Optimization / Numerical Linear Algebra (ONLA)

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM. PLEASE USE BLANK PAGES AT END FOR ADDITIONAL SPACE.

1. (10 points) Consider

$$
\begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.
$$

Prove whether Gauss-Seidel iteration converges.

Optimization / Numerical Linear Algebra (ONLA)

2. (10 points) Consider the following iterative method for solving $Ax = b$:

$$
r_0 = b - Ax_0
$$

\n
$$
p_0 = r_0
$$

\nFor $n = 0, 1, ...$
\nCompute α_n
\n
$$
x_{n+1} = x_n + \alpha_n p_n
$$

\n
$$
r_{n+1} = r_n - \alpha_n A p_n
$$

\nCompute p_{n+1}

Derive a way to compute α_n (in the fourth line above) such that $||b - Ax_{n+1}||_2$ is minimized.

Optimization / Numerical Linear Algebra (ONLA)

- 3. (10 points) Prove for Krylov subspace $\mathcal{K}_n(A, v)$:
	- a) $\mathcal{K}_n(A, v) = \mathcal{K}_n(\alpha A, \beta v)$ where $\alpha \neq 0, \beta \neq 0$.
	- b) $\mathcal{K}_n(A, v) = \mathcal{K}_n(A \mu I, v), \forall \mu \in \mathbb{R}$.
	- c) $\mathcal{K}_n(B^{-1}AB, B^{-1}v) = B^{-1}\mathcal{K}_n(A, v), \forall B$ that's invertible.
	- d) $\mathcal{K}_{n+1}(A, v) = \text{span}(v) + A\mathcal{K}_n(A, v), \forall n \geq 1.$
	- e) If $v \notin \text{Range}(A)$, then $A\mathcal{K}_n(A, v) \nsubseteq \mathcal{K}_{n+1}(A, v), \forall n \geq 1$.

Optimization / Numerical Linear Algebra (ONLA)

- 4. (10 points) Prove or disprove whether each of the following is backward stable, when performed in floating point arithmetic on a machine that satisfies the fundamental axiom of floating point arithmetic (i.e. that floating point operations ⊛ satisfy $x \circledast y = (x * y)(1 + \varepsilon)$ for some $|\varepsilon| \leq \epsilon_{\text{machine}}$, where $*$ represents addition, subtraction, multiplication or division).
	- a) Outer product computations xy^T for real vectors x and y.
	- b) Unitary matrix multiplication. I.e., let Q be a unitary $m \times m$ real matrix and define the problem f by $f(A) := QA$ for $m \times m$ real matrices A. Suppose this is carried out by the floating point algorithm $\hat{f}(A)$ which computes the product QA by floating point inner products. Prove or disprove that \hat{f} is backward stable.

Optimization / Numerical Linear Algebra (ONLA)

5. (10 points) Given an $m \times n$ real matrix A and real vector $b \in \mathbb{R}^m$, consider the least-squares problem in which we search for the least-squares solution $x_{LS} \in \mathbb{R}^n$ that minimizes $f(x) = ||Ax - b||_2^2$. Prove that $x_{LS} = A^{\dagger}b$ is the least-squares solution that has the smallest L2-norm (i.e. show that it is a minimizer, and out of all minimizers, $||A^{\dagger}b||_2$ is the smallest). The notation A^{\dagger} denotes the (Moore-Penrose) pseudo-inverse of A.

Optimization / Numerical Linear Algebra (ONLA)

6. (10 points) Prove Gershgorin's theorem: Let A be a square matrix with entries a_{ij} and denote by D_i the disc centered at a_{ii} with radius $r_i = \sum_{i \neq j} |a_{ij}|$. Then every eigenvalue of A lies within at least one disc D_i .

Optimization / Numerical Linear Algebra (ONLA)

7. (10 points) Consider the problem to extremize (over \mathbb{R}^2),

$$
x_1^2 + x_2^2
$$
 subject to $x_1^2 + x_2^3 \le 1$.

- a) Write down the KKT conditions for this problem and find all points that satisfy them.
- b) Determine whether or not these points satisfy the second order necessary conditions for being local maximizers or minimizers.
- c) Determine whether or not these points satisfy the second order sufficient conditions for being local maximizers or minimizers.

Optimization / Numerical Linear Algebra (ONLA)

8. (10 points) Consider the problem (over \mathbb{R}^2),

minimize
$$
x_1^4 - 2x_2^2 - x_2
$$

subject to $x_1^2 + x_2^2 + x_2 \le 0$

- a) Write a dual problem and solve it.
- b) Using duality, find a solution for the original problem.

Optimization / Numerical Linear Algebra (ONLA)

9. (10 points) Consider a quadratic function $f(x) = \frac{1}{2}x^TQx - b^Tx$, where Q is an $n \times n$ symmetric positive definite matrix. Consider the steepest descent iteration for minimizing this function, which is defined by

 $x_{k+1} = x_k - \alpha_k g_k$, $\alpha_k = \operatorname{argmin}_{\alpha \geq 0} f(x_k - \alpha g_k)$, $g_k = \nabla f(x_k)$.

Note $x \in \mathbb{R}^n$ and the notation x_k denotes the iterate in the kth iteration, which is also a vector in \mathbb{R}^n .

- a) Show that $\alpha_k = \frac{g_k^T g_k}{g_k^T \Omega g}$ $\frac{g_k g_k}{g_k^T Q g_k}$.
- b) Denoting the minimizer of f by x^* and using the definition $||x||_Q^2 = x^T Q x$, show that

$$
||x_{k+1} - x^*||_Q^2 = \left\{ 1 - \frac{(g_k^T g_k)^2}{(g_k^T Q g_k)(g_k^T Q^{-1} g_k)} \right\} ||x_k - x^*||_Q^2.
$$

c) Denoting the eigenvalues of Q as $0 < \lambda_1 \leq \cdots \leq \lambda_n$, show that for any vector v one has

$$
\frac{(v^T v)^2}{(v^T Q v)(v^T Q^{-1} v)} \ge \frac{4\lambda_1 \lambda_n}{(\lambda_1 + \lambda_n)^2},
$$

and use this to conclude that $||x_{k+1} - x^*||_Q^2 \leq \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 ||x_k - x^*||_Q^2$.