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Prove whether Gauss-Seidel iteration converges.
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2. (10 points) Consider the following iterative method for solving Ax = b:

r0 = b−Ax0

p0 = r0

For n = 0, 1, . . .

Compute αn

xn+1 = xn + αnpn

rn+1 = rn − αnApn

Compute pn+1

Derive a way to compute αn (in the fourth line above) such that ∥b−Axn+1∥2 is minimized.
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3. (10 points) Prove for Krylov subspace Kn(A, v):

a) Kn(A, v) = Kn(αA, βv) where α ̸= 0, β ̸= 0.

b) Kn(A, v) = Kn(A− µI, v),∀µ ∈ R.
c) Kn(B

−1AB,B−1v) = B−1Kn(A, v),∀B that’s invertible.

d) Kn+1(A, v) = span(v) +AKn(A, v),∀n ≥ 1.

e) If v ̸∈ Range(A), then AKn(A, v) ̸⊆ Kn+1(A, v),∀n ≥ 1.
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4. (10 points) Prove or disprove whether each of the following is backward stable, when performed in floating point
arithmetic on a machine that satisfies the fundamental axiom of floating point arithmetic (i.e. that floating point
operations ⊛ satisfy x ⊛ y = (x ∗ y)(1 + ε) for some |ε| ≤ ϵmachine, where ∗ represents addition, subtraction,
multiplication or division).

a) Outer product computations xyT for real vectors x and y.

b) Unitary matrix multiplication. I.e., let Q be a unitary m × m real matrix and define the problem f by

f(A) := QA for m ×m real matrices A. Suppose this is carried out by the floating point algorithm f̂(A)

which computes the product QA by floating point inner products. Prove or disprove that f̂ is backward
stable.
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5. (10 points) Given an m× n real matrix A and real vector b ∈ Rm, consider the least-squares problem in which
we search for the least-squares solution xLS ∈ Rn that minimizes f(x) = ∥Ax− b∥22. Prove that xLS = A†b is the
least-squares solution that has the smallest L2-norm (i.e. show that it is a minimizer, and out of all minimizers,
∥A†b∥2 is the smallest). The notation A† denotes the (Moore-Penrose) pseudo-inverse of A.
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6. (10 points) Prove Gershgorin’s theorem: Let A be a square matrix with entries aij and denote by Di the disc
centered at aii with radius ri =

∑
i ̸=j |aij |. Then every eigenvalue of A lies within at least one disc Di.
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7. (10 points) Consider the problem to extremize (over R2),

x2
1 + x2

2 subject to x2
1 + x3

2 ≤ 1.

a) Write down the KKT conditions for this problem and find all points that satisfy them.

b) Determine whether or not these points satisfy the second order necessary conditions for being local maxi-
mizers or minimizers.

c) Determine whether or not these points satisfy the second order sufficient conditions for being local maxi-
mizers or minimizers.
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8. (10 points) Consider the problem (over R2),

minimize x4
1 − 2x2

2 − x2

subject to x2
1 + x2

2 + x2 ≤ 0

a) Write a dual problem and solve it.

b) Using duality, find a solution for the original problem.
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9. (10 points) Consider a quadratic function f(x) = 1
2x

TQx− bTx, where Q is an n×n symmetric positive definite
matrix. Consider the steepest descent iteration for minimizing this function, which is defined by

xk+1 = xk − αkgk, αk = argminα≥0 f(xk − αgk), gk = ∇f(xk).

Note x ∈ Rn and the notation xk denotes the iterate in the kth iteration, which is also a vector in Rn.

a) Show that αk =
gT
k gk

gT
k Qgk

.

b) Denoting the minimizer of f by x∗ and using the definition ∥x∥2Q = xTQx, show that

∥xk+1 − x∗∥2Q =

{
1− (gTk gk)

2

(gTk Qgk)(gTk Q
−1gk)

}
∥xk − x∗∥2Q.

c) Denoting the eigenvalues of Q as 0 < λ1 ≤ · · · ≤ λn, show that for any vector v one has

(vT v)2

(vTQv)(vTQ−1v)
≥ 4λ1λn

(λ1 + λn)2
,

and use this to conclude that ∥xk+1 − x∗∥2Q ≤
(

λn−λ1

λn+λ1

)2

∥xk − x∗∥2Q.


