Figure 13: The error of prediction for ∂tu + ∂x(sin(u) − cos(u)) = 0, with and without
change of variables. (a) the error of forward prediction. (b) the error of reverse prediction.
The error is the lowest when scaling u to [−1, 1].

In this section, we study the change of variables, focusing on the example
equation ∂tu+ ∂x(sin(u)− cos(u)) = 0.

We apply the affine transformation v = (u−β)/α, so that ∂tv+∂xf(αv+
β)/α = 0. Let β = (umax + umin)/2, α = (umax − umin)/(2r), so that if u ∈
[umin, umax], then v ∈ [−r, r]. Here we set umin and umax as the minimum and
maximum values of u in the condition-QoI examples as well as the question
condition. We feed v to the ICON model to make predictions, and then
apply the inverse transformation u = αv+β to recover the predictions in the
original variable u. The other setups are the same as in Section 4.4.
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The errors for forward and reverse predictions are shown in Figure 13. We
can see that when r = 1, i.e. scaling u to [−1, 1], the errors are the lowest.
Recall the initial condition is sampled from the Gaussian process with mean
0 and variance 1, it is reasonable that r = 1 works better than “no change
of variables”, or r = 2, 3. The errors for r = 0.5 are higher, which can be
attributed to two reasons discussed in Section 2.6.1: (1) the prediction errors
are amplified when transforming back to the original variables, (2) the new
flux sin(αv + β)/α− cos(αv + β)/α could be far away from the distribution
of cubic flux functions during training.

4.6. Varying Strides
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Figure 14: The error of prediction with different maximum strides. (a,b) the error of
prediction for ∂tu + ∂x(sin(u) − cos(u)) = 0. (c,d) the error of prediction for ∂tu +
∂x(3 sin(u)− 3 cos(u)) = 0. (a,c) the error of forward prediction. (b,d) the error of reverse
prediction.

In this section, we study the effect of varying maximum stride S for
recursive predictions. We consider the equation ∂tu + ∂x(sin(u)− cos(u)) =
0, and ∂tu + ∂x(3 sin(u) − 3 cos(u)) = 0, and make predictions with S =
0.01, 0.02, ..., 0.05. The other setups are the same as in Section 4.4. The
results are shown in Figure 14.

For f = sin(u) − cos(u), the error increases as the maximum stride de-
creases from 0.05 to 0.01. The forward operators Fsin(u)−cos(u),0.1k are equiv-
alent to Fk sin(u)−k cos(u),0.1 for k = 0.5, 0.4, ..., 0.1. Since sin(u) − cos(u) ≈
−1/6u3 +1/2u2 + u+ const, these operators are in the training range where
the cubic polynomial coefficients are within [−1, 1]3. The difference in the
performance can be attributed to the error accumulation in recursive predic-
tions, with a larger maximum stride leading to a smaller error due to less
recursive steps.

For f = 3 sin(u) − 3 cos(u), the forward operators F3 sin(u)−3 cos(u),0.1k are
equivalent to F3k sin(u)−3k cos(u),0.1 for k = 0.5, 0.4, ..., 0.1. One can see that
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the operators are in the training range for k = 0.1, 0.2, 0.3, while out of
the training range for k = 0.4, 0.5. Therefore, the error decreases as the
maximum stride increases from 0.01 to 0.03 due to error accumulation, and
then increases as the maximum stride continues to increase from 0.03 to 0.05
due to the out-of-distribution effect.

5. Limitation And Future Directions

We have previously demonstrated the capabilities of ICON. In this sec-
tion, we address its limitations and propose future research directions.

First, the generalization ability of ICON in this study is restricted to flux
functions and time strides. Our preliminary findings show that ICON, when
trained under periodic boundary conditions, fails to adapt to non-periodic
conditions and struggles with prediction strides significantly larger than those
in the training set. Enhancing generalization could be achievable by train-
ing a larger model on a broader dataset with diverse operators and initial
functions. Future studies will explore whether ICON can exhibit emergent
capabilities in large-scale models, similar to those observed in LLMs.

Second, the current recursive schemes with varying strides and the change
of variables remain relatively simple. We are interested in developing more
sophisticated and effective algorithms or models that can automate these
processes, akin to the advancements in prompt engineering seen in LLMs,
e.g., the chain of thought [58]. This exploration may open up a new research
field that is built on top of foundation models for scientific computing.

Third, the efficiency and scalability of training and inference processes
need to be enhanced. Currently, ICON relies on transformers, which incur
a computational cost that scales quadratically with the number of tokens.
This scalability issue becomes a significant barrier in high-dimensional ap-
plications, which require a large number of data points (possibly exponential
to the dimension) to represent the functions. Potential improvements could
involve adopting techniques from long-context LLMs, such as KV cache op-
timization, sliding memory window [59], chunk segmentation [60], and more
efficient model architectures.

6. Summary

In this paper, we present a detailed methodology of ICON for PDEs
with temporal evolution, using 1D scalar nonlinear conservation laws as an

28



example. By designing the data prompts appropriately, we can use a single
ICON model to make forward and reverse predictions for different equations
with different strides. We show that an ICON model trained on conservation
laws with cubic flux functions can generalize well to some other flux functions
of more general forms, without fine-tuning. We also show how to broaden
the range of problems that ICON can address, by transforming functions
and equations to ICON’s capability scope via change of variables and proper
strides. We believe that the progress in this paper is a significant step towards
the goal of training a foundation model for scientific machine learning under
the in-context operator learning framework.
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